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Abstract:  This talk consists of two parts. The first part is almost entirely devoted to a discussion of Hilbert’s finitist metamathematics in the 1920s, with particular emphasis on his conception of finitist consistency proofs for formalized mathematical theories T. When Hilbert wrote his famous essay ‘On the Infinite’ (1925-1926), his proof theory of the 1920s had grown to full maturity. It is here that he pays special attention to describing what is usually called “the method of ideal elements”, such as the postulation of points and lines at infinity in projective geometry or the postulation of the existence of n roots for an n-th degree polynomial in algebra.  In subsequent smaller sections, I try to shed light on some difficulties to which Hilbert’s metamathematics of the 1920s gives rise. One serious difficulty that I discuss is the fact, widely ignored in the pertinent literature on Hilbert’s programme, that his language of finitist metamathematics fails to supply the conceptual resources for formulating a consistency statement qua unbounded quantification. Another difficulty emerges from Hilbert’s illicit assumptions of infinity in metamathematics. On the way, I shall comment on the relationship between finitism and intuitionism, on W. W. Tait’s objection to an interpretation of Hilbert’s finitism by Niebergall and Schirn as well as on partial realizations of Hilbert’s programme, chiefly advocated by S. G. Simpson.

In the second part of my talk, I take a critical look at Wittgenstein’s views about (in)consistency and consistency proofs in the period 1929-1933. I argue that his insouciant attitude towards the emergence of a contradiction in a mathematical calculus as well as his outright rejection of metamathematical consistency proofs are unjustified. In particular, I argue — by way of presenting an imaginary dialogue between Wittgenstein and Hilbert — that Wittgenstein falls short of making a convincing case against Hilbert’s proof-theoretic project. I conclude with philosophical remarks on consistency proofs and the notion of soundness.

INTRODUCTION

A formal theory T, in the usual sense of “formal”, is consistent if in T no formula is at the same time provable and refutable, and hence, if there is no proof in T for falsum
. Since every arbitrary formula can be proved in a theory T in which falsum is provable, an alternative explanation suggests itself: T is consistent if there is at least one unprovable formula in T. A slightly weaker explanation would be this: T is consistent if it is impossible that every sentence in T is provable. From a metamathematical point of view, the two explanations are not completely tantamount. The reason is that the first requires the actual exhibition of a non-provable formula of T, while the second rests content with a “proof of impossibility”. 

The development of non-Euclidean geometries by Gauss at the end of the eighteenth century as well as by Bolyai and Lobatschewsky in the early nineteenth century fostered the awareness that consistency proofs for axiomatic theories are of fundamental methodological importance. Eugenio Beltrami succeeded in carrying out the first consistency proof for non-Euclidean geometry by constructing a Euclidean model of Bolyai and Lobatchevsky’s plain hyberbolic geometry in the geometry of surfaces of constant negative curvature. A few years later, Felix Klein proved the consistency of hyperbolic geometry by constructing a Euclidean model in projective geometry.

Consistency proofs that are carried out by constructing a model are of a relative nature. The fact that in a structure M a theory T holds is proved in a metatheory T* of T. Thus in such a consistency proof for T it is presupposed that T* is consistent. Analytic geometry, founded by Descartes, paved the way for devising a general method of proving the consistency of a geometrical theory by constructing a model of the theory of real numbers. Hilbert, in his celebrated work Grundlagen der Geometrie (Foundations of Geometry) (1899), proved the consistency and independence of his axiom system of geometry by providing “analytic” models which consist of certain algebraic numbers and functions.
 For arithmetic too — here taken in a comprehensive sense — consistency proofs can be given via the construction of a model by reducing the consistency of the theory of complex numbers to the presupposed consistency of the theory of real numbers. However, when Hilbert developed his proof-theoretic approach in the 1920s, he was convinced that the consistency of pure number theory, of analysis and finally of set theory, in  case they are in fact consistent, should be proved in a direct fashion.

Frege, by contrast, always endorsed the classical Euclidean conception of axioms and declared this conception to be sacrosanct. He regarded consistency proofs for systems of proper or genuine axioms as superfluous. According to Frege, a proper axiom of a theory T is a primitive truth that neither needs proof nor is capable of proof in T. A truth that does not need proof he takes to be self-evident. Frege objected to the consistency proof, carried out by Hilbert in Grundlagen der Geometrie, that consistency follows immediately from the truth of the axioms, assuming that the axioms were genuine and not Hilbertian axioms qua implicit definitions, which Frege stigmatized as pseudo axioms. Since he regarded genuine axioms as necessarily true, at least those of a purely logical theory such as the logical theory of Grundgesetze der Arithmetik (The Basic Laws of Arithmetic) (GGA), he did not think that they could contradict each other. After having made this objection in a letter to Hilbert, it is somewhat ironic that about two years later Frege was apalled to learn that Russell had derived a contradiction in the axiomatized system of GGA.
PART I

HILBERT’S FINITIST PROOF THEORY (1922-1931) AND RELATED ISSUES 
In a series of articles between 1922 and 1931 and enjoying still in a state of pre-Gödelian innocence,  Hilbert set out to develop his metamathematics qua contentual theory of formalized proofs (henceforth referred to as “M”) to meet what he considered to be an enormous challenge: to show or prove finitistically the consistency of formalized mathematical theories T such as Peano Arithmetic (PA) or second-order arithmetic (Z2) by more reliable means than those that could be formalized in T. He regarded finitist means as incontestable and maximally reliable, because he was convinced of the idea that they satisfy the methodological principles of representability in intuition and surveyability. “Never abandon the base of intuition in your proof-theoretic practice!“ could, in my view, have served as one of Hilbert’s fundamental methodological maxims for the metamathematician.

It is widely held in the relevant literature that Hilbert failed to characterize in a precise manner what he called the ‚finitist point of view’ or ‚finitist attitude’. I share this opinion. A general characterization of the finitist point of view, which may still serve as a rough guideline, can be found only as late as in the first volume of Hilbert and Bernay’s monumental work Grundlagen der Mathematik (Foundations of Mathematics (1934, p. 32). Although we shall later see that finitism during that period does not completely coincide with Hilbert’s finitism in the 1920s, I think that the following passage would by and large fit the finitist point of view in the 1920s. (Note that Grundlagen der Mathematik was never translated into English which is perhaps partly due to Bernays’s rather convoluted style. The example given below probably sounds a little smoother in my English translation than in the original German version. There can hardly be any doubt that it was Bernays who actually wrote the two volumes of Grundlagen der Mathematik and not Hilbert himself, though Hilbert must have read the written text, at least that of the first volume.)

Our considerations on the beginnings of number theory and algebra have served the purpose of demonstrating in both its application and use the direct contentual reasoning, carried out in the form of thought experiments on intuitively given objects and free from axiomatic assumptions. In order to have a consice expression for it, we shall call this kind of reasoning finitist reasoning and shall likewise call the methodological attitude underlying this reasoning the finitist attitude or finitist point of view. In the same sense, we shall speak of finitist concept formations and assertions by expressing with the word „finitist“ in each case the fact that the reflection, assertion or definition in question proceeds within the limits of both the conceivability in principle of objects and executability in principle of processes, and is therefore carried out within the scope of concrete considerations.

     In the 1930s, in the face of Gödel’s theorems, proof theorists had come to construe metamathematics right from the start as forming a part of mathematics, or to replace an informal version of metamathematics by a formal one. In the latter case, the formal version of metamahematics is considered to belong intrinsically to mathematics proper. Accordiong to the method which has come to be known as „arithmetization of metamathematics“, mathematical expressions are coded by mathematical objects, preferably by natural numbers. Some logicians had even gone so far as to define expressions as certain numbers. This approach involves a primacy of mathematics vis-à-vis metamathematics in two respects: first, in a linguistic or syntactic respect (the language of metamathematics belongs to the language of mathematics), and second, in an ontological or a semantic respect (espressions as the intended objects of metamathematical considerations are reduced to or identified with genuinely mathematical objects). 

     Hilbert’s original conception of metamathematics differs strikingly in a number of ways from the view that I have just sketched. According to him, metamathematics is a collection of statements about figures or strings of figures, drawn from a finite stock. Unlike the mathematical objects, which are usually conceived of as abstract, the figures considered in metamathematical operations are concrete, spacio-temporal objects and as such intuitable and surveyable. The axioms, formulae and proofs which constitute the formal edifice of the arithmetical theory, are on a par with the numerical figures or numerals of the fragments of number theory which in his early papers on proof theory Hilbert constructs by means of contentual, intuitive methods (cf. Hilbert 1922). They are the subject-matter of the contentual, proof-theoretic considerations. A formalized proof, like a numeral, is a concrete and surveable object which must be given as such to our perceptual intuition. The term "(natural) number" is reinterpreted; it is explained by means of the term "sign", at least in Hilbert 1922. If we allow a massive dose of anachronis the procedure suggested by Hilbert could thus be seen as reversing the post-Gödelian method of coding signs by numbers.
     While nowadays metamathematics is construed as being formulated and axiomatized in a formal language, M is neither formalized nor axiomatized. It is supposed to allow only intuitive and contentual reasoning, and, as Hilbert (1934, 32) underscores, this kind of reasoning is, by its very nature, free of axiomatic assumptions. Due to his sharp distinction between formalized mathematics and contentual metamathmatics, the meanings attached to the word "to prove" in the two disciplines are fundamentally different. In formalized mathematics, it means to infer according to the formal rules of the calculus; in contentual metamathematics, it means to show by means of contentual, intuitively evident inference. Again, it is precisely the intutition-based character of metamathematical reasoning that is supposed to guarantee its security and reliability. 

     Although Hilbert's metamathematical vocabulary may include natural language analogues of logical expressions which correspond to truth-functional connectives, it does not contain specifically mathematical expressions such as  "-" and ":". Hence, the language of M, as construed by Hilbert, is not a genuinely mathematical language. If we were to construct it in precise manner, we would presumably arrive at a "concatenation-theoretic" language, say,  à la Richard Montague.  In a nutshell: M qua contentual theory of formalized proofs is a non-formalized and non-axiomatized "theory" with a non-mathematical vocabulary. Designed as a collection of sentences dealing with concrete and surveyable figures (in particular with formulae and proofs) it is supposed to wear its mark of distinction on its sleeve: intuitive evidence. And thanks to the intuitive evidence of its sentences, the soundness of M was considered beyond rational doubt.  Note that even if M were clad in formal garb (i.e., couched in a formal language) the resulting version (call it MM) need not be recursively enumerable. Furthermore, contrary to a widely held view, there is ample reason to suppose that MM may be weaker than Primitive Recursive Arithmetic (PRA).  

Hilbert stresses repreatedly that the characteristic features of a proof in a formalized mathematical theory are concreteness, intuitability (or perceptual recognizability), surveyability, and complete communicability. Concretely given proofs, however simple or complex they may be, are finite objects; they can be “communicated from beginning to end. 
Hilbert (1926), p. 97). Of course, the plausibility of Hilbert’s claim as to the intuitability and surveyability of formalized proofs qua concrete, spatio-temporal objects depends crucially on the length of the proofs.  In my view, it is of course only segments of an excessively long proof that can be said to be intuitable and surveyable, but not the proof as a whole. 

When Hilbert sets about establishing the consistency of, for example, PA, by finitary proof-theoretic means, it is seemingly mandatory to show for every proof figure a in PA that “1 ≠ 1“ cannot be the end formula of a.Suppose now that the domain of concretely given proofs comprises just twenty PA-proofs. It might then seem to be a straightforward matter for the Hilbertian proof-theorist to establish metamathematically and in a finitist fashion the consistency of PA. It suffices to carefully inspect each of the twenty PA-proofs, guided by the criterion that none of those proofs is allowed to end with “1 ≠ 1“. If the Hilbertian makes sure that in fact no PA-proof ends with “1 ≠ 1“, the consistency of PA seems finitistically warranted. Ideally, in the hypothetical situation that I am imagining, the Hilbertian ought to encounter only PA-proofs ending with some well-formed formula of the language LPA of PA that is distinct from “1 ≠ 1“.  In the light of his stipulation of what counts as a contradiction in PA, it might even be granted that one of the twenty PA-proofs contains as its last proofline “2  ≠  2“, as long as it is guaranteed that none of the remaining nineteen PA-proofs ends with “1 ≠ 1“. If not a single PA-proof proceeds from the proofline, say, “2  ≠  2“, to a proofline “1 ≠ 1“, the consistency of PA appears to be secured.

This caricature of a metamathematical consistency proof was not intended by Hilbert in the 1920s. If I am right, then the situation for Hilbert was this
: When the consistency proof for a branch T of (formalized) classical mathematics was on the agenda, Hilbert’s aim was not to establish, by way of stepwise inspection, that none of the concretely given proofs in T ends with  “1 ≠ 1“, and then to declare that the aim of proving the consistency of T was achieved. His goal was rather to show the unprovability (note the modal ring that this term has to it) of “1 ≠ 1“ in T. A metamathematical consistency proof for T in the style of Hilbert is, as one might say, a “proof of impossibility“; it is in fact a kind of reductio ad absurdum (a reductio ad impossibile). It is designed to prove or to show that it is impossible to conduct in T a proof of a well-specified nature: a proof whose end formula  is “1 ≠ 1“. This tallies with Hilbert’s succinct characterization in his essays (1923), p. 184, (1926), p. 97 and (1931), pp. 19 f. of how a metamathematical consistency proof is performed. The starting point is the assumption that we are given a formalized proof qua concrete proof figure of an axiomatic theory T with the end formula “1 ≠ 1“. In a second step, it is shown by means of contentual, finitistic reasoning that “1 ≠ 1“ cannot be obtained as an end formula from the axioms of T by applying a finite number of times the formalized inference rules of T, hence that “1 ≠ 1“ is not a provable formula in T. As Hilbert puts it: “[T]he point for us is to show that it is impossible to exhibit a proof of a certain kind“ (Hilbert (1926), p. 97).
 

Not surprisingly, one vulnerable spot of M was its lack of “strength”.
 Yet in order to assess the “strength” of M as well as the complexity of the metamathematical expressions within the arithmetical hierarchy we must assume that M is clad in the formal garb of a mathematical theory (call it “MM”).
 If we do this and then canvass Hilbert’s essays on proof theory in the period 1922-1928, we have ample reason to suppose that MM may be considerably weaker than Primitive Recursive Arithmetic (PRA).
 As far as the metamathematical language LM of M or LMM of MM is concerned, it turns out that in LM we cannot formulate unbounded quantifications or in LMM genuine 
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-sentences (that is, sentences in which unbounded universal quantifiers occur essentially). However, the standard formalizations of consistency statements for recursively enumerable theories are 
[image: image2.emf]


€ 



Π1
0










   

P

1

0

-sentences. To be sure, if there is no way of stating the consistency of a formalized theory T in a finitist fashion, then Hilbert’s proof-theoretic programme is doomed to failure right from the start, independently of the impact of Gödel’s Second Incompleteness Theorem.

I now turn to a discussion of some special issues related to Hilbert’s finitist metamathematics in the period 1922-1931.

FINITISM AND ASSUMPTIONS OF INFINITY

Let U be a set of sentences or propositions. By proving U or in recognizing the truth of U,  we make an assumption of infinity if and only if

(a) U says under a “contentual” interpretation that there is an infinite object; or (b) U, when it is interpreted contentually, is satisfiable only in an infinite domain. For (a), we may take “x(x = ” as an example (say in Zermelo-Fraenkel set theory (ZF)); for (b), we may take Peano Arithmetic (PA); and for both (a) and (b), we may take ZF. 

It seems to me that  there are basically three possible ways of explaining the expression “infinite”. 

(i) “Infinite” is defined in a precise context, for instance, in axiomatic set theory.

(ii) An axiomatization for “infinite” is provided.  

(iii) It is presupposed that the expression “infinite” is already clearly understood by us, and a formal explication is considered unnecessary. 

     In his papers on proof theory of the 1920s, Hilbert does not give any explicit explication of the expression "infinite". This applies especially to the axiom "If a predicate A applies to an object , then it applies to all objects a" which he highlights as the "primary source of all transfinite concepts, principles and axioms" (1923, 183). This distinguished transfinite axiom as well as the other “ordinary” transfinite axioms derivable from it (Hilbert 1926, 96 [382]) do not derserve their name; they fail to give us any formal explication of the expression infinite. Unlike the sentences of metamathematics and those belonging to the finitary part of formalized mathematics, Hilbert's so-called transfinite axioms are uninterpreted Udevoid of meaning); and they are satisfiable in finite domains even if we were to endow them with an interpretation.  Thus, it seems that Hilbert belongs to those mathematicians who favour position  (iii). 

     Hilbert seems to face an impasse here. One the one hand, the finitist point of view owes  its attraction to the exclusive use of intuitively evident and absolutely reliable  methods. On the other hand, the finitist (meta-) mathematician seems to be at a loss to say what "finite" or "infinite" is to mean. Now, the fact that a theory T is constructed in such a way that its soundness is probable, or assumed, or guaranteed, although the soundness cannot be proved in T itself nor even stated in the language of T, is nothing new and scarcely regarded as an obstacle by mathematicians even when they focus on important mathematical theories such as ZF, for  example. One essential reason for accepting ZF as a foundation of mathematics is its assumed soundness, that is, its truth in the set-theoretical universe V. Yet in the language of ZF we cannot even express the truth of ZF in V. Seen from this angle, Hilbert's situation is comparable to that of the present-day mathematician. The conception which makes Hilbert's metamathematical approach attractive, namely that of finiteness, can be formulated within the framework of his finitism just as little as the conception favouring ZF, namely that of set-theoretic truth can be formulated in the language of ZF.  
     The fact that Hilbert omits to subject the notion of infinity to a mathematical treatment does not, of course, imply that he dispenses with assumptions of infinity altogether. In the first half of “Über das Unendliche” („On the infinite“) he concludes, by appealing to his previously established results, that reality is finite. In what follows, he examines the question whether the infinite is at least admissible in our rational thinking. The upshot is this: "[N]owhere is the infinite realized; it is neither present in nature nor admissible as a foundation in our rational thinking. [...] The right to operate with the infinite can be secured only by means of the finite” (1926, 108 [392]).  

     However, if infinitely many or infinite objects have no "well-justified place in our thinking",  not even in our mathematical reasoning, then we are forced to ask how matters stand with those assumptions of infinity that are made in analysis or, even more extensively, in set theory. Hilbert might have responded as follows: If we renounce interpreting these mathematical theories, we know that their acceptance does not involve any existential assumptions at all, let alone assumptions of infinity. Clearly, Hilbert does not modify  ZF qua  formal  mathematical theory; he can still prove "x(x = "  in ZF. However, construed as a sentence of formalized mathematics, "x(x = " cannot be used to assert  anything at all, because as such it is devoid of meaning. By contrast, when we assert  "x(x = " in classical,  informal mathematics, we are perhaps disposed to acknowledge the existence of an infinite object.

Granted that formalized mathematics does not contain assumptions of infinity, it remains to find out whether the advocate of finitist metamathematics makes such assumptions. Admittedly, the idea that he relies on assumptions of infinity seems prima facie  preposterous. What he does in his proof-theoretic practice is no more and no less than this: he encounters or generates finitely many finite and surveyable figures, operates with them and makes statements about them. A glance at Hilbert's characterization of numbers as signs (cf. e.g., 1926, 89 [377]; Hilbert and Bernays 1934, 20f.) suggests, though, that he stipulates precisely this: "1"  is a numeral (i.e., a stroke-figure) and, given that "a" is a numeral, the "concatenation" of "a" with "1" is a numeral. According to the customary, naive conception of the infinite, Hilbert's stipulation conveys that there are infinitely many numerals, just as the existence of a successor for any natural number n distinct from all its predecessors guarantees the existence of infinitely many natural numbers. Furthermore, since an adequate explication or reconstruction of the notion of natural number rests on the assumption that there are infinitely many natural numbers, Hilbert's would be entitled to identify the natural numbers with numerals only if he had good reasons to assume the existence of infinitely many numerals.
INTLERLUDE I: FINITISM AND INTUITIONISM

Hilbert and Bernays (1934) point out that the methodological standpoint of Brouwer’s intuitionism embodies a certain extension of their finitist point of view. The reason for this kinship is supposed to be this: Brouwer allows that an assumption is introduced about the presence of an inference or a proof, without the inference or the proof being determined according to intuitive characteristic marks. From an epistemological point of view, such an extension of the finitist standpoint is said to amount to the method of adjoining to the intuitive insights, gained in finitist reasoning, considerations of a generally logical nature. Hilbert and Bernays observe that the extension so conceived is requisite if by means of finitist reasoning one wishes to go beyond a certain elementary domain. It is true that in his paper ‘Die Grundlegung der elementaren Zahlenlehre’ (1931) Hilbert seems already to be alluding to this way of extending the finitist standpoint when he characterizes the insights a priori as those intuitive and logical insights that we attain within the boundaries of finitism. Again, I hesitate to regard these isolated remarks as furnishing conclusive evidence that by 1931 Hilbert’s original conception of finitism had already undergone a significant change.


It may spring to mind that Hilbert’s collaborators and protegés in Göttingen in the 1920s felt inclined to construe “intuitionistic“ and “finitist“ to be synonymous or at least broadly interchangeable terms.
 Thus, in his essay ‘Zur Hilbertschen Beweistheorie’ (1927) von Neumann speaks in one place (p. 7) of the “intuitionistic-finitist“ character of his “contentual reflections“. In another place (p. 21), he underscores that in all inferences he has to proceed “intuitionistically (that is, finitistically)“. Recall in this connection Hilbert and Bernay’s remarks on the methodological point of view of Brouwer’s intuitionism. Now, in my view, it would be too hasty to conclude from these remarks that in the early 1930s Hilbert in effect considererd his finitism of the 1920s to be a restricted version of intuitionism. And even if he did, it is by no means clear whether, on closer examination of the methodological underpinnings of the two doctrines, such an assessment could be sustained. 

A PRE-GÖDELIAN  QUANDARY FOR  HILBERT’S FINITISM 

Let me return to the predicament in which I believe Hilbert would have found himself had he reflected thoroughly on the conceptual resources and thus on the expressive power of his metamathematical language LM or LMM of the 1920s: LM or LMM does not permit the formulation of the standard formalization of a consistency statement. 

“PA is consistent” can be defined within natural language by appeal to informal mathematical terminology, for example, as “Not every formula in LPA is PA-provable” or as “Falsum is not PA-provable”. The latter version amounts to: “There is no proof for falsum in PA” or “For all PA-proofs and formulae S, if is a proof of S, then S is distinct from falsum”. “is a PA-proof for S” is only a shorthand expression for “is a sequence of prooflines such that each line is a PA-axiom or follows from previous lines by applying the rules of inference available in PA (for example, modus ponens)”. When we couch the informal definitions of “PA is consistent” in the formal vocabulary of first-order logic, we obtain the  standard formalized consistency statement “ConPA” which is 
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 in a formula pa’ defining PA. In order to prove “ConPA” in MM, the logical repertoire of LMM must enable us to formulate at least genuine 
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-sentences (or 
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- formulae with free variables).
Admirers of Hilbert’s proof-theoretic programme — and the present speaker sees himself as belonging to this group of logicians/philosophers — may feel inclined to try to devise an alternative strategy of formulating consistency statements which shows a way out of the pre-Gödelian quandary of his finitism. In Niebergall und Schirn (1998), the authors introduced for this purpose the notion of an approximative consistency proof (for axiomatizable theories S and T with representation  This notion does not emerge from out 
of the blue; it is considered to be inspired by Hilbert himself in ‘Die logischen Grundlagen der Mathematik’ (‚The logical foundations of mathematics’) (1923, p. 184; cf. Hilbert (1931), p. 491); and it is, in my view, basically in the spirit of his finitist point of view.
 

S  proves the approximative consistency of T : nS (—Proof(n, 

The formalized proof predicate is here the standard one. It is essential to assume that “Proof(n, “ is a 
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-sentence; it seems that it can therefore be formulated in the language of finitist metamathematics. For the restricted case in which the consistency of PA should be provable in PA, Hilbert’s finitist programme could presumably be carried out, provided that the way of establishing PA as a consistent theory proceeds via an approximative consistency proof.

 
On the one hand, an approximative consistency proof in MM of a formalized mathematical theory T appears to be fairly persuasive precisely because the soundness of MM is taken for granted. Yet on the other hand, we can prove in MM the approximative consistency of T only if T has approximately the same “strength“ as MM itself. In view of both this fact and the relative weakness of MM, every attempt to prove in MM the consistency of, say, second-order arithmetic would be bound to fail. In short: Hilbert’s programme to prove with finitist means the consistency of classical mathematics in its entirety cannot come to fruition even if the proof is carried out not along the lines of „ordinary“ consistency proofs, but rather in the style of an “approximative“ proof.

AN OBJECTION BY W.W. TAIT CLOSER EXAMINED

W.W. Tait (2002) criticizes me and my co-author K.-G. Niebergall for our claim (in Niebergall and Schirn (1998) that Hilbert’s conception of finitism in Hilbert and Bernays (1934) extends the original conception that Hilbert propounded in the 1920s. Tait writes: 

But this claim seems to be partly based on the view that finitism in the earlier period was concerned only with metamathematics and so not with numbers. But, of course, for Hilbert the numbers themselves were syntactic objects and so arithmetic was for him a special case of metamathematics. The authors also seem to believe that Hilbert’s finitism was restricted to making statements about particular syntactical objects and admittted no general statements (
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-statements, as they refer to them). Aside from the fact that they are then unable to give a convincing account of what the statement of consistency for a formal system such as PA would be (see 297-302), [Hilbert 1927] explicitly states the ‘contentual’ principle of mathematical induction as a finitist principle. One premise of this principle is surely a general proposition.

 I  think that Tait’s charge is unjustified. 

Firstly, in Schirn and Niebergall (2001), the thesis that finitist metamathematics in Hilbert and Bernays (1934) is at least as strong as PRA, and may include even PRA + ConPRA, is fleshed out by paying close attention to the text. Note that in Niebergall and Schirn (1998) we also show in great detail that Hilbert’s metamathematics of the 1920s may be considerably weaker than PRA (or QF-IA).

 Secondly, in the latter essay we made it clear that Hilbert’s finitism in ‘Neubegründung der Mathematik’ (1922) is, in the first place, concerned with contentual, intuitive  number theory before he turns to metamathematics. Hilbert was of course aware that the entire wealth of number theory and analysis cannot be developed by means of contentual, intuitive methods. From his finitist point of view of the 1920s, genuine universally quantified sentences, for example, cannot be analyzed as infinite conjunctions, but must be introduced axiomatically. To my mind, Hilbert’s finitist construction of a fragment of number theory in Hilbert (1922) serves, albeit not exclusively, as a paradigmatic preparation for the ensuing development of typically metamathematical considerations. The core of finitism as designed by Hilbert, say, between 1922 and 1934, is his proof theory or metamathematics. 

Thirdly, it is misleading at best to claim, as Tait does, that for Hilbert arithmetic was a special case of metamathematics. It is plain that at least formalized arithmetic differs fundamentally from M. One instructive example is the nature of proof in the two disciplines. Unlike the proofs in formalized arithmetic, a consistency proof for a theory T in M does not rest on the employment of formal modes of inference. Rather, it shows by means of contentual, intuitive inference that “1 ≠ 1“ cannot be the end formula of a proof in T. It is at least clear that the ideal sentences of the language of formalized arithmetic are devoid of meaning, whereas all sentences of the language of metamathematics LM are  meaningful.
 As a matter of fact, only rudimentary contentual number theory can be considered to be in close methodological and epistemological proximity to M. Recall that LM is far from being a full-fledged mathematical language. The axioms, formulae and proofs which constitute the “formal edifice“ of the arithmetical theory are on a par with the numerical figures or numerals of the fragment of number theory which Hilbert (1922) constructs by means of contentual, intuitive methods. In any event, from the fact that for Hilbert the numbers themselves were formal or syntactic objects it does not follow that arithmetic was for him a special case of metamathematics.  

It is true that at least in his papers between 1922 and 1928 Hilbert construes the natural numbers as numerals or figures. I  assume that this is what Tait has in mind when he speaks of syntactic objects. It is worth noting that the identification of the natural numbers with numerals or numerical figures involves a serious difficulty for Hilbert’s finitism. On the one hand, he seems to be advocating the view that every numeral is surveryable. On the other hand, he must have been aware that at least fairly large natural numbers, conceived of as strings of stroke symbols, can hardly be said to be surveyable for us. It is, moreover, clear that every attempt to fix an upper bound as regards the surveyability of strings of numerical figures would founder on the arbitrariness and randomness of our actual choices. These and similar observations might be regarded as a threat to Hilbert’s view that contentual, finitary statements about large finite numbers are intutively evident.

Fourthly, it was not incumbent upon us in Niebergall and Schirn (1998) to provide a convincing account of what the consistency statement for a formalized mathematical theory such as PA would be within the framework of Hilbert’s finitism of the 1920s. To find our claim that LM (or more exactly: LMM) does not permit the formulation of genuine 
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-sentences unintelligible is certainly not a compelling reason to assume that the restriction imposed on the conceptual repertoire  of LM (or of LMM) could not have been in the spirit of Hilbert. Reading through Hilbert (1928) (Tait refers to the paper as Hilbert 1927) again, I did not find conclusive evidence that he “explicitly states the ‘contentual’ principle of mathematical induction as a finitist principle.“ Unfortunately, Tait does not supply a page reference for his contention.

At this point, I conclude my foray into Hilbert’s metamathematics in a narrower sense and turn now to Gentzen’s consistency proof for PA (1936) as well as to his Habilitationsschrift ‘Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie’ (1943), followed by a short assessment of S. G. Simpson’s project of partial realizations of Hilbert’s programme.

INTERLUDE II: GENTZEN’S CONSISTENCY PROOF OF PA (1936) IN THE FACE OF GÖDEL’S INCOMPLETENESS THEOREMS

The pivotal question that Hilbert and his fellow proponents of finitist proof theory such as Bernays, Ackermann, von Neumann and also Gentzen had to face in the light of Gödel’s Second Incompleteness Theorem was, from their own point of view, precisely this: can we prove the (assumed) consistency of PA, for example, with methods which, even though they extend those of PA, are nevertheless indisputable or at least more reliable than the disputable non-finitist means available in PA?
 In fact, a few years after Gödel’s epochal proof-theoretic discoveries, Gentzen (1936) declared that his consistency proof for PA was carried out in the spirit of the finitist point of view, despite the use of transfinite induction up to (0, the first number of Cantor’s second number class.
 

Gentzen (1936) regards metamathematics as a formalized mathematical theory whose consistency must already be presupposed. His consistency proof for PA rests on a reduction procedure for sequents and derivations. In order to prove the finiteness of the reduction procedure, Gentzen shows that each reduction step in a certain sense “simplifies” a derivation. For this purpose, he correlates with each derivation an ordinal number, representing a measure for the “complexity” of the derivation. It is then shown that in a reduction step the ordinal number of a derivation (usually) diminishes. The linchpin of this reduction method is the idea that enables us to recognize a simplification of the derivation in a reduction step despite the apparent increase in complexity. Finally, Gentzen proves the theorem of transfinite induction (1936, p. 555  [192]): 

All ordinal numbers are accessible in the following sense, by our running through them in the order of their increasing magnitude; the first number 0,1 is considered accessible; if further all numbers smaller than a number  have been recognized as accessible, then  is also considered accessible.

By virtue of this theorem, the finiteness of the reduction procedure for arbitrary derivations is said to follow at once (cf. Gentzen (1936), p. 556 [192]). The property of the finiteness of the reduction procedure carries over from the totality of the derivations with the ordinal numbers smaller than to the derivations with the ordinal number . According to the theorem of transfinite induction, this property therefore holds for all derivations with arbitrary ordinal numbers.
 Gentzen claims that the definition of the concept accessible is entirely “constructive”. The rationale for this claim is that he characterizes as accessible only when all numbers smaller than  have previously been recognized as accessible. However, Gentzen emphasizes that the word “all” used in this context must be interpreted finitistically, on the grounds that “in each case, we are dealing with a totality for which a constructive rule for generating all elements is given” (Gentzen (1936), p. 558 [195]).

Unfortunately, Gentzen does not explain what exactly he has in mind when he uses the phrase “finitist interpretation”. It would appear that it is intended in the following sense: Gentzen suggests a “finitist” interpretation of universal quantification, that is, “xx)” has the same sense as “For every numeral n n)“. If this is meant to imply that in a finitistically acceptable theory T  “xx)” is provable just in case for every numeral n we can derive “n)“ in T, then Gentzen faces a number of problems. Either “‘xx)’ is provable in T” undergoes reinterpretation or T is closed under the -rule, and therefore is not even arithmetically definable, let alone recursively enumerable. Note that even restricted versions of the -rule lead to theories that can hardly be accepted from the finitist point of view.

Gentzen argues in favour of the finitist admissibility of TI((0( by appeal to its purportedly constructive character. I think, however, that his argument rests crucially on his far too liberal “finitist” interpretation of universal quantification and that it does not carry conviction precisely for this reason. Gentzen has definitely not succeeded in justifying TI((0( as a finitistically indisputable method of proof.
 

 PARTIAL REALIZATIONS OF HILBERT’S PROGRAMME

About two decades ago, S. G. Simpson argued in his interesting paper ‘Partial Realizations of Hilbert’s Program’ (1988) that Gödel’s Second Incompleteness Theorem does not rule out significant partial realizations of Hilbert’s programme. Simpson regards Hilbert’s programme as consisting of three steps. The first is to isolate the finitist part of mathematics; the second step is to reconstitute infinitistic mathematics as a fairly strong formal theory, Z2, for example. The third step is to carry out finitist consistency proofs for that theory. Since Simpson endorses W.W. Tait’s (1981) thesis that finitist reasoning is essentially primitive recursive reasoning in the sense of Skolem, the final step in Hilbert’s programme is then to show that the consistency of Z2 can be proved in the formal system PRA. If this could be achieved, then Z2 would be conservative over PRA with respect to 
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-sentences. 

 Here is my brief assessment of Simpson’s approach. However valuable and fruitful it may appear in its own right, it does not square with Hilbert’s original progarmme in two respects. First, I disagree with Tait and Simpson that the core of M is adequately captured by PRA.
 Second, even if we granted that M (or MM) is equal to PRA, partial realizations of Hilbert’s programme would still be far removed from Hilbert’s conception of carrying out finitist consistency proofs for formalized mathematical theories. From the fact that a recursively enumerable theory T is 
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-conservative over PRA, it follows precisely that the consistency of T cannot be proved in PRA. Admittedly, a proof of the 
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-conservativeness of a theory T whose consistency does not appear to be secured may reinforce our confidence that T is indeed consistent. Nevertheless, such a relative consistency proof is a matter quite distinct from the direct consistency proofs that Hilbert sketched or merely envisaged in his classical essays on proof theory in the 1920s.

Part II

WITTGENSTEIN (1929-1933) ON CONTRADICTION AND CONSISTENCY PROOFS

At the beginning of the 1930s (1930-1931), Wittgenstein had a number of conversations with F. Waismann on issues relating to the notion(s) of (in)consistency. One issue concerned the emergence of a (previously hidden) contradiction in a mathematical calculus conceived of as a game. Another issue was the legitimacy and usefulness of (meta)mathematical consistency proofs. These conversations, in which Wittgenstein plays a dominant role, were recorded by F. Waismann and published in L. Wittgenstein, Philosophische Bemerkungen (PB) and in Wittgenstein und der Wiener Kreis (WWK).
 Further remarks that Wittgenstein made around 1930 on mathematics construed as a game, on metamathematics and on (in)consistency are found in The Big Typescript (BT) and Philosophische Grammatik (PG). Wittgenstein conveys his thoughts for the most part in an assertive, uncompromising way, spices them here and there with a quip, bold comparison or flamboyant remark, and does not shy away from spelling out, though sparsely, tautologies that he would otherwise have stigmatized as meaningless or even as nonsensical
: “But the game is a game“ (PB, p. 318; “As long as I can play, so long I can play, and everything is in order“ (PB, p. 319); “The proof proves only what it proves“ (PB, p. 320). “If I can apply the calculus, then I have just applied it; there is no subsequent correcting. What I can that I can“ (PB, p. 332); “The proof is the proof“ (PB, p. 335).

I, for one, do not find these platitudes disturbing, let alone offensive. In fairness to Wittgenstein, we must bear in mind that here we rely upon a recording of a conversation, not upon a written text. Nonetheless, it could seem that, regarding tautologies, Wittgenstein tends to apply a double standard. In his conversations with Waismann, he repeats an old insight of his, namely that in logic a tautology is on a par with a contradiction. Literally, he says that in logic the contradiction has exactly the same meaning as the tautology (cf. PB, p. 325). Wittgenstein adds that a contradiction is nothing worse than a tautology and suggests in other places that a contradiction, if it emerged in a mathematical calculus, would be in itself rather innocuous. I emphatically disagree with these views. Yet at this preliminary stage of my critical account, I confine myself to making just one comment. Learning that a contradiction has been revealed in a mathematical or logical theory in whose consistency one unconditionally believed is hardly a pleasant affair.
 Frege’s reaction to Russell’s paradox illustrates quite instructively that Wittgenstein’s insouciant, nonchalant attitude towards a contradiction in mathematics is totally unjustified. Let me add that unlike the derivation of a contradiction, the derivation of a tautology is harmless in itself. Thus, mathematicians and logicians who are afraid of a contradiction in their theories, but do not fear coming across a tautology, are by and large right, contrary to what Wittgenstein would have us believe.

Unfortunately, Wittgenstein’s oral replies to the questions raised by Waismann are not always to the point. Moreover, they do not even approach the high standard of clarity and precision that is so characteristic for Frege’s work on the foundations of mathematics. In fact, it is occasionally not easy to disentangle the traffic jams of Wittgenstein’s ideas. 

Wittgenstein’s main concern is to call into question, if not to undermine, an apparently widespread attitude among mathematicians vis-à-vis the emergence of a contradiction in a mathematical calculus as well as the idea of securing (significant parts of) classical mathematics via a metamathematical consistency proof à la Hilbert. To my mind, Wittgenstein hardly succeeds in making a convincing case for any of his critical observations, interesting and thought-provoking as some of them may appear. One major weakness of his critical approach is that he proceeds from false assumptions as regards Hilbert’s conception of formalized mathematics and the role that Hilbert assigns to metamathematics. Firstly, Wittgenstein takes it for granted that formalized mathematics is nothing but a (formula) game without providing compelling grounds for this view and without furnishing a trace of evidence that Hilbert himself regarded formalized mathematics as a (formula) game. In this regard, Wittgenstein may have been influenced by Brouwer’s critique. Secondly, Wittgenstein’s wholesale rejection of Hilbert’s metamathematics rests at least partly on the erroneous assumption that for Hilbert metamathematics in the 1920s was likewise only a (formal) calculus.
 Yet even if Hilbert’s informal metamathematics of the 1920s were clad in formal garb, Wittgenstein would have failed to advance a conclusive argument against both the existence and legitimacy of metamathematics. Indeed, it takes much imagination to believe that Hilbert would have been impressed by any of the criticisms that Wittgenstein levels against his conception of metamathematics and consistency proofs for mathematical formalisms, had he been confronted with them in the early 1930s. Note that these criticisms have nothing to do with Gödel’s incompleteness results.

At the outset of their conversation on 17th December 1930, Wittgenstein informs Waismann that he has read a work by Hilbert on consistency (‘Neubegründung der Mathematik’)
 and feels that the entire question is wrongly posed by Hilbert. “Can mathematics be inconsistent at all? ... Do you really believe that mathematics contains contradictions?“ 

Hilbert might have replied along these lines:

 “Despite the construction of the set-theoretic paradoxes, I do not believe that there are contradictions lurking in mathematics just as little as you do. But to believe in the consistency of classical mathematics is of course not a matter of certainty or knowledge. My answer to your first question is therefore as follows. Yes, classical mathematics could be inconsistent. We cannot rule out this possibility by appeal to any mathematical, logical or empirical reasons. If we could, I should have spared myself the trouble of developing my proof theory and of outlining consistency proofs for arithmetic. It is only on specifically metamathematical grounds that we are entitled to rule out that mathematics might be inconsistent, once we have succeeded in carrying out a consistency proof for classical mathematics that meets the fundamental requirements of my proof theory. I am decidedly not in search of a contradiction in mathematics, as you seem to presume. On the contrary, my proof theory is designed to secure classical mathematics beyond rational doubt, to exclude that a contradiction could ever arise in mathematics. Since you have read my ‘Neubegründung der Mathematik’, you will perhaps remember my statement that I intend to regain for mathematics the old reputation of incontestable truth. I feel I can understand your protest against my insistence upon the need of securing the foundation for mathematics via a metamathematical consistency proof. But again, I hold that mathematics taken by itself cannot claim to be immune against a contradiction, however much clarity we have attained about its nature. It cannot, as it were, take care of its own consistency (if it is consistent), to modify a phrase that you seem to be using with predilection with an eye to logic. In short, unlike you, I am deeply convinced that it is only when we are in possession of an unassailable consistency proof for a mathematical calculus that we can blindly rely upon it.“ 
Here is another quotation from the same conversation (PB, p. 319): 
The truth is that the calculus as calculus is in order. It does not make sense to speak of a contradiction. What one calls a contradiction originates when one steps out of the calculus and says in prose: thus, this property applies to all numbers, but the number 17 lacks this property. In the calculus, the contradiction cannot manifest itself. ... What Hilbert does is mathematics and not metamathematics. It is again a calculus, just as good as any other. 

 I imagine that Hilbert might have responded along these lines: 

“I am not quite sure that I fully understand your concern. I take it that by ‘is in order’ you mean ‘consistent’. But what is the phrase ‘(to take a) calculus as calculus’ to mean? And what would it amount to if we managed to construe, let us say, formalized Peano Arithmetic (PA), not qua calculus? Suppose that we succeed in taking formalized PA not qua calculus, whatever that is supposed to mean exactly. Could it then happen that PA, taken in this sense, turns out to be inconsistent? If so, how do you reconcile this with your profound conviction that the consistency of mathematics is beyond doubt and, therefore, need not be secured? In another place, you argue in a similar vein: ‘Now, when I take the calculus as calculus, the configurations of the game cannot represent a contradiction …‘ (PB, p. 321). Disregarding your use of the word ‘game’ in this context, do you mean that the set of meaningless configurations that constitutes formalized PA, that is, the axioms, formulae and proofs, cannot contain or represent a contradiction? It seems to me that your answer would be ‘yes’, because  a little later (PB, p. 321) you say that a contradiction can only emerge when we play “the true-false-game”, that is, it can only arise in a set of statements or in a set of rules, as opposed to meaningless configurations that, following Frege, you compare with the positions of pieces on the chessboard (cf. PB, p. 339). 

If I am right, then you refuse to accept the idea that there could be something like a formal contradiction (represented, let us say by ‘1 ≠ 1’) in a mathematical calculus. In contrast to you, I believe in the legitimacy and indispensability of the notions of formal consistency and formal contradiction.
 When I stipulate that the formula ‘1 ≠ 1’ is to represent falsum in a formalized arithmetical theory, say in PA, and then lay it down in (the language of) metamathematics (!) that PA is consistent, if ‘1 ≠ 1’ cannot be obtained as the end formula of a PA-proof, then I do rely upon a workable and irreproachable criterion that allows me to decide metamathematically and quite effectively any question concerning the consistency of PA. Contrary to what you claim, it makes perfect sense to say that a contradiction could occur or manifest itself in a formalized mathematical theory T (if T is in fact inconsistent). For example, if by running through a long chain of inference in T, you arrive at ‘1 ≠ 1’ qua end formula of the entire proof, then you have come across a contradiction in T itself and not outside of T, let alone in the metamathematical theory M correlated with T. In other words: the contradiction does emerge in T; it does not crop up only once we have stepped out of T and express it in prose, as you believe. Certainly, as soon as we bring up the contradiction, begin to reflect on its source and the question if or how the damage could be repaired, then we find ourselves acting on a metatheoretical level and, hence, outside the calculus.
 To prevent misjudgement, let me try to be as clear and forthright as I can about a related key issue: both the consistency statement for a formalized mathematical theory T and  the consistency proof for T are intrinsically of a metamathematical character precisely in the sense in which I described the essential features of metamathematics in my essays. You question that “T is consistent” is a statement at all.
 From my point of view, the answer is straightforward. Yes, it is a true and scientifically respectable statement in its own right if the consistency of T has been established metamathematically.”

 
In BT, pp. 358, 362, Wittgenstein writes: 

What Hilbert does, is mathematics and not metamathematics. Since mathematics is a calculus and, therefore, essentially deals with nothing, there is no metamathematics … Hilbert sets up rules of a determinate calculus as rules of a metamathematics. 

In a meeting on 30th December, 1930 with Waismann, Wittgenstein (PB, p. 330) declares that Hilbert’s metamathematics must turn out as a disguised mathematics. A little later (p. 330), he adds: “What the  proof shows, cannot be expressed by a sentence. Thus, one cannot say: ‘the axioms are consistent’. (Just as little as one can say: there are infinitely many prime numbers. This is prose.) I believe that to carry out a proof for the consistency can only mean one thing: to see through the rules.” In a conversation with Waismann (WWK, p. 149), Wittgenstein makes a related remark.

It is very important to distinguish sharply between the calculus and this prose (the allusions that occur in the calculus(. Once one has attained clarity about this distinction, all these questions such as those concerning consistency, independence, etc. disappear. 

And in his conversation of 17th December 1930 with Waismann (PB, p. 320), he likewise claims, though by using a different “argument“, that the question concerning the consistency of a mathematical calculus is spurious, because it can only arise from a lack of clarity: 

If the contradictions in mathematics originate due to an unclarity, then I can never remove this unclarity by means of a proof. The proof proves only what it proves. Yet it cannot dispel the fog. This already shows that there cannot be a consistency proof ...  If I  am unclear about the the nature of mathematics, then a proof cannot help me. By contrast, if I am clear about the nature of mathematics, the question concerning the consistency cannot arise at all. 
Hilbert might have replied as follows:

“It seems to me that here again you misconstrue both the nature and the aim of my proof theory. Thus, I dismiss your claims out of hand. I do not see why in the light of a sharp distinction between the calculus and what you quite vaguely call “the allusions that occur in it”, a metamathematical investigation of consistency and independence should appear as a useless enterprise. Do you wish to assert the non-existence of metamathematics on the following grounds: given that a mathematical calculus deals with nothing, there can be no metamathematics, because it would lack a subject-matter and, hence, would be vacuous? If so, this would strike me as a sleight of hand rather than a serious argument. In my work on proof theory, I leave no doubt that the subject-matter of the contentual, metamathematical considerations are axioms, formulae and formalized proofs qua concrete, spatio-temporal and, for that matter, perceptually recognizable and surveyable objects. To summarize, I think that you fall short of advancing any cogent argument against the distinction between the mathematical calculus and the corresponding informal metamathematics. In particular, you fail to adduce any compelling grounds against the existence of metamathematics. To be sure, even if my metamathematics were couched in a formal language, it would not thereby forfeit its status.

As to your remarks in the conversation with Waismann, let me say that the paramount goal of carrying out a finitist metamathematical consistency proof is not to remove any unclarity that mathematicians may have about the true nature of mathematics. To repeat, the goal is rather to vindicate and to secure all of classical mathematics. Incidentally, I believe that in my mathematical work over several decades I have attained  sufficient clarity about the nature of mathematics. But this does not mean that a consistency proof is superfluous. You seem to hold that clarity about mathematics amounts to knowing that it is consistent. Be this as it may, your inference from the premise that a proof cannot ‘dispel the fog’ to the impossibility of a consistency proof  is, to my mind, rather cloudy, if not a fallacy.”
 

In what follows, I shall examine further claims that Wittgenstein makes in his conversations with Waismann. Since Wittgenstein’s remarks lack a clearly recognizable order,  it is, however, difficult to comment on them in an orderly way. To impose some structure on my comments, I shall use headings to indicate the topic at issue. 

Mathematics as a game and the two meanings of axioms

As I have just argued, Wittgenstein’s attack on Hilbert’s programme suffers from profound misinterpretations. In particular, it is overshadowed by his falsely ascribing to Hilbert the conception of mathematics as a game. Instead of using appropriate (meta)mathematical terminology when commenting on this programme, it is the nomenclature — partly known from Frege’s critical discussion of Heine’s and Thomae’s calculation game arithmetic —  of game rules (of mathematics), formula game, initial positions in the game, configurations of the game figures, etc. that prevails in Wittgenstein’s remarks. Now, Hilbert never claimed nor even insinuated that he construed formalized mathematics as a (formula) game. He was of course quite aware that mathematics is a distinguished science whose true nature cannot, in any reasonable sense, be described in terms of playing a game. It seems to me that Wittgenstein is prone to lumping together Heine’s and Thomae’s game formalism — which he probably came to know only through Frege’s devastating critique (cf. PB, p.  325) — with Hilbert’s formalized mathematics. Yet such an assimilation would fly in the face of Hilbert’s conception of mathematics. 

Wittgenstein seems to suppose that all formulae of Hilbert’s language LFA of formalized arithmetic are indiscriminately devoid of meaning and therefore figure only as concrete configurations comparable to the positions of chess pieces on the chess board that can be manipulated according to certain rules of both a permissive and a prohibitory kind. But here we must be careful. Firstly, you may recall that it is only the infinitistic, ideal formulae of the language of LFA that are bare of any linguistic meaning. By contrast, the finitary, real formulae of LFA are (in all likelihood) considered by Hilbert to be meaningful. Secondly, you may likewise recall that the axioms and provable theorems of LFA are taken to mirror the thoughts that make up the usual procedure of informal, customary mathematics. Thirdly, the manipulation of the formulae of LFA, say, when inferences are drawn in FA, is not determined by any rules that can be appropriately termed rules of the game, since formalized arithmetic is far from being a game, and Hilbert would have been reluctant to construe it as game. Brouwer’s and Wittgenstein’s charge against Hilbert’s conception of formalized arithmetic rests on a preconceived opinion and as such stands on shaky ground.

It is likewise at the outset of the conversation that our two protagonists had on 17th December 1930 that Wittgenstein points out that the axioms of a mathematical calculus have two meanings: 1. the rules, according to which one plays; 2. the initial configurations in the game. He adds that Frege had already seen this. The topic is of some importance for our concerns, because Wittgenstein holds that a contradiction can only arise in the rules of the game, that is, in the axioms understood in the first sense. To begin with, whose axioms and whose conception of axioms does Wittgenstein have in mind? Clearly, Frege would have disapproved that the two meanings at issue are attached to axioms. You will recall that Frege regarded axioms as true thoughts that have the properties of self-evidence (which implies the non-inferential recognition of the truth of the thought) and (relative) unprovability. As such they cannot figure as concrete configurations in a game. Moreover, Frege did not even draw a comparison between axioms in the Euclidean sense and rules of a game. As to Hilbert, it is highly dubious that he associated with his axioms the two meanings at issue. For him, axioms were neither rules, according to which one plays, nor initial positions in the game. We know that Wittgenstein likewise jettisoned the idea of treating mathematics as a game. As a consequence, he himself could not have accepted that axioms are initial positions in the game or rules governing the game.
 

Later in his conversation with Waismann (PB, pp. 320 f.), Wittgenstein  declares again that we must distinguish between the basic configurations of the calculus (axioms in the second meaning) and the rules which state how we must pass from one configuration to another (axioms in the first meaning). He adds that this has already been explained by Frege in his critique of the theories of Heine and Thomae and quotes from Frege, GGA II, p. 113. Thus it could seem that regarding the two meanings of axioms Wittgenstein in fact appeals to Frege as his authority. Yet this is to reverse the true order of things. Quite apart from the fact that in his discussion of game formalism Frege nowhere invokes his own conception of axioms — though he underscores repeatedly the “contentual“ aspect of arithmetical sentences in general —  it is the double role of figures, including equations, that is at stake in GGA II, §§ 108-109. Firstly, in the calculation game à la Heine and Thomae there must be rules governing the manipulation of figures in the game itself. These can be established arbitrarily with no consideration for any meaning or sense. Secondly, the same figures occur in the theory of the game, where they must be treated as meaningful signs. Now, if we draw the requisite distinction between the calculation game itself and its theory — a move from which Thomae refrains — then the double role of the numerical figures and calculation configurations implies that we have two systems of rules: (a) arbitrary rules which govern the manipulation of the figures in the game and (b) rules according to which in the theory of the game the same figures (that is, figures of the same shape) are to be treated as meaningful signs. As a way out of this difficulty that Thomae inevitably faces, Frege suggests that the figures are to appear exclusively in the calculation game itself, while the rules and theorems of the game theory should be framed in ordinary language. With a certain proviso, we may say that this suggestion amounts to distinguishing sharply between the object-language (language of the calculation game) and the metalanguage (language of the game theory).

The hidden contradiction — real danger or fata morgana?

In Wittgenstein’s eyes, the mathematicians’ inclination to speak of a hidden contradiction is misguided. It is supposed to rest on the idea that one day a contradiction, that is lurking in the axioms of the calculus, but was hitherto unnoticed, could befall us suddenly, and then we find ourselves on the brink of disaster. Thus, a hidden contradiction, if it exists at all, is one that hangs over the calculus like the sword of Damocles or to depict the image that Wittgenstein uses in this connection: a hidden contradiction is like an insidious and a life-threatening illness that breaks out all of a sudden, while we were perhaps lulling ourselves into a false sense of security. 

To begin with, I have not even an inkling whom specifically Wittgenstein may have in mind when he insinuates that mathematicians characteristically speak of the danger that a contradiction, lurking in a calculus, may suddenly crop up. Wittgenstein emphasizes that the danger is not a real one, but only sheer imagination (cf. PB, p. 338). In the conversation with Waismann of 17th December 1930, just after having declared that it is the easiest thing in the world to get rid of a contradiction in mathematics by making a new stipulation, Wittgenstein declares (PB, p. 319): “A contradiction is a contradiction only if it is there. One has here the idea that a contradiction could be hidden in the axioms from the very beginning, which nobody has seen, like tubercolosis. One suspects nothing, and one day one is dead.“ In another conversation with Waismann exactly one year later, Wittgenstein argues in the same vein: “Of what should we be afraid? Of a contradiction? But the contradiction is given to me only by the method of finding it! As long as it is not there, I need not care about it. Thus, I can be quite calm and calculate“ (PB, p. 345).
 
Now, in my opinion, it makes perfect sense to speak of a hidden contradiction, to say that a contradiction which remained hitherto concealed or unnoticed, has been revealed in a calculus. Thus, I believe that we are also justified in saying that, for example, the contradiction which Russell discovered in Frege’s logical system existed prior to the discovery. Frege’s system was haunted by the blemish of being inconsistent once it was laid out and due to the way it was laid out by him. The contradiction was, as it were, flourishing in obscurity for some time.Wittgenstein’s attitude towards such a case as Frege’s appears to be this: the contradiction that Russell found in 1902 was not in sight for several years (which is true), and for that matter, it was not in anyone’s mind (which is probably likewise true); hence, it was not a contradiction at all, that is, it did not exist until it was brought to light by Russell (which I take to be false). In contrast to Wittgenstein, I hold that the danger of coming across a contradiction that has survived undetected for some time in a calculus is by no means only a chimera. 

By the same token, I hesitate to accept the idea that a contradiction is ever disclosed in a mathematical or logical axiom system in the sense that one finds two axioms A and non-A.
 It goes without saying that a contradiction of such a conspicuous kind, should it ever occur in an axiom system, could have been avoided quite easily in the first place. I mention this since Wittgenstein seems to endorse the idea that the axioms of a calculus may contain a contradiction that more or less springs to mind. He observes that we can always decide whether there is a contradiction in a calculus by scrutinizing the axioms. This is said to be a matter of five minutes in the case of Euclidean geometry. “The rules of Euclidean geometry do not contradict each other, that is, there is no rule that cancels another rule that was given earlier (p and (p), and with that I rest content“ (PB, p. 345). To be sure, to establish the consistency of an axiomatic theory T is, in general, not just a matter of looking at the axioms and making sure that there are not two axioms A and non-A. This would be a rather trivial task.
 Frege’s Axiom V, for example, does not, of course, contradict any other of the remaining five axioms of the GGA-system. Nonetheless, it must be held responsible for the contradiction in Frege’s logical system. The contradiction arises when Axiom V is adjoined to axiomatized second-order logic. I  say more about this famous-infamous axiom in due course.

To conclude this section, let me draw attention to what I take to be an incoherence in Wittgenstein’s line of argument regarding the occurrence of a contradiction. In his conversation with Waismann of September 1931 (PB, p. 339), he declares: “Since the formulae of the calculus are not statements, there can be no contradiction in the calculus.” However, at  the outset of this conversation Wittgenstein also says (PB, p. 338): What I mean, is only this. It does not make sense to speak of a hidden contradiction.“ I find this very confusing. Taken at face value, the claim that there can be contradictions in the calculus stands in flat contradiction to the claims (a) that in a calculus a contradiction cannot manifest itself and (b) that there can be no contradiction in the calculus, but only in the true-false-game. Now a contradiction is either one that is hidden or one that is overt. Since in the second quotation above Wittgenstein affirms the possibility that the calculus contains a contradiction and, in the same breath, seems to deny the possible occurrence of a hidden contradiction in the calculus, he is committed to acknowledging that the calculus may at least contain an overt contradiction. Be this as it may, it remains that his contention “Of course, there can be contradictions in the calculus“ can hardly be reconciled with (a) and (b).

Waismann seems to be aware of the discrepancy and consequently raises an objection (PB, p. 339): “But you said that in the calculus itself a contradiction cannot emerge, but only in the rules. Yet the configurations cannot represent a contradiction. Do you still maintain this?“ To my mind, Wittgenstein’s response is a sign of embarrassment rather than one of enlightenment. He observes that he would say that the rules too form a calculus, only a different one.
 He goes on by saying that what matters first and foremost is that Waismann and he should compare their views concerning the notion of a contradiction. For if they associate different ideas with that notion, then, Wittgenstein says, they cannot come to an agreement (cf. PB, p. 339). But in what sense do the rules (I take these to be the axioms in the first meaning that Wittgenstein attaches to axioms) form a calculus? Suppose that they do form a calculus. But in what sense then do the two calculi, the set of configurations and the set of rules, differ from each other qua calculi? And what is their common nature supposed to be? Unfortunately, Wittgenstein gives us no answer.
When a contradiction is revealed in a calculus — insouciance versus “superstitious fear and awe“ 

Suppose that a contradiction has been brought to light in a mathematical theory T. Needless to say, we cannot just turn a blind eye to it, but must devise an effective strategy to move it out of the way, if that proves to be feasible. I already mentioned in passing that, according to Wittgenstein (cf., for example, PB, pp. 319, 345), it will be the easiest thing in the world to get rid of a contradiction. Just make a new stipulation, that is, adjust the set of rules of the mathematical game by introducing a new or an additional rule, and the contradiction disappears as quickly as it emerged. There is thus no reason to worry, let alone to feel as if one were facing “a kind of nightmare“ (PB, p. 325). In  BT, Wittgenstein complains that nowadays (that is, around 1930) mathematicians make too much fuss about the alleged need to carry out consistency proofs for axiomatic theories. “I have the feeling: if there were a contradiction in the axioms that would not be such a big disaster. Nothing easier than to remove it“ (p. 366). In my eyes, this is an undue simplification of the true state of affairs; in particular, Wittgenstein’s preferred attitude of nonchanlance vis-à-vis the emergence of a contradiction in a mathematical theory strikes me as completely out of place. I do not think that there is such a thing as a harmless contradiction in a mathematical or logical theory T; “a harmless contradiction“ — this sounds to me a little like a contradictio in adiecto.
 To reveal a contradiction in T is always a serious affair — towards which ends might serve a theory in which every arbitrary sentence can be derived? — and it might have dramatic or even disastrous consequences not only for the creator(s) of T, but also for the sciences of mathematics and logic in general. Just imagine, for the sake of illustration, that in the year 2040 a logician, endowed with such a brilliant mind as, say, Gödel, comes along with the derivation of a contradiction in Zermelo-Fraenkel set theory. How would or should logicians and mathematicians react? Would they be struck by “superstitious fear and awe“? Could set theory be easily remedied? Probably not. Which axiom(s), if any, could be sacrificed in order to salvage the essentials of set theory? In any event, it would be rather naive to believe that the damage could be quickly repaired à la Wittgenstein by replacing one or the other axiom by a new one or by adding new axioms,  “und die Sache ist erledigt“ (cf. PB, p. 319) .
 

CONSISTENCY PROOFS AND SOUNDNESS

I do not wish to end on a purely critical note. I, for one, believe in the significance, usefulnesss and systematic fruitfulness of a metamathematical consistency proof for a formalized mathematical theory T. However, I think that such a proof can claim to be promising and trustworthy only if it is carried out within a metamathematical theory S in whose soundness we have intelligible reasons to believe. Admittedly, what is meant by “intelligible” has to be spelled out, for each case, as clearly as possible before the proof in S can get off the ground. To my mind, the reasons deemed to be intelligible must, in any event, be essentially informal reasons, and thus reasons not to be found in T itself. In this respect, I basically share a fundamental insight of Hilbert’s proof-theoretic approach in the 1920s, quite independently of its shortcomings. The belief that we can obtain intelligible reasons for trusting in the soundness of S by proving the soundness of S in a theory Q is illusory. If we want to secure the soundness of S by way of a soundness proof in Q, we need to advance a sound argument for the soundness of Q. Needless to say, we may prove the soundness of Q in Q’, the soundness of Q’ in Q’’, and so on. Yet in doing this we face an infinite regress or a circle or we are bound to break off. If we do break off, say after having arrived at a theory U, we must present sound reasons for the soundness of U. On assumption, these cannot consist in proving the soundness of U in another theory U’. To guarantee the soundness of U requires that an informal argument be adduced for it. As to the circle just mentioned, we have, in the simplest cases, just two options: (a) S proves its own soundness or (b) S proves the soundness of Q and Q proves the soundness of S. I have already dismissed option (a); yet option (b) fares no better than (a): both theories S and Q could be unsound. If we prove the soundness of S in an unsound theory Q, then S is not necessarily sound. Consequently, the soundness proof for Q in S need not be reliable either. 

� Let falsum be a fixed contradiction here.


� More specifically, Hilbert (1899) takes the domain ( of all algebraic numbers that we obtain from the number 1 and the application of a finite number of times of addition, subtraction, multiplication, division as well as the operation � EMBED Equation.3  ���, where “(” shall each time denote a number that has already emerged from these five arithmetical operations. Hilbert then considers a pair of numbers (x, y) from the domain (  to be a point and the ratios of any three numbers (u : v : w) from (  to be a  line, assuming that u, v are not both zero. Furthermore, he stipulates that the fact that the equation ux + vx + w = 0 holds is to mean that the point (x, y) lies on the line (u : v : w). Hilbert concludes that the first three axioms of group I (which comprises the eight axioms of incidence) as well as the axiom of parallels (which is the only axiom of group IV) are immediately satisfied. And so the consistency proof for the entire axiom-system goes on by showing that all remaining axioms are likewise satisfied in the set of objects constructed from the real numbers (cf. Hilbert (1899),  pp. 35 ff.). Nearly thirty years after the publication of Grundlagen der Geometrie, Hilbert stresses in ‘Grundlagen der Mathematik’ (1928) that whenever the axiomatic method is employed it is mandatory to prove the consistency of the axioms. In geometry and physics, he says quite in the spirit of Grundlagen der Geometrie and his essay ‘Mathematische Probleme’ (1900), a consistency proof is successfully carried out by means of a reduction to the consistency of the axioms of arithmetic. He adds that this reductive method obviously fails in the case of arithmetic itself.  


� Cf. in this context what I shall say in a moment concerning the notion of an approximative consistency proof that Hilbert and Bernays seem to carry out  in Hilbert and Bernays (1934).


� To be sure, the claim that the formula “1 ≠ 1“ cannot be among the provable formulae of T cannot be proved formally, since formalized mathematics does not contain a sentence expressing this claim.


� Another essential weakness was the fact that assumptions of infinity did underlie M. See the discussion in Niebergall and Schirn (1998), pp. 286 ff..


� MM results from couching M in a formal language. Note that MM need not be recursively enumerable. The question whether MM is recursively enumerable, that is, axiomatizable, concerns only the complexity of the set of Gödel numbers of sentences belonging to MM within the arithmetical hierarchy. It asks whether we could give a recursive set of axioms for MM.  Hilbert does not, of course, employ the terminology of the arithmetical hierarchy. The arithmetical hierarchy is the sequence of � QUOTE � ���-formulae or of the sets defined through� QUOTE � ���-formulae. The latter are usually inductively defined. For a detailed account of the  arithmetical


hiercharchy, cf. Smorynski (1977) and Kaye (1991). According to a theorem of W. Craig (1953), there is for every axiomatizable theory T a recursive set of sentences A (a set of axioms or an axiomatization of T) such that T is equal to the deductive closure of A. 


� The language LPRA of PRA is  the quantifier-free fragment of the language LPA of PA, apart from the fact that the vocabulary of LPRA contains for every primitive recursive function at least one function sign.


� Concerning this problem involved in Hilbert’s conception of metamathematics, see Niebergall and Schirn (1998), Section 6. Gödel’s Second Incompleteness Theorem says: If the number-theoretic system S is formally consistent, then there is no consistency proof for S that can be carried out by applying only the modes of inference formalizable in S.


� In his introduction to Herbrand’s article ‘Sur la non-contradiction de l’arithmétique’ (1931), J. van Heijenoort (1967, p. 618) observes that it was intended to be a contribution to the realization of the programme of the Hilbert school. He further remarks that throughout his work Herbrand applies the term  “intuitionistic“ to the methods that he considers admissible in metamathematics, and, although “there may be some variations in the meaning that he gives to the term, this meaning is on the whole much closer to that of Hilbert’s word ‘finitary’ (‘finit’)  than to ‘intuitionistic’ as applied to Brouwer’s doctrine.“ For Herbrand’s specific use of the word “intuitionistic“ see especially §4 (entitled “Comparison with a theorem of Gödel’s“) of his 1931 paper. Regarding Herbrand’s consistency proof, see W.W. Tait (2006), pp. 77 ff.  and Torretti (1998), pp. 241 ff. According to Tait (p. 82: “The Two Meanings of  ‘Intuitionism’), there are three questions arising from Herbrand’s correspondence concerning the term “intuitionistic“, which Herbrand employs to underscore the constructive character of his results: “what did Herbrand mean by the term? Another is: what did Gödel understand it to mean? A third question is: how was it generally unerstood at that time?“ See Tait’s subsequent remarks on pp. 83 ff.


� In Hilbert and Bernays (1934), the authors carry out a consistency proof for a weak arithmetical system (let us refer to it as  “S“) (cf. p. 219). The proof is entirely informal, and it is not clear whether Hilbert and Bernays show metamathematically “There is no proof in S for falsum“ or only for every concretely given proof figure F that F is not a proof for falsum in S. The beginning of the proof speaks in favour of the second option. I presume therefore that Hilbert and Bernays carry out what is in fact an informal version of an approximative consistency proof. “We now imagine that we are given such a proof figure with the end formula 0 ≠ 0. On this proof figure two processes can be effected one after another which we call dissolution of the proof figure into ‘proof-threads’ and elimination of the free variables (Hilbert and Bernays (1934), p. 220; cf. p. 298). 


� The theory referred to as “QF-IA)“ (QF = quantifier-free; IA = induction axiom) is the conservative extension of PRA obtained by adding first-order logic to PRA.


� On the one hand, Hilbert (1926, pp. 94 f.) says that it will be consistent “to divest the logical  signs of all meaning, just as we did the mathematical ones, and declare that the formulae of the logical calculus do not mean anything in themselves either, but are ideal statements ...“ This seems to be at odds with his view that the language of formalized arithmetic contains both real (finitary) and ideal (infinitistic) statements and his characterization of the real statements as meaningful (cf. (1926), p. 93; (1928), pp. 297 f.).  


�  Cf. in this connection C. Parsons’ (1998) reflections on the thesis that every string can be intuited.


� Regarding von Neumann’s and Gödel’s assessments of the entirely new situation created by Gödel’s Second Incompleteness Theorem, see Schirn (2007). In Niebergall and Schirn (2002), we attempt to show, contrary to what in discussions of Hilbert’s programme is considered to be common ground, that a weak version of Hilbert’s metamathematics of the 1920s is compatible with Gödel’s Incompleteness Theorems by using only what are clearly natural provability predicates. Defining first “The theory T proves the consistency of a theory S indirectly in one step“, we subsequently prove (a) “PA proves its own consistency indirectly in one step“ and outline the proof for (b) “If S is a recursively enumerable extension of (QF-IA), then S proves its own consistency indirectly in one step“.


	Gödel himself was cautious about the consequences that his Second Incompleteness Theorem might have had for Hilbert’s programme. At any rate, he did not take it for granted that it had taken the wind out of Hilbert’s sails. In his famous 1931 paper, he pointed out that this theorem was not at variance with Hilbert’s “formalistic“ point of view, whatever he might have meant by that. According to Gödel (1931), it is conceivable that there are finitist proofs that cannot be expressed in a formal system P, where P is essentially the system obtained when the logic of Russell and Whitehead’s Principia Mathematica is superposed upon the Peano axioms (cf. Gödel (1986), pp. 150 f., 194 f.). Unfortunately, Gödel failed to provide any clue as to which finitist methods that resist formulation in P he may have had in mind. It was as late as 1958 that he returned to this topic in his paper ‘Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes’.		   


� Cantor’s first number class is the set of all finite ordinal numbers {}, which has the type the smallest transfinite ordinal numberThe second number class Z(0) is the set {} of all order types  of well-ordered sets of cardinality 0 and thus the set of all transfinite denumerable ordinal numbers. ( is the smallest number of the second number class.) The type of Z(0) is the smallest non-denumerable ordinal number, its power the second smallest transfinite cardinal number 1 (cf. Cantor (1932), pp. 325, 331). Since Cantor relied upon the entire class Z(0) to define 1, it was mandatory that the well-ordered nature of Z(0) be established. In ‘Beiträge zur Begründung der transfiniten Mengenlehre’ (1895-97) (Cantor’s last major mathematical publication), he introduces the -numbers of the second number class, conceived of in its order of magnitude, and has therefore the power Alef-one“ (Cantor (1932). p. 349;  see the proof of this theorem on pp. 349 f.).


�  The system of ordinal numbers used by Gentzen is well-ordered through the relation <. To the numbers with the “numerus“ 0, 1, 2, 3,  … etc. correspond the transfinite ordinal numbers  + 1, 2 + 1 =  + , 2 +  = · , 2 ·  = ,  etc. To the complete system corresponds Cantor’s first number of the second number class.


�  Towards the end of his 1935 article, Bernays puts forward the thesis that the proof method applied by Gentzen (1936) meets the fundamental requirements of Hilbert’s finitist point of view. I believe that this thesis cannot be sustained. 


� While Gentzen (1936) aims at showing the finiteness of a certain reduction procedure, Ackermann intends to establish the finiteness of the succession of what he calls again — recall my commments on his consistency proof in his 1925 article — “Gesamtersetzungen” (1940, pp. 175 ff.). Like Gentzen, Ackermann makes use of TI((0(. However, unlike Gentzen, Ackermann does not pretend that his consistency proof for full first-order arithmetic proceeds within the boundaries of finitistically acceptable methods. In §6 of his 1940 paper, he  presents a stricter version of his proof of finiteness by establishing an upper bound for the number of Gesamtersetzungen which can be formed at all. This upper bound depends on certain constants of the proof figure. In the light of the methodological requirements for a consistency proof, the dependence must be expressible through recursively defined functions. Yet it is not necessary to abandon the domain of the natural numbers when such recursive functions are introduced, since the  natural numbers can be ordered according to every order type of the second number class. 


In Schirn and Niebergall (2001), §3, we canvass Hilbert’s and Bernays’s (1939) attitude towards the question as to whether TI((0( is finitist or not. In the same paper, we characterize Hilbert and Bernays’ proof-theoretic approach (1939) as “the sellout of finitism“, despite the fact that the authors still use the term “finitist“ frequently. But this term seems to have lost much of its former impact on the nature of metamathematical reasoning. By contrast, the labels “finitist point of view“ and “finitist attitude“ have almost disappeared from the authors’ vocabulary, and this was perhaps no accident. (To my knowledge, the first term is used only on pp. VII, 197 f., 200.) In Hilbert and Bernays (1939), non-axiomatized metamathematics of the 1920s is replaced by an axiomatized version, and the intuitive, down-to-earth modes of inference of M give way to the loftier ones of a formalized metatheory. The range of what Hilbert and Bernays still claim to be finitistically admissible now at least includes PA, but the authors seem to suggest that it could even be as wide as PA + TI((, where TI(( is the schema of transfinite induction up to , for countable  that is possibly rather large.  In short, in Hilbert and Bernays (1939) the question of how the new finitist parameters relate to the old ones is almost completely passed over in silence. In my eyes, it is plain, however, that the former are kept flexible (too flexible for my taste) to make allowances for special proof-theoretic needs. It is also for this reason that they bear little similarity to the latter. The virtues of M, namely its intuitive evidence and unquestionable soundness, are thrown overboard for the sole purpose of strengthening and refining the proof-theoretic resources. In Hilbert and Bernays (1939), written as it was in the face of Gödel’s Incompleteness Theorems, philosophical reflections on the true nature of finitist metamathematical reasoning more or less come to grief — hence my label “the sellout of finitism“.


� See the attempt to refute Tait’s thesis that finitism = PRA in Schirn and Niebergall (2001), (2005). In particular, we prove the falsity of the claim that the finitist theorems are precisely the universal closures of the equations that can be proved in PRA.


� In what follows, I rely entirely upon the German original of Wittgenstein’s texts. All translations are my own.


� Cf. PB, p. 332: “a = a. This is also nonsense (rot; Blödsinn(, however often it may be written down.“ In the Tractatus, Wittgenstein assimilates the status of arithmetical equations in a  certain sense to the status of the logical sentences: “Mathematics is a logical method. The sentences of mathematics are equations and, hence, pseudo-sentences” (T, 6.2). “The sentence of mathematics does not express a thought” (T, 6.21). “The logic of the world, which is shown in tautologies by the sentences of logic, is shown in equations by mathematics” (T, 6.22).  “And the provability of the sentences of mathematics means simply that their correctness can be realized without its being necessary that what they express must itself be compared with the facts in order to determine its correctness” (T, 6.2321). “Mathematics is a method of logic” (T, 6.234). “It is the essential characteristic of the mathematical method to work with equations. For it is due to this method that every sentence of mathematics must go without saying” (T, 6.2341). “The method by which mathematics arrives at its equations is the method of substitution. For equations express the substitutability of two expressions …” (T, 6.24). Now, despite the similarity, there is a crucial difference between logical sentences and arithmetical equations. According to Wittgenstein, the latter do not share the fate of the former, namely to be classified as tautologies. In my eyes, it is amazing that in the Tractatus Wittgenstein refrains from unmasking mathematics as a pseudo-science, although he qualifies mathematical sentences across-the-board as pseudo-sentences. It is, furthermore, not quite clear whether true (correct) arithmetical equations of the form “a = b” would still fall prey to his verdict that they are sham sentences, if he were to relinquish his tenet that the mutual substitutability of “a” and “b” must be manifest in or can be seen from the expressions “a” and “b” themselves (cf. T, 6.23, 6.232). Around 1930, Wittgenstein still maintained his earlier characterization of arithmetical equations, but gives a more sophisticated and more detailed account. He also deals with the possible objection that an arithmetical equation is a tautology, on the grounds that to prove it amounts to transforming its two sides until one obtains a degenerate equation of the form “a = a”. Wittgenstein  weakens the objection by pointing out that “a = a” is not the final aim of the transformation, in the sense that “a = a” represents the correct form of the original equation. Even though the proof of a true arithmetical equation “a = b” rests on the same principle as the use of a tautology, “a = b” is not a tautology, but rather a substitution rule (cf. WWK, pp. 151 ff.; BGM, p. 147).


� It should be obvious that I make this observation with a touch of irony. Admittedly, Wittgenstein never claimed that it is a pleasure when a contradiction comes to light in a mathematical calculus. Well, we do not know whether Russell enjoyed his discovery of a contradiction in Frege’s system as a kind of proof for his logical acumen or whether he even felt malicious glee, which I take to be much less likely. But tactful as Russell was, he would never have blabbed out such a thing in his letter to Frege. In any event, Frege was definitely not amused to receive this letter. I mentioned the touch of irony because I fear nothing more than of being accused by a Wittgensteinian to be guilty of inaccuracy or undue exaggeration or blatant distortion. While trying to be fair to Wittgenstein (is he fair to Hilbert?) is one thing, drawing attention to the errors and shortcomings in his reasoning is another. I do hope that in my case they go largely hand in hand.


� Acccording to Wittgenstein (WWK, pp. 39, 151 ff., 178 f., 218 f.; PB, pp. 126, 142; PG, pp. 332 ff., 347), tautologies are not constituents of the arithmetical calculus.


� Wittgenstein (BT, p. 362) blames Russell and Whitehead for having committed the error of taking a calculus as the metamathematical basis of mathematics. I  have some doubts that this charge applies to Principia Mathematica. However this may be, it would definitely not apply to Hilbert’s metamathematics of the 1920s. It is worth noting that in his critique of Hilbert’s proof theory Wittgenstein entirely passes over in silence the finitist point of view.


� It is theoretically possible that by December 1930 Wittgenstein had got wind of Gödel’s presentation of his first incompleteness theorem at the Second Conference for Epistemology of the Exact Sciences, which took place in Kant’s native town Königsberg from 5th-7th September 1930. Gödel’s Second Imcompleteness Theorem was published in Gödel (1931). I presume that by the time of its publication most of the conversations between Wittgenstein and Waismann on (in)consistency had already taken place.


� This is not an awful lot, but it suggests that Wittgenstein was at least familiar with the main features of Hilbert’s proof theory, although not in its most mature form. It seems that by 1930 he had not read any other of Hilbert’s classical papers on proof theory of the 1920s. If you recall my survey of Hilbert’s proof-theoretic programme or cast a glance at it again, you may perhaps realize how much Wittgenstein missed concerning both Hilbert’s method of formalizing mathematics and the development and nature of his metamathematics. I have the strong suspicion that Wittgenstein lacked a thorough understanding of Hilbert’s programme. Wittgenstein’s conversations with Waismann only reinforce this suspicion.


� In PB, p. 330, Wittgenstein quotes from Hilbert (1922): “But if our formalism is to offer a full replacement for the earlier, real theory consisting of inferences and assertions, then the contentual contradiction must have its formal equivalent.“ Wittgenstein remarks that the consistency proof in Hilbert’s simple model proceeds in fact inductively: the proof shows us through an induction the possibility that on and on( signs must occur. Unfortunately, it remains in the dark what Wittgenstein means here in a more precise sense.


� Hilbert (1922), p. 20, speaks of a higher level of contemplation (consideration(, when we  carry out contentual investigations with the formulae, axioms and proofs of the formalized system.


� “But is it a statement at all that the axioms are consistent?” (PB, p. 323).


� There are further remarks by Wittgenstein on Hilbert’s proof theory, for example: “What Hilbert wishes to show with his proof is that the axioms of arithmetic have the properties of the game, and that is impossible. Hilbert wants to prove quasi that the contradiction is illicit (inadmissible(“ (PB, p. 321). And in his conversation with Waismann in September 1931, Wittgenstein says: “In reality, Hilbert does not establish anything, but determines something (a calculus). When Hilbert says that 0 ≠ 0 should not occur as a provable formula, he determines by way of permission and prohibition a calculus“ (PB, p. 339). To my mind, Wittgenstein goes astray with his interpretation of Hilbert’s intentions.


�  Reading through the conversations between our two protagonists, one cannot help feeling that Waismann was much more sympathetic towards Hilbert’s metamathematics than Wittgenstein was. In a conversation of 30th December 1930 in the house of Schlick, Waismann argues (PB, p. 326): “Now if there is a theory of the game of chess, then I do not see why there should not also be a theory of the arithmetic-game and why we should not be able to employ the sentences of this theory in order to gain contentual insights about the possibilities of this game. This theory is Hilbert’s metamathematics.“ I find Wittgenstein’s response unsatisfactory: “What one calls the ‘theory of the game of chess’, is not a theory which describes something;  it is rather a kind of geometry. It is of course again a calculus and not a theory“ (PB, p. 327). But what is the phrase “a kind of geometry“ to mean here exactly? Why should we take it for granted that the theory of chess is again a calculus? And why and in what sense does a calculus differ from a theory? Wittgenstein’s subsequent attempt to bring light into this jungle leaves much to be desired, I think.


� In WWK, pp. 151 ff., Wittgenstein explains in which sense a true arithmetical equation of the form “a = b” is a configuration in arithmetic and at the same time a substitution rule;  cf. PB, p. 340.


� The proviso is that the language of the calculation game can be regarded as a language only in a restricted sense. The relation that a meaningless figure of the calculation game bears to a rule is quite distinct from the relation that a sign bears to its meaning (cf. also GGA II, § 96). 


� This reminds me of the saying: “Was ich nicht weiß, macht mich nicht heiß“ (“Ignorance is bliss“).


� In saying this, I do not of course wish to rule out this possibility. I only want to make clear that I consider this case to be a rather remote one. The matter is quite similar when we take the rules of a game to which Wittgenstein appeals so often (too often, for my taste!) in his discussion with Waismann. Why on earth should someone have fixed the rules of a game in such a way that what is permitted by rule A is prohibited by rule B? Can you imagine that people would enjoy playing such a game?


� Here, I am tempted to say that you can see this with half an eye. To convince yourself that the axiom system does not contain A and non-A might even take much less than five minutes.


�  Prima facie, it could seem that this observation weakens the claim that a contradiction can occur in the rules instead of supporting it. To avoid a contradiction and unnecessary confusion, Wittgenstein should never have claimed that in the calculus there can be contradictions, once he has made it clear that it is only the set of rules, the true-false game that can contain a contradiction, while in the calculus qua set of configurations a contradiction can never occcur. When he contends: “Of course, there can be contradictions in the calculus“,  he can hardly intend to use the word “calculus” in the second, diffuse sense that he attaches to it when he later concedes that the rules too form a calculus, only a different one. Otherwise it would have been imperative for him to state immediately that the rules too form a calculus, and that it is only in such a different calculus that a contradiction may emerge. To be sure, this would by no means remove all doubts; to see this, consider the questions that I raise at the end of this section.


� Wittgenstein does not literally say that contradictions are harmless in themselves, but several of his remarks strongly suggest, if not prove, that at least around 1930 he was convinced of the “harmlessness“ of a contradiction in a mathematical calculus.


� See also Wittgenstein’s remarks on (in)consistency in BGM.
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