<div dir="ltr">[Apologies for multiple copies]<br><br>Dear all,<br><br>Let me advertise our next ERATO MMSD project
<span class="gmail-m_547872329642204051m_1674442457263079573gmail-il"><span class="gmail-il">colloquium</span></span> talk by Jurriaan Rot and Kenta Cho on 9th November, 16:30-. Please find the
title and the abstract below. You are all invited.<br><br>Sincerely,<br>--<br>Natsuki Urabe<br><a href="mailto:urabenatsuki@is.s.u-tokyo.ac.jp" target="_blank">urabenatsuki@is.s.u-tokyo.ac.j<wbr>p</a><br>The University of Tokyo, ERATO MMSD<br><br>----<br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt" id="gmail-docs-internal-guid-56e88679-8ea9-eb26-06a1-dd2ca5635659"><span style="font-size:14pt;font-family:Arial;color:rgb(0,0,0);background-color:rgb(255,255,255);font-weight:700;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline"></span></p><span style="font-size:14pt;font-family:Arial;color:rgb(0,0,0);background-color:rgb(255,255,255);font-weight:700;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline">Thu 9 November 2017, 16:30–18:45</span><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="color:rgb(0,0,0)"><span style="font-size:8pt;font-family:Arial;background-color:rgb(255,255,255);font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline">ERATO MMSD Takebashi Site Common Room 3</span></span><span style="font-size:8pt;font-family:Arial;color:rgb(0,0,0);background-color:rgb(255,255,255);font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline"><br class="gmail-kix-line-break"></span><a href="http://group-mmm.org/eratommsd/access.html" style="text-decoration:none"><span style="font-size:8pt;font-family:Arial;color:rgb(17,85,204);background-color:rgb(255,255,255);font-weight:400;font-style:normal;font-variant:normal;text-decoration:underline;vertical-align:baseline">http://group-mmm.org/eratommsd/access.html</span></a></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:12pt;font-family:Arial;color:rgb(0,0,0);background-color:rgb(255,255,255);font-weight:700;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline">16:30-17:30</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><a href="http://jurriaan.me/" style="text-decoration:none"><span style="font-size:11pt;font-family:Arial;color:rgb(17,85,204);background-color:rgb(255,255,255);font-weight:400;font-style:normal;font-variant:normal;text-decoration:underline;vertical-align:baseline">Jurriaan Rot</span></a><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:rgb(255,255,255);font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline"> (Radboud University), </span><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:rgb(255,255,255);font-weight:700;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline"> </span><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:rgb(255,255,255);font-weight:700;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline"><br class="gmail-kix-line-break"></span><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:rgb(255,255,255);font-weight:700;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline">Traces and Triangles</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:9pt;font-family:Arial;color:rgb(102,102,102);background-color:rgb(255,255,255);font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline">In
the theory of coalgebras, trace semantics can be defined in various
distinct ways, including through algebraic logics, the Kleisli category
of a monad or its Eilenberg-Moore category. I will talk about recent
joint work with Bart Jacobs, which elaborates two new unifying ideas in
the theory of coalgebraic trace semantics: 1) previous approaches can be
placed and connected in so-called state-and-effect triangles, that
arise in the semantics of programs; 2) coalgebraic trace semantics is
naturally presented in terms of corecursive algebras. This perspective
puts the different approaches under a common roof, and allows us to
derive conditions under which they coincide.</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:12pt;font-family:Arial;color:rgb(0,0,0);background-color:rgb(255,255,255);font-weight:700;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline">17:45-18:45</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><a href="https://www.cs.ru.nl/K.Cho/" style="text-decoration:none"><span style="font-size:11pt;font-family:Arial;color:rgb(17,85,204);background-color:rgb(255,255,255);font-weight:400;font-style:normal;font-variant:normal;text-decoration:underline;vertical-align:baseline">Kenta Cho</span></a><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:rgb(255,255,255);font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline"> (Radboud University), </span><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:rgb(255,255,255);font-weight:700;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline"> </span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:rgb(255,255,255);font-weight:700;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline">String diagrams in probability theory</span></p><span style="font-size:9pt;font-family:Arial;color:rgb(102,102,102);background-color:rgb(255,255,255);font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline">String
diagrams are a graphical language for monoidal categories, which has
become very popular in categorical quantum mechanics initiated by
Abramsky and Coecke. In this talk I will explain that string diagrams
are also useful for (classical) probability theory. The Kleisli
categories of the distribution and the Giry monad give concrete
interpretation of string diagrams, respectively, for discrete
probability and general measure-theoretic probability. Topics include
disintegration, Bayesian inversion, and conditional independence. The
talk is based on joint work with Bart Jacobs; see preprint </span><a href="https://arxiv.org/abs/1709.00322" style="text-decoration:none"><span style="font-size:9pt;font-family:Arial;color:rgb(17,85,204);background-color:rgb(255,255,255);font-weight:400;font-style:normal;font-variant:normal;text-decoration:underline;vertical-align:baseline">https://arxiv.org/abs/1709.00322</span></a><span style="font-size:9pt;font-family:Arial;color:rgb(102,102,102);background-color:rgb(255,255,255);font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline">.</span></div>