TOWARD A MODALIZED LINEAR-NON-LINEAR MODEL Yosuke Fukuda Graduate School of Informatics, Kyoto University

Modal linear logic, a linear-logical reconstruction of intuitionistic modal logic S4 [F. & Yoshimizu 2019]

Modal linear logic is an integration of modal logic and linear logic, with a modality \square , an integration of the \square -modality and the *!*-exponential.

<u>**Thm</u></u> 1. Soudness of the Girard translation; 2. Cut-elimination theorem; 3. Conservative extension to linear logic.</u>**

The aim of this work

<u>Aim</u> To create a categorical semantics of modal linear logic by means of *linear-non-linear adjunction*

Linear-non-linear model [Benton 1996]

- C : Cartesian closed category
- \mathcal{S} : Symmetric monoidal closed category
- $F \dashv G$: Symmetric monoidal adjunction

Modal category theory [Kavvos 2017] (and others)

• \mathcal{C} : Cartesian closed category

□: Product-preserving functor (i.e., □(A ∧ B) ≅ □A ∧ □B) with an additional condition depending on the logic, e.g.,
□: No additional condition (if the logic is K)
□: "Half a comonad" (if the logic is K4)
□: Equipped w/ a nat. trans. ε : □ ⇒ Id (if the logic is T)
□: Comonad (if the logic is S4)

C

These data yield a linear exponential comonad !, defined as $! \stackrel{\text{def}}{=} FG$, that characterizes the structure of !-exponential

 $\frac{\mathbf{Thm}}{\mathbf{Thm}}$ Intuitionistic multiplicative exponential linear logic is interpreted in \mathcal{S} using !

<u>**Thm</u>** Intuitionistic (\Box -fragment of) modal logics are interpreted in the above structure</u>

Modal LNL model (for S4 modal linear logic)

<u>Idea</u> The idea to create a model of modal linear logic is to combine the model of linear logic and that of modal logic

- \mathcal{D}, \mathcal{C} : Cartesian closed category
- \mathcal{S} : Symmetric monoidal closed category
- $F' \dashv G', F \dashv G$: Symmetric monoidal adjunction[†]

These data yield two linear exponential comonads \square and !, which are defined as FF'G'G and FG, respectively

† The idea to use the adjunction $F' \dashv G'$ of the modal part is suggested by Shin-ya Katsumata to the author

Property of the modal LNL model

- <u>**Thm</u></u> The modal part (\mathcal{D} \rightleftharpoons \mathcal{C}) models intuitionistic modal logic S4</u>**
- <u>**Thm</u>** The linear part ($\mathcal{C} \rightleftharpoons \mathcal{S}$) models intuitionistic multiplicative exponential linear logic</u>
- <u>**Thm</u></u> The whole modal LNL model (\mathcal{D} \rightleftharpoons \mathcal{C} \rightleftharpoons \mathcal{S}) models intuitionistic modal linear logic</u>**

On-going work & future direction

- To define "modal linear category" which is a something analogous to the so-called *linear category*
- To use the model to analyze the computational structure of λ^{\square} [F. & Yoshimizu 2019], the typed λ -calc. of modal linear logic
- To generalize the model to cover other modal logics and linear logics, other than the pair of (S4, MELL)

