
Programming Languages

Chapter 4 of SICP

Metalinguistic Abstraction

Supplemental Material

Atsushi Igarashi
Dept. of Communications and Computer Engineering
Graduate School of Informatics, Kyoto University

e-mail: igarashi@kuis.kyoto-u.ac.jp

In these notes, we discuss the notion of continuations, which will be important (or even nec-
essary) to understand Section 4.3 of the textbook, through implementing an exception handling
mechanism on top of the meta-circular interpreter.

4.21
2
.1 Exceptions (or run-time errors) and Exception Handling

An exception stands for an abnormal situation, in which computation has to abort for some reason,
such as referencing to an undefined variable, application of a non-functional value, or division by
zero. The following expressions include such exceptions. We often say “an exception is raised (or
thrown)” when such an abnormal situation occurs.

foo

(5 + 3)

(/ 2 0)

In many Scheme implementations (including jakld), there is built-in procedure error, which just
aborts program execution and come back to the prompt (without executing the rest of the program).

(+ 3

(begin (error "My error!") (display "This will be ignored.") 4))

It may not be, however, desirable, to abort the whole program execution once an exception
is raised. Exception handling is a mechanism to detect exceptions, run some error-recovery code,
and resume execution of the rest of the program. Some Scheme implementations provide exception
handling but we introduce so-called “catch-and-throw” mechanism, provided by many implemen-
tations of Lisp, an ancestor of Scheme, and implement it on top of our meta-circular interpreter.

An exception handling mechanism consists of:

• an mechanism to detect raised exceptions, and

• an mechanism to resume the program execution

1



and the former is realized by special form throw and the latter by catch. Let’s take a look at how
throw works. It takes two arguments as follows.

(throw ’a (+ 2 3))

The first argument is a tag to represent the kind of an exception raised. It can be anything but we
mostly use symbols. The second argument is a datum, which often represents detailed information
on the exception.

If throw is called (without catch), its behavior is almost the same as error—that is, the
program execution aborts and goes back to the prompt without doing the rest of the execution.

(define (my-list-ref l n)

(cond ((< n 0) (throw ’negative-index n))

((zero? n) (car l))

(else (my-list-ref (cdr l) (- n 1)))))

(my-list-ref ’(1 2 3) 1)

=⇒ 2

(my-list-ref ’(1 2 3) -5)

=⇒ ;; uncaught exception

catch can be used to resume the execution, aborted by throw. The next expression shows a
basic usage of catch.

(catch ’negative-index

(my-list-ref ’(1 2 3) 1))

=⇒ 2

Catch first starts evaluation of (my-list-ref ...). If it results in a value (with no exceptions
thrown), then the value becomes the value of the whole catch expression. In this example, the
value of (my-list-ref ...) is 2, so the value of the whole expression is also 2. Otherwise, if an
exception is thrown and the tag of the thrown exception is equal to the first argument to catch (in
this case the symbol negative-index), then the value attached to the exception will be the value
of the whole catch expression.

(+ (catch ’negative-index

(my-list-ref ’(1 2 3) -5))

1)

=⇒ -4

(my-list-ref ...) in the expression above doesn’t return a value but rather throw an exception
with tag ’negative-index and value -5. Since the tag in the thrown exception and the tag in the
catch expression is equal, the value of catch is -5; and the value of the whole expression is -4.

If the tags are not equal, the thrown exception is not caught here and an outer catch may catch
it. If there is no outer catch, the execution aborts and goes back to the prompt with the message
“uncaught exception”.

(catch ’another-tag

(my-list-ref ’(1 2 3) -5))

=⇒ ;; uncaught exception

2



Here is a summary of the special form catch and its behavior.

(catch tag exp1 ... expn)

1. Evaluate tag and obtain a tag. Exceptions thrown during the evaluation of this expression
will not be caught by this catch (it’s an outer catch’s job to catch them).

2. Then, evaluate the body expi sequentially. If the evaluation terminates normally, the value of
the last expression expn is the value of the whole expression. If throw is executed, the tag of
the thrown exception and the tag obtained in the previous step are compared by eq?. If they
are equal, then the value in the thrown exception is that of the whole expression; otherwise,
the same exception is thrown again (and an outer catch may catch it).

Exercise 1 Define procedure prod-list, which takes an integer list and returns the product of
the integers in it.

If a list contains 0, then the return value of prod-list will be 0. Use catch and throw so that
the procedure returns immediately—without performing further multiplication—when 0 is found
in the list.

Exercise 2 Define procedure pos-in-list, which takes a list and an element in it and returns
where the element occurs in the list. (If the element occurs as n-th element, then it should return
n− 1.) Moreover, if the given element does not occurs in the list, the procedure should return -1.
(Use eq? for comparison.)

Exercise 3 The following procedure change breaks given money into small money.

(define (change coins amount)

(if (zero? amount) ’()

(let ((c (car coins)))

(if (> c amount) (change (cdr coins) amount)

(cons c (change coins (- amount c)))))))

It takes a list of available coins (sorted in the descending order) and the amount of money and
returns a list of coins, whose total is the same as the input.

(define us-coins ’(25 10 5 1)) ;; American coins

(define gb-coins ’(50 20 10 5 2 1)) ;; British coins

(change gb_coins 43)

(change us_coins 43)

However, since this definition tries to use the first coin as much as possible, it may fail even when
there is a possible combination of coins:

(change ’(5 2) 16)

Let’s use exception handling to solve this problem. Complete the following definition by filling “...”
so that the procedure returns a combination of coins whenever there is one.

(define (change coins amount)

(cond ((zero? amount) ’())

((null? coins) ...)

3



(else

(let ((c (car coins)))

(if (> c amount) (change (cdr coins) amount)

(or (catch ’fail

(cons c (change coins (- amount c))))

...)))))

4.21
2
.2 Continuations

Continuation stands for the rest of computation at a given point in time in a (long) computation
process. One may call it “To-Do” list. This “To-Do” list shrinks when some work is finished and
grows when a big task is divided into smaller ones.

For example, consider the process of evaluating (+ (* e1 e2) e3) . The continuation after
finding out the expression is a function application is:

1. Evaluate (* e1 e2) (and let’s call its value v1);

2. Evaluate e3 (and let’s call its value v2); and

3. Compute the sum of v1 and v2 (by apply).

Now we start evaluating (* e1 e2) and will soon find out the expression is again a function
application. At this point, the continuation will be

1. Evaluate e1 (and let’s call its value v11);

2. Evaluate e2 (and let’s call its value v12);

3. Compute the product of v11 and v12 by apply (and let’s call its value v1);

4. Evaluate e3 (and let’s call its value v2);

5. Compute the sum of v1 and v2 by apply.

by breaking the first step into smaller steps. Then, suppose we finish the (new) first step, then the
first item is removed and the continuation becomes a slightly shorter list:

1. Evaluate e2 (and let’s call its value v12);

2. Compute the product of v11 and v12 by apply (and let’s call its value v1);

3. Evaluate e3 (and let’s call its value v2);

4. Compute the sum of v1 and v2 by apply.

In this way, continuation changes over time.

Note that an outer operation—the application of + in this exapmle—appears as a later entry
in the “To-Do” list.

4



Exceptions and Continuations. Now consider the behavior of error, which is to abort program
execution and go back to the prompt, in terms of continuations. The behavior of error can be
rephrased as “discarding all the continuation (all the entries in the “To-Do” list)”.

For example, consider (+ (error e) (* 3 4)) . The continuation after the evaluation of e is

1. Apply error to the value of e (and let’s call its value v1);

2. Evaluate (* 3 4) (and let’s call its value v2); and

3. Apply + to v1 and v2 (to compute their sum).

However, error immediately discards the entries to terminate the whole computation (abnormally).

The behavior of catch and throw can be understood as manipulation of a continuation. First,
catch leaves a “mark” to denote the end of the body of catch in the continuation before entering
the evaluation of its body. The mark includes the tag value specified in catch. If the evaluator
encounters this mark after a normal evaluation process, it will just remove the mark from the
continuation and continue to the next item—so, for normal evaluation, the mark means nothing.
This mark plays a significant role when throw is called during the evaluation of the body of catch.
Namely, throw discards a continuation just as error, but it discards only a part of the continuation:
all the items until the first mark in the “To-Do” list. Then, the tag recorded in the mark and the
tag in the thrown exception are compared. If they are equal, resume the program execution from
there; otherwise, the items until the next mark will be discarded, the tags are compared, and so
on.

In order to implement exception handling, the evaluator has to manipulate continuations as
data. Such an evaluator, in which continuations are data and can be manipulated by the evaluator,
is called continuation-passing evaluator.

In what follows, we describe a metacircular continuation-passing interpreter for Scheme without
exception handling, and then describe an implementation of catch and throw.

4.21
2
.3 Continuation-Passing Evaluator

4.21
2
.3.1 Structure of Continuation-Passing Evaluator

The main procedures in the evaluator in Section 4.1 (of the textbook) are

• eval, which conducts case analysis on the form of a given expression and dispatch an appro-
priate procedure; and

• apply, which implements function application.

They call each other to evaluate a given expression.

In a continuation-passing evaluator, eval takes as arguments not only an expression and an
environment but also a continuation, which represents the rest of computation after the evaluation
of the given expression. Also, there is another procedure apply-cont, which takes a continuation
and a value as arguments and performs “the rest of computation” that the continuation represents.
Eval and apply-cont call each other in such a way that:

• eval (or auxiliary procedures named eval-XXX ) call apply-cont to perform the rest of
computation when they obtain a value of the given expression.

5



(define (eval exp env cont)

(cond

((self-evaluating? exp) (apply-cont cont exp))

((variable? exp) (apply-cont cont (lookup-variable-value exp env)))

((quoted? exp) (apply-cont cont (text-of-quotation exp)))

((assignment? exp) (eval-assignment exp env cont))

((definition? exp) (eval-definition exp env cont))

((if? exp) (eval-if exp env cont))

((lambda? exp)

(apply-cont cont

(make-procedure (lambda-parameters exp)

(lambda-body exp)

env)))

((begin? exp)

(eval-sequence (begin-actions exp) env cont))

((cond? exp) (eval (cond->if exp) env cont))

((application? exp)

(eval (operator exp) env

(make-operandsc (operands exp) env cont)))

(else

(error "Unknown expression type -- EVAL" exp))))

Figure 1: Continuation-Passing Evaluator (1)

• apply-cont inspects items in the “To-Do” list (namely, continuation) and may call eval if
necessary.

(As we will see later, the three procedures eval, apply, and apply-cont call each other.)

Definition of eval Figure 1 shows the definition of eval. As discussed above, the third argument
cont to represent a continuation is added. When a value can be obtained without calling eval

recursively—namely, in the case of constants, variables, quotations, and lambdas—the evaluator
calls apply-cont with the obtained value to perform the rest of computation.

Next, let’s take a look at how auxiliary procedures, which involved recursive calls to eval, work.
Figure 2 shows auxiliary procedures such as eval-if (the original definition in Section 4.1 is also
shown as a comment). What eval-if does is

1. to evaluate the condition part (if-predicate);

2. to test whether the obtained value satisfies true?, evaluate the if-consequent or if-alternative
part (according to the result of the test), and returns its value as the value of the whole if.

A main trick of a continuation-passing evaluator is

to add all the tasks except the first to the continuation and recursively call eval with the new
continuation.

6



;; (define (eval-if exp env)

;; (if (true? (eval (if-predicate exp) env))

;; (eval (if-consequent exp) env)

;; (eval (if-alternative exp) env)))

(define (eval-if exp env cont)

(eval (if-predicate exp) env

(make-testc (if-consequent exp) (if-alternative exp) env cont)))

(define (eval-sequence exps env cont)

(cond ((last-exp? exps) (eval (first-exp exps) env cont))

(else (eval (first-exp exps) env

(make-beginc (rest-exps exps) env cont)))))

(define (eval-assignment exp env cont)

(eval (assignment-value exp) env

(make-assignc (assignment-variable exp) env cont)))

(define (eval-definition exp env cont)

(eval (definition-value exp) env

(make-definec (definition-variable exp) env cont)))

Figure 2: Continuation-Passing Evaluator (2)

In the new definition of eval-if, make-testc creates the new continuation and eval is called
recursively to evaluate the condition part with the new continuation. Once the value of the condition
part is obtained, the rest of computation (test and evaluation of one of the two branches) will be
performed (by apply-cont).

In what follows, make-XXX c (c stands for “c” in “continuation”) is used for names of procedures
to various kinds of continuations. A function to create a continuation takes information necessary to
perform the rest of computation—in the case of make-testc, expressions from if-consequent and
if-alternative parts, and an environment under which one of them is evaluated. Of course, we
can’t forget the continuation of if, so such a continuation will be part of an input to make-testc.
(Since a continuation is a “To-Do” list, make-XXX c works as cons, which adds a new element to
the head of a list.)

Similarly to eval-if, eval-sequence just calls eval recursively after adding the rest of com-
putation to the given continuation. Also, in the application? case in eval, the evaluator adds
an item that represents “evaluation of arguments” to the continuation by make-operandc and calls
itself recursively with the new continuation.

Here is a summary of continuation-creating procedures and what they add to the continuation:
make-testc to test a condition and evaluate an appropriate expression
make-beginc to evaluate the following expressions in begin

make-assignc to assign a value to the given variable and return ’ok

make-definec to define a variable and returns ’ok
make-operandsc to evaluate arguments and call apply to perform function application

7



Definition of apply-cont Now, let’s take a look at the definition of apply-cont (Figure 3).
It takes a continuation and a value, which was obtained by the preceding computation; it con-
ducts case analysis on the form of (the head item in) the continuation, and performs computation
corresponding to the continuation.

The first five cases are for the kinds of continuations we have seen so far. (Procedure XXX c?

returns true if the continuation is created by procedure make-XXX c.) For example, in the case of
testc?, the procedure tests whether the given value is true or not and evaluates one of the branches
accordingly. Notice that the second half of the original eval-if is performed here!

testc-true, testc-false, testc-env, and testc-cont are selector procedures to extract the
expression to be evaluated when the test is true, the expression to be evaluated when the test is
false, the environment under which one of these expressions is evaluated, and the continuation of
if, respectively.

Similarly, the second halves of the original eval-XXX are moved into apply-cont. Note that
when an evaluator returns ’ok as in define and set!, apply-cont is called recursively just as the
constant case in (new) eval.

In the case for operandsc?, the task represented by the continuation consists of the following
two steps:

1. to evaluate the argument list sequentially and create a list of values; and

2. call apply with the argument list and val, which is (supposed to be) a function.

So, apply-cont splits the continuation, creates a new continuation that includes only the second
step by make-applyc, and pass it to list-of-values, which performs the first step above (Fig-
ure 4). The case for the continuation created by make-applyc is vely simple: it just calls apply.

The task that list-of-values has to perform is split into the following three steps:

1. evaluation of the first argument;

2. evaluation of the rest of the arguments; and

3. consing these results.

make-restopsc is used to create a continuation that represents the second and third steps. This
continutation is handled in

(define (apply-cont cont val)

(cond ...

((restopsc? cont)

(list-of-values (restopsc-rest cont) (restopsc-env cont)

(make-consc val (restopsc-cont cont))))

...

))

Here, the evaluation of the rest of the arguments is performed by list-of-values and a continu-
ation for the third step is created by make-consc. The continuation created here has to record the
value (val) obtained by the first step in the continuation in order to cons it later.

The process for this kind of continuation is to cons val, which stands for the list of the
argument values obtained by the second step, and (consc-val cont), which stands for the value
of the first argument stored in the continuation, and then perform the rest of computation (namely
(consc-cont cont)).

8



(define (apply-cont cont val)

(cond ...

((consc? cont)

(apply-cont (consc-cont cont)

(cons (consc-val cont) val)))

...

))

Definition of apply: Actually, the definition of apply is mostly the same as before (Figure 5).
Main changes are:

• it takes a continuation of the application as an additional argument;

• it passes the continuation to apply-primitive-procedure, which applies a primitve, or
eval-sequence, which evaluates the function body.

The result of a primitive procedure application is passed to apply-cont.

Implementation of REPL REPL1 creates a continuation to denote the end of evaluation by
make-haltc to pass it to eval.

This continuation just returns the given value as it is. The following code snippet shows the
corresponding part of apply-cont.

(define (apply-cont cont val)

(cond ...

((haltc? cont) val)

))

Representing Continuations: Figures 6 and 7 show procedures to manipulate continuations.
Here is a summary of continuations created by make-XXX c:

XXX functionality

testc to test a condition and evaluate an appropriate exrpession
assignc to assign a value to the given variable and return ’ok

definec to define a variable and returns ’ok
beginc to evaluate the following expressions in begin

operandsc to evaluate arguments and call apply to perform function application
applyc to apply a function (the last part of the continuation represented by operandsc)
restopsc to evaluate the rest of the arguments and cons with the value of the first argument
consc cons the first argument and the list of the values of the rest of the arguments
haltc the end of evaluation; the given value is to be displayed

4.21
2
.4 Implementing catch and throw

Actually, it is no more difficult to implement catch and throw than a continuation-passing evalu-
ator. Firstly, the evaluation of catch consists of the two steps:

1. evaluation of the tag part; and
1read-eval-print-loop: See the handout for Chapter 4.

9



(define (apply-cont cont val)

(cond ((testc? cont)

(if (true? val)

(eval (testc-true cont) (testc-env cont) (testc-cont cont))

(eval (testc-false cont) (testc-env cont) (testc-cont cont))))

((assignc? cont)

(set-variable-value! (assignc-var cont) val (assignc-env cont))

(apply-cont (assignc-cont cont) ’ok))

((definec? cont)

(define-variable! (definec-var cont) val (definec-env cont))

(apply-cont (definec-cont cont) ’ok))

((beginc? cont)

(eval-sequence

(beginc-rest-exps cont)

(beginc-env cont)

(beginc-cont cont)))

((operandsc? cont)

(list-of-values (operandsc-exps cont)

(operandsc-env cont)

(make-applyc val (operandsc-cont cont))))

((applyc? cont)

(my-apply (applyc-proc cont) val (applyc-cont cont)))

((restopsc? cont)

(list-of-values (restopsc-rest cont) (restopsc-env cont)

(make-consc val (restopsc-cont cont))))

((consc? cont)

(apply-cont (consc-cont cont)

(cons (consc-val cont) val)))

((haltc? cont) val)

(else (error "Unknown continuation type -- APPLY-CONT" cont))

))

Figure 3: Continuation-Passing Evaluator (3)

(define (list-of-values exps env cont)

(if (no-operands? exps)

(apply-cont cont ’())

(eval (first-operand exps) env

(make-restopsc (rest-operands exps) env cont))))

Figure 4: Continuation-Passing Evaluator (4)

10



(define (my-apply procedure arguments cont)

(cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure arguments cont))

((compound-procedure? procedure)

(eval-sequence

(procedure-body procedure)

(extend-environment

(procedure-parameters procedure)

arguments

(procedure-environment procedure))

cont))

(else

(error

"Unknown procedure type -- APPLY" procedure))))

(define (apply-primitive-procedure proc args cont)

(apply-cont cont (apply (primitive-implementation proc) args)))

Figure 5: Continuation-Passing Evaluator (5)

2. marking the continuation and evaluation of the body.

So, we need a continuation to represent the second half. Similarly, the evaluation of throw consists
of the three steps:

1. evaluation of the tag part; and

2. evaluation of the expression to be thrown; and

3. throwing an exception (or, search for the mark by catch).

So, we need a continuation to represent the second and third steps. The procedures to create these
continuations are called make-cabodyc and make-thbodyc. The new definition of eval appears in
Figure 8. (The figure also shows procedures to manipulate catch and throw expressions.)

Then, Figure 9 shows apply-cont.

Since the body of catch is a sequence of expressions, we use eval-sequence to evaluate the
body. The continuation is marked here by make-catchc. The mark comes with the value of the
lastly evaluated expressions (that is, the tag value form catch). The clause with catchc? is
executed only when the evaluation of the body of catch terminates normally. In this case, the
value is passed directly to the outer continuation ((catchc-cont cont)).

The clause with thbodyc? evaluates the second argument to throw. The new continuation cre-
ated by make-throwc represents throwing an exception and the corresponding behavior is described
in the last clause in apply-cont. There, an auxiliary procedure first-matching-catch is used to
find the mark of catch that can catch the thrown exception and then the marked continuation is
applied to the thrown value. If there is no such mark in the continuation, first-matching-catch
will return false; in this case, apply-cont returns the symbol uncaught together with the thrown

11



(define (make-testc true-exp false-exp env cont)

(list ’testc true-exp false-exp env cont))

(define (testc? cont) (tagged-list? cont ’testc))

(define (testc-true cont) (cadr cont))

(define (testc-false cont) (caddr cont))

(define (testc-env cont) (cadddr cont))

(define (testc-cont cont) (car (cddddr cont)))

(define (make-beginc exps env cont)

(list ’beginc exps env cont))

(define (beginc? cont) (tagged-list? cont ’beginc))

(define (beginc-rest-exps cont) (cadr cont))

(define (beginc-env cont) (caddr cont))

(define (beginc-cont cont) (cadddr cont))

(define (make-assignc var env cont) (list ’assignc var env cont))

(define (assignc? cont) (tagged-list? cont ’assignc))

(define (assignc-var cont) (cadr cont))

(define (assignc-env cont) (caddr cont))

(define (assignc-cont cont) (cadddr cont))

(define (make-definec var env cont) (list ’definec var env cont))

(define (definec? cont) (tagged-list? cont ’definec))

(define (definec-var cont) (cadr cont))

(define (definec-env cont) (caddr cont))

(define (definec-cont cont) (cadddr cont))

(define (make-operandsc exps env cont)

(list ’operandsc exps env cont))

(define (operandsc? cont) (tagged-list? cont ’operandsc))

(define (operandsc-exps cont) (cadr cont))

(define (operandsc-env cont) (caddr cont))

(define (operandsc-cont cont) (cadddr cont))

Figure 6: Continuation-Passing Evaluator (6)—Representation of Continuations (1)

12



(define (make-applyc proc cont)

(list ’applyc proc cont))

(define (applyc? cont) (tagged-list? cont ’applyc))

(define (applyc-proc cont) (cadr cont))

(define (applyc-cont cont) (caddr cont))

(define (make-restopsc exps env cont)

(list ’restopsc exps env cont))

(define (restopsc? cont) (tagged-list? cont ’restopsc))

(define (restopsc-rest cont) (cadr cont))

(define (restopsc-env cont) (caddr cont))

(define (restopsc-cont cont) (cadddr cont))

(define (make-consc val cont)

(list ’consc val cont))

(define (consc? cont) (tagged-list? cont ’consc))

(define (consc-val cont) (cadr cont))

(define (consc-cont cont) (caddr cont))

(define (make-haltc) ’haltc)

(define (haltc? cont) (eq? cont ’haltc))

Figure 7: Continuation-Passing Evaluator (6)—Representation of Continuations(2)

(define (eval exp env cont)

(cond

...

((catch? exp)

(eval (catch-tag exp) env (make-cabodyc (catch-body exp) env cont)))

((throw? exp)

(eval (throw-tag exp) env (make-thbodyc (throw-body exp) env cont)))

...

))

(define (catch? exp) (tagged-list? exp ’catch))

(define (catch-tag exp) (cadr exp))

(define (catch-body exp) (cddr exp))

(define (throw? exp) (tagged-list? exp ’throw))

(define (throw-tag exp) (cadr exp))

(define (throw-body exp) (caddr exp))

Figure 8: Implementation of catch and throw (1): eval and representing expressions.

13



(define (apply-cont cont val)

(cond ...

((cabodyc? cont)

(eval-sequence (cabodyc-body cont) (cabodyc-env cont)

(make-catchc val (cabodyc-cont cont))))

((catchc? cont)

(apply-cont (catchc-cont cont) val))

((thbodyc? cont)

(eval (thbodyc-body cont) (thbodyc-env cont)

(make-throwc val (thbodyc-cont cont))))

((throwc? cont)

(let ((stripped-cont

(first-matching-catch (throwc-tag cont) (throwc-cont cont))))

(if stripped-cont

(apply-cont stripped-cont val)

(list ’uncaught (throwc-tag cont) val))))

((haltc? cont) (list ’normal val))

...

))

Figure 9: Implementation of catch and throw (2): apply-cont

exception to signal that the exception is not caught.2 Figure 10 shows first-matching-catch.
The basic idea is to traverse the continuation until a mark is found. When such a continuation
(that satisfies catchc?) is found, the tag in the thrown exception nad that of catch, obtained by
catchc-tag, are compared; if they agree, then it returns the continuation of the mark.

Figure 11 shows procedures to minipulate continuations related to catch and throw; Figure 12
shows the new definition of driver-loop.

Exercise 4 The special form catch introduced here returns the thrown value as it is. It can be
inconvenient if one wants to distinguish whether the evaluation of the body terminateed normally
or abnormally.

Modify the behavior of catch so that an exception handler is called when an exception is
thrown. More concretely, extend the syntax of catch to the following form:

(catch tag handler exp1 ... expn)

Then, modify the evaluator so that, if an exception is thrown during the evaluation of the body
(exp1 ...expn) and the tag in the thrown exception is equal to tag , then handler is applied to
the thrown value and the result of the application becomes the final value of catch.

Finally, rewrite the definition of change in Excercise 3 by using new catch as follows.

(define (change coins amount)

(cond ((zero? amount) ’())

2If evaluation terminates normally (the clause with haltc? in apply-cont, apply-cont returns the symbol normal
togetehr with value of the expression. Driver-loop has to be modified accordingly. See Figure 12.

14



(define (first-matching-catch thrown-tag cont)

(define (loop cont)

(cond ((haltc? cont) false)

((testc? cont) (loop (testc-cont cont)))

((assignc? cont) (loop (assignc-cont cont)))

((definec? cont) (loop (definec-cont cont)))

((beginc? cont) (loop (beginc-cont cont)))

((operandsc? cont) (loop (operandsc-cont cont)))

((applyc? cont) (loop (applyc-cont cont)))

((restopsc? cont) (loop (restopsc-cont cont)))

((consc? cont) (loop (consc-cont cont)))

((cabodyc? cont) (loop (cabodyc-cont cont)))

((catchc? cont)

(if (eq? thrown-tag (catchc-tag cont))

(catchc-cont cont)

(loop (catchc-cont cont))))

((thbodyc? cont) (loop (thbodyc-cont cont)))

((throwc? cont) (loop (throwc-cont cont)))

(else (error "Unknown continuation type -- FIRST-MATCHING-CATCH" cont))))

(loop cont))

Figure 10: Implementation of catch and throw (3): first-matching-catch

((null? coins) ...)

(else

(let ((c (car coins)))

(if (> c amount) (change (cdr coins) amount)

(catch ’fail

(lambda (x) ...)

(cons c (change coins (- amount c)))))))))

15



(define (make-cabodyc body env cont) (list ’cabodyc body env cont))

(define (cabodyc? cont) (tagged-list? cont ’cabodyc))

(define (cabodyc-body cont) (cadr cont))

(define (cabodyc-env cont) (caddr cont))

(define (cabodyc-cont cont) (cadddr cont))

(define (make-catchc tag cont) (list ’catchc tag cont))

(define (catchc? cont) (tagged-list? cont ’catchc))

(define (catchc-tag cont) (cadr cont))

(define (catchc-cont cont) (caddr cont))

(define (make-thbodyc body env cont) (list ’thbodyc body env cont))

(define (thbodyc? cont) (tagged-list? cont ’thbodyc))

(define (thbodyc-body cont) (cadr cont))

(define (thbodyc-env cont) (caddr cont))

(define (thbodyc-cont cont) (cadddr cont))

(define (make-throwc tag cont) (list ’throwc tag cont))

(define (throwc? cont) (tagged-list? cont ’throwc))

(define (throwc-tag cont) (cadr cont))

(define (throwc-cont cont) (caddr cont))

Figure 11: Implementation of catch and throw (4): Representing continuations

(define (driver-loop)

(prompt-for-input input-prompt)

(let* ((input (read))

(output (eval input the-global-environment (make-haltc))))

(cond ((tagged-list? output ’normal)

(announce-output output-prompt)

(user-print (cadr output)))

((tagged-list? output ’uncaught)

(display ";;; Uncaught exception: ")

(display (cadr output))

(display " ")

(user-print (caddr output))))

(driver-loop)))

Figure 12: Implementation of catch and throw (5): driver-loop

16


