
Deriving Compilers and Virtual Machines
for a Multi-Level Language?

Atsushi Igarashi1 and Masashi Iwaki2

1 Kyoto University, Japan, igarashi@kuis.kyoto-u.ac.jp
2 Hitachi, Ltd., Japan, masashi.iwaki.ew@hitachi.com

Abstract. We develop virtual machines and compilers for a multi-level
language, which supports multi-stage specialization by composing pro-
gram fragments with quotation mechanisms. We consider two styles of
virtual machines—ones equipped with special instructions for code gen-
eration and ones without—and show that the latter kind can deal with,
more easily, low-level code generation, which avoids the overhead of (run-
time) compilation by manipulating instruction sequences, rather than
source-level terms, as data. The virtual machines and accompanying
compilers are derived by program transformation, which extends Ager
et al.’s derivation of virtual machines from evaluators.

1 Introduction

Multi-level (or multi-stage) languages are designed to support manipulation of
program fragments as data and execution of generated code, often by the mech-
anism of quasi-quotation and eval as in Lisp. Most of those languages are consid-
ered extensions of the two-level λ-calculus [1] to an arbitrary number of levels,
which has been proposed and studied by Glück and Jørgensen [2].

In the last decade, designs, semantics, and type systems of multi-level lan-
guages have been studied fairly extensively by many people [3–11]. On the other
hand, implementation issues have been discussed mostly in the context of two-
level systems [12–15], in which generated code itself does not generate code. As is
pointed out by Wickline et al. [4], implementation of two-level languages does not
extend straightforwardly to multi-level, especially when one wants a program to
generate low-level machine code directly, since there is possible code-size blow-up
in generating instructions that themselves generate instructions.

Wickline et al. [4] have addressed this problem by developing an extension of
the Categorical Abstract Machine (CAM) [16] with a facility for run-time code
generation and a compilation scheme for a multi-level extension of ML called
ML¤. Unfortunately, however, the design of the extended CAM is rather ad-hoc
and it is not clear how their technique can be applied to different settings.

? Supported in part by Grant-in-Aid for Scientific Research No. 19300007 from MEXT
of Japan.

Our Approach and Contributions. We develop virtual machines (VMs) and com-
pilers for multi-level languages as systematically as possible, by extending Ager
et al.’s technique [17, 18] to derive from evaluators, by a sequence of well-known
program transformations, abstract machines (which take a source term as an in-
put) or VMs (which take an instruction sequence) with compilers. Although this
technique has been shown to be applicable to various evaluation strategies in-
cluding call-by-value, call-by-name, call-by-need, and even strong reduction [19],
application to multi-level languages is new (at least, to our knowledge).

We also identify the following two aspects of compilation schemes and how
they appear in the derivation of VMs.

– One aspect is whether a VM generates low-level code or source-level code.
It would be desirable that a VM support low-level code generation since the
overhead of compilation of the generated code can be reduced.

– The other is whether or not a VM is equipped with instructions dedicated
for emitting instructions. At first, it may sound counter-intuitive that a VM
supports code generation without such instructions. It is, however, possible
by introducing two execution modes to a VM: in one mode, an instruction is
executed as usual, and in the other, the same instruction emits some code.
Correspondingly, a compiler will generate the same instruction for the same
source language construct, however deep it appears under quotation. We
call this scheme uniform compilation, while we call the other scheme, using
a dedicated instruction set for code generation, non-uniform compilation.

Interestingly, the choice between uniform or non-uniform compilation naturally
arises during the derivation process. We also find out that deriving VMs sup-
porting low-level code generation fails when non-uniform compilation is chosen;
we discuss why it is difficult from the viewpoint of our derivation scheme.

Our main technical contributions can be summarized as follows:

– Derivation of compilers and VMs for a foundational typed calculus λ© by
Davies [3] for multi-level languages; and

– Identification of the two compilation schemes of uniform and non-uniform
compilation, which, in fact, arise naturally during derivation.

Although we omit it from this paper for brevity, we have also succeeded to apply
the same derivation scheme to another calculus λ¤ [8] of multi-level languages.

The Rest of the Paper. We start with reviewing λ© in Section 2. Then, we first
describe the uniform compilation scheme and a VM that generates low-level
code in Section 3 and then the non-uniform compilation, which fails at low-level
code generation, in Section 4. After discussing related work in Section 5, we
conclude in Section 6. The concrete OCaml code of the derivation is available at
http://www.sato.kuis.kyoto-u.ac.jp/∼igarashi/papers/VMcircle.html.

2 λ©

λ© [3] is a typed λ-calculus, which corresponds to linear-time temporal logic
with the temporal operator © (“next”) by the Curry-Howard isomorphism. A

λ©-term is considered a multi-level generating extension, which repeatedly takes
part of the input of a program and yields a residual program, which is a spe-
cialized generating extension; and its type system can be considered that for
a multi-level binding-time analysis [2, 3]. The term syntax includes next and
prev, which roughly correspond to backquote and unquote in Lisp, respectively.
So, in addition to the usual β-reduction, λ© has reduction to cancel next by
prev: prev(next t) −→ t. Unlike Lisp, however, all variables are statically bound
and substitution is capture-avoiding, or “hygienic” [20]. For example, the term
(λx. next(λy. prevx)) (next y) reduces to next(λz. y) in two steps—notice that
the bound variable y has been renamed to a fresh one to avoid variable capture.
It is a common practice to generate fresh names in implementations where vari-
ables have named representation. In this paper, we adopt de Bruijn indices to
represent variable binding with a low-level, nameless implementation in mind.
So, index shifting will be used to avoid variable capture, instead of renaming
bound variables.

2.1 Syntax and Operational Semantics

We first give the syntax and a big-step semantics of a variant of λ©, in which
variables are represented by de Bruijn indices. The definitions of terms t, values
v, and environments E, are given by the following grammar:

t ::= n | λt | t0 t1 | next t | prev t v ::= 〈E, t〉 | ptq E ::= · | v :: E

The level of a (sub)term is the number of nexts minus the number of prevs to
reach the (sub)term. A variable n refers to the n-th λ-binder at the same level.
For example, λy. next(λx.x(prev y)) will be represented by λnext(λ0(prev 0)),
not λnext(λ0(prev 1)), since x appears at level 1 but y at level 0. This indexing
scheme is required because an environment is a list of bindings of level-0 variables
and variables at higher levels are treated like constants—so, in order for indices to
correctly work, binders at higher levels have to be ignored in computing indices.
A value is either a function closure 〈E, t〉 or a quotation ptq3. An environment
E is a list of values. We focus on a minimal set of language features in this paper
but our derivation works when recursion or integers are added.

These definitions can be easily represented by datatype definitions in OCaml,
which we use as a meta language in this paper.

type term = Var of int | Abs of term | App of term * term

| Next of term | Prev of term

type value = Clos of env * term | Quot of term and env = value list

As we have mentioned evaluation in λ© can go under λ-binders. To deal with
it, we need “shift” operations to adjust indices. The expression t ↑`

j denotes a
term obtained by incrementing the indices of free level-` variables by 1. The
3 In Davies [3], next is used for p·q. Our intention here is to distinguish an operator

for quotation and the result of applying it. Also, we do not stratify values by levels
as in [3] since it is not really necessary—the type system does the stratification.

auxiliary argument j counts the number of λ-binders encountered, in order to
avoid incrementing the indices of bound variables.

n ↑`
j =

{
n + 1 (if n ≥ j and ` = 0)
n (otherwise)

(λt) ↑`
j = λ(t ↑`

j+1)

(t0 t1) ↑`
j = (t0 ↑`

j) (t1 ↑`
j)

(next t) ↑`
j = next(t ↑`−1

j)
(prev t) ↑`

j = prev(t ↑`+1
j)

Notice that ` is adjusted when next or prev is encountered. Shifting E ↑` of
environments is defined as a pointwise extension of term shifting; we omit the
definition. We implement these functions as shift and shiftE, respectively,
whose straightforward definitions are also omitted.

Now, we define the call-by-value, big-step operational semantics of λ© with
the judgment E ` t ⇓` r where r is either a value v (when ` = 0) or a term t′

(otherwise), read “level-` term t evaluates to r under environment E”. The infer-
ence rules for this judgment are given in Fig. 1, in which E(n) stands for the n-th
element of E. As usual, bottom-up reading gives how to evaluate an expression,
given an environment and a level. The rules for the case ` = 0 are straightfor-
ward extensions of those for the λ-calculus. The rules Eq-— mean that, when
` ≥ 1 (i.e., the term is under next), the result of evaluation is almost the input
term; only subterms inside prev at level 1 is evaluated, as is shown in E-Prev, in
which the quotation of the value is canceled. To avoid variable capture, indices of
quoted terms in the environment have to be shifted (by E ↑`), when evaluation
goes under λ-bindings (Eq-Abs).4 Fig. 2 shows the derivation for the evaluation
of next(λprev(λnext(λprev 0)) (next 0)), which could be written ‘(lambda (x)
,((lambda (y) ‘(lambda (z) ,y)) ‘x)) in Scheme.

The type system, which we omit mainly for brevity, guarantees the absence
of type errors and that a term of a quotation type evaluates to a quoted term
ptq, where t is well typed at level 0 and does not contain subterms at a negative
level. Our evaluator simply discards type information and types do not play
important roles in our development. We assume every term is well typed.

2.2 Environment-Passing, Continuation-Passing Evaluator for λ©

Once an operational semantics is defined, it is a straightforward task to write an
environment-passing, continuation-passing evaluator. It takes not only a term,
an environment, and a continuation, but also a level of the input term; hence, the
evaluator has type term * int * env * (value -> value) -> value (the re-
turn type of continuations is fixed to value).

type cont = value -> value

(* eval0 : term * int * env * cont -> value *)

let rec eval0 (t, l, e, k) = match t, l with

Var n, 0 -> k (List.nth e n)

4 In the implementation below, shifting is applied to values in an environment eagerly,
but it can be delayed to reduce overhead, until the values are referred to by a
corresponding variable.

E ` t ⇓0 v

(E(n) = v)

E ` n ⇓0 v
(E-Var)

E ` λt ⇓0 〈E, t〉 (E-Abs)

E ` t0 ⇓0 〈E′, t〉 E ` t1 ⇓0 v
v :: E′ ` t ⇓0 v′

E ` t0 t1 ⇓0 v′
(E-App)

E ` t ⇓1 t′

E ` next t ⇓0 pt′q
(E-Next)

E ` t ⇓` t′ (` ≥ 1)

E ` t ⇓0 pt′q
E ` prev t ⇓1 t′

(E-Prev)

E ` n ⇓` n
(Eq-Var)

E ↑`` t ⇓` t′

E ` λt ⇓` λt′
(Eq-Abs)

E ` t0 ⇓` t′0
E ` t1 ⇓` t′1

E ` t0 t1 ⇓` t′0 t′1
(Eq-App)

E ` t ⇓`+1 t′

E ` next t ⇓` next t′
(Eq-Next)

E ` t ⇓` t′

E ` prev t ⇓`+1 prev t′
(Eq-Prev)

Fig. 1. The operational semantics of λ©.

D ≡
p1q :: · ` 0 ⇓0 p1q

E-Var

p1q :: · ` prev 0 ⇓1 1
E-Prev

p0q :: · ` λ prev 0 ⇓1 λ1
Eq-Abs

p0q :: · ` next(λ prev 0) ⇓0 pλ1q
E-Next

· ` λ next(λ prev 0) ⇓0 〈·, next(λ prev 0)〉 E-Abs
· ` 0 ⇓1 0

Eq-Var

· ` next 0 ⇓0 p0q
E-Next

....
D

· ` (λ next(λ prev 0)) next 0 ⇓0 pλ1q
E-App

· ` prev((λ next(λ prev 0)) next 0) ⇓1 λ1
E-Prev

· ` λ prev((λ next(λ prev 0)) next 0) ⇓1 λλ1
Eq-Abs

· ` next(λ prev((λ next(λ prev 0)) next 0)) ⇓0 pλλ1q
E-Next

Fig. 2. The derivation of · ` next(λ prev((λ next(λ prev 0)) next 0)) ⇓0 pλλ1q.

| Abs t0, 0 -> k (Clos (e, t0))

| App(t0, t1), 0 -> eval0 (t0, 0, e, fun1 (Clos(e’,t’)) ->

eval0 (t1, 0, e, fun2 v -> eval0 (t’, v::e’, k)))

| Next t0, 0 -> eval0 (t0, 1, e, fun3 (Quot t) -> k (Quot t))

| Prev t0, 1 -> eval0 (t0, 0, e, fun4 (Quot t) -> k (Quot t))

| Var n, l -> k (Quot (Var n))

| Abs t0, l -> eval0 (t0, l, shiftE (e, l), fun5 (Quot t) ->

k (Quot (Abs t)))

| App(t0, t1), l -> eval0 (t0, l, e, fun6 (Quot t2) ->

eval0 (t1, l, e, fun7 (Quot t3) ->

k (Quot (App(t2, t3)))))

| Next t0, l -> eval0 (t0, l+1, e, fun8 (Quot t) -> k (Quot (Next t)))

| Prev t0, l -> eval0 (t0, l-1, e, fun9 (Quot t) -> k (Quot (Prev t)))

(* main0 : term -> value *)

let main0 t = eval0 (t, 0, [], fun0 v -> v)

Underlines with subscripts are not part of the program—they will be used to
identify function abstractions in the next section. We use a constructor Quot of
value to represent both quoted values ptq and terms returned when l > 0. So,
the continuations in the fourth and fifth branches (corresponding to E-Next
and E-Prev) are (essentially) the identity function (except for checking the
constructor). Note that, in the last five branches, which correspond to the rules
Eq-—, a term is constructed by using the same constructor as the input.

3 Deriving a Uniform Compiler and VM with Low-Level
Code Generation

We first give a very brief review of Ager et al.’s functional derivation of a compiler
and a VM [17, 18]. A derivation from a continuation-passing evaluator consists
of the following steps:

1. defunctionalization [21] to represent continuations by first-order data;
2. currying transformation to split compile- and run-time computation; and
3. defunctionalization to represent run-time computation by first-order data.

The first step makes a tail-recursive, first-order evaluator, which can be viewed
as an abstract machine.5 The succeeding steps decompose the abstract machine
into two functions: the first function that takes a λ-term and generates an in-
termediate datum is a compiler and the second function that interprets inter-
mediate data is a VM—the intermediate data, obtained by the the third step of
defunctionalization, are VM instructions.

We will follow these steps mostly but claim, however, that it is not just an
exercise. We will see an interesting issue of the distinction between uniform and
non-uniform compilation naturally arises from how the abstract machine can be
curried. Also, a VM with low-level code generation cannot be obtained solely
5 According to Ager et al.’s terminology, an abstract machine takes a λ-term as an

input whereas a VM takes an instruction sequence obtained by compiling a term.

by following this scheme: since these derivation steps preserve the behavior of
the original evaluator, the resulting VM would yield quoted source terms even
when VM instructions are introduced. So, we have to devise an additional step
to derive a new VM for low-level code generation.

The following commuting diagram illustrates our derivation scheme:

terms: t0
AM //

compile """b
"b

"b
"b

pt1q //

###c
#c

#c
#c

pt2q //

###c
#c

#c
#c

instructions: I0

V MH
7?wwwwwww

wwwwwww V ML +3 I1

7?wwwwwww

wwwwwww +3 I2

:B}}}}}}}

}}}}}}}

The solid arrows on top represent executions of an abstract machine, which is
extensionally equal to the initial evaluator; since λ©-terms are multi-level gener-
ating extensions, a residual program t1 (possibly with further inputs) obtained
by executing t0 will be executed again. We decompose −→ into a compiler Ã
and a VM V MH=⇒ ; and then derive a VM V ML=⇒ with low-level code generation,
which commutes with V MH=⇒ followed by compilation. So, once t0 is compiled, the
run-time system (that is, V ML=⇒) can forget about source-level terms.

The following subsections describe each step of the derivation in detail.

3.1 Defunctionalizing Continuations

The first step is defunctionalization of continuations. The basic idea of defunc-
tionalization [21] is to represent functional values by datatype constructors and
to replace function applications by calls to an “apply” function. This function
executes the function body corresponding to the given constructor, which also
carries the value of free variables in the original function abstraction. In the def-
inition of the evaluator in the last section, there are ten function abstractions of
type value -> value: one in main0 and nine in eval0. So, the datatype cont
is given ten constructors.

The resulting code is as follows (throughout the paper, shaded part represents
main changes from the previous version):

type cont = Cont0 | Cont1 of term * env * cont | ... | Cont9 of cont

(* eval1 : term * int * env * cont -> value *)

let rec eval1 (t, l, e, k) = match t, l with

Var n, 0 -> appK1 (k, List.nth e n)

| App (t0, t1), 0 -> eval1 (t0, 0, e, Cont1 (t1, e, k))

| Var n, l -> appK1 (k, Quot (Var n))

| App (t0, t1), l -> eval1 (t0, l, e, Cont6 (t1, l, e, k)) ...

(* appK1 : cont * value -> value *)

and appK1 (k, v) = match k, v with

Cont0, v -> v

| Cont1 (t1, e, k), v -> eval1 (t1, e, Cont2 (v, k))

| Cont2 (Clos (e’, t’), k), v -> eval1 (t’, v::e’, k)

| Cont5 k, Quot t -> appK1 (k, Quot (Abs t))

| Cont6 (t1, l, e, k), Quot t2 -> eval1 (t1, l, e, Cont7 (t2, k))

| Cont7 (t2, k), Quot t3 -> appK1 (k, Quot (App (t2, t3)))
...

(* main1 : term -> value *)

let main1 t = eval1 (t, 0, [], Cont0)

The occurrences of funi have been replaced with constructors Conti, applied
to free variables in the function body. The bodies of those functions are moved
to branches of the apply function appK1. For example, the initial continuation
is represented by Cont0 (without arguments) and the corresponding branch in
appK1 just returns the input v.

The derived evaluator can be viewed as a CEK-style abstract machine [22]
for λ©. Indeed, for the pure λ-calculus fragment, this evaluator behaves exactly
like the CEK-machine [18].

3.2 Currying and Primitive Recursive Evaluator

Now, we decompose eval1 above into two functions for compilation and ex-
ecution. For this purpose, we first curry eval1 so that it takes compile-time
entities such as terms as arguments and returns a “run-time computation,” i.e.,
a function, which takes run-time entities such as environments and continua-
tions as arguments and returns a value. Also, the evaluator is transformed into
a primitive recursive form in such a way that closures carry run-time computa-
tion, instead of terms. This transformation removes the dependency of run-time
entities on compile-time entities.

Actually, at this point, we have two choices about how it is curried: one choice
is to curry to term * int -> env * cont -> value and the other is to term
-> int * env * cont -> value. The former choice amounts to regarding a
level as compile-time information, so the resulting compiler can generate different
instructions from the same term, depending on its levels; it leads to non-uniform
compilation, which will be discussed in Section 4. In this section, we proceed
with the latter choice, in which the resulting compiler will depend only on the
input term, so it necessarily generates the same instruction from the same term,
regardless of its levels.

The currying transformation yields the following code:

type value = Clos of env * compt | Quot of term and env = ...

and compt = int * env * cont -> value

and cont = Cont0 | Cont1 of compt * env * cont | ...

| Cont6 of compt * int * env * cont | Cont7 of term * cont | ...

(* appK2 : cont * value -> value *)

let rec appK2 (k, v) = match k, v with

Cont0, v -> v

| Cont1 (c1, e, k), v -> c1 (0, e, Cont2 (v, k))

| Cont6 (c1, l, e, k), Quot t2 -> c1 (l, e, Cont7 (t2, k))

| Cont7 (t2, k), Quot t3 -> appK2 (k, Quot (App (t2, t3)))

...

(* eval2 : term -> compt *)
let rec eval2 t = match t with

Var n -> (fun0 (l, e, k) -> if l = 0 then appK2 (k, List.nth e n)

else appK2 (k, Quot (Var n)))

| Abs t0 -> let c0 = eval t0 in

(fun1 (l, e, k) -> if l = 0 then appK2 (k, Clos (e, c0))

else c0 (l, shiftE (e, l), Cont5 k))

| App(t0,t1) -> let c0 = eval2 t0 and c1 = eval2 t1 in

(fun2 (l, e, k) -> if l = 0 then c0 (0, e, Cont1 (c1, e, k))

else c0 (l, e, Cont6 (c1, l, e, k))) ...

(* main2 : term -> value *)

let main2 t = eval2 t (0, [], Cont0)

Case branching in eval2 is now in two steps and the second branching on levels
is under function abstractions, which represent run-time computation. Some
occurrences of term in cont have been replaced with compt, but arguments
to Cont7 (as well as Quot) remains the same because it records the result of
evaluation of the function part of an application at a level greater than 0.

Note that the definitions of value, env and cont are now independent of
that of term, indicating the separation of compile- and run-time. Also, unlike
the previous version, functions appK2 and eval2 are not mutually recursive. The
function eval2 becomes primitive recursive and also higher-order (it returns a
functional value); we get rid of funs by another defunctionalization.

3.3 Defunctionalizing Run-Time Computation

The next step is to make compt first-order data by applying defunctionalization.
Here, the datatype for compt will be represented by using lists:

type compt = inst list

and inst = Compt0 of int | Compt1 of compt | Compt2 of compt | ...

rather than

type compt = Compt0’ of int | Compt1’ of compt

| Compt2’ of compt * compt | ...

which would be obtained by straightforward defunctionalization. In fact, the
latter can be embedded into the former—Compt0’ n and Compt2’(c0,c1) are
represented by [Compt0 n] and [Compt2 c1; c0], respectively. This scheme
allows defunctionalized run-time computation to be represented by a linear data
structure, that is, a sequence of instructions. Indeed, as its name suggests, inst
can be viewed as machine instructions. The resulting evaluator eval3, which
generates a value of type compt from a term, is a compiler; a new apply function
appC3, which interprets compt, together with appK3 is a VM. In the following
code, constructors of inst are given mnemonic names.

type value = ... and env = ... and cont = ... and compt = inst list

and inst = Access of int | Close of compt | Push of compt | Enter | Leave

(* eval3 : term -> compt *)

let rec eval3 t = match t with

Var n -> [Access n] | Abs t0 -> [Close (eval3 t0)]

| App (t0, t1) -> Push (eval3 t1) :: (eval3 t0)

| Next t0 -> Enter :: eval3 t0 | Prev t0 -> Leave :: eval3 t0

(* appK3 : cont * value -> value *)

let rec appK3 (k, v) = match k, v with ...

| Cont1 (c1, e, k), v -> appC3 (c1, 0, e, Cont2 (v,k))

| Cont6 (c1, l, e, k), Quot t2 -> appC3 (c1, l, e, Cont7(t2, k))

...

(* appC3 : compt * int * env * cont -> value *)

and appC3 (c, l, e, k) = match c, l with

[Access n], 0 -> appK3 (k, List.nth e n)

| [Access n], l -> appK3 (k, Quot (Var n))

| [Close c0], 0 -> appK3 (k, Clos (e, c0))

| [Close c0], l -> appC3 (c0, l, shiftE (e, l), Cont5 k)

| Push c1::c0, 0 -> appC3 (c0, 0, e, Cont1 (c1, e, k))

| Push c1::c0, l -> appC3 (c0, l, e, Cont6 (c1, l, e, k))
...

(* main3 : term -> value *)

let main3 t = appC3 (eval3 t, 0, [], Cont0)

The compiler eval3 is uniform since it generates the same instruction regardless
of the levels of subterms and the VM interprets the same instruction differently,
according to the level.

3.4 Virtual Machine for Low-Level Code Generation

Code generation in the VM derived above is still high-level: as shown in the
branch for Cont7 of appK3 (or appK2), terms, not instructions, are generated
during execution. The final step is to derive a VM that generates instructions.
This is, in fact, rather easy—everywhere a term constructor appears, we apply
the compiler by hand (but leave variables unchanged): for example, the branch

| [Access n], l -> appK3 (k, Quot (Var n))

in appC3 becomes

| [Access n], l -> appK3 (k, Quot [Access n]))

Other changes include replacement of type term with compt in value or cont
and new definitions to shift indices in an instruction list.

Here is the final code:

type value = ... | Quot of compt and compt = ... and inst = ...

and cont = ... | Cont7 of compt * cont | ... and env = ...

let rec shift_inst (i, l, j) = ... and shift_compt (c, l, j) = ...

let rec shiftE (e, l) = ...

(* eval4 : term -> compt *)

let rec eval4 t = ... (* the same as eval3 *)

(* appK4 : cont * value -> value *)

and appK4 (k, v) = match k, v with ...

| Cont7 (c2, k), Quot c3 -> appK4 (k, Quot (Push c3::c2))

...

(* appC4 : compt * int * env * cont -> value *)

and appC4 (c, l, e, k) = match (c, l) with

| [Access n], l -> appK4 (k, Quot [Access n])

...

(* main4 : term -> value *)

let main4 t = appC4 (eval4 t, 0, [], Cont0)

The definitions of code blocks c, instructions I, continuations k, the compiler
[[t]], and the transition =⇒ of the VM states are summarized in Fig. 3 (in which
the names of continuation constructors are also renamed). An (intermediate)
state is of the form 〈c, `, E, k〉 (corresponding to an input to appC4), 〈k, v〉,
or 〈k, c〉 (corresponding to an input to appK4). A VM instruction is executed
differently according to `. For example, close(c) creates a function closure and
passes it to the current continuation when ` = 0, whereas the same instruction
generates code to build a closure when ` > 0, by first pushing QAbs onto the
continuation stack and executing the body—when this execution finished, the
VM reaches the state 〈QAbs(k), c〉, in which c is the generated function body;
finally the VM returns an instruction to build a closure (that is, close).

4 Non-Uniform Compilation and Failure of Low-level
Code Generation

In this section, we briefly describe the derivation of a non-uniform compiler
with a VM and see how and why low-level code generation fails. As we already
mentioned, currying the evaluation function as term * int -> env * cont ->
value, by regarding levels as compile-time information, leads us to a non-uniform
compiler, which generates special instructions for code generation if the given
level is greater than 0. We skip the intermediate steps and show only the resulting
non-uniform compiler and VM for high-level code generation, obtained after
defunctionalizing compt, which is first defined to be env * cont -> value.

type value = ... and env = ... and cont = ... and compt = inst list

and inst = Access of int | ... | Leave | QVar of int | PushQAbs of int

| PushQApp of compt | PushQNext | PushQPrev

Instructions, values, and continuations:

I ::= access n | close(c) | push(c) | enter | leave
c ::= I0; · · · ; In

v ::= 〈E, c〉 | pcq
k ::= Halt | EvArg(c, E, k) | EvBody(v, k) | Quote(k) | Unquote(k)
| QAbs(k) | QApp’(c, `, E, k) | QApp(c, k) | QNext(k) | QPrev(k)

Compilation:

[[n]] = access n
[[λt]] = close([[t]])

[[t0 t1]] = push([[t1]]); [[t0]]

[[next t]] = enter; [[t]]
[[prev t]] = leave; [[t]]

VM transition:

c =⇒ 〈c, 0, ·, Halt〉
〈access n, 0, E, k〉 =⇒ 〈k, E(n)〉
〈close(c), 0, E, k〉 =⇒ 〈k, 〈E, c〉〉

〈push(c′); c, 0, E, k〉 =⇒ 〈c, 0, E, EvArg(c′, E, k)〉
〈enter; c, 0, E, k〉 =⇒ 〈c, 1, E, Quote(k)〉
〈leave; c, 1, E, k〉 =⇒ 〈c, 0, E, Unquote(k)〉
〈access n, `, E, k〉 =⇒ 〈k, access n〉 (` ≥ 1)

〈close(c), `, E, k〉 =⇒ 〈c, `, E ↑`, QAbs(k)〉 (` ≥ 1)
〈push(c′); c, `, E, k〉 =⇒ 〈c, `, E, QApp’(c′, `, E, k)〉 (` ≥ 1)
〈enter; c, `, E, k〉 =⇒ 〈c, ` + 1, E, QNext(k)〉 (` ≥ 1)

〈leave; c, ` + 1, E, k〉 =⇒ 〈c, `, E, QPrev(k)〉 (` ≥ 1)

〈EvArg(c, E, k), v〉 =⇒ 〈c, 0, E, EvBody(v, k)〉
〈EvBody(〈E, c〉, k), v〉 =⇒ 〈c, 0, v :: E, k〉

〈Quote(k), c〉 =⇒ 〈k, pcq〉
〈Unquote(k), pcq〉 =⇒ 〈k, c〉

〈QAbs(k), c〉 =⇒ 〈k, close(c)〉
〈QApp’(c′, `, E, k), c〉 =⇒ 〈c′, `, E, QApp(c, k)〉

〈QApp(c, k), c′〉 =⇒ 〈k, push(c′); c〉
〈QNext(k), c〉 =⇒ 〈k, enter; c〉
〈QPrev(k), c〉 =⇒ 〈k, leave; c〉

〈Halt, v〉 =⇒ v

Fig. 3. The derived uniform compiler and VM with low-level code generation.

(* eval3’ : term * int -> inst list *)

let rec eval3’ (t, l) = match t, l with

Var n , 0 -> [Access n] | Var n, l -> [QVar n]

| App (t0, t1) , 0 -> Push (eval3’ (t1, 0)) :: eval3’ (t0, 0)

| App (t0, t1), l -> PushQApp (eval3’ (t1, l)) :: eval3’ (t0, l)

...

(* appK3’ : cont * value -> value *)

let rec appK3’ (k, v) = (* the same as appK2 *) ...

| Cont7 (t2, k), Quot t3 -> appK3’ (k, Quot (App (t2, t3)))

...

(* appC3’ : compt * env * cont -> value *)

and appC3’ (c, e, k) = match c with

[Access n] -> appK3’ (k, List.nth e n)

| [QVar n] -> appK3’ (k, Quot (Var n))

| Push c1::c0 -> appC3’ (c0, e, Cont1 (c1, e, k))

| PushQApp c1::c0 -> appC3’ (c0, e, Cont6 (c1, e, k))

...

(* main3’ : term -> value *)

let main3’ t = appC3’ (eval3’ (t, 0), [], Cont0)

The resulting instruction set is twice as large as that for uniform compila-
tion. Instructions PushQXXX push onto a continuation stack a marker that repre-
sents the corresponding term constructor; the marker is eventually consumed by
appK3’ to attach a term constructor to the current result: for example, Cont6
and Cont7 are markers for application.

Unfortunately, we fail to derive a VM for low-level code generation. This is
simply because the compiler now takes a pair of a term and a level but a level
is missing around term constructors in appK3’ or appC3’!

We think that this failure is inherent in multi-level languages. In a multi-
level language, one language construct has different meanings, depending on
where it appears: for example, in λ©, a λ-abstraction at level 0 evaluates to a
function closure, whereas one at level ` > 0 evaluates to quoted λ-abstraction at
level ` − 1. Now, notice that the compiler derived here is still uniform at levels
greater than 0 (one term constructor is always compiled to the same instruction,
regardless of its level). So, it would not be possible for a VM to emit different
instructions without level information, which, however, has been compiled away.
If the number of possible levels is bounded, “true” non-uniform compilation
would be possible but would require different instructions for each level, which
would be unrealistic. We conjecture that this problem can be solved by a hybrid
of uniform and non-uniform compilation, which is left for future work.

5 Related Work

Implementation of Multi-Level Languages A most closely related piece of work
is Wickline et al. [4], who have developed a compiler of ML¤, which is an exten-
sion of ML with the constructs of λ¤ [8], and the target virtual machine CCAM,

an extension of the Categorical Abstract Machine [16]. The CCAM is equipped
with, among others, a set of special (pseudo) instructions emit I, which emit
the single instruction I to a code block and are used to implement generating
extensions. The instruction emit, however, is not allowed to be nested because
such nested emits would be represented by real instructions whose size is expo-
nential in the depth of nesting. They developed a strategy for compiling nested
quotation by exploiting another special instruction lift to transform a value into
a code generator that generates the value and the fact that environments are
first-class values in the CAM. In short, their work supports both non-uniform
compilation and low-level code generation in one system. Unfortunately, the de-
sign of the abstract machine is fairly ad hoc and it is not clear how the proposed
compilation scheme can be exported to other combinations of programming lan-
guages and VMs. Our method solves the exponential blow-up problem above
simply because a compound instruction emit I is represented by a single VM
instruction I. Although our method does not support non-uniform compilation
with low-level code generation, it would be possible to derive a compiler and
a VM for one’s favorite multi-level language in a fairly systematic manner. It
might be interesting future work to incorporate their ideas into our framework
to realize non-uniform compilation with low-level code generation.

MetaOCaml6 is a multi-level extension of Objective Caml7. Calcagno et
al. [23] have reported its implementation by translation to a high-level language
with datatypes for ASTs, gensyms, and run-time compilation but do not take di-
rect low-level code generation into account. We believe our method is applicable
to MetaOCaml, too.

As mentioned in Section 1, there are several practical systems that are ca-
pable of run-time low-level (native or VM) code generation. Tempo [14] is a
compile-time and run-time specialization system for the C language; DyC [15] is
also a run-time specialization system for C; ‘C [12] is an extension of C, where
programmers can explicitly manipulate, compile, and run code fragments as first-
class values with (non-nested) backquote and unquote; Fabius [24] is a run-time
specialization system for a subset of ML. They are basically two-level systems but
Tempo supports multi-level specialization by incremental self-application [2, 25].
The code-size blowup problem is solved by the template filling technique [14, 26],
which amounts to allowing the operand to the emit instruction to be (a pointer
to) a block of instructions.

Functional Derivation of Abstract and Virtual Machines. Ager et al. describe
derivations of abstract and virtual machines from evaluation functions by pro-
gram transformation [18, 17] and have shown that the Krivine machine [27] is
derived from a call-by-name evaluator and that the CEK machine [22] indeed
corresponds to a call-by-value evaluator. They also applied the same technique
to call-by-need [28], monadic evaluators [29], or strong reduction [19, 17]. How-

6 http://www.metaocaml.org/
7 http://caml.inria.fr/ocaml/

ever, they mainly focus on different evaluation strategy or side-effects and have
not attempted to apply their technique to multi-level languages.

6 Conclusions

In this paper, we have shown derivations of compilers and VMs for a foundational
multi-level language λ©. We have investigated the two compilation schemes of
uniform compilation, which compiles a term constructor to the same instruction
regardless of the level at which the term appears, and non-uniform compila-
tion, which generates different instructions from the same term according to its
level, and have shown that the former is more suitable for low-level code gen-
eration. Our derivation is fairly systematic and would be applicable to one’s
favorite multi-level language. In fact, although omitted from this paper, we have
successfully derived a compiler and a VM for another calculus λ¤ [8].

The final derivation step for low-level code generation may appear informal
and ad hoc. We are developing a formal translation based on function fusion.

Although it would not be easy to implement our machines for uniform compi-
lation directly by the current, real processor architecture, we think they still can
be implemented fairly efficiently as a VM. Our future work includes implemen-
tation of a uniform compiler and a corresponding VM by extending an existing
VM, such as the ZINC abstract machine [30]. We believe our method is applica-
ble to VMs with different architectures, which correspond to different evaluation
semantics of the λ-calculus, and is useful to see how they can be extended for
multi-level languages.

Acknowledgments We thank anonymous reviewers for providing useful comments
and for pointing out missing related work.

References

1. Nielson, F., Nielson, H.R.: Two-Level Functional Languages. Cambridge University
Press (1992)

2. Glück, R., Jørgensen, J.: Efficient multi-level generating extensions for program
specialization. In: Proc. of PLILP. LNCS 982. (1995) 259–278

3. Davies, R.: A temporal-logic approach to binding-time analysis. In: Proc. of IEEE
LICS. (July 1996) 184–195

4. Wickline, P., Lee, P., Pfenning, F.: Run-time code generation and Modal-ML. In:
Proc. of ACM PLDI. (1998) 224–235

5. Taha, W., Benaissa, Z.E.A., Sheard, T.: Multi-stage programming: Axiomatization
and type-safety. In: Proc. of ICALP. LNCS 1443. (1998) 918–929

6. Moggi, E., Taha, W., Benaissa, Z.E.A., Sheard, T.: An idealized MetaML: Simpler,
and more expressive. In: Proc. of ESOP. LNCS 1576. (1999) 193–207

7. Taha, W., Sheard, T.: MetaML and multi-stage programming with explicit anno-
tations. Theoretical Computer Science 248 (2000) 211–242

8. Davies, R., Pfenning, F.: A modal analysis of staged computation. Journal of the
ACM 48(3) (2001) 555–604

9. Taha, W., Nielsen, M.F.: Environment classifiers. In: Proc. of ACM POPL. (2003)
26–37

10. Calcagno, C., Moggi, E., Taha, W.: ML-like inference for classifiers. In: Proc. of
ESOP. LNCS 2986. (2004) 79–93

11. Yuse, Y., Igarashi, A.: A modal type system for multi-level generating extensions
with persistent code. In: Proc. of ACM PPDP. (2006) 201–212

12. Poletto, M., Hsieh, W.C., Engler, D.R., Kaashoek, M.F.: ‘C and tcc: A language
and compiler for dynamic code generation. ACM Transactions on Programming
Languages and Systems 21(2) (1999) 324–369

13. Masuhara, H., Yonezawa, A.: Run-time bytecode specialization: A portable ap-
proach to generating optimized specialized code. In: Proc. of PADO-II. LNCS
2053. (2001) 138–154

14. Consel, C., Lawall, J.L., Meur, A.F.L.: A tour of Tempo: A program specializer
for the C language. Science of Computer Programming 52(1–3) (2004) 341–370

15. Grant, B., Mock, M., Philipose, M., Chambers, C., Eggers, S.J.: DyC: An expres-
sive annotation-directed dynamic compiler for C. Theoretical Computer Science
248(1–2) (2000) 147–199

16. Cousineau, G., Curien, P.L., Mauny, M.: The categorical abstract machine. Science
of Computer Programming 8(2) (1987) 173–202

17. Ager, M.S., Biernacki, D., Danvy, O., Midtgaard, J.: From interpreter to compiler
and virtual machine: A functional derivation. Technical Report RS-03-14, BRICS
(March 2003)

18. Ager, M.S., Biernacki, D., Danvy, O., Midtgaard, J.: A functional correspondence
between evaluators and abstract machines. In: Proc. of ACM PPDP. (2003) 8–19

19. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: Proc.
of ACM ICFP. (2002) 235–246

20. Kohlbecker, E., Friedman, D.P., Felleisen, M., Duba, B.: Hygienic macro expansion.
In: Proc. of ACM LFP. (1986) 151–161

21. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
Higher-Order Symbolic Computation 11(4) (1998) 363–397

22. Felleisen, M., Friedman, D.P.: Control operators, the SECD machine, and the
λ-calculus. In: Proc. Formal Description of Prog. Concepts III. (1986) 193–217

23. Calcagno, C., Taha, W., Huang, L., Leroy, X.: Implementing multi-stage languages
using ASTs, gensym, and reflection. In: Proc. of GPCE. LNCS 2830. (2003) 57–76

24. Leone, M., Lee, P.: Optimizing ML with run-time code generation. In: Proc. of
ACM PLDI. (1996) 137–148

25. Marlet, R., Consel, C., Boinot, P.: Efficient incremental run-time specialization for
free. In: Proc. of ACM PLDI. (1999) 281–292

26. Consel, C., Noël, F.: A general approach for run-time specialization and its appli-
cation to C. In: Proc. of ACM POPL. (1996) 145–156

27. Krivine, J.L.: A call-by-name lambda-calculus machine. Available online from
http://www.pps.jussieu.fr/∼krivine

28. Ager, M.S., Danvy, O., Midtgaard, J.: A functional correspondence between call-
by-need evaluators and lazy abstract machines. Information Processing Letters
90(5) (2004) 223–232

29. Ager, M.S., Danvy, O., Midtgaard, J.: A functional correspondence between
monadic evaluators and abstract machines for languages with computational ef-
fects. Theoretical Computer Science 342(1) (2005) 149–172

30. Leroy, X.: The ZINC experiment: An economical implementation of the ML lan-
guage. Technical Report 117, INRIA (1990)

