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Abstract

In this paper we study a version of constructive linear-time temporal logic (LTL)
with the “next” temporal operator. The logic is originally due to Davies, who
has shown that the proof system of the logic corresponds to a type system for
binding-time analysis via the Curry-Howard isomorphism. However, he did not
investigate the logic itself in detail; he has proved only that the logic augmented
with negation and classical reasoning is equivalent to (the “next” fragment of)
the standard formulation of classical linear-time temporal logic. We give natural
deduction, sequent calculus and Hilbert-style proof systems for constructive LTL
with conjunction, disjunction and falsehood, and show that the sequent calculus
enjoys cut elimination. Moreover, we also consider Kripke semantics and prove
soundness and completeness. One distinguishing feature of this logic is that
distributivity of the “next” operator over disjunction “©(A∨B) ⊃ ©A∨©B”
is rejected in view of a type-theoretic interpretation.

Key words: constructive linear-time temporal logic, Kripke semantics,
sequent calculus, cut elimination

1. Introduction

Temporal logic is a family of (modal) logics in which the truth of propo-
sitions depends on time, and is useful to describe various properties of state
transition systems. Linear-time temporal logic (LTL, for short), which is used
to reason about properties of a fixed execution path of a state transition system,
is temporal logic in which each time has a unique time that follows it.

In this paper, we study a constructive propositional LTL with only the
“next” temporal operator ©. Our contributions are (1) to give natural de-
duction, sequent calculus (satisfying cut elimination), and Hilbert-style proof
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systems and (2) to give Kripke-style semantics together with completeness the-
orem.

Intuitionistic versions of LTL have been already considered in the litera-
ture [1, 2]. However, a characteristic feature of our version of LTL is that the
“distributivity law” ©(A∨B) ⊃ ©A∨©B, is not admitted in our logic, while
(to our knowledge) it is admitted in the other formalizations as well as in the
classical setting.

The motivation not to admit the distributivity law above comes from the
type-theoretic interpretation of © operator, first given by Davies [3]. He pointed
out that a proof system of LTL can be related to a type system of (multi-level)
binding-time analysis, which is used in offline partial evaluation [4] to determine
which part of a program can be computed at specialization-time and which is
residualized. According to this correspondence, a formula ©A, which means
that A holds at the next time, is interpreted as a type of (residual) code of
type A; introduction and elimination rules of © are as Lisp-like quasiquota-
tion and unquote, respectively. As a result, λ© terms can be considered as
program-generating programs, such as parser generators or generating exten-
sions, which manipulate code fragments by the quasiquotation mechanism. For
example, a parser generator would have a type like parser spec → ©(string
→ syntax tree). Now, a proof of the distributivity law would be considered
a function which takes a value of type ©(A ∨ B) and returns a value of type
©A ∨ ©B. While a value of the return type must be of type ©A or type
©B with a tag indicating which of the two is actually the case, a value of the
argument type is quoted code, which will not be executed until the next time
comes, that is, until the residual code is executed; it is in general impossible to
know which value (A or B) this code evaluates to now (unless a Lisp-like eval
function was available). From this observation, we conclude that there is no
method to turn a value of type ©(A ∨ B) into a value of type ©A ∨©B, and
hence ©A ∨©B should be strictly stronger than ©(A ∨ B).

Similarly, we also reject ©⊥ ⊃ ⊥, which is admitted in classical LTL. The
falsehood ⊥ is interpreted as a type which has no value, so a program of type ⊥
does not terminate normally. However, a program of type ©⊥ will terminate
normally, although the resulting value (which is code of type ⊥) would not,
when executed.

Davies defined a natural deduction system for a constructive LTL with only
the “next” operator © and implication, and derived via the Curry-Howard
isomorphism a typed λ-calculus λ©, which was formally shown to be equivalent
to a type system of multi-level binding-time analysis by Glück and Jørgensen [5].
Unfortunately, however, Davies did not investigate his system in detail, from a
logical point of view: he proved only that his system augmented with negation
and classical reasoning is equivalent to the classical LTL, even though the logic
can be considered a constructive version of LTL. The main aim of this paper is
to see how his system is formalized in terms of Kripke semantics and sequent
calculus. Davies’ original system is an implicational fragment, but we also
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consider other connectives.1

This paper is an extended version of the authors’ previous work [6]. In ad-
dition to the previous version, this paper considers (1) falsehood in our logic,
(2) more concise Kripke semantics, and (3) some discussions on informal inter-
pretation of the semantics we give.

The organization of the rest of this paper is as follows. In Section 2, we
discuss the natural-deduction proof system. We first review the system by
Davies, and extend it with conjunction, disjunction and falsehood. In Section 3
we define a sequent calculus LJ©, which is equivalent to the natural deduction,
with its cut elimination procedure. In Section 4 we show Hilbert-style proof
system which is equivalent to the natural deduction given in Section 2. Section 5
considers Kripke semantics. It turns out that, although our logic is considered
to be a version of LTL, a straightforward extension of classical semantics is
not suitable for our interpretation of ©. After seeing that, we consider another
Kripke semantics and establish soundness and completeness of the proof system.
Finally, we give concluding remarks in Section 6.

2. Natural Deduction

In this section, we first recall the natural deduction system by Davies and
some of its properties, and then extend the system with conjunction, disjunction
and falsehood.

2.1. Results by Davies
The temporal logic Davies considered contains only © (“next” operator)

and ⊃ (intuitionistic implication). So here we consider formulas containing
only these two connectives.

A judgment in his system takes the form

An1
1 , . . . , Ank

k ` Bm

where Ai, B are formulas and ni,m are natural numbers; it is read “B holds
at time m under the assumption that Ai holds at time ni (for i = 1, . . . , k).”
In what follows, we use A,B,C,D for formulas, k, l,m, n for natural numbers,
F,G for annotated formulas (i.e. formulas with time annotation), and Γ, ∆ for
sets of annotated formulas. We consider the left-hand side of a judgment a set.

Inference rules of Davies’ system are listed in Figure 1. The rules ⊃I, ⊃E,
and Axiom are standard. The other two, the introduction and elimination rules
for © operator, state that A holds at time n+1 if and only if ©A holds at time
n. This is quite natural since ©A means that “A holds at the next time.”

To show that © operator in this system is indeed the “next” operator in
linear-time temporal logic, Davies compared his system with L©, a well-known

1Precisely speaking, Davies extended λ© with pairing and natural numbers, but did not
consider conjunction or disjunction in his logic.
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Γ, An ` An
(Axiom)

Γ ` A ⊃ Bn Γ ` An

Γ ` Bn
(⊃E)

Γ ` ©An

Γ ` An+1
(©E)

Γ, An ` Bn

Γ ` A ⊃ Bn
(⊃I)

Γ ` An+1

Γ ` ©An
(©I)

Figure 1: Derivation Rules of Davies’ System.

Γ ` A ∧ Bn

Γ ` An
(∧E1)

Γ ` A ∧ Bn

Γ ` Bn
(∧E2)

Γ ` A ∨ Bn Γ, An ` Cn Γ, Bn ` Cn

Γ ` Cn
(∨E)

Γ ` ⊥n

Γ ` An
(⊥E)

Γ ` An Γ ` Bn

Γ ` A ∧ Bn
(∧I)

Γ ` An

Γ ` A ∨ Bn
(∨I1)

Γ ` Bn

Γ ` A ∨ Bn
(∨I2)

Figure 2: Additional Rules for Full NJ©.

Hilbert-style proof system of the fragment of classical linear-time temporal logic
consisting of only implication, negation and next operators. The axiomatization
is given by Stirling, who also proved that L© is sound and complete for the
standard semantics [7]. The axioms and rules of L© are as follows:

Axioms • any classical tautology instance

• ©¬A ⊃ ¬© A

• ¬© A ⊃ ©¬A

• ©(A ⊃ B) ⊃ ©A ⊃ ©B

Rules • if A ⊃ B and A then B

• if A then ©A

Davies proved that his system extended by negation and classical reasoning is
equivalent to L© in the following sense [3]:

Proposition 1. A judgment An1
1 , . . . , Ank

k ` Bm is provable in the extended
system if and only if ©n1A1 ⊃ . . . ⊃ ©nkAk ⊃ ©mB has a proof in L©. In
particular, · ` A0 is provable if and only if A is a theorem of L©.

2.2. Full System
Next we extend Davies’ system with conjunction, disjunction and falsehood.

We call the extended system NJ©. Additional derivation rules are listed in
Figure 2. The rules for conjunction and introduction rules for disjunction are
fairly straightforward, but the other two rules would require some explanation.

4



In ∨E, the formula being eliminated must have the same time as the succe-
dent of the conclusion. At first sight it may seem strange, but in fact this
restriction is essential for our system. Indeed, without this restriction we could
prove the distributivity law ©(A ∨ B) ⊃ ©A ∨ ©B, which should not be a
tautology as mentioned above, as follows:

©(A ∨ B)0 ` ©(A ∨ B)0

©(A ∨ B)0 ` A ∨ B1

©(A ∨ B)0, A1 ` A1

©(A ∨ B)0, A1 ` ©A0

©(A ∨ B)0, A1 ` ©A ∨©B0

©(A ∨ B)0, B1 ` B1

©(A ∨ B)0, B1 ` ©B0

©(A ∨ B)0, A1 ` ©A ∨©B0

©(A ∨ B)0 ` ©A ∨©B0 ∨E

In this proof, disjunction being eliminated has time 1 while the time of the
succedent is 0.

For the same reason, we needed to restrict the time of A in ⊥E to be the same
as the time of ⊥ being eliminated. Otherwise, ©⊥ ⊃ ⊥ would be a theorem.

In fact, the problem would occur only if we allowed the time of the succedent
to be strictly less than that of the formula being eliminated. A slight variation
of ∨E in which Cn is changed to Cm with the side condition m ≥ n is provable
by using ©I and ©E. In the same way, a variant of ⊥E which derives Am from
⊥n for m ≥ n is also provable.

3. Sequent Calculus

In this section we give another formalization LJ© of our logic in the se-
quent calculus style. After verifying that the system LJ© is equivalent to NJ©

previously defined, we give a cut-elimination procedure for LJ©.

3.1. Formalization
Sequents of LJ© have the form Γ ⇒ F where Γ is a set of annotated formulas

and F is an annotated formula. Inference rules of LJ© are listed in Figure 3.
Since we regard the left-hand side of a sequent as a set, exchange and con-

traction rules are not explicitly included. There is not an explicit weakening
rule, either—we included weakening implicitly by allowing extra formulas in the
rules Init and ⊥L. Most of the rules are standard, but we comment on some
rules. In rules Init and ⊥L, we restricted the right-hand side to be atomic to
make the proof of cut elimination theorem simpler (but this does not reduce
the proof-theoretic strength). In rules ⊥L and ∨L, the time of the succedent
must be no less than that of the principal formula (⊥ and A∨B, respectively).
This corresponds to the issue mentioned in Section 2 that we cannot eliminate
falsehood or disjunction with a succedent of an earlier time.

LJ© is equivalent to NJ© in the following sense:

Theorem 2. A sequent Γ ⇒ F is provable in LJ© if and only if Γ ` F is
provable in NJ©.

To prove this, it is sufficient to check that all rules of LJ© are admissible in
NJ© and vice versa. For the former part we need the admissibility of weakening
and cut in natural deduction:
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(A is atomic)
Γ, An ⇒ An

(Init)

Γ ⇒ An Γ, Bn ⇒ F

Γ, A ⊃ Bn ⇒ F
(⊃L)

Γ, An ⇒ F

Γ, A ∧ Bn ⇒ F
(∧L1)

Γ, Bn ⇒ F

Γ, A ∧ Bn ⇒ F
(∧L2)

Γ, An ⇒ Cn+m Γ, Bn ⇒ Cn+m

Γ, A ∨ Bn ⇒ Cn+m
(∨L)

Γ, An+1 ⇒ F

Γ,©An ⇒ F
(©L)

(A is atomic)
Γ,⊥n ⇒ An+m

(⊥L)

Γ ⇒ F F, ∆ ⇒ G

Γ,∆ ⇒ G
(Cut)

Γ, An ⇒ Bn

Γ ⇒ A ⊃ Bn
(⊃R)

Γ ⇒ An Γ ⇒ Bn

Γ ⇒ A ∧ Bn
(∧R)

Γ ⇒ An

Γ ⇒ A ∨ Bn
(∨R1)

Γ ⇒ Bn

Γ ⇒ A ∨ Bn
(∨R2)

Γ ⇒ An+1

Γ ⇒ ©An
(©R)

Figure 3: Inference Rules of LJ©.

Lemma 3. 1. If Γ ` F is provable, then Γ, ∆ ` F is also provable.
2. If Γ ` F and F, ∆ ` G are provable, then Γ, ∆ ` G is also provable.

Then, both directions are proved by easy induction, so we omit the details.

3.2. Cut Elimination Procedure
Next we show that cut is admissible in the cut-free fragment of LJ©.

Theorem 4. If Γ ⇒ F and F, ∆ ⇒ G are provable without cut, then Γ, ∆ ⇒ G
is also provable without cut.

We sketch the proof below. Consider the cut

D1 =
...

Γ ⇒ F
R1

D2 =
...

F, ∆ ⇒ G
R2

Γ, ∆ ⇒ G
Cut

We split this into five cases:

1. R1 is neither ∨L nor ⊥L, or R2 = Init;
2. F is not principal in D2;
3. R1 = ⊥L and F is principal in D2;
4. R1 = ∨L, R2 is either ∨L or ⊥L, and F is principal in D2;
5. R1 = ∨L, F is principal in D2, and F is neither atomic nor disjunction.

The standard cut-elimination procedure works in case 1, but in the other
cases, it is not as obvious. The problem stems from the side condition on the
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time on the principal formula and that on the succedent in ∨L. Consider the
most general form of cut with R1 = ∨L:

Γ, An ⇒ Cm Γ, Bn ⇒ Cm

Γ, A ∨ Bn ⇒ Cm ∨L
Cm, ∆ ⇒ Dl

Γ, A ∨ Bn, ∆ ⇒ Dl Cut

Applying the standard procedure to this derivation, we would obtain a new
derivation

Γ, An ⇒ Cm Cm, ∆ ⇒ Dl

Γ, An, ∆ ⇒ Dl Cut
Γ, Bn ⇒ Cm Cm, ∆ ⇒ Dl

Γ, Bn, ∆ ⇒ Dl Cut

Γ, A ∨ Bn, ∆ ⇒ Dl ∨L

which, however, is not always valid, because it is not necessarily the case that
l ≥ n. So, we split this case into the three subcases 2–5 listed above.

In case 2 it is easy to reduce the cut into a simpler one: as the cut formula
is not principal in D2, it occurs in all premises of R2, so we just lift the cut into
D2. For example, if R2 = ©L we proceed

Γ ⇒ F

F, ∆′, An+1 ⇒ G

F, ∆′,©An ⇒ G
©L

Γ, ∆′,©An ⇒ G
Cut

=⇒
Γ ⇒ F F, ∆′, An+1 ⇒ G

Γ, ∆′, An+1 ⇒ G
Cut

Γ, ∆′,©An ⇒ G
©L

Next, consider the case 3. If R2 = ⊥L, the cut has the from

Γ,⊥n ⇒ ⊥m ⊥m, ∆ ⇒ Al

Γ,⊥n,∆ ⇒ Al Cut

where n ≤ m ≤ l. In this case the conclusion can be derived directly by using
⊥L because the side condition n ≤ l is met. If R2 6= ⊥L, then there exists a
subformula B of A such that the cut has the form

Γ,⊥n ⇒ Am

· · · Bl, ∆ ⇒ G

Am, ∆ ⇒ G

Γ,⊥n, ∆ ⇒ G
Cut

where n ≤ m, and l = m + 1 if R2 = ©L and l = m otherwise. In any case we
have n ≤ l, so we can cut Bl instead of Am as follows:

Γ,⊥n ⇒ Bl Bl, ∆ ⇒ G

Γ,⊥n, ∆ ⇒ G
Cut

In case 4, we can use the standard procedure above because the condition
n ≤ l is always met. Indeed, if both R1 and R2 are ∨L, D1 and D2 have the
form

D1 =
Γ, An ⇒ C1 ∨ C2

m Γ, Bn ⇒ C1 ∨ C2
m

Γ, A ∨ Bn ⇒ C1 ∨ C2
m ∨L

D2 =
Cm

1 , ∆ ⇒ Dl Cm
2 ,∆ ⇒ Dl

C1 ∨ C2
m,∆ ⇒ Dl ∨L
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and we have n ≤ m and m ≤ l from the side condition of ∨L. When R2 = ⊥L,
we can check n ≤ l in the same way.

The last case is the case 5, in which F is neither atomic nor disjunction. In
this case, first rewrite a given derivation D1 into another derivation D′

1 of the
same sequent such that the new derivation ends with the application of a right
rule. Then, the given cut becomes a principal cut, which is easily reduced into
a simpler cut. To do this, all we need is the following lemma:

Lemma 5. If a sequent S ≡ Γ ⇒ F has a cut-free derivation D and F is
neither atomic formula nor disjunction, then there exists a cut-free derivation
D′ of S such that the last rule used in D′ is a right rule.

Proof. It is sufficient to show that any use of a left rule immediately following
a right rule other than the ∨-right rules can be replaced by applications of the
right rule following the left rule. Intuitively this means that by a conversion like

T1 . . . Tk

S′ Right

S
Left

=⇒
T1

S′
1

Left
. . .

Tk

S′
k

Left

S
Right

we always obtain a valid derivation from a valid derivation. This is because,
from the assumption that F is neither atomic nor disjunction, a right rule which
derives Γ ⇒ F is uniquely determined (this fact is used when lifting ∨L rule).

The actual proof is done by straightforward case analysis. For example, if
the left rule is ⊃L and the right rule is ⊃R, then

Γ ⇒ An

Γ, Bn, Cm ⇒ Dm

Γ, Bn ⇒ C ⊃ Dm ⊃R

Γ, A ⊃ Bn ⇒ C ⊃ Dm ⊃L
=⇒

Γ ⇒ An Γ, Bn, Cm ⇒ Dm

Γ, A ⊃ Bn, Cm ⇒ Dm ⊃L

Γ, A ⊃ Bn ⇒ C ⊃ Dm ⊃R

and for ∨L and ©R we have

Γ, An ⇒ Cm+1

Γ, An ⇒ ©Cm ©R
Γ, Bn ⇒ Cm+1

Γ, Bn ⇒ ©Cm ©R
(m ≥ n)

Γ, A ∨ Bn ⇒ ©Cm ∨L

=⇒
Γ, An ⇒ Cm+1 Γ, Bn ⇒ Cm+1 (m + 1 ≥ n)

Γ, A ∨ Bn ⇒ Cm+1 ∨L

Γ, A ∨ Bn ⇒ ©Cm ©R

Other cases are similar.

From the argument above, we obtain the cut-elimination theorem for LJ©.

Theorem 6. If a sequent is provable in LJ©, then it has a cut-free proof.

The following is an easy consequence of cut-elimination theorem and equiv-
alence of LJ© and NJ©.

Theorem 7. In neither LJ© nor NJ© the distributivity law ©(A∨B) ⊃ ©A∨
©B is provable, as well as ©⊥ ⊃ ⊥.

This result shows that our systems indeed have an intended property of rejecting
these laws.
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4. Hilbert-Style Axiomatization

Next we briefly describe how the logic defined above is characterized in the
Hilbert-style. Interestingly, there exists a quite simple axiomatization.

Proposition 8. Consider the proof system given by the following sets of axioms
and rules.

Axioms • any intuitionistic tautology instance

• ©(A ⊃ B) ⊃ ©A ⊃ ©B

• (©A ⊃ ©B) ⊃ ©(A ⊃ B)

Rules • if A ⊃ B and A then B

• if A then ©A

Then, this system is equivalent to NJ© in the same sense as the Proposition 1.

Therefore we can say that our logic, formalized as NJ© in Section 2, is
obtained by adding axiom (©A ⊃ ©B) ⊃ ©(A ⊃ B), which we call CK as it
is the “converse” of the axiom K, to the minimal normal intuitionistic modal
logic (with only ¤ modality).

The axiomatization above (in particular, the axiom CK) is due to Yuse
and Igarashi [8]. They extended Davies’ natural deduction system and λ©

with ¤ operator, which is similar to “always” operator in classical LTL, and
conjectured that their Hilbert-style system and natural deduction system are
equivalent. The axiomatization above is its ¤-free fragment.

Below we are going to sketch the proof. First, we show that the axioms and
rules are sound with respect to NJ©. The axiom CK is the only non-standard
clause, so we only check this axiom. Provability of CK is easily seen from the
following derivation:

©A ⊃ ©B0, A1 ` ©A ⊃ ©B0

©A ⊃ ©B0, A1 ` A1

©A ⊃ ©B0, A1 ` ©A0
©I

©A ⊃ ©B0, A1 ` ©B0 ⊃E

©A ⊃ ©B0, A1 ` B1
©E

©A ⊃ ©B0 ` A ⊃ B1 ⊃I

©A ⊃ ©B0 ` ©(A ⊃ B)0
©I

· ` (©A ⊃ ©B) ⊃ ©(A ⊃ B)0
⊃I

For the converse, we only mention the admissibility of ⊃I, which is the most
essential part (actually ∨E is also nontrivial, but can be checked in a similar
way). Putting Γ aside, this rule says that “if An ` Bn, then · ` An ⊃ Bn.” To
prove this rule is admissible, it is sufficient to show that “if ©nA ⊃ ©nB, then
©n(A ⊃ B),” and this is an immediate consequence of the axiom CK.
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5. Kripke Semantics

In this section, we consider Kripke semantics for the logic defined above, and
establish soundness and completeness for that semantics.

First, let us briefly review existing approaches upon which our study is based.
Classically, semantics of modal logic is typically given by using relational struc-
tures (Kripke frames). In the intuitionistic setting, its analogues are commonly
used in the literature ([2, 9, 10, 11, 12, 13], for example). Following one of
the existing approaches, we consider so-called birelational Kripke frames. They
consist of a set of possible worlds together with two accessibility relations R and
≤. These two relations are taken from classical modal logic and intuitionistic
logic, respectively, and therefore ≤ is assumed to be a partial order.

Before the technical details, we sketch the rest of this section. First we
mention that classical LTL can be described in terms of Kripke frames whose
accessibility relation is a function. From this fact it seems natural to con-
sider a semantics based on birelational semantics whose modal accessibility is
a function. Unfortunately, however, exploiting this condition turns out that
the resulting semantics admits the distributivity law, which we need to avoid.
After seeing that, we examine an already known class of birelational frames,
IM-frames [12]. We can give a class of IM-frames which corresponds to our logic
by identifying the corresponding frame condition. This approach works well in
the sense that it establishes a semantics for which soundness and completeness
hold, but it is not satisfactory for us since linearity of time has been lost. More-
over, it seems difficult to tell intuitive meanings of the frame condition. For this
reason, we consider deriving another version from this semantics, by decom-
posing modal accessibility relation of IM-frames (actually, this decomposition
process appears implicitly in the proof of completeness). This gives another
class of birelational frames whose modal accessibility is a partial function with
some properties. As a result we obtain an equivalent, but more comprehensi-
ble representation of IM-frame semantics for our logic. Finally we make some
comments on the intuitive meaning of frame conditions.

5.1. Functional Kripke Frames
In this subsection, we are going to examine a class of birelational Kripke

frames which comes from the semantics of classical LTL in a fairly straightfor-
ward manner. Although this semantics seems natural, and works well for the
implicational fragment, it turns out that it admits distributivity law which we
reject.

Consider Kripke frames whose accessibility relation R on possible worlds is
a function. We say such a frame is functional. The term “functional frame”
is, to our knowledge, first used by Segerberg [14] (to be precise, he used the
terminology “totally functional frames” to mean functional frames in our termi-
nology), but not in context of semantics of LTL. This condition implies that, in
a functional Kripke frame, the next state of a given state is uniquely determined,
hence justifying “linear time.” Although the semantics of classical LTL is often
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given by using execution paths of transition systems, it is easy to translate it
into Kripke-style semantics using functional frames.

Now, let us consider functional frames augmented by intuitionistic accessi-
bility relation ≤.

Definition 9. An intuitionistic functional frame is a triple 〈W,≤, R〉 of a nonempty
set W , a partial order ≤ on W and a function R from W to W such that
(≤ ;R) = (R ;≤) holds. Here (· ; ·) stands for the composition of binary relations
defined by x (R ; S) y ⇐⇒ ∃z.(x R z S y), regarding a function as a special
case of binary relations.

Hereafter, we simply say functional frame when no confusion arises.
Using functional frames we can define a satisfaction relation on formulas.

Definition 10. Let 〈W,≤, R〉 be a functional frame and ° be a binary relation
between W and the set of propositional variables such that w ≤ w′ and w ° p
imply w′ ° p. Then we can extend ° to formulas by induction with

• w ° A ⊃ B ⇐⇒ if w ≤ w′ and w′ ° A then w′ ° B;

• w ° A ∨ B ⇐⇒ w ° A or w ° B;

• w ° A ∧ B ⇐⇒ w ° A and w ° B;

• w ° ⊥ never occurs;

• w ° ©A ⇐⇒ if w R w′ then w′ ° A.

We also write w ° An for w ° ©nA.

As is easily verified by induction on the construction of formulas, this semantics
satisfies the heredity condition.

Lemma 11. If w ≤ w′ and w ° A, then w′ ° A.

It is not very difficult to see that soundness and completeness hold for
∨,⊥-free fragment. Soundness is proved by straightforward induction on the
derivation. Completeness is proved by the canonical model technique, which is
sketched below.

For a set T of formulas, we write ©−1T for the set {A |©A ∈ T } and ©T
for {©A |A ∈ T }. Take the set of all theories (of ∨,⊥-free fragment) as W ,
let ≤ be a set-inclusion, and R the function which sends each theory T to the
theory ©−1T . Then we can show that this defines a functional frame, and if
we define ° to be the satisfaction relation such that T ° p ⇐⇒ p ∈ T , it holds
that T ° A ⇐⇒ A ∈ T for each formula A, as usual. Finally, if Γ ` An is not
provable, take the set

{
A

∣∣ Γ ` A0
}

as T . Then T ° Γ holds but T ° An does
not.

The proof strategy above is almost standard, but notice that we took the set
of all theories as W , instead of taking only prime theories. When we consider
disjunction and falsehood, the same method will not work. In fact, functional
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frames are not appropriate in the presence of these connectives, because they
validate the laws ©(A ∨ B) ⊃ ©A ∨ ©B and ©⊥ ⊃ ⊥, which we reject. It
does not seem easy to adjust the definition of the satisfaction relation to exclude
them without relaxing the functionality condition.

In the next subsection, we put functionality aside and consider a large class
of frames, and try to find its subclass corresponding to the intended logic.

5.2. Semantics Based on IM-frames
As we have mentioned after Theorem 7, the logic defined by NJ© (or other

proof systems defined above) is an appropriate one from our motivation. So
the reason why completeness for the full system fails is that the choice of func-
tional frame was incorrect. Therefore the next question is what kind of frames
correspond to our logic.

The first answer we give is IM©-frames defined below.

Definition 12. 1. Let W be a nonempty set, ≤ a partial order on W , and
R a binary relation on W . We call the triple 〈W,≤, R〉 an IM-frame if it
satisfies (≤ ; R ; ≤) = R.

2. An IM©-frame is an IM-frame 〈W,≤, R〉 satisfying the condition: if w R v,
then there exists w′ such that w ≤ w′ and ∀u ∈ W.(w′ R u ⇐⇒ v ≤ u).

Note that, in the definition of IM©-frame above, R is not assumed to be a
function.

The satisfaction relation is defined in the same way as the functional frame
semantics, and heredity is also verified easily.

Theorem 13 (Soundness). Suppose that Γ ` An is provable in NJ©. Then
for any IM©-frame 〈W,≤, R〉, satisfaction relation °, and possible world w ∈ W
such that w ° Γ, it holds that w ° An.

Proof. Induction on the derivation.

Theorem 14 (Completeness). If w ° Γ implies w ° An for any IM©-frame
〈W,≤, R〉, satisfaction relation °, and possible world w ∈ W , then there exists
a derivation of Γ ` An.

To prove this, we use the canonical model construction. The canonical
Kripke frame is defined in the usual way:

Definition 15. 1. A set of formulas T is said to be a theory if it is deduc-
tively closed (if A is provable from T then A ∈ T ) and consistent (⊥ /∈ T ).

2. A theory T is said to be prime if A∨B ∈ T implies either A ∈ T or B ∈ T .
3. The canonical Kripke frame is the triple 〈W,≤, R〉 such that W is the set

of prime theories, ≤ the set-inclusion on W , and R the relation defined
by: T R T ′ ⇐⇒ ©−1T ⊆ T ′.

Then, as usual, it is easy to see that
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1. 〈W,≤, R〉 forms an IM-frame, and
2. Let ° be the canonical valuation defined by: T ° p ⇐⇒ p ∈ T for each

propositional variable p. Then, T ° A ⇐⇒ A ∈ T holds for each formula
A.

Therefore, we only need to check that the canonical frame is indeed an IM©-
frame. Below we check that it satisfies the condition of Definition 12 (2).

Lemma 16. Let S, T ∈ W . Then, ∀X ∈ W (T R X ⇐⇒ S ⊆ X) if and only
if ©−1T = S.

Proof. The right-to-left direction is obvious. To prove the other direction
by contraposition, assume ©−1T 6= S. Then we have either ©−1T 6⊆ S or
S 6⊆ ©−1T . In the first case, T R X ⇐⇒ S ⊆ X does not hold when X = S.
In the second case, there exists some formula A such that A ∈ S and A /∈ ©−1T .
Then, in the usual way we can prove that there exists a prime theory V such
that ©−1T ⊆ V and A /∈ V (therefore T R V but S 6⊆ V ).

Lemma 17. For S, T ∈ W such that S R T , there exists a theory U (not
necessarily prime) satisfying ©−1U = S and T ⊆ U .

Proof. Let U be the set of all formulas provable from T and ©S. First, we
check that U is a theory. It is clear that U is deductively closed. To check U is
consistent, suppose ⊥ ∈ U . Then we have ©⊥ ∈ U , hence ⊥ ∈ ©−1U = S, a
contradiction.

We are going to prove that ©−1U = S and T ⊆ U hold for this U . Clearly,
T ⊆ U holds by definition. It is also easy to see that S ⊆ ©−1U : if A ∈ S,
then ©A ∈ ©S ⊆ U , and from this A ∈ ©−1U follows. For the converse, let A
be a formula in ©−1U . Then we have ©A ∈ U . Since U is the smallest theory
containing T and ©S, there exist formulas A1, . . . , An ∈ S (n ≥ 0) such that
©A1 ⊃ . . . ⊃ ©An ⊃ ©A ∈ T . Then, from axiom CK, we also have ©(A1 ⊃
. . . ⊃ An ⊃ A) ∈ T . This implies that A1 ⊃ . . . ⊃ An ⊃ A ∈ ©−1T ⊆ S holds.
As Ai ∈ S from the assumption, we conclude that A ∈ S, as required.

Lemma 18. Let S, T ∈ W such that S R T . Then, any maximal element of

X =
{
U

∣∣ U is a theory such that ©−1U = S and T ⊆ U
}

.

is prime.

Proof. Let U ∈ X be a maximal element and suppose A1, A2 /∈ U . More-
over, let U0, U1, U2 be the smallest theory extending U with A1 ∨ A2, A1, A2,
respectively. It is sufficient to prove that U0 6= U .

For i = 1, 2 the theory ©−1Ui is a proper extension of ©−1U = S, so
there exists a formula Bi ∈ ©−1Ui \ S. For such B1 and B2, it holds that
©(B1 ∨ B2) ∈ U1 ∩ U2 = U0 and B1 ∨ B2 /∈ S = ©−1U (because S is prime).
Therefore we obtain ©(B1∨B2) ∈ U0 \U , and this implies U0 6= U , as required.
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Putting these lemmas together, we can see that the canonical frame defined
above is indeed an IM©-frame, from which the completeness follows.

The notion of IM-frames is first considered by Wolter and Zakharyaschev [12]
(actually, in their terminology, IM-frames in this paper are called Kripke IM-
frames) as a semantics for intuitionistic modal logic with ¤ as the only primitive
modality. It is easy to see that most of the other variants of birelational Kripke
frames can be reduced to IM-frames without changing satisfaction relation, as
long as we consider only ¤ as a primitive modality. For example, functional
frame semantics considered in subsection 5.1 can be translated into IM©-frame
as follows:

Proposition 19. For an arbitrary functional frame F = 〈W,≤, R〉, consider
the binary relation R′= (R ; ≤). Then the frame F ′ = 〈W,≤, R′〉 is an IM©-
frame, and for each satisfaction relation ° on W its extensions on F and F ′

coincide.

5.3. Partially Functional Kripke Frames
We have established the soundness and completeness theorem, and therefore

IM©-frames defined above capture our logic. However, while the logic is consid-
ered a version of LTL, the condition appearing in the definition of IM©-frames
do not seem to justify linearity of time. Additionally, the intuitive meaning of
the condition is not clear.

In this subsection we try to modify the semantics defined above so that the
resulting semantics represents linear-time nature more directly. We consider
another class of birelational Kripke frames, in which each state has at most one
next state (although it may have no next state).

Definition 20. For an IM-frame 〈W,≤, R〉, we define another relation Rs by

x Rs y ⇐⇒ ∀z.(x R z ⇐⇒ y ≤ z).

Then, the condition appearing in the definition of IM©-frames (Definition 12
(2)) is rephrased by the equality R = (≤ ; Rs). It is easy to check that the
following properties also hold:

Lemma 21. If 〈W,≤, R〉 is an IM©-frame, then

1. Rs is a partial function;
2. Rs preserves ≤, that is, if x Rs y, x′ Rs y′, and x ≤ x′, then y ≤ y′;
3. (Rs)−1 is a simulation relation over 〈W,≤〉. In other words, the inclusion

(Rs; ≤) ⊆ (≤ ; Rs) holds.

This observation motivates the following definition.

Definition 22. Consider a triple 〈W,≤, S〉 of a nonempty set W , a partial
order ≤ on W and a partial function S on W . We say such a triple is an
intuitionistic partially functional frame (IPF-frame, for short) if S preserves ≤.
An IPF-frame is said to be an IPF©-frame if S−1 is a simulation relation over
〈W,≤〉.
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From Lemma 21, for each IM©-frame 〈W,≤, R〉 we can construct an IPF©-
frame 〈W,≤, Rs〉 associated to it. We denote this construction by s. Conversely,
each IPF©-frame gives rise to an IM©-frame 〈W,≤, (≤ ; S)〉. It is easy to check
that this is indeed an IM©-frame. We denote the construction of this direction
by r. We also use the notation Sr for (≤ ; S).

Moreover, we can show that r is a left-inverse of s. That is, when we con-
struct an IPF©-frame from an arbitrary IM©-frame, and transforming it back
to an IM©-frame, then the resulting frame is the same as the original one. This
is an easy consequence of the equality R = (≤ ; Rs) mentioned above.

The semantics based on IPF©-frames can be defined in the same way as be-
fore, except that we need to modify ©-clause as follows (otherwise, the heredity
condition fails):

w ° ©A ⇐⇒ ∀w′, v.(w ≤ w′ S v =⇒ v ° A).

Because w ≤ w′ S v in the right-hand side is equivalent to w Sr v, we have

w ° ©A ⇐⇒ ∀v.(w Sr v =⇒ v ° A),

which is the same as the interpretation in IM-frame obtained by translation r.
Similarly, interpretation in an IM-frame is, since R = (≤ ; Rs),

w ° ©A ⇐⇒ ∀v.(w R v =⇒ v ° A)
⇐⇒ ∀w′, v.(w ≤ w′ Rs v =⇒ v ° A),

so this is the same as the semantics on the IPF-frame obtained by s.
In this way we can see that two semantics based on IM©-frames and IPF©-

frames are equivalent. Therefore IPF©-frames are another characterization of
our logic.

5.4. Informal Interpretation of the Frame Conditions
Above we have proved that our logic is captured by either IM©-frames or

IPF©-frames, but we did not discuss what their frame conditions mean. In this
subsection we discuss the intuitive meaning of IPF©-frames.

The condition of IPF©-frames says that S−1 should be a simulation. Ac-
cording to the standard interpretation of Kripke semantics for intuitionistic
logic, each possible world represents a state of knowledge, and ≤ represents an
extension of knowledge. Following this interpretation, we can say that the con-
dition that S−1 is a simulation relation says that any extension of knowledge at
the next state can be simulated by some extension of knowledge at the current
state. Actually this is achieved in such a way that the extension by gaining a
knowledge A at the next state is simulated by the gaining ©A at the current
state (in fact, we implicitly used this intuitive understanding in the proof of
completeness). Therefore, the simulation condition implies that we can indeed
identify An and ©nA.

In NJ© formalization, the identification between An and ©nA is justified
by rules ©I and ©E. From a type-theoretic viewpoint, this corresponds to
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the fact that λ© can manipulate open code fragment, because if there is a side
condition like other systems, quoted code fragments with free variables would
not be well-typed.

In this way, we can see that (although informally) there is a connection
between the Kripke semantics we gave and the characteristic feature of the
typed λ-calculus λ©.

6. Concluding Remarks

6.1. Summary
In this paper we have investigated a constructive LTL. We first gave a

natural deduction style proof system, and a sequent calculus which enjoys a cut
elimination theorem. We also gave a Hilbert-style proof system. After that we
defined Kripke semantics, and proved soundness and completeness.

Although the temporal logic we considered is linear-time, a naive frame
condition of functionality turned out to be insufficient. We considered two
classes of Kripke frames, and gave the connection between two versions of our
semantics. We have also discussed relationship between frame conditions and
syntactic counterpart of the logic.

For a cut elimination procedure, we basically followed the standard method.
However, to make it work correctly, we may need extra transformations.

6.2. Two Kinds of Interpretation of Modality
Here we would like to discuss why the straightforward formalizations result

in logics which do not meet our requirement. We rejected the distributivity law,
and it is the natural consequence of a particular type-theoretic interpretation
of © operator. However, we had to make some efforts to formalize such an
LTL; we had to consider some extra side conditions in proof rules (like ∨E),
and relatively complicated frame conditions in Kripke semantics.

We consider the origin of this difficulty is the difference between traditional
way of interpreting modality and type-theoretic interpretation. Kripke seman-
tics, which is a foundation of ordinary modal logics, is based on the idea that
all possible worlds are equally observable. However, type theory (at least some
of them, including λ©) do not seem to treat all worlds equally.

When we consider Kripke semantics, we implicitly assume that we are ob-
serving the whole system (Kripke frame), and accordingly we can inspect any
state freely when judging whether a given formula is true or not. So we can
say that the usual Kripke semantics assumes a viewpoint from outside of the
system.

Type-theoretic point of view does not seem to assume such an ideal observer.
Instead, it can be understood well if we consider observers inside the system.
That is, an observer is assigned to each state, and a formula is considered true
at some state only if the observer in the specified state is able to see that the
formula is indeed true.

16



These two approaches result in different modal logics, and this explains why
Kripke semantics tends to admit distributivity law (unless some special care
is made), while it is plausible to reject the law in view of modal type systems.
From the outside-view, the observer can freely go back and forth between states,
and inspect future states to decide whether such and such property holds at the
current state. If we take this point of view we can justify the distributivity law
(in a constructive way):

If we know that A∨B holds at the next state, then move to the
next state and see which of A and B is actually the case. If A is
the case we have ©A, and similarly for B. In either case we have
©A ∨©B.

From the inside-view, however, each observer is assigned to a fixed state, and
they cannot move to other states. As a result, the justification above do not
correct. In such a setting it is possible to know that “either A or B holds at the
next state” without knowing neither “A at the next state” nor “B at the next
state.”

As a result, to establish a Kripke semantics for type-theoretically motivated
modal logic, it is necessary to emulate internal observers’ states of knowledge
in terms of possible worlds and accessibility relations. We consider this is the
primary reason of the difficulty we have encountered in this paper.

6.3. Algebraic Semantics
In this paper we did not mention algebraic semantics and (topological and

discrete) duality between frames and algebras [15]. Related to these topics,
Wolter and Zakharyaschev [12] gave a general result on an intuitionistic analogue
of topological duality. Also, a kind of discrete duality for constructive S4 and
propositional lax logic are given by Alechina et al. [13].

It is not difficult to give a similar result for our constructive LTL. Consider
a Heyting algebra equipped with a unary operation © preserving ⊃, and call
such an algebra a ©-algebra. It is easy to see that the class of ©-algebras gives
a semantics of our constructive LTL together with soundness and completeness.
In a way similar to the classical case, we can establish discrete duality between
IM©-frames and ©-algebras.

6.4. Related Work
The natural deduction system introduced in Section 2 is similar to those

for intuitionistic modal logics by Martini and Masini [16] and by Simpson [10]
(aside from a few notational differences), which also use formulas with annota-
tions indicating where the formulas hold. However, there are some differences
between their systems and ours. First, while our ©I rule does not have any side
condition, ¤-introduction rules by Martini and Masini requires that all time
annotations in the antecedent must be smaller than n + 1 (the time annotation
of the succedent of the premise). There is also a similar condition in Simpson’s
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one. Our ©I is actually more similar to ♦-introduction rule of Simpson’s sys-
tem. Second, ∨E and ⊥E in our system are also different from theirs; these rules
require time annotations of the succedents to be the same as the main formula,
but it is not the case for the two. The absence of such a restriction allows us to
prove distributivity of ♦ over disjunction in their systems.

Related to the issue discussed in Subsection 6.2, ♦ operator without dis-
tributivity or ♦⊥ ⊃ ⊥ has been discussed in the literature [9, 11, 17, 13].
In particular, Kripke semantics for propositional lax logic by Fairtlough and
Mendler [11] and constructive S4 by Alechina et al. [13] had to consider fallible
worlds, possible worlds at which any proposition becomes true.

Also, Murphy et al. [18] consider a typed λ-calculus for distributed computa-
tion, which corresponds to intuitionistic S5 modal logic. Their system is based
on natural deduction formalization by Simpson [10]. Although the system they
formalized is an implicational fragment, they discuss how to add other connec-
tives, and point out that ⊥ and ∨ need special consideration. In particular,
when ∨ is added, it is not obvious how to define operational semantics for case
splitting. This is because, as they mention, the elimination rule for ∨ and ⊥ in
Simpson’s system reasons non-locally, that is, main premise and conclusion may
have different annotations. There is a similarity between this difficulty and the
issue we have discussed in Subsection 6.2.

Since work by Davies and Pfenning [19] and Davies [3] on Curry-Howard
correspondence for modal and temporal logic, many type systems for multi-
stage languages based on their work have been proposed [20, 21, 22, 23, 24,
25, 8, 26, 27]. Those languages typically include not only quasiquotation as in
λ© but also Lisp-like eval and lifting of values to code (also called cross-stage
persistence [23]). As a result, their type systems could be seen as quite different
modal logics: for example, the distributivity law would be validated if eval,
which would have type ©A ⊃ A, and lifting, which would have type A ⊃ ©A,
are supported in one language. The combination of these language features is
motivated by a practical reason, rather than a correspondence with logics; it
would also be interesting to investigate how these systems (more precisely, the
corresponding logics) are characterized in terms of temporal or modal logics.
The second author makes such investigations [8, 27], which tries to capture
quasiquotation and eval by modalities like next and always in temporal logic.
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