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Abstract

In this paper we study a version of constructive linear-time temporal logic (LTL) with the “next” temporal
operator. The logic is originally due to Davies, who has shown that the proof system of the logic corre-
sponds to a type system for binding-time analysis via the Curry-Howard isomorphism. However, he did
not investigate the logic itself in detail; he has proved only that the logic augmented with negation and
classical reasoning is equivalent to (the “next” fragment of) the standard formulation of classical linear-time
temporal logic. We give natural deduction and Kripke semantics for constructive LTL with conjunction and
disjunction, and prove soundness and completeness. Distributivity of the “next” operator over disjunction
“©(A ∨ B) ⊃ ©A ∨ ©B” is rejected from a computational viewpoint. We also give a formalization by
sequent calculus and its cut-elimination procedure.
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1 Introduction

Temporal logic is a family of (modal) logics in which the truth of propositions

may depend on time, and is useful to describe various properties of state transition

systems. Linear-time temporal logic (LTL, for short), which is used to reason about

properties of a fixed execution path of a system, is temporal logic in which each

time has a unique time that follows it.

Davies [3] pointed out that a proof system of LTL can be related to a type system

of (multi-level) binding-time analysis, which is used in offline partial evaluation [8]

to determine which part of a program can be computed at specialization-time and

which is residualized. He defined a natural deduction system for a constructive LTL

with only the “next” operator © and implication, derived via the Curry-Howard

isomorphism a typed λ-calculus λ©, which was formally shown to be equivalent

to a type system of multi-level binding-time analysis by Glück and Jørgensen [6].

According to this correspondence, a formula ©A, which means that A holds at the

next time, is interpreted as a type of (residual) code of type A; introduction and
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elimination rules of © are as Lisp-like quasiquotation and unquote, respectively.

As a result, λ© terms can be considered as program-generating programs, such as

parser generators or generating extensions, which manipulate code fragments by

the quasiquotation mechanism. For example, a parser generator would have a type

like parser spec → ©(string → syntax tree). Unfortunately, Davies did not

investigate his system in detail, from a logical point of view: he proved only that

his system augmented with negation and classical reasoning is equivalent to the

classical LTL, even though the logic can be considered a constructive version of

LTL.

In this paper we study logical aspects of constructive propositional LTL based

on Davies’ formalization. Davies’ original system is an implicational fragment, but

we also consider conjunction and disjunction. 3 Our contributions are (1) to give a

Kripke semantics and a complete proof system for constructive LTL and (2) to give

another formalization by sequent calculus in which cut elimination holds.

Intuitionistic versions of LTL have been already considered in the literature [9,4].

However, the LTL presented in this paper is motivated by the type-theoretic inter-

pretation of ©A as a type of quoted code, which distinguishes our approach from

others. In fact, our version of LTL is not equivalent to the intuitionistic LTLs

previously considered in that the “distributivity law” ©(A ∨ B) ⊃ ©A ∨ ©B is

not admitted in our logic, while (to our knowledge) it is admitted in the other

formalizations. The reason we disallow this law will be discussed later.

The organization of the rest of this paper is as follows. In Section 2, we discuss

an implicational fragment: we first review the natural deduction by Davies, give

a Kripke semantics, obtained by a natural extension of that of the classical LTL,

and finally prove soundness and completeness of the proof system. We also discuss

that, unfortunately, a straightforward extension of the semantics to disjunction

is not suitable for our interpretation of disjunction. In Section 3 we extend the

logic with conjunction and disjunction. We give another Kripke semantics, which

does not admit the distributivity law mentioned above, and prove soundness and

completeness of the proof system. In Section 4 we define a sequent calculus LJ©,

which is equivalent to the natural deduction, with its cut elimination procedure.

Finally, we give concluding remarks in Section 5.

2 Implicational Fragment

In this section, we first recall the natural deduction system by Davies and some of

its properties, define a Kripke semantics for it, and prove completeness of Davies’

system.

2.1 Results by Davies

The temporal logic Davies considered contains only © (“next” operator) and ⊃

(intuitionistic implication), so the language we consider in this section is constructed

from propositional variables using ⊃ and ©.

3 Precisely speaking, Davies extended λ© with pairing and natural numbers, but did not consider conjunc-
tion or disjunction in his logic.
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Γ, An ⊢ An
(Axiom)

Γ ⊢ A ⊃ Bn Γ ⊢ An

Γ ⊢ Bn
(⊃E)

Γ ⊢ ©An

Γ ⊢ An+1
(©E)

Γ, An ⊢ Bn

Γ ⊢ A ⊃ Bn
(⊃I)

Γ ⊢ An+1

Γ ⊢ ©An
(©I)

Fig. 1. Derivation Rules of Davies’ System.

A judgment in his system takes the form

An1

1 , . . . , Ank

k ⊢ Bm

where Ai, B are formulas and ni,m are natural numbers; it is read “B holds at

time m under the assumption that Ai holds at time ni (for i = 1, . . . , k)”. In

what follows, we use A,B,C,D for formulas, k, l,m, n for natural numbers, F,G

for annotated formulas (i.e. formulas with time annotation), and Γ,∆ for sets of

annotated formulas. We consider the left-hand side of a judgment a set.

Inference rules of Davies’ system are listed in Fig. 1. The rules ⊃I, ⊃E, and

Axiom are standard. The other two, the introduction and elimination rules for ©

operator, state that A holds at time n + 1 if and only if ©A holds at time n. This

is quite natural since ©A means that “A holds at the next time.”

To show that © operator in this system is indeed the “next” operator in linear-

time temporal logic, Davies compared his system with L©, a well-known Hilbert-

style proof system of the fragment of classical linear-time temporal logic consisting

of only implication, negation and next operators. The axiomatization is given by

Stirling, who also proved that L© is sound and complete for the standard seman-

tics [12]. The axioms and rules of L© are as follows:

Axioms • any classical tautology instance
• ©¬A ⊃ ¬© A
• ¬© A ⊃ ©¬A
• ©(A ⊃ B) ⊃ ©A ⊃ ©B

Rules • if A ⊃ B and A then B
• if A then ©A

Davies proved that his system extended by negation and classical reasoning is equiv-

alent to L© in the following sense [3]:

Proposition 2.1 A judgment An1

1 , . . . , Ank

k ⊢ Bm is provable in the extended sys-

tem if and only if ©n1A1 ⊃ . . . ⊃ ©nkAk ⊃ ©mB has a proof in L©. In particular,

· ⊢ A0 is provable if and only if A is a theorem of L©.

2.2 Kripke Semantics via Functional Frames

Before discussing the semantics of the implicational fragment, we briefly explain

how the usual classical semantics is given in terms of Kripke semantics. Kripke

frames we consider are functional, in the sense that the accessibility relation R on
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possible worlds is a map. 4 This condition guarantees that, in a functional frame,

the next state of a given state is uniquely determined, hence justifying “linear time”.

To give a semantics of constructive LTL, we follow the previous researches on

Kripke-style models of intuitionistic modal logics [1,14,2] and augment functional

frames by another accessibility relation ≤. This additional accessibility represents

the “constructive” counterpart, as in the standard semantics of intuitionistic logic.

Definition 2.2 An intuitionistic functional frame is a triple 〈W,≤, R〉 of a nonempty

set W , a preorder ≤ on W and a map R from W to W such that ≤ ◦ R = R ◦ ≤

holds. Here ◦ stands for a composition of binary relations defined by x R ◦ S y ⇐⇒

∃z.(x R z S y).

This notion is an extension of classical functional frames: if ≤ is the diagonal

relation (that is, x ≤ y if and only if x = y) in this definition, the frame 〈W,≤, R〉

can be identified with a classical functional frame 〈W,R〉. Hereafter, we simply say

functional frame when no confusion arises.

Using functional frames we can define a satisfaction relation on formulas.

Definition 2.3 Let 〈W,≤, R〉 be a functional frame and |= be a binary relation

between W and the set of propositional variables such that w ≤ w′ and w |= p imply

w′ |= p. We extend |= to formulas by induction with

• w |= A ⊃ B ⇐⇒ if w ≤ w′ and w′ |= A then w′ |= B, and

• w |= ©A ⇐⇒ if w R w′ then w′ |= A.

We also write w |= An for w |= ©nA.

This definition is one of the standard semantics of intuitionistic modal logics pre-

viously considered [14]. As is easily verified by induction on the construction of

formulas, this semantics satisfies the monotonicity condition.

Lemma 2.4 If w ≤ w′ and w |= A, then w′ |= A.

It is not very difficult to see that the Davies’ system is sound and complete for

this semantics. Soundness is proved by straightforward induction on the derivation.

Completeness is proved by constructing a functional frame in which validity and

provability coincide. We sketch the proof below.

For a set T of formulas, we write ©−1T for the set {A |©A ∈ T } and ©T for

{©A |A ∈ T }. Take the set of all theories as W , let ≤ be a set-inclusion, and R

the map which sends each theory T to the theory ©−1T . First we show that this

defines a functional frame.

Lemma 2.5 The canonical frame 〈W,≤, R〉 above is indeed functional.

Proof. Among conditions of being a functional frame, the only nontrivial one is

R ◦≤ ⊆ ≤◦R. To show this, take theories T and S with ©−1T ⊆ S (i.e. T (R ◦ ≤)

S), and let U be the smallest theory containing T and ©S. We are going to show

that U satisfies T ≤ U R S, i.e. T ⊆ U and ©−1U = S.

Clearly, T ⊆ U holds by definition. It is also easy to see that S ⊆ ©−1U : if

4 The term “functional” is, to our knowledge, first used by Segerberg [11], but not in context of semantics
of LTL.
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A ∈ S, then ©A ∈ ©S ⊆ U , and from this A ∈ ©−1U follows. For the converse,

let A be a formula in ©−1U . Then we have ©A ∈ U . Since U is the smallest theory

containing T and ©S, there exist formulas A1, . . . , An ∈ S such that ©A1 ⊃ . . . ⊃

©An ⊃ ©A ∈ T . Because ©(A ⊃ B) follows from ©A ⊃ ©B, we also have

©(A1 ⊃ . . . ⊃ An ⊃ A) ∈ T . This implies that A1 ⊃ . . . ⊃ An ⊃ A ∈ ©−1T ⊆ S

holds. As Ai ∈ S from the assumption, we conclude that A ∈ S, as required. 2

Let |= be the satisfaction relation defined by: T |= p if and only if p ∈ T . Then

it holds that T |= A if and only if A ∈ T for each formula A, which is easily verified

by induction on A. Finally, if Γ ⊢ An is not provable, take the set
{

A
∣

∣ Γ ⊢ A0
}

as

T . Then T |= Γ holds but T |= An does not.

2.3 A Problem with Disjunction

The proof strategy above is almost standard, but notice that we took the set of all

theories as W . When we consider the full system (in particular, disjunction), the

same method will not work. In the presence of disjunction, the standard way to

prove completeness is to take the set of all prime. 5 Otherwise, we cannot prove the

equivalence of T |= A and A ∈ T in the last step of the proof above. However, if we

give W in this way, there is no natural way to define suitable R because the theory

©−1T is not necessarily prime even if T is prime.

In fact, functional frames are not appropriate in the presence of disjunction

because they would validate the distributivity law ©(A ∨ B) ⊃ ©A ∨ ©B under

the straightforward interpretation of disjunction:

w |= A ∨ B ⇐⇒ if w |= A or w |= B

According to our type-theoretic interpretation of ©, this formula should not be

valid. By the Curry-Howard correspondence, a proof of the distributive law would

be considered a function which takes a value of type ©(A∨B) and returns a value of

type ©A∨©B. While a value of the return type must be of type ©A or type ©B

with a tag indicating which of the two is actually the case, a value of the argument

type is quoted code, which will not be executed until the next time comes; it is

in general impossible to know which value (A or B) this code evaluates to now.

From this observation, we conclude that there is no method to turn a value of type

©(A ∨ B) into a value of type ©A ∨©B, and hence ©A ∨©B should be strictly

stronger than ©(A ∨ B).

It does not seem easy to adjust the definition of the satisfaction relation to

exclude the distributivity law. In fact, since necessity and possibility coincide when

R is a (total) map, it may appear natural to adopt the ideas from some of the

Kripke semantics for intuitionistic modal logics [13,1], which rejects distributivity

♦(A ∨ B) ⊃ ♦A ∨♦B of possibility over disjunction by:

w |= ♦A ⇐⇒ ∀v.(w ≤ v =⇒ ∃w′.(v R w′ ∧ w′ |= A)).

Unfortunately, this attempt fails. To falsify the distributivity we also need to have

≤ ◦ R 6⊆ R ◦ ≤, but then, the formula (©A ⊃ ©B) ⊃ ©(A ⊃ B) becomes not

5 A theory T is said to be prime if A ∨ B ∈ T implies A ∈ T or B ∈ T .
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Γ ⊢ A ∧ Bn

Γ ⊢ An
(∧E1)

Γ ⊢ A ∧ Bn

Γ ⊢ Bn
(∧E2)

Γ ⊢ A ∨ Bn Γ, An ⊢ Cn Γ, Bn ⊢ Cn

Γ ⊢ Cn

(∨E)

Γ ⊢ An Γ ⊢ Bn

Γ ⊢ A ∧ Bn
(∧I)

Γ ⊢ An

Γ ⊢ A ∨ Bn
(∨I1)

Γ ⊢ Bn

Γ ⊢ A ∨ Bn
(∨I2)

Fig. 2. Additional Rules for Full NJ©

valid. Indeed, consider a functional frame 〈W,≤, R〉 defined by W = {a, b, c, d}

and ≤ = {(a, b), (a, a), (b, b), (c, c), (d, d)} and R = {(a, c), (b, d), (c, c), (d, d)} and

the satisfaction relation such that A is true at c and false at d, and B is false at c.

Then, a |= ©A ⊃ ©B holds but a |= ©(A ⊃ B) does not.

From the observation above, it seems that functionality of R and soundness

implies the distributivity. In the next section we give a larger class of frames, by

relaxing the functionality condition.

3 Full System: Natural Deduction and Kripke Seman-

tics

In the previous section we have seen that the notion of functional frames is too naive

to represent the intuitive meaning of the © operator we consider. In this section

we propose a more suitable class of Kripke frames and a complete proof system.

3.1 Natural Deduction

First we define a natural deduction system NJ© extending Davies’ system, by

adding conjunction and disjunction. Derivation rules for these two connectives

are listed in Fig. 2. They are fairly straightforward, but only ∨E may be nontrivial.

In this rule, the formula being eliminated must have the same time as the succedent

of the conclusion. At first sight it may seem strange, but in fact this restriction

is essential for our system. Indeed, without this restriction we could prove the

distributivity law ©(A ∨ B) ⊃ ©A ∨ ©B, which should not be a tautology as

mentioned above, as follows:

©(A ∨ B)0, A1 ⊢ A1

©(A ∨ B)0, A1 ⊢ ©A0

©(A ∨ B)0, A1 ⊢ ©A ∨©B0

©(A ∨ B)0, B1 ⊢ B1

©(A ∨ B)0, B1 ⊢ ©B0

©(A ∨ B)0, A1 ⊢ ©A ∨©B0

©(A ∨ B)0 ⊢ ©(A ∨ B)0

©(A ∨ B)0 ⊢ A ∨ B1

©(A ∨ B)0 ⊢ ©A ∨©B0
∨E

In this proof, disjunction being eliminated has time 1 while the time of the succedent

is 0. In fact, the problem would occur only if we allowed the time of the succedent

C to be strictly less than that of the disjunction A ∨ B being eliminated. (A slight

variation of ∨E in which Cn is changed to Cm with the side condition m ≥ n is

provable by using ©I and ©E.)
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3.2 Kripke Semantics

As discussed above, the proof system NJ© does not seem to prove distributivity law,

so we think the logic defined by NJ© is more appropriate than that by functional

frames. Therefore the next question is what kind of frames correspond to our logic.

The answer we give is ©-frames, defined below.

Definition 3.1 A ©-frame is a triple 〈W,≤, R〉 of a nonempty set W , a preorder

≤ on W and a binary relation R on W such that

• ≤ ◦ R = R ◦ ≤ = R, and

• if w R v then there exists w′ such that w ≤ w′ and ∀u ∈ W.(w′ R u ⇐⇒ v ≤ u).

Note that, here, R is not assumed to be a map. This definition is essentially a

special case of Kripke IM-frames considered by Wolter and Zakharyaschev [14].

Satisfaction relations are defined in the same way as the functional frame se-

mantics in Section 2, but we need to add the following two clauses for disjunction

and conjunction.

• w |= A ∨ B ⇐⇒ w |= A or w |= B

• w |= A ∧ B ⇐⇒ w |= A and w |= B

This ©-frame semantics is a generalization of the functional one:

Proposition 3.2 For an arbitrary functional frame F = 〈W,≤, R〉, there exists a

binary relation R′ such that the frame F ′ = 〈W,≤, R′〉 is a ©-frame, and for each

satisfaction relation |= on W its extensions on F and F ′ coincide.

Proof. Let R′ = R ◦ ≤ (in other words, w R′ v if and only if u ≤ v, where u is the

image of R at w). Then ≤ ◦ R′ = R′ ◦ ≤ = R′ is easily verified from ≤ ◦ R = R ◦ ≤

and transitivity of ≤. The latter part is proved by induction on the formula. 2

Theorem 3.3 (Soundness) Suppose that Γ ⊢ An is provable in NJ©. Then for

any ©-frame 〈W,≤, R〉, satisfaction relation |=, and possible world w ∈ W such

that w |= Γ, it holds that w |= An.

Proof. Induction on the derivation. 2

Theorem 3.4 (Completeness) If w |= Γ implies w |= An for any ©-frame

〈W,≤, R〉, satisfaction relation |=, and possible world w ∈ W , then there exists

a derivation of Γ ⊢ An.

Proof. Basically we proceed in a way similar to the proof in Section 2, but we need

some modification. Here we we take the set of all prime theories as W , and define

accessibility relation R so that T R T ′ holds if and only if ©−1T ⊆ T ′.

The only nontrivial point in the proof is that 〈W,≤, R〉 defined above is indeed a

©-frame. The condition ≤◦R = R◦≤ = R is not difficult to prove, and we omit the

details. Below we prove that the other condition is satisfied. Let S and T be prime

theories such that T R S (i.e. ©−1T ⊆ S). Our goal is to prove that there exists

some prime theory U such that T ⊆ U and ∀V ∈ W.(©−1U ⊆ V ⇐⇒ S ⊆ V ).

Let X be the set of theories defined by:

X =
{

U
∣

∣U is a theory such that ©−1U = S and T ⊆ U
}

.
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(A is atomic)

Γ, An ⇒ An
(Init)

Γ ⇒ An Γ, Bn ⇒ F

Γ, A ⊃ Bn ⇒ F
(⊃L)

Γ, An ⇒ F

Γ, A ∧ Bn ⇒ F
(∧L1)

Γ, Bn ⇒ F

Γ, A ∧ Bn ⇒ F
(∧L2)

Γ, An ⇒ Cn+m Γ, Bn ⇒ Cn+m

Γ, A ∨ Bn ⇒ Cn+m
(∨L)

Γ, An+1 ⇒ F

Γ,©An ⇒ F
(©L)

Γ ⇒ F F,∆ ⇒ G

Γ,∆ ⇒ G
(Cut)

Γ, An ⇒ Bn

Γ ⇒ A ⊃ Bn
(⊃R)

Γ ⇒ An Γ ⇒ Bn

Γ ⇒ A ∧ Bn
(∧R)

Γ ⇒ An

Γ ⇒ A ∨ Bn
(∨R1)

Γ ⇒ Bn

Γ ⇒ A ∨ Bn
(∨R2)

Γ ⇒ An+1

Γ ⇒ ©An
(©R)

Fig. 3. Inference Rules of LJ©.

We are going to show that X is not empty, and its maximal element is a prime

theory. For the former, take the smallest theory containing T and ©S and show

that it belongs to X. This is done in the same way as in the last section. To prove

the latter, let U ∈ X be a maximal element and suppose A1, A2 /∈ U . Moreover,

let U0, U1, U2 be the smallest theory containing A1 ∨ A2, A1, A2, respectively, and

U . It is sufficient to prove that U0 6= U . For i = 1, 2 the theory ©−1Ui is a proper

extension of ©−1U = S, so there exists a formula Bi ∈ ©−1Ui \S. For such B1 and

B2, it holds that ©(B1 ∨ B2) ∈ U1 ∩ U2 = U0 and B1 ∨ B2 /∈ S = ©−1U (because

S is prime). Therefore we obtain ©(B1 ∨ B2) ∈ U0 \ U , and this implies U0 6= U ,

as required.

The rest of the proof is almost the same as the previous one. 2

4 Sequent Calculus

In this section we give another formalization LJ© of our logic in the sequent calculus

style. After verifying that the system LJ© is equivalent to NJ© previously defined,

we give a cut-elimination procedure for LJ©.

4.1 Formalization

Sequents of LJ© have the form Γ ⇒ F where Γ is a set of annotated formulas and

F is an annotated formula. Inference rules of LJ© are listed in Figure 3.

Since we regard the left-hand side of a sequent as a set, exchange and contraction

rules are not explicitly included. There is not an explicit weakening rule, either—we

included weakening implicitly by allowing extra formulas in the left-hand side of the

initial sequents. To make the proof of cut elimination theorem simpler, we restricted

the right-hand side of the initial sequents to be atomic (but this does not reduce

the proof-theoretic strength). Most of the rest of the rules are standard, but we

comment on the rule ∨L. In this rule, the time of the succedent C must be no less

than that of the principal formula A ∨ B. This corresponds to the issue mentioned

in the previous section that we cannot eliminate disjunction with a succedent of an

8
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earlier time.

LJ© is equivalent to NJ© in the following sense:

Theorem 4.1 A sequent Γ ⇒ F is provable in LJ© if and only if Γ ⊢ F is provable

in NJ©.

To prove this it is sufficient to check that all rules of LJ© are admissible in NJ©

and vice versa. For the former part we need the admissibility of weakening and cut

in natural deduction:

Lemma 4.2 (i) If Γ ⊢ F is provable, then Γ,∆ ⊢ F is also provable.

(ii) If Γ ⊢ F and F,∆ ⊢ G are provable, then Γ,∆ ⊢ G is also provable.

Then, both directions are proved by easy induction, so we omit the details.

4.2 Cut Elimination Procedure

Next we show cut is admissible in the cut-free fragment of LJ©.

Theorem 4.3 If Γ ⇒ F and F,∆ ⇒ G are provable without cut, then Γ,∆ ⇒ G

is also provable without cut.

We sketch the proof below. Consider the cut

D1 =
...

Γ ⇒ F
R1

D2 =
...

F,∆ ⇒ G
R2

Γ,∆ ⇒ G
Cut

We split this into four cases:

(i) R1 6= ∨L or R2 = Init;

(ii) R1 = ∨L and F is not principal in D2;

(iii) R1 = R2 = ∨L and F is principal in D2;

(iv) R1 = ∨L, F is principal in D2, and F is neither atomic nor disjunction.

The standard cut-elimination procedure works in case (i), but in the other cases,

i.e. R1 = ∨L, it is not as obvious. The problem stems from the side condition on

the time on the pricipal formula and that on the succedent in ∨L. Consider the

most general form of cut with R1 = ∨L:

Γ, An ⇒ Cm Γ, Bn ⇒ Cm

Γ, A ∨ Bn ⇒ Cm ∨L
Cm,∆ ⇒ Dl

Γ, A ∨ Bn,∆ ⇒ Dl
Cut

Applying the standard procedure to this derivation, we would obtain a new deriva-

tion

Γ, An ⇒ Cm Cm,∆ ⇒ Dl

Γ, An,∆ ⇒ Dl
Cut

Γ, Bn ⇒ Cm Cm,∆ ⇒ Dl

Γ, Bn,∆ ⇒ Dl
Cut

Γ, A ∨ Bn,∆ ⇒ Dl
∨L
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which, however, is not always valid, because it is not necessarily the case that l ≥ n.

So, we split this case into the three subcases, (ii), (iii), and (iv) listed above.

In case (ii) it is easy to reduce the cut into a simpler one: as the cut formula is

not principal in D2, it occurs in all premises of R2, so we just lift the cut into D2.

In case (iii), we can use the standard procedure above because the condition

n ≤ l is always met.

The last case is the case (iv), in which F is neither atomic nor disjunction. In

this case, first rewrite a given derivation D1 into another derivation D′
1 of the same

sequent such that the new derivation ends with a right rule application. Then, the

given cut becomes a principal cut, which is easily reduced into a simpler cut. To do

this, all we need is the following lemma:

Lemma 4.4 If a sequent S ≡ Γ ⇒ F has a cut-free derivation D and F is neither

atomic formula nor disjunction, then there exists a cut-free derivation D′ of S such

that the last rule used in D′ is a right rule.

Proof. See Appendix A. 2

From the argument above, we obtain the cut-elimination theorem for LJ©.

Theorem 4.5 If a sequent is provable in LJ©, then it has a cut-free proof.

5 Concluding Remarks

In this paper we have defined a Kripke semantics for constructive LTL, a sound and

complete natural deduction style proof system, and a sequent calculus which enjoys

a cut elimination theorem.

Although the temporal logic we considered is linear-time, a naive frame con-

dition of functionality turned out to be insufficient, and we used a larger class of

Kripke frames. Compared to other modal logics such as S4 and lax logic, an intu-

itive meaning of the frame condition we presented is not so clear, but it seems to

correspond to the fact that the inverse of axiom K is a theorem.

For a cut elimination procedure, we basically followed the standard method.

However, to make it work correctly, we may need extra transformations.

In this paper we did not mention algebraic semantics and duality between frames

and algebras. Related to these topics, results for constructive S4 and propositional

lax logic are given by Alechina et al. [1]. A similar result also holds for our con-

structive LTL. Let us call a lattice equipped with a unary operation © a ©-algebra

if it has pseudo-complement ⊃ and © preserves ⊃. It is fairly easy to see that the

©-algebras derive a semantics of constructive LTL and that NJ© is sound and

complete. In a way similar to the classical case we can define translations between

©-frames and ©-algebras. Further investigations are left for future work. On dual-

ity for intuitionistic modal logics, Wolter and Zakharyaschev [14] also gave a general

result, but it does not directly give rise to duality between ©-frame and some class

of algebras. This is because we used Kripke frames while they considered general

frames.

In the context of multi-modal and intuitionistic modal logics, a notion of product

of Kripke frames and general frames are considered [5,7]. We conjecture that there
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exists a decomposition of functional frame (and maybe ©-frame) into a product of

frames.

Another interesting problem is to consider temporal operators other than ©,

such as “always” or “until”. It is easy to define a semantics for other temporal

operators, so the main interest is how to characterize these operators in terms

of proof systems. In relation with this issue, a completeness result for constructive

propositional dynamic logic is given by Nishimura [10]. Dynamic logic has operators

similar to temporal operators, including “next” operator, so we think there are some

relationship between his work and ours.
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A Proof of Lemma 4.4

It is sufficient to show that any use of a left rule immediately following a right

rule other than the ∨-right rules can be replaced by applications of the right rule

following the left rule. Intuitively this means that by a conversion like

T1 . . . Tk

S′
Right

S
Left

=⇒

T1

S′
1

Left
. . .

Tk

S′
k

Left

S
Right
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we always obtain a valid derivation from a valid derivation. This is done by straight-

forward case analysis. For example, if the left rule is ⊃L and the right rule is ⊃R,

then

Γ ⇒ An

Γ, Bn, Cm ⇒ Dm

Γ, Bn ⇒ C ⊃ Dm ⊃R

Γ, A ⊃ Bn ⇒ C ⊃ Dm ⊃L
=⇒

Γ ⇒ An Γ, Bn, Cm ⇒ Dm

Γ, A ⊃ Bn, Cm ⇒ Dm ⊃L

Γ, A ⊃ Bn ⇒ C ⊃ Dm ⊃R

and for ∨L and ©R we have

Γ, An ⇒ Cm+1

Γ, An ⇒ ©Cm ©R
Γ, Bn ⇒ Cm+1

Γ, Bn ⇒ ©Cm ©R
(m ≥ n)

Γ, A ∨ Bn ⇒ ©Cm ∨L

=⇒

Γ, An ⇒ Cm+1 Γ, Bn ⇒ Cm+1 (m + 1 ≥ n)

Γ, A ∨ Bn ⇒ Cm+1 ∨L

Γ, A ∨ Bn ⇒ ©Cm ©R

Other cases are similar.
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