
A Sound Type System for Layer Subtyping and
Dynamically Activated First-Class Layers

Hiroaki Inoue and Atsushi Igarashi

Graduate School of Informatics, Kyoto University

Abstract. Key features of context-oriented programming (COP) are
layers—modules to describe context-dependent behavioral variations of
a software system—and their dynamic activation, which can modify the
behavior of multiple objects that have already been instantiated. Type-
checking programs written in a COP language is difficult because the
activation of a layer can even change objects’ interfaces. We formalize a
small COP language called ContextFJ<: with its operational semantics
and type system and show its soundness. The language features (1) dy-
namically activated first-class layers, (2) inheritance of layer definitions,
and (3) layer subtyping.

1 Introduction

Software is much more interactive than it used to be: it interacts with not only
users but also external resources such as network and sensors and changes its
behavior according to inputs from these resources. For example, an e-mail reader
may switch to a text-based mode when network throughput is low. Such external
information that affects the behavior of software is often referred to as contexts.
However, such context-dependent software is hard to develop and maintain, be-
cause the description of context-dependent behavior, which we desire to be mod-
ularized, often crosscuts with the dominating module structure. To address such
a problem from a programming-language perspective, Context-Oriented Pro-
gramming (COP) [9] has been proposed by Hirschfeld et al.

The main language constructs for COP are layers, which are modules to spec-
ify context-dependent behavior, and their dynamic layer activation. A layer is
basically a collection of what are called partial methods, which add new behavior
to existing objects or override existing methods. When a layer is activated at
run time by a designated construct, the partial methods defined in it become
effective, changing the behavior of objects until the activation ends. Roughly
speaking, a layer abstracts a context and dynamic layer activation abstracts
change of contexts.

JCop language [1] is an extension of Java with language constructs for COP.
It not only supports basic COP constructs described above, but also introduces
many advanced features such as inheritance of layer implementations and first-
class layers. However, typechecking implemented in the JCop compiler does not
take into account the fact that layer activation can change objects’ interface

2 Hiroaki Inoue and Atsushi Igarashi

by partial methods that add new methods and, as a result, not all “method not
found” errors are prevented statically. In our previous work [14], we have studied
this problem, proposed a type-safe version of JCop (we call Safe JCop in this
paper) with informal discussions on how JCop can be made type-safe.

In this paper, we formalize most of the ideas proposed in the previous work
and show they really make the language sound. More concretely, we develop a
small COP language called ContextFJ<:, which extends ContextFJ by Igarashi,
Hirschfeld, and Masuhara [10, 11] to layer inheritance, subtyping of layer types,
first-class layers and layer swapping; and we show type soundness of ContextFJ<:.
Main issues we have to deal with are (1) the semantics of layer inheritance, which
adds another “dimension” to method lookup, (2) sound subtyping for first-class
layers, which led us to two kinds of subtyping relation, and (3) (a limited form
of) type-safe deactivation, which we realize by layer swapping, first proposed in
the previous work [14]. We also have implemented a prototype of the proposed
type system by extending the JCop compiler.

The rest of the paper is organized as follows. After informally reviewing
features of Safe JCop in Section 2, we develop ContextFJ<: in Section 3 and
state type soundness. In Section 4, we discuss related work and then conclude
in Section 5. We omit some rules of ContextFJ<: and proofs for brevity; the
full definitions and proofs can be found in the full version of the paper. The
implementation of the type system and the full version are available at http:
//www.fos.kuis.kyoto-u.ac.jp/~hinoue/.

2 Language Constructs of Safe JCop

In this section, we review language constructs of Safe JCop, first described in [14],
including first-class layers, layer inheritance/subtyping, and layer swapping along
informal discussions about the type system.

As a running example, we consider programming a graphical computer game
called RetroAdventure [2]. In this game, a player has a character “hero” that
wanders around the game world. Here, we introduce class Hero that represents
the hero, which has method move to walk around, and class World that represents
the game world.

public class Hero {

Position pos;

public void move(Direction dir){

pos = /* changes pos according to dir */;

}

}

public class World { ... }

2.1 Layers and Partial Methods

As mentioned already, a first distinctive feature of COP is layers—collections of
partial methods to modify the behavior of existing objects. A partial method is

A Sound Type System for First-Class Layers 3

syntactically similar to an ordinary method declared in a class, except that the
name is given in a qualified form Hero.move(); this means the partial method
is going to override method move defined in Hero or (if it does not exist) add
to Hero. A layer can contain partial methods for different classes, so, when it is
activated, it can affect objects from various classes at once. Similarly to super

calls in Java, the body of a partial method can contain proceed calls to invoke
the original method overridden by this partial method.

Here, suppose that the hero’s behavior is influenced by weather conditions
in the game world. For example, in a rainy weather, the hero gets slow and, in
a stormy weather, the hero cannot move as he likes. Here are layers that denote
weathers of the game world.

public layer Rainy {

/* partial method */

public void Hero.move(Direction dir){

pos = /* the distance of move is smaller */;

}

}

public layer Stormy {

/* partial method */

public void Hero.move(Direction dir){

proceed(randomDirection(dir));

}

/* baseless partial method */

public Direction Hero.randomDirection(Direction dir){

return /* add randomness to dir */;

}

}

public layer Sunny { ... }

Rainy and Stormy have the definitions of Hero.move, which change the be-
havior of the original definition in different ways. In particular, Hero.move in
Stormy uses proceed, replacing the arguments to calls to move. It also has
Hero.randomDirection, used to determine a new randomized direction to which
the hero is going to move.

Methods defined in classes are often referred to as base methods and par-
tial methods without corresponding base methods as baseless partial methods.
Notice that activating a layer with baseless partial methods extends object inter-
faces and proceed in a baseless method is unsafe unless another layer activation
provides a baseless method of the same signature.

2.2 Layer Activation and First-Class Layers

In Safe JCop, a layer can be activated by using a layer instance (created by a
new expression, just as an ordinary Java object, from a layer definition) in a
with statement. The following code snippet shows how Rainy can be activated.

with(new Rainy()){

hero.move(); /* The hero will get slow by Rainy weather. */

4 Hiroaki Inoue and Atsushi Igarashi

}

Inside the body of with, dynamic method dispatch is affected by the activated
layers so that partial methods are looked up first. So, movement of the hero will
be slow.

Layer activation has a dynamic extent in the sense that the behavior of
objects changes even in methods called from inside with. If more than one layer
is activated, a more recent activation has precedence and a proceed call in a more
recently activated layer may call another partial method (of the same name) in
another layer.

In Safe JCop, a layer instance is a first-class citizen and can be stored in a
variable, passed to, or returned from a method. A layer name can be used as
a type. Combining with layer subtyping discussed later, we can switch layers
to activate by a run-time condition. For example, suppose that the game has
difficulty levels, determined at run time according to some parameters, and each
level is represented by an instance of a sublayer of Difficulty. Then, we can
set the initial difficulty level by code like this:

Difficulty dif = /* an expression to compute difficulty */ ;

with(dif){...}

Moreover, a layer can declare fields (although we do not model fields in layers
in this paper). So, first-class layers significantly enhances expressiveness of the
language.

2.3 Dependencies between Layers

Baseless partial methods and layer activation that has dynamic extent pose a
challenge on typechecking because activation of a layer including baseless par-
tial methods can change object interfaces. So, a method invocation, including a
proceed call, may or may not be safe depending on what layers are activated
at the program point. Safe JCop adopts requires clauses [11] for layer defini-
tions to express which layers should have been activated before activating each
layer (instance). The type system checks whether each activation satisfies the
requires clause associated to the activated layer and also uses requires clauses
to estimate interfaces of objects at every program point.

For example, consider another layer ThunderStorm, which expresses an event
in a game. It affects the way how the hero’s direction is randomized during a
storm and includes a baseless partial method with a proceed call. To prevent
ThunderStorm from being activated in a weather other than a storm, the layer
requires Stormy as follows:

public layer ThunderStorm requires Stormy {

public Direction Hero.randomDirection(Direction dir){

Direction tmpd = proceed(dir);

... /* change tmpd to speed up */

return tmpd;

}

}

A Sound Type System for First-Class Layers 5

An attempt at activating ThunderStorm without activating Stormy will be
rejected by the type system (unless the activation appears in a layer requiring
Stormy). Thanks to the requires clause, the type system knows the proceed call
will not fail. (It will call the partial method in Stormy or some other depending
on what layers are activated at run time.)

In general, a layer can require any number of layers.

2.4 Layer Inheritance

In Safe JCop, a layer can inherit definitions from another layer by using the
keyword extends and the extends relation between layers yields subtyping,
just like Java classes. If weather layers have many definitions in common, it is
a good idea to define a superlayer Weather and concrete weather layers as its
sublayers.

public abstract layer Weather {

public String World.getWorldText (){

..... + this.getWeatherInfo () +;

}

public abstract String World.getWeatherInfo ();

}

public layer Rainy extends Weather {

public String World.getWeatherInfo (){

return "rain";

}

}

public layer Stormy extends Weather {

public String World.getWeatherInfo (){

return "storm";

}

}

Here, Weather provides partial method getWorldText to retrieve the status of
the world. Although the implementation of World.getWeatherInfo is not given
here, concrete weather layers provide it by overriding.

Naturally, we expect an instance of a sublayer can be substituted for that of
its super-layer. However, substitutability is more subtle that one might expect
and we are led to distinguishing two kinds of substitutability and introducing
two kinds of subtyping relation, called weak and normal subtyping.

Since a sublayer defines more partial methods than its superlayer, an instance
of a sublayer can be used where a superlayer is required. For example, to
activate the following layer called Thunder, which requires Weather, it suffices
to activate Rainy, a sublayer of Weather, beforehand.

public layer Thunder requires Weather {

public String World.getWeatherInfo (){

return "thunder and " + proceed ();

}

}

6 Hiroaki Inoue and Atsushi Igarashi

...

with(new Rainy()){

with(new Thunder ()){...}

}

We will formalize substitutability about requires as weak subtyping, which is
the reflexive transitive closure of the extends relation between layer types. For
the weak subtyping to work, we require a sublayer declare what its superlayer
requires because partial methods inherited from the superlayer may depend
on them. We could relax this condition when a sublayer overrides all the partial
methods but such a case is expected to be rare.1 Therefore, we do not consider
the case.

This notion of subtyping is called weak because it does not guarantee safe
substitutability for first-class layers. Consider layer Difficulty again and as-
sume that it requires no other layers and has sublayers Easy and Hard. In the
following code snippet

Difficulty dif = someCondition () ? new Easy() : new Hard();

with(dif){...}

activation of dif appears safe because its static type Difficulty does not re-
quire any layer to have been activated. However, the case where Easy or Hard
requires some layers breaks the expected invariant that requires is satisfied at
run time. So, for assignments and parameter passing, we need one more condi-
tion for subtyping, namely, requires of a sublayer must be the same as that of
its superlayer. We call this strong notion of subtyping normal subtyping.

Just like Object in Java, there is Base, which is a superlayer of all layers, in
Safe JCop. If a layer omits the extends clause, it is implicitly assumed that the
layer extends Base.

2.5 Layer Swapping and Deactivation

The original JCop provides constructs to deactivate layers. However, only with
requires, it is not easy to guarantee that layer deactivation does not lead to
an error. For safe deactivation, it has to be checked that there is no layer that
requires the deactivated layer, but the type system is not designed to keep
track of absence of certain layers. Instead of general-purpose layer deactivation
mechanisms, Safe JCop introduces a special construct to express one important
idiom that uses deactivation, namely layer swapping to deactivate some layers
and activate a layer at once.

In Safe JCop, we can define a layer as swappable, which means that all its
sublayers can be swapped with each other, by adding the modifier swappable.
The swap statement for layer swapping is of the following form:

swap(activation layer, deactivation layer type){ ... }
1 Re-typechecking inherited methods under the new requires clause would be an-
other way to relax this condition but this is against modular checking.

A Sound Type System for First-Class Layers 7

The activation layer is an expression whose static type must be a sublayer of
deactivation layer type, which in turn has to be swappable. It deactivates all
instances of deactivation layer type (and its sublayers), and activates the acti-
vation layer.

Let’s consider Difficulty once again. We could define Difficulty as a
swappable layer and use swap to switch to another mode temporarily.

swappable layer Difficulty {...}

...

Difficulty dif = someCondition () ? new Easy() : new Hard();

with(dif){

...

swap(new Hard(), Difficulty){

// Enforce hard mode

}

}

As discussed in the previous work [14], the layer swapping mechanism also
requires no sublayers of a swappable layer to be required by other layers.

3 ContextFJ<:

In this section, we formalize a core functional subset of Safe JCop as ContextFJ<:,
give its syntax, operational semantics and type system, and show type sound-
ness. ContextFJ<:, a descendant of Featherweight Java (FJ) [13], extends Con-
textFJ [10, 11] with layer inheritance, layer subtyping, first-class layers, and
swappable layers. Note that we omit some rules (especially when they are simi-
lar to those in ContextFJ [11]). The whole calculus is in the full version of this
paper. We also recommend that readers consult [11].

3.1 Syntax

Let metavariables C, D and E range over class names; L over layer names; f and
g over field names; m over method names; x and y over variables, which contains
special variable this. The abstract syntax of ContextFJ<: is given in Fig. 1.

Following FJ, we use overlines to denote sequences: so, f stands for a possibly
empty sequence f1, · · · , fn and similarly for T, x, e, and so on. The empty se-
quence is denoted by •. Concatenation of sequences is often denoted by a comma
except for layer names, for which we use a semicolon. We also abbreviate pairs
of sequences, writing “T f” for “T1 f1, · · · , Tn fn”, where n is the length of
T and f, and similarly “T f;” as shorthand for the sequence of declarations
“T1 f1;. . . Tn fn;” and “this.f=f;” for “this.f1=f1;. . . ;this.fn=fn;”. Se-
quences of field declarations, parameter names, layer names, and method decla-
rations are assumed to contain no duplicate names.

We briefly explain the syntax, focusing on COP-related constructs. A layer
definition LA consists of optional modifier swappable, its name, its superlayer
name, layers that it requires, and partial methods. A partial method is similar

8 Hiroaki Inoue and Atsushi Igarashi

T,S ::= C | L (types)

CL ::= class C ◁ C { T f; K M } (classes)

LA ::= [swappable] layer L ◁ L req L { PM } (layers)

K ::= C(T f){ super(f); this.f = f; } (constructors)

M ::= T m(T x){ return e; } (methods)

PM ::= T C.m(T x){ return e; } (partial methods)
e,d ::= x | e.f | e.m(e) | new T(e) | with e e | swap (e,L) e (expressions)

| proceed(e) | super.m(e) | new C(v)<C,L,L>.m(e)
v,w ::= new C(v) | new L() (values)

Fig. 1. Syntax of ContextFJ<:. A phrase enclosed by [] is optional.

to a method but the former specifies which m to modify by qualifying the simple
method name with its class C. Instantiation can be a layer instance new L().
Note that arguments to the constructor are always empty because a layer has no
fields. In the expression with e1 e2, e1 stands for the layer to be activated and
e2 the body of with. In the expression swap (e1, L) e2, e1 means the layer
to be activated, L layers to deactivate, e2 the body. All instances of L and its
subclasses are deactivated. The expression new C(v)<D,L′,L>.m(e) is a special
run-time expression that is related to method invocation mechanism of COP,
and not supposed to appear in classes and layers. It basically means that m is
going to be invoked on new C(v). The annotation <D,L′,L> is used to model
super and proceed. L means activated layers in the method lookup and D and
L′ (which is assumed to be a prefix of L) stand for the location of a “cursor”
where the method lookup starts from.

Program. A ContextFJ<: program (CT ,LT , e) consists of a class table CT ,
a layer table LT and an expression e, which stands for the body of the main

function. CT maps a class name to a class definition and LT a layer name to
a layer definition. A layer definition can be regarded as a function that maps a
partial method name C.m to a partial method definition. So, we can view LT as
a Curried function, so we often write LT (L)(C.m) for the partial method C.m in
L in a program. We assume that the domains of CT and LT are finite. Precisely
speaking, the semantics and type system are parameterized over CT and LT but,
to lighten the notation, we assume them to be fixed and omit from judgments.

Given CT and LT , extends and requires clauses are considered relations,
written ◁ and req, respectively, over class/layer names. As usual, we writeR+ for
the transitive closure of relation R; similarly for R∗ for the reflexive transitive
closure of R. We write L swappable if LT (L) is defined with the swappable

modifier.
We assume the following sanity conditions are satisfied by a given program:

1. CT (C) = class C ... for any C ∈ dom(CT).
2. Object ̸∈ dom(CT).
3. For every class name C (except Object) appearing anywhere in CT , C ∈

dom(CT).

A Sound Type System for First-Class Layers 9

4. LT (L) = ... layer L ... for any L ∈ dom(LT).
5. Base ̸∈ dom(LT).
6. For every layer name L (except Base) appearing anywhere in LT , L ∈

dom(LT).
7. Both for classes and layers, there are no cycles in the transitive closure of

the extends clauses.
8. LT (L)(C.m) = ... C.m(...){...} for any L ∈ dom(LT) and (C.m) ∈

dom(LT (L)).
9. Relation R is defined by: L1RL2 iff L1 req^+ L2. R has no cycles.
10. A layer cannot require any superlayer of it, that is, L1 ◁^+ L2 → ¬(L1RL2).
11. L1 ◁+ L2 ∧ L2 swappable → ¬(∃L3.L3RL1)

In the condition 6, like Object of classes, Base layer is defined as the root of
layer sub-typing tree. Conditions 7, 9, 10 and are very important for our formal
system, because they are used to ensure that proceed and super calls will not
fail. The final condition means that no sublayers of a swappable layer can be
required by other layers, as we mentioned earlier.

3.2 Operational Semantics

Lookup Functions. We need a few auxiliary lookup functions to define opera-
tional semantics. The function fields(C) (whose definition is omitted) returns a
sequence T f of pairs of a field name and its type by collecting all field declara-
tions from C and its superclasses. Other lookup functions are defined in Fig. 2.
The function pmbody(m, C, L) returns the parameters and body x.e of the par-
tial method C.m defined in layer L. If C.m is not found in L, the superlayer of L
is searched and so on. The function mbody(m, C, L1, L2) returns the parameters
and body x.e of method m in class C when the search starts from L1; the other
sequence L2 keeps track of the layers that are activated when the search initially
started. It also returns D and L′′ (which will be a prefix of L2), information on
where the method has been found. For example, since the ruleMB-Layermeans
that the method is found in class C and layer L0 (or its superlayers), which is the
rightmost layer of L1 = (L′; L0), mbody returns C and (L′; L0). Such information
will be used in reduction rules to deal with proceed and super. Readers familiar
with ContextFJ will notice that the rules for mbody are mostly the same as those
in ContextFJ, except that pmbody(m, C, L) is substituted for PT (m, C, L) to take
layer inheritance into account.

Operational Semantics. The operational semantics of ContextFJ<: is given by
a reduction relation of the form L ⊢ e −→ e′, read “expression e reduces to e′

under the activated layers L”. The sequence L of layer names stands for nesting
of with and the rightmost name stands for the most recently activated layer. L
do not contain duplicate names. Note that we put a sequence of layer names L
rather than layer instances because layer instances have no fields and new L()

and L can be identified. If we modelled fields in layer instances, we would have
to put instances for layer names.

10 Hiroaki Inoue and Atsushi Igarashi

pmbody(m,C,L) = x.e

LT (L)(C.m) = T0 C.m(T x){ return e; }

pmbody(m,C,L) = x.e
(PMB-Layer)

LT (L)(C.m) undefined L ◁ LS pmbody(m,C,Ls) = x.e

pmbody(m,C,L) = x.e
(PMB-Super)

mbody(m,C,L′,L) = x.e in D,L′′

class C ◁ D { ... T0 m(T x){ return e; } ...}

mbody(m,C, •,L) = x.e in C, •
(MB-Class)

pmbody(m,C,L0) = x.e

mbody(m,C, (L′;L0),L) = x.e in C, (L′;L0)
(MB-Layer)

class C ◁ D { .. M } m ̸∈ M mbody(m,D,L,L) = x.e in E,L′

mbody(m,C, •,L) = x.e in E,L′
(MB-Super)

pmbody(m,C,L0) undefined mbody(m,C,L′,L) = x.e in D,L′′

mbody(m,C, (L′;L0),L) = x.e in D,L′′
(MB-NextLayer)

Fig. 2. ContextFJ<:: Lookup functions.

Before giving reduction rules, we have to define two auxiliary functions,
with(L, L) and swap(L, Lsw, L) to manipulate activated layers.

with(L, L) = (L \ {L}); L swap(L, Lsw, L) = (L \ {L′ | L′ ◁* Lsw}); L

The function with removes L (if exists) from layer sequence L and adds L to the
end of L and swap removes Lsw and all sublayers of Lsw from L, and adds L to
the end of L.

Main reduction rules are found in Fig. 3. The rules R-Invk and R-InvkP
for method invocation are essentially the same as ones in ContextFJ. R-Invk
initializes the cursor according to the currently activated layers L and R-InvkP
represents invocation of a partial method (the rule for base method invocation is
omitted). Note how this, proceed and super are replaced with the receiver with
different cursor locations. For proceed, the cursor moves one layer to the left and,
for super, the cursor moves one level up. The rules RC-With and RC-Swap
are related to layer activation and swapping, respectively. The rule RC-With
means that with (new L()) e executes e with L activated (as the first layer).
The rule RC-Swap is similar; it means that swap (new L(), Lsw) e executes
by deactivating all sublayers of Lsw and activating a layer L.

A Sound Type System for First-Class Layers 11

L ⊢ e −→ e′

L ⊢ new C(v)<C,L,L>.m(w) −→ e′

L ⊢ new C(v).m(w) −→ e′
(R-Invk)

mbody(m,C′,L′′,L′) = x.e0 in C′′, (L′′′;L0)
class C′′◁ D{...}

L ⊢ new C(v)<C′,L′′,L′>.m(w) −→
new C(v) /this,
w /x,
new C(v)<C′′,L′′′,L′>.m/proceed,
new C(v)<D,L′,L′> /super

e0

(R-InvkP)

with(L,L) = L′ L′ ⊢ e −→ e′

L ⊢ with new L() e −→ with new L() e′
(RC-With)

swap(L,Lsw,L) = L′ L′ ⊢ e −→ e′

L ⊢ swap (new L(),Lsw) e −→ swap (new L(),Lsw) e′
(RC-Swap)

Fig. 3. ContextFJ<:: Reduction Rules.

3.3 Type System

As usual, the role of a type system is to ensure the absence of a certain class of
run-time errors. Here, they are “field-not-found” and “method-not-found” errors,
including the failure of proceed or super calls.

As discussed in the last section, the type system takes information on acti-
vated layers at every program point into account. We approximate such infor-
mation by a set Λ of layer names, which mean that, for any element in Λ, an
instance of one of its sublayers has to be activated at run time. This set gives
underapproximation in the sense that other layers might be activated. Activated
layers are approximated by sets rather than sequences because the type system is
mainly concerned about access to fields and methods and the order of activated
layers does not influence which fields and methods are accessible.

In our type system, a type judgment for an expression is of the form L;Λ;Γ ⊢
e : T, where Γ is a type environment, which records types of variables, and L
stands for where e appears, namely, a method in a class or a partial method in
a layer. For example, the body of the partial method World.getWeatherInfo()

in layer Thunder is typed as follows:

Thunder.World.getWeatherInfo; {Weather, Thunder}; •
⊢ "thunder and " + proceed() : String

where • stands for the empty type environment. The layer name set
{Weather, Thunder} comes from the fact that Thunder requires Weather.
Thunder is also included because Thunder is obviously activated when a par-
tial method defined in this very layer is executed.

12 Hiroaki Inoue and Atsushi Igarashi

We start with the definitions of two kinds of layer subtyping discussed in the
last section and proceed to functions to look up method types and typing rules.

Subtyping. We define subtyping C <: D for class types, weak subtyping L1 <:w L2
and normal subtyping L1 <: L2 for layer types by the rules in Fig. 4. Class sub-
typing C <: D (whose rules are omitted) is defined as the reflexive and transitive
closure of ◁, just as FJ. Weak layer subtyping is also the reflexive and transitive
closure of ◁. We extend it to the relation Λ1 <:w Λ2 between layer name sets by
LSS-Intro. It is used to check activated layers Λ1 satisfy requirement Λ2 given
by a requires clause in typechecking a layer activation. So, for every element
in Λ2, there must exist a sublayer of it in Λ1. Normal subtyping is almost the
reflexive and transitive closure of ◁ but there is one additional condition: for
L1 to be a normal subtype of L2, the layers they require must be the same
(LS-Extends). The notation L req Λ means that L req L′ for any L′ ∈ Λ.

layer subtyping <:

L <: L
(LS-Refl)

L1 <: L2 L2 <: L3

L1 <: L3

(LS-Trans)

L ◁ Base L req ∅
L <: Base

(LS-Base)

L1 ◁ L2 L1 req Λ
L2 req Λ

L1 <: L2

(LS-Extends)

weak layer subtyping <:w

L <:w L
(LSw-Refl)

L1 <:w L2 L2 <:w L3

L1 <:w L3

(LSw-Trans)

L1 ◁ L2

L1 <:w L2

(LSw-Extends)

layer set subtyping

∀L0 ∈ Λ0.∃L1 ∈ Λ1 s.t. L1 <:w L0

Λ1 <:w Λ0

(LSS-Intro)

Fig. 4. ContextFJ<:: Subtyping Relations.

Method type lookup. Similarly to pmbody and mbody , we define two auxiliary
functions pmtype and mtype to look up the signature T→T0 (consisting of argu-
ment type T and a return type T0) of a (partial) method. pmtype(m, C, L) returns
the signature of C.m in L (or one of its superlayers); we omit its definition, which
is similar to pmbody . mtype(m, C, Λ1, Λ2), whose definition is essentially the same
(save layer inheritance) as that in ContextFJ but shown in Fig. 5, returns the
type of m in C under the assumption that Λ1 is activated. The other layer set Λ2

(⊇ Λ1) is used when the lookup goes to a superclass. If Λ1 and Λ2 are the same,
which is mostly the case, we write mtype(m, C, Λ1).

These rules by themselves do not definemtype as a function, because different
layers may contain partial methods of the same name with different signatures.

A Sound Type System for First-Class Layers 13

mtype(m,C, Λ1, Λ2) = T→T0

class C ◁ D {... T0 m(T x){ return e; } ...}

mtype(m,C, Λ1, Λ2) = T→T0

(MT-Class)

L ∈ Λ1 pmtype(m,C,L) = T→T0

mtype(m,C, Λ1, Λ2) = T→T0

(MT-PMethod)

class C ◁ D {... M } m ̸∈ M
∀L ∈ Λ1.pmtype(m,C,L) undefined mtype(m,D, Λ2, Λ2) = T→T0

mtype(m,C, Λ1, Λ2) = T→T0

(MT-Super)

Fig. 5. ContextFJ<:: Method Type Lookup functions.

L;Λ;Γ ⊢ e : T

L;Λ;Γ ⊢ e0 : C0 mtype(m,C0, Λ) = T→T0 L;Λ;Γ ⊢ e : S S <: T

L;Λ;Γ ⊢ e0.m(e) : T0

(T-Invk)

L;Λ;Γ ⊢ el : L L req Λ′ Λ <:w Λ′ L;Λ ∪ {L};Γ ⊢ e0 : T0

L;Λ;Γ ⊢ with el e0 : T0

(T-With)

L;Λ;Γ ⊢ el : L Lsw swappable L <:w Lsw L req Λ′

Λrm = Λ \ {L′ | L′ <:w Lsw} Λrm <:w Λ′ L;Λrm ∪ {L};Γ ⊢ e0 : T0

L;Λ;Γ ⊢ swap (el,Lsw)e0 : T0

(T-Swap)

L req Λ′ mtype(m,C, Λ′, Λ′ ∪ {L}) = T→T0 L.C.m;Λ;Γ ⊢ e : S S <: T

L.C.m;Λ;Γ ⊢ proceed(e) : T0

(T-Proceed)

Fig. 6. ContextFJ<:: Expression typing.

So, precisely speaking, it should rather be understood as a relation; in a well-
typed program, it will behave as a function, though.

Expression Typing. As mentioned already, the type judgment for expressions is
of the form L;Λ;Γ ⊢ e : T, read “e is given type T under context Γ , location L
and layer set Λ”. In addition to C.m and L.C.m, L can be •, which means the
top-level (i.e., under execution). Main typing rules are given in Fig. 6.

The rule T-Invk is straightforward: for the method signature T→T0, re-
trieved from the receiver type C0, the types of the actual arguments must be
their subtypes. The whole expression is given the method return type. The rule
T-Proceed is similar, but the activated layer set Λ′ is taken from the requires
clause of the layer L in which this expression appears. The last argument tomtype
is Λ ∪ {L} because a proceed call can proceed to a partial method D.m (where
D is a superclass of C) defined in the same layer L. The rule T-With checks, by

14 Hiroaki Inoue and Atsushi Igarashi

Λ <:w Λ′, that the layers required by L—the layer type to be activated—are
already activated and that the body e0 is well typed under the assumption that
L is additionally activated. T-Swap is similar; the set Λrm stands for the set of
layers after deactivation and must be a weak subtype of the required set Λ′.

Other Typing Rules. For typing other entities, such as (partial) methods and
layers, we use the following judgments:

PM ok in L partial method PM is well formed in layer L
M ok in C base method M is well formed in class C
LA ok layer definition LA is well formed
CL ok class definition CL is well formed
override(CT ,LT) method override is valid in CT and LT
⊢ (CT ,LT , e) : T program (CT ,LT , e) is given type T

Representative typing rules are given in Fig. 7. The rule T-PMethod for a
partial method means that the method body e is typed under the layer set
required by this layer. The rule T-Layer demands that the requires clause of
the layer be covariant and all partial methods are well formed. A program is
typed if all classes and layers in CT and LT are well formed, the main expression
e is typed (at the top-level •), and override(CT ,LT) holds.

The most involved is the rule to check valid method overriding. Note that,
unlike Java, checking valid method overriding requires a whole program (except
for the main expression) because a layer may add a new method to a base class,
one of whose subclass may accidentally define a method of the same name with-
out knowing of that layer. The first premise means that for two partial methods
of the same (qualified) name must have the same signature. The second premise
means that, for any partial method, the overridden method (base method in C

or partial methods for C’s superclass) must have the same signature. Finally, the
third premise means that a base method can override a (partial) method in its
superclass (or layers modifying it) with a covariant return type.

3.4 Type Soundness

We prove type soundness of ContextFJ<: via subject reduction and progress [17].
To prove subject reduction, we have to give a typing rule for run-time expressions
of the form new C(v)<D,L′,L>.m(e), which are not supposed to appear in a
class/layer table. The typing rule is given as follows:

∀L0 ∈ Λ0.∃L1 ∈ Λ1.L1 <:w L0
or ∃L2 ∈ dom(LT).L2 swappable and L0 <:w L2 and L1 <:w L2

Λ1 <:sw Λ0

(LSSW-Intro)

A Sound Type System for First-Class Layers 15

fields(C0) = T f L;Λ;Γ ⊢ v : S S <: T

C0 <: D0 mtype(m, D0, {L′}, {L}) = T′→T0
L;Λ;Γ ⊢ e : S′ S′ <: T′ L′ is a prefix of L

{L} wf Λ <:sw {L} WP(m, D0, L
′, L)

L;Λ;Γ ⊢ new C0(v)<D0,L
′,L>.m(e) : T0

(T-InvkA)

Basically, it combines the typing rules for new and method invocation with
a few additional complications. The first three premises mean that the types of
the values v for fields f are subtypes of the declared. The method signature is
taken from the current location <D0,L

′,L> of the cursor and the types of the
actual arguments e have to be subtypes of the formal argument types. We detail
the last two conditions below.

The following two predicates Λ wf and WP(m, C, L′, L) are crucial to ensure
successful proceed and super calls in the presence of with.2 The condition
{L} wf , read “layer set {L} is well formed,” means that for every layer in the
set, there are layers that it requires in the same set. Formally, it is defined by
the following rule:

∀L ∈ Λ, ∀L′ s.t, LRL′, (∃L′′ ∈ Λ s.t, L′′ <:w L′)
and (∀L′′ ◁* L′,∀L′′′ s.t, L′′RL′′′,¬(L ◁* L′′′)).

Λ wf
(LS-wf)

The last premise WP(m, D0, L
′, L) intuitively means “a chain of proceed calls

from the given cursor location eventually reaches a (partial) method that does
not call proceed” and is defined by the following rules:

(∃L0 ∈ L1.proceed ̸∈ pmbody(m, C, L0)) or class C {.. C0 m(..){..} ..}

WP(m, C, L1, (L1;L2))
(WP-Layer)

C ◁ D WP(m, D, (L1;L2), (L1;L2))

WP(m, C, L1, (L1;L2))
(WP-Super)

Given the typing rule for run-time expressions, we can state the type sound-
ness theorem below.

Theorem 1 (Subject Reduction). Suppose given CT and LT are well-formed.
If •; {L};Γ ⊢ e : T and {L} wf and L ⊢ e −→ e′, then •; {L};Γ ⊢ e′ : S for some
S such that S <: T.

Theorem 2 (Progress). Suppose given CT and LT are well-formed. If •; {L}; • ⊢
e : T and {L} wf, then e is a value or L ⊢ e −→ e′ for some e′.

2 The previous type system for ContextFJ [11] deals with ensure, an activation mech-
anism with a semantics slightly different from with, and T-InvkA is simpler. Further
discussions on making proceed and with typesafe can be found in [12].

16 Hiroaki Inoue and Atsushi Igarashi

Theorem 3 (Type Soundness). If ⊢ (CT,LT, e) : T and e reduces to a nor-
mal form under the empty set of layers, then the normal form is new S(v) for
some v and S such that S <: T.

4 Related Work

Our work is a direct descendant of Igarashi, Hirschfeld, and Masuhara [10, 11],
where a tiny COP language ContextFJ is developed and its type system is proved
to be sound. ContextFJ is not equipped with layer inheritance, layer subtyping,
or first-class layers but allows baseless methods to be declared in the second type
system [11], in which requires declarations are first introduced into COP.

There are many type systems proposed for advanced composition mechanisms
such as mixins [4, 8], traits [16], open classes (a.k.a. inter-type declarations) [6],
and revisers [5]. A common idea is to let programmers declare dependency be-
tween modules as required interfaces; our requires declarations basically follow
it. In most work, however, composition is done at compile or link time unlike
COP languages. So, it is interesting that the same idea works even for dynamic
composition found in COP languages.

Kamina and Tamai [15] propose McJava, in which mixin-based composition
can be deferred to object instantiation. In fact, new expressions can specify a class
and mixins to instantiate an object. So, the type of an object also consists of a
class name and a sequence of mixin names. Whereas composition is per-instance
basis in McJava, it is global in ContextFJ<:. However, in McJava, composition
cannot be changed once an object is instantiated.

Drossopoulou et al. [7] proposed FickleII, a class-based object-oriented lan-
guage with dynamic reclassification, which allows an object to change its class
at run time. Their idea of root classes, which serve as interface, is similar to our
swappable layers; their restriction that state classes cannot be used as type for
fields is similar to ours that a sublayer of a swappable cannot be required by
any other layer.

Bettini et al. [3] developed a type system for dynamic trait replacement,
which allows methods in an object to be exchanged at run time. They introduce
the notion of replaceable to describe the signatures of replaceable methods; a
replaceable appears as part of the type of an object and the trait to replace
methods of the object has to provide the methods in that replaceable. The roles
of replaceables and traits are somewhat similar to those of swappable layers,
which provide interfaces common to swapped layers, and sublayers of swappable.

5 Concluding Remarks

We have developed a formal type system for a small COP language with layer
inheritance, layer subtyping, swappable layers, and first-class layers, and shown
that the type system is sound with respect to the operational semantics. As in
previous work, requires declarations are important to guarantee safety in the
presence of baseless methods. Subtyping for first-class layers is subtle because

A Sound Type System for First-Class Layers 17

there are two kinds of substitutability. We have introduced weak subtyping for
checking whether a requires clause is satisfied and normal subtyping for usual
substitutability.

We are working on implementing the type system on top of the existing JCop
compiler but there are many other features that are not modelled in our calculus.
We briefly discuss how our type system can be extended to these features.

In JCop, a layer definition can contain field and (ordinary) method declara-
tions so that a layer instance can act just like an ordinary object. Typechecking
accesses to these members of layer instances is the same as ordinary objects. If
we model fields of layer instances, we will have to modify the reduction relation
so that the sequence of activated layers consists of layer instances (with their
field values) rather than layer names.

JCop provides special variable thislayer, which can be used in partial meth-
ods and is similar to this of classes. It represents the layer instance in which
the invoked partial method is found at run time and can be used to access fields
and methods of that layer instance. In operational semantics, the layer instance
would be substituted for thislayer, similarly to this. Typing thislayer is
also similar to this in the sense that it is given the name of the layer in which
it appears but thislayer cannot be used for layer activation because, at run
time, it may be bound to an instance of a weak subtype.

JCop also introduces superproceed() call, which can be used in a partial
method and invokes a superlayer’s partial method that is overridden by the par-
tial method. Similarly to super calls in Java, the destination of superproceed()
is known statically, so it is easy to typecheck.

We have not fully investigated the interaction between our type system with
other features in Java, such as concurrency, generics, and lambda, although we
expect most of them are orthogonal.

Acknowledgments. We thank Tomoyuki Aotani, Malte Appeltauer, Robert Hirsch-
feld, and Tetsuo Kamina for valuable discussions on the subject. We appreciate
valuable comments and suggestions from the anonymous reviewers. This work
was supported in part by Kyoto University Design School (Inoue) and MEXT
KAKENHI Grant Number 23220001 (Igarashi).

References

1. M. Appeltauer and R. Hirschfeld. The JCop language specification: Version 1.0,
April 2012. Number 59. Universitätsverlag Potsdam, 2012.

2. M. Appeltauer, R. Hirschfeld, and J. Lincke. Declarative layer composition with
the JCop programming language. Journal of Object Technology, 12, 2013.

3. L. Bettini, S. Capecchi, and F. Damiani. On flexible dynamic trait replacement
for Java-like languages. Science of Computer Programming, 78(7):907–932, 2013.

4. V. Bono, A. Patel, and V. Shmatikov. A core calculus of classes and mixins. In
ECOOP’99–Object-Oriented Programming, pages 43–66. Springer, 1999.

5. S. Chiba, A. Igarashi, and S. Zakirov. Mostly modular compilation of crosscutting
concerns by contextual predicate dispatch. In Proc. of the ACM OOPSLA, pages
539–554, 2010.

18 Hiroaki Inoue and Atsushi Igarashi

6. C. Clifton, T. Millstein, G. T. Leavens, and C. Chambers. MultiJava: Design
rationale, compiler implementation, and applications. ACM Trans. Prog. Lang.
Syst., 28(3):517–575, 2006.

7. S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. More dy-
namic object reclassification: FickleII. ACM Trans. Prog. Lang. Syst., 24(2):153–
191, 2002.

8. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Proc. of the
ACM POPL, pages 171–183. ACM, 1998.

9. R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-oriented programming.
Journal of Object Technology, 7(3):125–151, 2008.

10. R. Hirschfeld, A. Igarashi, and H. Masuhara. ContextFJ: A minimal core calculus
for context-oriented programming. In Proc. of Foundations of Aspect-Oriented
Languages (FOAL), Mar. 2011.

11. A. Igarashi, R. Hirschfeld, and H. Masuhara. A type system for dynamic layer
composition. In Proc. of FOOL, Oct. 2012.

12. A. Igarashi, H. Inoue, R. Hirschfeld, and H. Masuhara. ContextFJ: A minimal
calculus for context-oriented programming, 2015. In preparation for submission.

13. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

14. H. Inoue, A. Igarashi, M. Appeltauer, and R. Hirschfeld. Towards type-safe JCop:
A type system for layer inheritance and first-class layers. In Proc. of the Workshop
on Context-Oriented Programming, pages 7:1–7:6. ACM, 2014.

15. T. Kamina and T. Tamai. McJava–a design and implementation of Java with
mixin-types. In Proc. of APLAS, pages 398–414, 2004.

16. L. Liquori and A. Spiwack. FeatherTrait: A modest extension of Featherweight
Java. ACM Trans. Prog. Lang. Syst., 30(2):11, 2008.

17. A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Informa-
tion and computation, 115(1):38–94, 1994.

A Sound Type System for First-Class Layers 19

PM ok in L

L req Λ L.C.m;Λ ∪ {L};x : T,this : C ⊢ e0 : S0 S0 <: T0

T0 C.m(T x) { return e0; } ok in L
(T-PMethod)

LA ok

L′ req Λ′ {L} <:w Λ′ PM ok in L

layer L req L ◁ L′ { PM } ok
(T-Layer)

override(CT ,LT)

∀m,C,T,T0,S,S0. if LT (L1)(C.m) = T0 m(T x){...}
and LT (L2)(C.m) = S0 m(S y){...}, then T,T0 = S,S0

noconflict(L1,L2)

∀m,T,T0,S,S0,x. if LT (L)(C.m) = S0 m(S x){...}
and mtype(m,C, ∅, dom(LT)) = T→T0, then T,T0 = S,S0

overrideh(L,C)

∀m,D,T,T0,S,S0. if class C ◁ D {... S0 m(S x){...}...}
and mtype(m,D, dom(LT), dom(LT)) = T→T0,

then T = S and S0 <: T0

overridev(C)

⊢ (CT ,LT ,e) : T

∀C ∈ dom(CT).CT (C) ok ∀L ∈ dom(LT).LT (L) ok
•; ∅; • ⊢ e : T noconflict(L1,L2)

∀C ∈ dom(CT).L ∈ dom(LT).overrideh(L,C)
∀C ∈ dom(CT).overridev(C)

⊢ (CT ,LT ,e) : T
(T-Prog)

Fig. 7. ContextFJ<:: Method/Class/Layer/Program typing.

