
A DSL for Compensable and Interruptible Executions
Hiroaki Inoue

Graduate School of Informatics
Kyoto University

Japan
hinoue@kuis.kyoto-u.ac.jp

Tomoyuki Aotani
School of Computing

Tokyo Institute of Technology
Japan

aotani@c.titech.ac.jp

Atsushi Igarashi
Graduate School of Informatics

Kyoto University
Japan

igarashi@kuis.kyoto-u.ac.jp

Abstract
Context-awareness is getting more and more important in
software applications. Such an application runs depending
on the time-varying status of the surrounding environment
such as network connection, battery/energy charge and heat.
Interruptions, or asynchronous exceptions, are useful to
achieve context-awareness: if the environment changes, the
execution of the application is interrupted reactively to stop
and/or recover the internal state for adapting to the new
environment. It is, however, difficult to program with inter-
ruptions modularly in most programming languages because
their support is too basic and is based on synchronous ex-
ception handling mechanism such as try–catch.

We propose a domain-specific language ContextWorkflow
for modular interruptible programs as a solution to the prob-
lem. An interruptible program is basically a workflow, i.e., a
sequence of atomic computations with compensations. The
uniqueness of ContextWorkflow is that, during its execu-
tion, a workflow watches the context, which is represented
as a reactive value in functional reactive programming and
instructs how the execution reflects the status of the sur-
rounding environment.

CCS Concepts • Software and its engineering → Do-
main specific languages; Error handling and recovery;
Procedures, functions and subroutines;

Keywords Asynchronous Exception, Interruptible Execu-
tion, Monads, Transaction, Workflow

ACM Reference Format:
Hiroaki Inoue, Tomoyuki Aotani, and Atsushi Igarashi. 2017. A DSL
for Compensable and Interruptible Executions. In Proceedings of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
REBLS’17, October 23, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5515-5/17/10. . . $15.00
https://doi.org/10.1145/3141858.3141860

4th ACM SIGPLAN International Workshop on Reactive and Event-
Based Languages and Systems (REBLS’17).ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3141858.3141860

1 Introduction
As mobile computing devices are spread, recent applications
tend to depend on external information that is time-varying,
such as time, heat, battery level, asynchronous commands
and availability of some functions such as GPS modules. As
examples, we will consider the following two applications.

Application 1: autonomous robot. Consider a robot which
has a battery and moves around to do some task. In case the
battery is running out before accomplishing the given task,
it should suspend what it is doing, return to a refueling point,
and resume the task.

Application 2: energy-aware computing. Energy-aware
computing [11, 14] is a research area that explores a program-
ming model to control trade-off between energy consump-
tion and accuracy of computation. For example, in Eco [14],
energy-aware computations change their accuracy dynami-
cally according to the amounts of remaining computations
and available energy. The accuracy is high and low if enough
energy is available or not, respectively. Suppose that a mobile
device running a computation with low energy is plugged.
It would be then desirable that the computation aborts im-
mediately and restarts to get a more accurate result.
In order to realize such applications, programs must be

interruptible: an ability to suspend or abort the execution by
promptly reacting to changes of external information and
to compensate an incompleted execution properly—e.g., a
robot moves back to the refueling point.

1.1 Problem
One common but naive way to realize interruption is to
use exception handling constructs such as try–catch and
throw. However, it is cumbersome to write interruptible
programs using exceptions because programmers have to
take the following three concerns into account:
• Atomicity. Programmers need to divide an interrupt-
ible program into regions where interruption can oc-
cur.
• Propagation of Exception. If try–catch is nested, some
methods often have to rethrow exceptions in order to
propagate them to outer handlers.

8

https://doi.org/10.1145/3141858.3141860
https://doi.org/10.1145/3141858.3141860

REBLS’17, October 23, 2017, Vancouver, Canada Hiroaki Inoue, Tomoyuki Aotani, and Atsushi Igarashi

• Progress. It is important to know how much progress
an interruptible program has made in order to clean
up incomplete executions. For example, whether a pro-
gram a();b();... is interrupted just after a() or just
after b() may influence how clean-up code should be
executed. However, a single try–catch does not care
at which program point a program is interrupted, so
programmers have to manage some kind of states or
use nested try-blocks (causing the propagation prob-
lem above) as in the code below1:

// state management

try{

state = beforeA; a(); state = beforeB; b();

} catch {

if(state == beforeB) { comp_b(); } comp_a(); }

// nested try-catch

try{ a();

try{ b(); } catch {

comp_b(); ex_rethrow();

} } catch { comp_a(); }

where comp_a() and comp_b() are the recovering
code for a() and b(), respectively.

We show how these concerns can be addressed in thread
programming using polling and asynchronous exceptions.

Polling. In Java, a thread can be interrupted by call-
ing Thread.interrupt() on a Thread object. Then,
InterruptedException is thrown in the thread if the thread
is blocked by sleep(), wait() or join(); otherwise, an in-
terrupted flag is turned on and the thread has to manually
check the flag using Thread.isInterrupted() and throw
an exception manually.

if(Thread.currentThread().isInterrupted())

throw new InterruptedException();

Therefore, atomicity is controlled mostly by manual poll-
ing of the interruption flag. Propagation must be done man-
ually by rethrowing InterruptedException. Progress has
to be managed manually, too.

Asynchronous exceptions. A few programming languages
such as Ruby and Haskell support asynchronous exception.
In Haskell [8], an interruption occurs when another thread
calls throwTo. For example, timeout is implemented as fol-
lows: one thread creates another thread, namely th, for a
time-consuming task using forkIO, sleeps for a few minutes
using threadDelay and throws Timeout to th.

do th <- forkIO $ timeConsuming

threadDelay someFixedTime

throwTo th Timeout

1In this hypothetical language, all exceptions thrown are caught and the
block after catch will be executed.

Atomicity is controlled using mask and interruptible
rather than cumbersome manual polling as follows2.

timeConsuming =

mask $ do

preprocess

b <- catch(interruptible mainTask)

(\(e :: Timeout) -> do {recovery; throw e});

postprocess

mask makes timeConsuming atomic, while interruptible
allows asynchronous exceptions to occur within mainTask.

The exception is, however, still handled using catch, which
takes a computation and a handler just as try–catch. If
Timeout occurs, the handler rethrows the exception. There-
fore, the progress and propagation concerns should be man-
ually programmed.

1.2 Our Work
In this paper, we propose a language ContextWorkflow to
make interruptible programs easier to write, composable,
and more understandable. It supports easy handling of atom-
icity, automatic propagation of interruption exceptions and
automatic progress management.
The language is inspired by workflow (or long-running

transaction) [4, 5]. A workflow is a sequence of atomic action
(or inner transactions) and its execution results in all or noth-
ing, similarly to ordinary transactions. Each atomic action
is accompanied by a compensation. When an interruption
or failure takes place—it can only occur when one atomic
action is finished (before the next atomic action starts)—the
whole workflow is aborted by running the compensations
of the already completed transactions in a reverse order.
The main idea of our ContextWorkflow is that a work-

flow is executed under some context, which changes over
time asynchronously and indicates how the execution of
a workflow proceeds, such as continue, abort and restart.
Asynchronous context change is similar to asynchronous
exceptions in the sense that it interrupts the execution of the
workflow (at a program point between atomic actions). In
the continue context, normal actions are executed with their
compensations recorded. In the abort context, the execution
of a normal action is stopped and the recorded compensa-
tions are executed. The restart context is a combination of
the abort and continue contexts, i.e., the normal execution is
stopped, the compensations are run, and the whole workflow
is reexecuted from the beginning.
Contexts are represented as signals in Reactive Program-

ming [10] and (implicitly) checked at the beginning of each
atomic action in order to realize asynchronous interruption.
This makes it easy to consider the three concerns above.

2Strictly speaking, we have to use mask_ instead of mask.

9

A DSL for Compensable and Interruptible Executions REBLS’17, October 23, 2017, Vancouver, Canada

Atomicity is achieved by checking the context only at pro-
gram points between atomic actions. Propagation of excep-
tion and progress are addressed automatically by the nature
of workflows.
The paper is organized as follows: Section 2 describes

more details of ContextWorkflow, Section 3 shows examples,
Section 4 discusses related work, and Section 5 concludes
this paper with future work. The implementation is available
at https://github.com/h-inoue/ContextWorkflow.

2 ContextWorkflow
ContextWorkflow is implemented as a domain-specific lan-
guage embedded in Scala using the Monad interface in func-
tional programming library scalaz [1]. This section explains
the basic constructs of ContextWorkflow.

2.1 Atomic Action and Workflow
An atomic action consists of a normal action (i.e., a Scala
expression) and a compensation action, and a workflow is a
sequence of atomic actions. Both of them are represented as
objects of type Workflow, which is basically a compensation
monad [9], which is a combination of the continuation and
exception monads and defined below. 3

1 trait Workflow[A] { self =>

2 def execute[B](g: A => Try[B]): Try[B]

3 // bind

4 def flatMap[C](f: A => Workflow[C]): Workflow[C] =

5 new Workflow[C] {

6 def execute[D](g: C => Try[D]): Try[D] =

7 self.execute(a => f(a).execute(g))

8 }

9 }

10 // return

11 def unit[A](a: => A):Workflow[A] = atom(a, v => ())

12 def atom[A](proc: => A)(comp:A => Unit)

13 :Workflow[A] = new Workflow[A]{

14 def execute[B](g: A => Try[B]): Try[B] =

15 Try(proc) match {

16 case Failure(e) => Failure(e)

17 case Success(a) => g(a) match {

18 case Failure(e) => {comp(a); Failure(e)}

19 case Success(x) => Success(x)

20 } } }

Method execute takes a continuation as the argument
and runs the workflow similarly to the continuation monad.
Method flatMap combines two workflows. Method unit
injects an expression returning a value of type A into a work-
flow. The type “=> A” of the argument denotes that the
expression passed as the argument is evaluated lazily, i.e.,
evaluated only when the value is necessary.

3Readers familiar with monads in Haskell should consider flatMap and
unit as bind and return.

Method atom creates an atomic action from a normal ac-
tion proc of type => A and a compensation action comp
of type A => Unit. A compensation action takes the re-
sult of the corresponding normal action—which has been
finished—as an argument. More specifically, execute of the
created workflow takes a continuation and executes the nor-
mal action. If the normal action fails due to an interruption,
it propagates the failure. If the normal action is evaluated
successfully, the given continuation g is applied to the result.
If the continuation fails, the workflow executes the com-
pensation action with the result of the normal action and
propagates the failure. Otherwise the workflow returns the
result of the continuation. For example, atom(i += 1)(_
=> i -= 1) is an atomic action. Its normal action adds one
to the variable i and returns the value of the type of Unit
(equals the unique value ()). The compensation action does
its inverse.

The compensation action is not necessarily the inverse of
the normal action. The purpose of the compensation action
is to ensure the “state” (e.g., the state of a file handler) is
acceptable even if an interruption occurs and the program
stops or rolls back.

The atomic actions created by atom do not check the con-
text and thus never fail. We will extend atom and execute
in the later section so that an interruption is detected by
checking the context at the beginning of a normal action.
Combining two or more workflows is easy thanks to the

composability of monads and the for-comprehension in
Scala. For example, we can get a workflow by sequencing
two atomic actions t1 and t2 and returning () as follows:

val t3:Workflow[Unit] = for{

_ <- t1

_ <- t2

} yield ()

To run a workflow, we invoke execute with an identity
continuation. We provide run to ease this task.

def run[A](wf: Workflow[A]):Try[A] =

wf.execute[A]((x: A) => Success(x))

Note: Though not appeared in the paper, current implemen-
tation is more complex since it uses Trampoline in order to
avoid StackOverflowError.

2.2 Interruption and Context
Interruptions occur only between atomic actions. Our imple-
mentation scheme is (1) to represent time-varying contexts
and (2) to check the context associated to a workflow at the
beginning of each atomic action in it. This section explains
our signal-based representation of the context and another
constructor of atomic actions with context checking namely
catom. This section also explains how aworkflow is executed
when an interruption occurs.

10

https://github.com/h-inoue/ContextWorkflow

REBLS’17, October 23, 2017, Vancouver, Canada Hiroaki Inoue, Tomoyuki Aotani, and Atsushi Igarashi

Signal of Context. The context steers the execution of a
workflow. It is either Continue, Restart or Abort.

trait Context

object Continue extends Context

object Abort extends Context

object Restart extends Context

Continue means that the execution should continue; Abort
means that the execution should be stopped after executing
the recorded compensation actions; Restart is a combina-
tion of Abort and Continue, i.e., it means that the workflow
should be executed after executing the recorded compensa-
tion actions.

We represent variation of a context over time by a signal
in functional reactive programming and use existing library
REScala [10]. A signal is intuitively a function from time
to some value. It can depend on other signals, and a value
change of a signal is propagated to other signals which are
dependent on the signal. Therefore, the library helps us im-
plement time-varying contexts easily.
For example, we can represent the interruption due to

timeout as a signal of Context as follows:

def timeout:Signal[Context] = {

val seconds:Signal[Int] = /* updated every second */

return Signal { if(seconds() > 10) Abort else Continue } }

Signal seconds gives the elapsed time in seconds. Method
timeout creates a new signal of context, of which value is
Continue for 10 seconds and Abort after that.

Context Polling. To check the context at the beginning of
every atomic action, it is necessary to make the context avail-
able within execute. We modify Workflow so that execute
takes a signal of Context as an additional argument.

def execute[B](ctx: Signal[Context])(g: A => Try[B]): Try[B]

It is also necessary to extend the constructor of atomic ac-
tions atom so that execute of the created Workflow object
(1) takes the context as an argument and (2) checks the cur-
rent value of the context before executing the normal action.
The extended constructor catom is defined as follows:

def catom[A](proc: => A)(comp: A => Unit)

:Workflow[A] =

new Workflow[Unit] {

def execute[B](ctx: Signal[Context])(g: Unit => Try[B]):

Try[B] =

ctx.now match {

case Abort => Failure(AbortEx)

case Restart => Failure(RestartEx)

case Continue => g(()) }

}.flatMap((_:Unit) => atom(proc,comp))

For readability, we provide an alternative form expr1 %%
expr2, which is equivalent to catom(expr1,expr2).

Note that method unit is unchanged. One may wonder if
it should be rewritten using catom. However, catom is not

the unit operator of the Workflowmonad. (One of the monad
laws would be broken.)
Finally we extend run to take a factory function (like

timeout above) to generate a signal of Context that is passed
to execute so that the whole workflow is executed under
the context. Restart of a workflow is also realized by run.

def run[A](wf: Workflow[A],

createSC: () => Signal[Context]):Try[A] =

wf.execute[A](createSC())((x: A) => Success(x)) match {

case Failure(RestartEx) => run(t,createSC)

case e => e }

run(t3, timeout _) // workflow execution

2.3 Larger Workflows
This section explains how we can build larger workflows
and how they are executed.

Largerworkflowsusing functions overmonads. Not only
the for-comprehension but also utility functions over mon-
ads are available to build workflows. For example, it is easy
to build workflows that processes lists using foldLeftM de-
fined in FoldableOps[A] (e.g., lists) of scalaz:

def foldLeftM[G[_], B]

(z: B)(f: (B, A) => G[B])(implicit M: Monad[G]): G[B]

If we pass a function that creates the workflow as f, we will
obtain a workflow that processes over A’s.
Below is an example that adds the integer values from 1

to 100 to variable i and prints the value of i unless it is not
interrupted.

1 var i = 0

2 val lst = (1 to 100).toList

3 val longproc = for{

4 _ <- () %% (_ => println("compensated"))

5 _ <- lst.foldLeftM(()){

6 (_,n) => (i += n)%%(_ => i -= n)}

7 _ <- println(i) %% (_ => ())

8 } yield ()

If the workflow is interrupted, the program subtracts num-
bers already added in LIFO order. The atomic action in line 4
merely adds the compensation action. Lines 5 and 6 create
a workflow that processes the list of the integers from 1 to
100. The normal action is to increment i by an integer in the
list while the compensation action is to decrement i.

The execution of the workflow longproc depends on the
context. Suppose that the workflow execution is interrupted
after adding 43. Then the execution proceeds as follows:

(i += 1) → (i += 2) → ... → (i += 43)

→ (*interruption*) → (i -= 43) → (i -= 42) → ...

→ (i -= 1) → (println("compensated"))

→ (Failure e)

11

A DSL for Compensable and Interruptible Executions REBLS’17, October 23, 2017, Vancouver, Canada

Sub-workflow. Wewould sometimes like to thread a part of
a workflow so that the compensation actions of the part are
ignored if the part is completed successfully. We call such a
part sub-workflow and provide a construct sub that makes a
part of workflow a sub-workflow:
def sub[A](t: Workflow[A]): Workflow[A]

Below is a simple example that uses sub.
1 for{

2 _ <- procA

3 _ <- sub{ procB }

4 _ <- procC

5 _ <- println("done") %% (_ => ())

6 } yield ()

Suppose that an interruption occurs just before the atomic
action in line 5 is executed. Only the compensation actions of
procC and procA are executed. Without sub around procB,
the compensation actions for procB will be executed (be-
tween those of procC and procA even if procB has finished
successfully. We will see a use case of sub in the next section.

3 Case Study
In this section, we look two case studies, which are based
on applications described in Section 1, in order to describe
expressiveness of ContextWorkflow.

3.1 Application 1: Maze Search Robot
Consider programming a robot that searches a maze. One
main issue here is that the robot has limited energy, so he
must get back to the start point before exhausting its energy.
Other problem settings are:
• A maze is given as a set of Nodes, each of which repre-
sents floor and has its coordinate information.
• There is no goal. The robot is supposed to search every
path in the maze as long as he can.

The method visit below is the core of the search, which
is depth-first.
1 def visit(n: Node, maze: Set[Node]):Workflow[Unit] ={

2 for{

3 _ <- visited(n) %% (_ => unknown(n))

4 _ <- neighbors(n,maze).foldLeftM(()){

5 (_,neighbor) =>

6 if(isVisited(neighbor)){

7 sub {

8 for {

9 _ <- moveFromTo(n,neighbor)

10 _ <- visit(neighbor,maze)

11 _ <- move(n) %% (_ => ()) // get back to n

12 } yield () }

13 } else catom(())() // empty catom

14 } } yield ()

15 }

16 def neighbors(n: Node, maze: Set[Node]): List[Node] =

17 ... // getting neighbor nodes of the node n

18 def move(n: Node): Unit = ... // moving the robot to n

19 def moveFromTo(from: Node, to: Node): Workflow[Unit] =

20 move(to) %% (_ => move(from))

The method visit takes two parameters: the node n of
the start point of the search and the maze, which is a set of
nodes. An instance of Node has a flag to represent whether
it has been visited or not. If visit is called, the program (1)
sets the flag of the node n (by calling visited), (2) for each
neighbor of the node whose flag has not been set, moves the
robot to the neighbor n and recursively calls visit. If the
search from the neighbors is done, it moves the robot back
to the start node n. If interruption occurs, incomplete visit
should be compensated: moving back to the start node (line
9) and turn off the flag of the start node (calling unknown on
line 3).

compensation

normal

interruption

Figure 1. Maze search simulation

We can run visit with conditions involving reactive val-
ues such as timeout described above.
run(visit(startNode, maze), timeout _)

If the running time is beyond the given threshold, the exe-
cution will stop, compensating its actions, so the robot will
come back to the start point. Figure 1 illustrates a search,
being interrupted halfway.

An interesting point here is that a workflow produced by
the method moveFromTo is a reusable unit, which we can use
in another visit algorithm.
The reason why a sub-workflow is used in lines 7–12 is

that we would like the robot to take a shortcut at compen-
sation time. If we did not use sub-workflow in Figure 1, the
robot would trace back all the route along which it came.
In this example, move() is treated as atomic and so an

interruption does not occur during the move (even though
it may take a long time for a robot to make a physical move).
If one would like to put a checkpoint more frequently, he or
she should subdivide the move function into smaller atomic
actions and define move so as to return a Workflow[Unit].

3.2 Application 2: Energy-Aware Computing
Here, we consider a kind of energy-aware computing. Sup-
pose that there are three battery levels: plugged, high-level

12

REBLS’17, October 23, 2017, Vancouver, Canada Hiroaki Inoue, Tomoyuki Aotani, and Atsushi Igarashi

and low-level. Suppose also that our energy-aware computa-
tions have conditional branches to change accuracy of the
computation according to the battery level: the accuracy in
plugged is higher than in high-level, which is higher than
in low-level. If the battery level changes to high-level from
low-level or to plugged from the others, the system aborts
the computation, discards less accurate results, and restarts
the computation for higher accuracy.
Let’s make the idea concrete in code. Suppose that

BatLevel represents the battery level and is inherited by
objects High, Low and Plugged. We can write a signal of
context using transitions of battery levels.

1 val bat:Signal[BatLevel] = ...

2 // signal of Plugged | High | Low

3 def batctx():Signal[Context] = Signal {

4 (bat.delay(1).apply(), bat()) match {

5 case (Low,High) => Restart

6 case (Low,Plugged) => Restart

7 case (High,Plugged) => Restart

8 case _ => Continue } }

The expression (bat.delay(1).apply(), bat()) repre-
sents the pair of the previous battery level and the current
battery level, so the pair represents the transition of the bat-
tery level. The patterns in lines 5–7 represents when the
battery level becomes higher, in which case, the context be-
comes Restart. Otherwise, the context becomes Continue.

It would be more interesting to introduce new contexts to
suspend and resume a workflow, since we could add a rule
like “transition from high to low triggers suspend.” Imple-
mentation of suspend and resume is left for future work.

4 Related Work
There are several studies on context-oriented programming
focusing on changing the behavior of the program in re-
sponse to asynchronous context changes [6, 12]. The most
related among them is Flute [2]. It supports interruptible
context-dependent execution. Interruptions occur when the
context changes and the context is represented as a reactive
value. If the execution of the program is interrupted, it is
suspended and another execution that reflect the changed
context starts. The main difference is that ContextWorkflow
focuses on how to interrupt execution and recover incom-
plete execution, while Flute puts emphasis on changing pro-
gram behavior according to context changes.
Workflow or long-running transaction [4, 5] is a well-

known error-recovery technique especially in distributed
systems. Ramalingam and Vaswani [9] propose a monadic
realization of workflows, used to develop a service tolerate to
duplicate requests. We use the compensation monad, given
as an extension of the workflow, as an integral part of the
language. We think, though, combination with contexts and
automated polling are new.

Modularization of exception handling code has been a ma-
jor concern in Aspect-Oriented Programming [3, 7] because
separation of exception handling code from normal code
enhances re-usability of each modules. Our approach rather
regards a pair of a normal code and a compensation as a unit
of reuse.
Compensation actions can be seen as weak manual in-

versions of normal actions. In reversible programming lan-
guages [13], any programs run forward and backward and it
is ensured that each direction is the exact inverse of the other.
In other words, if programmers write a normal action in re-
versible programming languages, its compensation action is
automatically defined. Manually specifying compensation
actions have an advantage and a disadvantage compared
to the reversible programming approach. The advantage is
that we can avoid visiting unnecessary nodes to go back to
the start node in the maze search example in Section 3. The
disadvantage is that we have to specify the inversions of
normal actions manually as in longproc in Section 2.3.

5 Conclusions
We have proposed how an interruptible program is written
by ContextWorkflow, which is a domain specific language
to write interruptible programs compositionally. Context-
Workflow combines the ideas of long-running transactions
and reactive values. This approach provides modularity since
an atomic computation with a compensation also becomes a
workflow.

Future Work. This is work in progress and there is a lot to
explore.
There are still several points to be decided in the design

space of the atomicity and propagation concerns. For exam-
ple, for atomicity, we should consider how a higher order
workflow like catom(catom(...) (...)) (...) behaves;
for propagation of exception, how a context change occur-
ring at compensation time is treated. Formalization of the
semantics is also left for future work.

Support for “suspension” is another big part of our future
work. It allows us to suspend a workflow execution and
to resume it later. This feature would be useful especially
in distributed computing; a long-running program which
is incompleted can be transferred to another machine and
resume there.

We also would like to support partial restart, which stops
propagating exceptions at a certain point in a workflow and
restart the workflow from the point. This enables us to avoid
unnecessary recomputations. Suppose that the battery level
is initially high, changes to low and then changes to high
in the example in Section 3.2. When the battery level comes
back to high, the workflow is restarted completely even
though some initial part of the workflow is executed in high
level. Partial restart allows us to reuse the result of the part
for efficiency.

13

A DSL for Compensable and Interruptible Executions REBLS’17, October 23, 2017, Vancouver, Canada

In Java thread, interruptions occurwhen a thread is blocked
by sleep(), wait() and join(). ContextWorkflow must
take care of such thread blocking; even if the thread is blocked,
it should be interruptible and take care of context changes.
This is difficult in the current approach because the thread
itself does not check the context.

Acknowledgments
This work was supported in part by Kyoto University Design
School (Inoue).

References
[1] [n. d.]. scalaz. ([n. d.]). https://github.com/scalaz/scalaz
[2] Engineer Bainomugisha, Jorge Vallejos, Coen De Roover, Andoni Lom-

bide Carreton, and Wolfgang De Meuter. 2012. Interruptible context-
dependent executions: a fresh look at programming context-aware
applications. In Proc. of ACM Onward! 2012. ACM, 67–84.

[3] Nelio Cacho, Fernando Castor Filho, Alessandro Garcia, and Eduardo
Figueiredo. 2008. EJFlow: Taming Exceptional Control Flows in Aspect-
oriented Programming. In Proc. of AOSD’08. ACM, New York, NY, USA,
72–83.

[4] Christian Colombo and Gordon J. Pace. 2013. Recovery Within Long-
running Transactions. ACM Comput. Surv. 45, 3, Article 28 (July 2013),
35 pages.

[5] Hector Garcia-Molina and Kenneth Salem. 1987. Sagas. In Proc. of
ACM SIGMOD. ACM, New York, NY, USA, 249–259.

[6] Hiroaki Inoue and Atsushi Igarashi. 2016. A Library-based Approach
to Context-dependent Computation with Reactive Values: Suppressing

Reactions of Context-dependent Functions Using Dynamic Binding.
In Companion Proc. of the 15th Intl. Conf. on Modularity. ACM, New
York, NY, USA, 50–54.

[7] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. 1997. Aspect-
oriented programming. Springer, 220–242.

[8] Simon Marlow, Simon Peyton Jones, Andrew Moran, and John Reppy.
2001. Asynchronous Exceptions in Haskell. In Proc. of ACM PLDI.
ACM, New York, NY, USA, 274–285.

[9] Ganesan Ramalingam and Kapil Vaswani. 2013. Fault Tolerance via
Idempotence. In Proc. of ACM POPL (POPL ’13). ACM, New York, NY,
USA, 249–262.

[10] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. 2014. REScala:
Bridging between object-oriented and functional style in reactive ap-
plications. In Proc. of Intl. Conf. on Modularity. ACM, 25–36.

[11] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapra-
gasam, Luis Ceze, and Dan Grossman. 2011. EnerJ: Approximate Data
Types for Safe and General Low-power Computation. In Proc. of ACM
PLDI (PLDI ’11). ACM, New York, NY, USA, 164–174.

[12] Martin von Löwis, Marcus Denker, and Oscar Nierstrasz. 2007. Context-
oriented Programming: Beyond Layers. In Proc. of Intl. Conf. on Dy-
namic Languages. ACM, New York, NY, USA, 143–156.

[13] Tetsuo Yokoyama and Robert Glück. 2007. A Reversible Programming
Language and Its Invertible Self-interpreter. In Proc. ACM PEPM (PEPM
’07). ACM, New York, NY, USA, 144–153.

[14] Haitao Steve Zhu, Chaoren Lin, and Yu David Liu. 2015. A Program-
ming Model for Sustainable Software. In Proc. of ACM ICSE. IEEE Press,
Piscataway, NJ, USA, 767–777.

14

https://github.com/scalaz/scalaz

	Abstract
	1 Introduction
	1.1 Problem
	1.2 Our Work

	2 ContextWorkflow
	2.1 Atomic Action and Workflow
	2.2 Interruption and Context
	2.3 Larger Workflows

	3 Case Study
	3.1 Application 1: Maze Search Robot
	3.2 Application 2: Energy-Aware Computing

	4 Related Work
	5 Conclusions
	Acknowledgments
	References

