
Proving Noninterference by a Fully Complete
Translation to the Simply Typed λ-calculus

Naokata Shikuma and Atsushi Igarashi

Graduate School of Informatics, Kyoto University
{naokata,igarashi}@kuis.kyoto-u.ac.jp

Abstract. Tse and Zdancewic have formalized the notion of noninter-
ference for Abadi et al.’s DCC in terms of logical relations and given a
proof by reduction to parametricity of System F. Unfortunately, their
proof contains errors in a key lemma that their translation from DCC
to System F preserves the logical relations defined for both calculi. We
prove noninterference for a variant of DCC by reduction to the basic
lemma of a logical relation for the simply typed λ-calculus, using a fully
complete translation to the simply typed λ-calculus. Full completeness
plays an important role in showing preservation of the two logical rela-
tions through the translation.

1 Introduction

Background. Dependency analysis is a family of static program analyses to trace
dependencies between inputs and outputs of a given program. For example,
information flow analysis [3], binding-time analysis [8], and call tracking [16] are
its instances. One of the most important correctness criteria of the dependency
analysis is called noninterference [5], which roughly means that, for any pair
of program inputs that are equivalent from the viewpoint of an observer at
some security level, the outputs are also equivalent for the observer. Various
techniques for type-based dependency analyses have been proposed, especially,
in the context of language-based security [15].

Abadi et al. proposed a unifying framework called dependency core calcu-
lus (DCC) [1] for type-based dependency analyses for higher-order functional
languages, and showed noninterference for several type systems of concrete de-
pendency analyses by embedding them into DCC.

Recently, Tse and Zdancewic formalized this property for DCC by using
a syntactic logical relation [9]—a family of type-indexed relations, defined by
induction on types, over programs—as the equivalence relation for inputs and
outputs, thereby generalizing the notion of noninterference to higher-order pro-
grams. They also gave a proof of noninterference by reducing it to the para-
metricity theorem [14, 18], which was also formalized in terms of syntactic logi-
cal relations, of System F [13, 4]. Their technical development is summarized as
follows:

1. Define a translation from DCC to System F;

2. Prove, by induction on the structure of types, that the translation is both
sound and complete—that is, it preserves the logical relations in the sense
that

e1 ≈D e2 : t ⇐⇒ f(e1) ≈F f(e2) : f(t)

where t is a DCC type, f is the translation from DCC to System F and ≈D

and ≈F represent the logical relations for DCC and System F, respectively;
and

3. Prove noninterference by reduction to the parametricity theorem of System
F, using the sound and complete translation above.

Unfortunately, in the second step, their proof contains an error, which we
will briefly explain here. First note that, for function types t1 → t2, the logical
relations are defined by: e1 ≈x e2 : t1 → t2 if and only if, for any e′1 ≈x e′2 : t1,
e1 e′1 ≈x e2 e′2 : t2 (x stands for either D or F) and that the type translation
is homomorphic for function types, namely f(t1 → t2) = f(t1) → f(t2). Then,
consider the case where t is a function type t1 → t2. To show the left-to-right
direction, we must show that f(e1) M1 ≈F f(e2)M2 : f(t2) for any M1 ≈F M2 :
f(t1), from the assumption e1 ≈D e2 : t1 → t2, but we get stuck because there is
no applicable induction hypothesis. If the translation were full [6] (or surjective),
M1 and M2 would be of the forms f(e′1) and f(e′2), making it possible to apply an
induction hypothesis, and the whole proof would go through. Their translation,
however, turns out not to be full; we have actually found a counterexample for
the preservation of the equivalence from the failure of the fullness (see Section 5
for more details). So, although interesting, this indirect proof method fails at
least for the combination of DCC and System F.

Our Contributions. In this paper, we prove noninterference by Tse and Zdancewic’s
method in a slightly different setting: In order to obtain a fully complete trans-
lation, we change the source language to what we call Sealing Calculus (λ[]),
which is a subset of extended DCC of Tse and Zdancewic [17], and use a simpler
target language, namely the simply typed λ-calculus λ→. Then, the basic lemma
for a logical relation of λ→ is used in place of the parametricity theorem. Our
technical contributions can be summarized as follows:

– Development of a sound and fully complete translation from λ[] to λ→; and
– A proof of the noninterference theorem of λ[] by reducing to the basic lemma

of λ→ with the translation.

The existence of a fully complete translation means that λ[] provides syntax that
is rich enough to express every denotation in the model (that is, λ→). Thus, this
result suggests that the extension of DCC proposed by Tse and Zdancewic is
really an improvement over DCC, for which the previously proposed translation
is not full.

Structure of the Paper. The rest of the paper is organized as follows. Section 2
introduces λ[] with its syntax, type system, reduction, and logical relations and

then the statement of the noninterference theorem. Section 3 introduces λ→ and
defines a translation from λ[] to λ→ and its inverse. In Section 4, we complete
our proof of noninterference by reducing it to the basic lemma of logical relations
for λ→. Finally, Section 5 discusses related work and Section 6 gives concluding
remarks.

2 Sealing Calculus

In this section, we define λ[], which is a simply typed λ-calculus extended with
the notion of sealing. We write [e]a for sealing e by authority a; the sealed value
can be extracted by unsealing ea, whose result must not be leaked to anyone
without the authority a. Authorities represent rights to access confidential data;
so the power set of authorities naturally forms security levels, which are ordered
by inclusion. To keep track of dependency by a type system, information on the
authority used for sealing is attached to types of sealing [t]a; furthermore, type
judgments, written Γ ; ` − e : t, are augmented by a level ` = {a1, . . . , an},
which is also called a protection context elsewhere [17]. This judgment means
that the value of e has type t as usual and, moreover, cannot be leaked to levels
that lack some of the authorities in `.

2.1 Syntax

Let A be the countable set of authorities, and ranged over by a (possibly with
subscripts). The metavariable ` ranges over levels, which are finite subsets of
authorities. The metavariables x, y, and z (possibly with subscripts) range over
the denumerable set of variables. Then, the types and terms of λ[] are defined
as follows.

Definition 1 (Types). The set of types, ranged over by t, t′, t1, t2, . . . , is
defined as follows:

t ::= unit | t → t | t × t | t + t | [t]a

We call [t]a a sealed value type.

Definition 2 (Terms). The set of terms, ranged over by e, e′, e1, e2, . . . , is
defined as follows:

e ::= x | () | λx : t. e | e e | 〈e, e〉 | π1(e) | π2(e) | ι1(e) | ι2(e)
| (case eof ι1(x1).e | ι2(x2).e) | [e]a | ea

Terms of λ[] include the unit value, pairing, projection, injection, and case
analysis as well as λ-abstraction and applications. As usual, x is bound in λx : t. e
and x1 and x2 are bound in e1 and e2 of (case e0 of ι1(x1).e1 | ι2(x2).e2), respec-
tively. We say, for [e]a, e is sealed at a, and call [e]a and ea (a-)sealing term
and (a-)unsealing term, respectively. In this paper, α-conversions are defined in
a customary manner and implicit α-conversions are assumed to make all the
bound variables distinct from other (bound and free) variables.

2.2 Type System

As mentioned above, the form of type judgement of λ[] is Γ ; ` − e : t, where
Γ is a (finite) mapping from variables to types. This judgement is read as “e is
given type t at level ` under context Γ .” Since the computation of e depends on
authorities in `, any information on its value should not be leaked to any other
level `′, which is not a superset of `.

The typing rules of λ[] are given as follows:

x : t ∈ Γ

Γ ; ` − x : t
Γ ; ` − () : unit

Γ, x : t1 ; ` − e : t2
Γ ; ` − λx : t. e : t1 → t2

Γ ; ` − e : t1 → t2 Γ ; ` − e′ : t1
Γ ; ` − e e′ : t2

Γ ; ` − e1 : t1 Γ ; ` − e2 : t2
Γ ; ` − 〈e1, e2〉 : t1 × t2

Γ ; ` − e : t1 × t2 i ∈ {1, 2}
Γ ; ` − πi(e) : ti

Γ ; ` − e : t i ∈ {1, 2}
Γ ; ` − ιi(e) : t1 + t2

Γ ; ` − e : t1 + t2 Γ, x1 : t1 ; ` − e1 : t Γ, x2 : t2 ; ` − e2 : t

Γ ; ` − (case eof ι1(x1).e1 | ι2(x2).e2) : t

Γ ; ` ∪ {a} − e : t

Γ ; ` − [e]a : [t]a

Γ ; ` − e : [t]a a ∈ `

Γ ; ` − ea : t

All the rules but the last two are standard. The (second last) rule for sealing
means that, by sealing with a, it is legal to leak [e]a to a level without a: at such
a level, e cannot be unsealed, as is shown in the (last) rule for unsealing.

2.3 Reduction

The reduction relation for λ[] is written e −→ e′ and given as the least compatible
relation closed by the following rules:

(λx : t. e1) e2 −→ [e2/x]e1 πi(〈e1, e2〉) −→ ei

(case ιi(e)of ι1(x1).e1 | ι2(x2).e2) −→ [e/xi]ei ([e]a)a −→ e

We write [e/x] for a capture-avoiding substitution of e for the free occurrences of
variable x. All rules are straightforward. The last rule says that the term sealed
by a is opened by the same authority. In what follows, we use v for normal forms.

2.4 Basic Properties

We list the basic properties of λ[]. The first lemma below means that, if e is
permitted at some level, then it is permitted also at a higher level.

Lemma 1 (Level Weakening). If Γ ; ` − e : t, then Γ ; ` ∪ {a} − e : t,
and the derivations of these judgements have the same size.

The following three theorems are standard.

Theorem 1 (Subject Reduction). If Γ ; ` − e : t and e −→ e′, then
Γ ; ` − e′ : t.

Theorem 2 (Strong Normalization). If Γ ; ` − e : t, then e is strongly
normalizing.

Theorem 3 (Church-Rosser Property). If Γ ; ` − e : t and e −→∗ e1 and
e −→∗ e2, then there exists a term e′ such that ei −→∗ e′ (i = 1, 2).

2.5 Logical Relation and Noninterference

Now we define logical relations to express equivalence of terms from the view-
point of an observer at some level, and then state the noninterference theorem.
To take level information into account, the logical relations (for close terms
and normal forms) are indexed by levels as well as types. e1 ≈` e2 : t means
that closed terms e1 and e2 of type t are logically related at level `. Similarly,
v1 ∼` v2 : t means that closed normal forms v1 and v2 of t, are logically related
at `. We assume · ; ` − ei : t and · ; ` − vi : t for i = 1, 2 (we write · for the
empty context).

Definition 3 (Logical Relations for λ[]). The relations v1 ∼` v2 : t and
e1 ≈` e2 : t are defined by the following rules:

() ∼` () : unit
∀(e1 ≈` e2 : t1). v1 e1 ≈` v2 e2 : t2

v1 ∼` v2 : t1 → t2

v11 ∼` v21 : t1 v12 ∼` v22 : t2
〈v11, v12〉 ∼` 〈v21, v22〉 : t1 × t2

v1 ∼` v2 : ti i ∈ {1, 2}
ιi(v1) ∼` ιi(v2) : t1 + t2

v1 ∼` v2 : t a ∈ `

[v1]a ∼` [v2]a : [t]a

a 6∈ `

[v1]a ∼` [v2]a : [t]a

e1 −→∗ v1 e2 −→∗ v2 v1 ∼` v2 : t

e1 ≈` e2 : t

Most rules are standard. There are two rules for [v1]a ∼` [v2]a : [t]a. When
a ∈ `, an observer at ` can examine vi by unsealing [vi]a (i = 1, 2), so only
when its contents are equivalent, these sealing terms are equivalent. Otherwise,
the observer cannot distinguish them at all and those terms are always regarded
equivalent.

We use γ to represent a simultaneous substitution of terms for variables and
write γ1 ≈` γ2 : Γ if dom(γ1) = dom(γ2) = dom(Γ) and γ1(x) ≈` γ2(x) : Γ (x)
for any x ∈ dom(γ1). Then, the noninterference theorem is stated as follows:

Theorem 4 (Noninterference). If Γ ; ` − e : t and γ1 ≈` γ2 : Γ , then
γ1(e) ≈` γ2(e) : t.

As mentioned in the introduction, noninterference means that, for any pair
of program inputs that are equivalent from the viewpoint of an observer at some
security level, the outputs are also equivalent for the observer. Here, substitu-
tions γ1 and γ2 play roles of equivalent inputs to program e. So, this property
guarantees the correctness of the type system as a dependency analysis.

Although we could give a direct proof of this theorem by induction on the
derivation of Γ ; ` − e : t rather easily, we show an indirect proof that reduces
the property to a corresponding property in λ→, namely the basic lemma of
logical relations.

3 Translation

In this section, we define a formal translation from λ[] to the simply typed λ-
calculus λ→ and its inverse. Both translations are shown to preserve typing. We
start with reviewing λ→ briefly with logical relations for it.

3.1 λ→

λ→ introduced here is a standard one with unit, base, function, product, and
sum types. We assume that base types, written αa (a ∈ A), have one-to-one
correspondence with authorities. We use metavariables M for terms and A for
types. The syntax of λ→ is given as follows:

A ::= α | unit | A → A | A × A | A + A
M ::= x | () | λx :A.M | M M | 〈M, M〉 | πi(M) | ιi(M)

| (caseM of ι1(x1).M | ι2(x2).M)

The form of type judgement of λ→ is ∆ − M : A, where ∆ is a (finite)
mapping from variables to λ→ types. For brevity, we omit typing rules, which
are completely standard. The reduction of λ→ terms consists of standard β-
reduction and the following commutative conversion.

(x1, x2 6∈ FV(M ′))

(caseM of ι1(x1).M1 | ι2(x2).M2) M ′ −→ caseM of ι1(x1).M1 M ′ | ι2(x2).M2 M ′

(i ∈ {1, 2})
πi(caseM of ι1(x1).M1 | ι2(x2).M2) −→ caseM of ι1(x1).πi(M1) | ι2(x2).πi(M2)

(x1, x2 6∈ FV(M ′
1) ∪ FV(M ′

2))

case (caseM of ι1(x1).M1 | ι2(x2).M2)of ι1(y1).M
′
1 | ι2(y2).M

′
2

−→ caseM of ι1(x1).(caseM1 of ι1(y1).M
′
1 | ι2(y2).M

′
2)

| ι2(x2).(caseM2 of ι1(y1).M
′
1 | ι2(y2).M

′
2)

Here, we write FV(M) for the set of free variables in M . In what follows, we
use V for normal forms.

The resulting calculus (with commutative conversion) satisfies the standard
properties of subject reduction, Church-Rosser, and strong normalization [2].
We say (the type derivation ∆ − M : A of) a term satisfies the subformula
property when any type in the derivation is a subexpression of either A or a type
occurring in ∆. Then, any well typed term can reduce to the one that satisfies
the subformula property as in the theorem below, which makes it easy to ensure
the fullness of the translation.

Theorem 5 (Subformula Property). If ∆ − M : A, then there exists a
normal form V such that M −→∗ V and ∆ − V : A, which satisfies the
subformula property.

Remark 1. Commutative conversion is necessary for the above theorem to hold.
Without commutative conversion,

λx :unit + unit . ((casexof ι1(x1).λy :unit . () | ι2(x2).λy :unit . ())) ()

of type unit + unit → unit would be a norml form, which does not satisfy the
subformula property, because a subterm λy :unit . () has type unit → unit , which
does not occur in unit + unit → unit . This theorem also requires full reduction,
which allows any redex (even under λ) to reduce.

3.2 Logical Relation for λ→

We define syntactic logical relations for λ→ in the standard manner. As for λ[],
there are relations for terms and normal forms, written ∆ − M1 ≈ M2 : A
(read “terms M1 and M2 of type A are logically related under context ∆”) and
∆ − V1 ∼ V2 : A (read similarly), respectively. We assume that ∆ − Mi : A
and ∆ − Vi : A for i = 1, 2.

Definition 4 (Logical Relations for λ→). The relations ∆ − M1 ≈ M2 : A
and ∆ − V1 ∼ V2 : A are the least relation closed under the following rules:

∆ − () ∼ () : unit ∆ − V1 ∼ V2 : αa
∆ − V11 ∼ V21 : A1 ∆ − V12 ∼ V22 : A2

∆ − 〈V11, V12〉 ∼ 〈V21, V22〉 : A1 × A2

∆ − V1 ∼ V2 : Ai i ∈ {1, 2}
∆ − ιi(V1) ∼ ιi(V2) : A1 + A2

∀(∆ − M1 ≈ M2 : A1). ∆ − V1 M1 ≈ V2 M2 : A2

∆ − V1 ∼ V2 : A1 → A2

M1 −→∗ V1 M2 −→∗ V2 ∆ − V1 ∼ V2 : A

∆ − M1 ≈ M2 : A

We write δ for a simultaneous substitution of (λ→) terms for variables and
∆′ − δ1 ≈ δ2 : ∆ if dom(δ1) = dom(δ2) = dom(∆) and for any x ∈ dom(δ1),
∆′ − δ1(x) ≈ δ2(x) : ∆(x). Then, the basic lemma is as follows:

Lemma 2 (Basic Lemma). If ∆ − M : A and ∆′ − δ1 ≈ δ2 : ∆, then
∆′ − δ1(M) ≈ δ2(M) : A.

Proof. By induction on the derivation of ∆ − M : A.

Remark 2. Although the above logical relation for λ→ are not reflexive in general
(for example x : A + A 6− x ≈ x : A + A), we have ∆ − M ≈ M : A if all the
types in ∆ are base types αa. This is derived from Lemma 2 and the fact that
∆ − x ≈ x : ∆(x) if ∆(x) = αa, by definition.

3.3 From λ[] To λ→

We define the translation of λ[] to λ→. One of the main ideas of the translation
is to translate sealing of type [t]a to a function from the base type αa, which
corresponds to a. The sealed value can be extracted by passing a term of αa as
an argument. Intuitively, the term of αa serves as a “key” to unseal.

Definition 5 (Translation of Types and Contexts). (·)† is a function from
λ[] types to λ→ type, defined by:

unit† = unit (t1 op t2)
† = t†1 op t†2 ([t]a)† = αa → t†

where op stands for →,×, or +. (·)† is extended pointwise to contexts by: Γ † =
{x : t† |x : t ∈ Γ}.

The translation to λ→ is represented by Γ ; σ − e : t ↘ M , read “λ[] term e
of type t is translated to M under Γ and σ,” where σ is an injective finite map
from authorities to variables. We assume that the range of σ and the domain of
Γ are disjoint.

Definition 6 (Translation of Terms). The relation Γ ;σ − e : t ↘ M is
defined as the least relation closed under the following rules:

Γ ; σ − x : t ↘ x Γ ; σ − () : unit ↘ ()
Γ, x : t1; σ − e : t2 ↘ M

Γ ; σ − λx : t1. e : t1 → t2 ↘ λx : t†1. M

Γ ; σ − e : t1 → t2 ↘ M
Γ ; σ − e′ : t1 ↘ M ′

Γ ; σ − e e′ : t2 ↘ M M ′

Γ ; σ − e1 : t1 ↘ M1

Γ ; σ − e2 : t2 ↘ M2

Γ ; σ − 〈e1, e2〉 : t1 × t2 ↘ 〈M1, M2〉
Γ ; σ − e : t1 × t2 ↘ M i ∈ {1, 2}

Γ ; σ − πi(e) : ti ↘ πi(M)

Γ ; σ − e : ti ↘ M i ∈ {1, 2}
Γ ; σ − ιi(e) : t1 + t2 ↘ ιi(M)

Γ ; σ − e : t1 + t2 ↘ M Γ, x1 : t1; σ − e1 : t ↘ M1 Γ, x2 : t2; σ − e2 : t ↘ M2

Γ ; σ − (case eof ι1(x1).e1 | ι2(x2).e2) : t ↘ (caseM of ι1(x1).M1 | ι2(x2).M2)

Γ ; σ{a 7→ k} − e : t ↘ M k fresh or k = σ(a)

Γ ; σ − [e]a : [t]a ↘ λk :αa. M

Γ ; σ − e : [t]a ↘ M

Γ ; σ − ea : t ↘ M σ(a)

Here, we write σ{a 7→ k} for a mapping from dom(σ) ∪ {a} to variables defined
by: σ{a 7→ k}(a) = k; and σ{a 7→ k}(a′) = σ(a′) if a 6= a′.

The translation of terms is easily derived from the translation rules for types.
Here, the mapping σ, whose domain represents the level at which the SDC
term is typed, records correspondence between authorities and variables that
are used as keys. In the last rule, a key to open the sealing is retrieved from
σ—if e is well typed at the level represented by dom(σ), then a should be in
the domain of σ. Then, well typed λ[] terms can be translated to well typed
λ→ terms as in the theorem below. Here, we write σ† for a context defined by:
{σ(a) : αa | a ∈ dom(σ)}.

Theorem 6 (Translation Preserves Typing). If Γ ; ` − e : t and dom(σ) =
`, then there exists a λ→ term M such that Γ ; σ − e : t ↘ M , and that
Γ †, σ† − M : t†.

Proof. By induction on the derivation of Γ ; ` − e : t.

3.4 From λ→ To λ[]

We define the inverse translation, represented by Γ ; σ − M ↗ e : t. It is read
“λ→ term M of type t† under Γ † and σ† is translated back to a λ[] term e.”

Definition 7 (Inverse Translation). The relation Γ ; σ − M ↗ e : t is
defined as the least relation closed by the following rules:

Γ ; σ − x ↗ x : t Γ ; σ − () ↗ () : unit
Γ, x : t1; σ − M ↗ e : t2

Γ ; σ − λx : t†1. M ↗ λx : t1. e : t1 → t2

Γ ; σ − M ↗ e : t1 → t2
Γ ; σ − M ′ ↗ e′ : t1

Γ ; σ − M M ′ ↗ e e′ : t2

Γ ; σ − M1 ↗ e1 : t1
Γ ; σ − M2 ↗ e2 : t2

Γ ; σ − 〈M1, M2〉 ↗ 〈e1, e2〉 : t1 × t2

Γ ; σ − M ↗ e : t1 × t2 i ∈ {1, 2}
Γ ; σ − πi(M) ↗ πi(e) : ti

Γ ; σ − M ↗ e : ti i ∈ {1, 2}
Γ ; σ − ιi(M) ↗ ιi(e) : t1 + t2

Γ ; σ − M ↗ e : t1 + t2 Γ, x1 : t1; σ − M1 ↗ e1 : t Γ, x2 : t2; σ − M2 ↗ e2 : t

Γ ; σ − (caseM of ι1(x1).M1 | ι2(x2).M2) ↗ (case eof ι1(x1).e1 | ι2(x2).e2) : t

a 6∈ dom(σ)
Γ ; σ{a 7→ k} − M ↗ e : t

Γ ; σ − λk :αa. M ↗ [e]a : [t]a

a ∈ dom(σ)
Γ ; σ{a 7→ k} − [k/σ(a)]M ↗ e : t

Γ ; σ − λk :αa. M ↗ [e]a : [t]a

Γ ; σ − M ↗ e : [t]a Γ †, σ† − M ′ : αa

Γ ; σ − M M ′ ↗ ea : t

The second to last rule says that some occurrences of keys for a can be ab-
stracted as long as the λ[] term after sealing is still at the same level (dom(σ) =
dom(σ{a 7→ k})). Note that even if Γ †, σ† − M : t† , the inverse translation
of M is not always possible. However, we can give a sufficient condition for
the inverse translation to exist and show the inverse translation also preserves
typing:

Theorem 7 (Inverse Translation Preserves Typing). If the derivation of
Γ †, σ† − M : t† satisfies the subformula property, then there exists a λ[] term
e such that Γ ; σ − M ↗ e : t and Γ ; dom(σ) − e : t.

Proof. By induction on the derivation of Γ †, σ† − M : t† .

Remark 3. In the above theorem, the subformula property gives a sufficient
condition to exclude “junk” terms such as (λx :αa → αa. ())(λk :αa. k). Since
λk :αa. k has type αa → αa, no rules of inverse translation can be applied and
the inverse translation will fail. Its derivation, however, does not satisfy the sub-
formula property, so this is not a counterexample for the theorem above. (Its
normal form can be translated back to a λ[] term.)

4 Proof of Noninterference via Preservation of Logical
Relations

In this section, we give an indirect proof of the noninterference theorem, which
is obtained as an easy corollary of the theorem that the translation is sound and

complete, that is, the logical relation for λ[] is preserved by translation to λ→.
The properties we would expect are

If e1 ≈dom(σ) e2 : t and ·; σ − ei : t ↘ Mi for (i = 1, 2), then σ† −
M1 ≈ M2 : t†,

and its converse

If ·; σ − ei : t ↘ Mi for (i = 1, 2) and σ† − M1 ≈ M2 : t†, then
e1 ≈dom(σ) e2 : t.

It is not very easy, however, to prove them directly because logical relations are
defined by induction on types whereas the translations are not. Thus, following
Tse and Zdancewic [17], we introduce another logical relation (called logical
correspondence) e ;;σ M : t over terms of λ[] and λ→, then prove that it
includes (the graphs of) the translations of both directions (Theorems 9 and
10). Then, after showing that the logical correspondence is full (Corollary 1),
we finally prove preservation of logical relations by logical correspondence and
reduce the noninterference theorem to the basic lemma (Lemma 2).

4.1 Logical Correspondence and Its Fullness

Definition 8 (Logical Correspondence). The relations e ;;σ M : t and
v ;σ V : t, where we assume that Γ ; ` − e : t and Γ ; ` − v : t and
∆ − M : A and ∆ − V : A, are defined as the least relation closed under the
following rules:

() ;σ () : unit
∀(e ;;σ M : t1). v e ;;σ V M : t2

v ;σ V : t1 → t2

v1 ;σ V1 : t1 v2 ;σ V2 : t2
〈v1, v2〉 ;σ 〈V1, V2〉 : t1 × t2

v ;σ V : ti i ∈ {1, 2}
ιi(v) ;σ ιi(V) : t1 + t2

∀(σ† − M : αa). v ;;σ V M : t

[v]a ;σ V : [t]a

e −→∗ v M −→∗ V v ;σ V : t

e ;;σ M : t

Intuitively, e ;;σ M : t means that e and M exhibit the same behavior from
the viewpoint of an observer at dom(σ). The rule for [t]a expresses the fact that
the existence of well-typed M of αa under σ† is equivalent to the existence of
the authority a in dom(σ). In other words, if a is not in dom(σ), the premise is
vacuously true, representing that the observer cannot distinguish anything.

Theorem 8 below shows that the logical correspondences are closed under
the composition with the logical relation in λ→.

Theorem 8. If e ;;σ M1 : t and σ† − M1 ≈ M2 : t†, then e ;;σ M2 : t.

Proof. By induction on the structure of t, using Remark 2 in the case where
t = [t′]a.

The next theorem shows that these logical correspondences include the graphs
of the translation to λ→. We write γ ;;σ δ : Γ if dom(γ) = dom(δ) = dom(Γ)
and γ(x) ;;σ δ(x) : Γ (x) for any x ∈ dom(Γ).

Theorem 9 (Inclusion of Translation). If Γ ;σ − e : t ↘ M and γ ;;σ δ : Γ ,
then γ(e) ;;σ δ(M) : t.

Proof. By induction on the size of the derivation of Γ ; σ − e : t ↘ M .

It is slightly harder to show that the logical correspondence includes the
graphs of the inverse translation, since the inverse translation is not quite a
(right) inverse of the translation to λ→: The inverse translation followed by the
forward translation may yield a term different from the original. For example,
we can derive

x : [t]a; {a 7→ k1} − λk2 : αa.x k1 ↗ [xa]a : [t]a

and
x : [t]a; {a 7→ k1} − [xa]a : [t]a ↘ λk′

2 : αa.x k′
2 .

Fortunately, the difference is only slight: They differ only in subterms of base
types αa and are in fact logically related. To identify terms only with this kind
of differences, we introduce a (typed) equivalence relation ∆ − M1 ≡ M2 : A,
which is shown to be included in the logical relation.

Definition 9. The relation ∆ − M1 ≡ M2 : A is defined as the least relation
closed under the rules below:

∆ − M : A

∆ − M ≡ M : A

∆ − M1 ≡ M2 : A

∆ − M2 ≡ M1 : A

∆ − M1 : αa ∆ − M2 : αa

∆ − M1 ≡ M2 : αa

∆ − M1 ≡ M2 : A ∆ − M2 ≡ M3 : A

∆ − M1 ≡ M3 : A

∆ − M1 ≡ M2 : A ∆′ − C[M1] : A′

∆′ − C[M1] ≡ C[M2] : A′

where C ranges over term contexts, which are defined by:

C ::= [] | λx :A. C | C M | M C | 〈C, M〉 | 〈M, C〉 | πi(C) | ιi(C)
| (case C of ι1(x1).M | ι2(x2).M) | (caseM of ι1(x1).C | ι2(x2).M)
| (caseM of ι1(x1).M | ι2(x2).C)

As mentioned above, the inverse translation followed by the translation yields
a different term but it is still related by ≡, which is included by the logical
relation:

Lemma 3. If Γ ; σ − M ↗ e : t and Γ ; σ − e : t ↘ M ′, then Γ †, σ† − M ≡
M ′ : t†.

Proof. By induction on Γ ;σ − M ↗ e : t.

Lemma 4. If ∆ − M1 ≡ M2 : A and ∆′ − δ1 ≈ δ2 : ∆, then ∆′ − δ1(M1) ≈
δ2(M2) : A.

Proof. By induction on the derivation of ∆ − M1 ≡ M2 : A.

Then, we can show the following theorem:

Theorem 10 (Inclusion of Inverse Translation). If Γ ;σ − M ↗ e : t and
γ ;;σ δ : Γ , then γ(e) ;;σ δ(M) : t.

Proof. By Theorem 6, there exists M ′ such that Γ ; σ − e : t ↘ M ′. Then, by
Lemma 3, Γ †, σ† − M ≡ M ′ : t†. Since σ† − δ ≈ δ : Γ † (using Remark 2), σ† −
δ(M) ≈ δ(M ′) : t† by Lemma 4. Then, by Theorem 9, γ(e) ;;σ δ(M ′) : t and,
by Theorem 8 and the symmetricity of the logical relation, γ(e) ;;σ δ(M) : t.

As a corollary, the logical correspondences is shown to be full.

Corollary 1 (Fullness of Logical Correspondences). If σ† − M : t†, then
there exists a λ[] term e such that e ;;σ M : t.

Proof. By Theorems 5, 7, and 10.

4.2 Preservation of Logical Relations

By using the logical correspondence introduced above, we prove that the logical
relations are preserved by the logical correspondence.

Theorem 11 (Preservation of Equivalences).

1. If e1 ≈dom(σ) e2 : t and ei ;;σ Mi : t (i = 1, 2), then σ† − M1 ≈ M2 : t†.
2. Conversely, if ei ;;σ Mi : t for (i = 1, 2) and σ† − M1 ≈ M2 : t†, then

e1 ≈dom(σ) e2 : t.

Proof. We prove both simultaneously by induction on the structure of t. We
show only the main cases:

Case 1 (t = t1 → t2). To show (1), take arbitrary M ′
1 and M ′

2 such that σ† −
M ′

1 ≈ M ′
2 : t†1. By the fullness (Corollary 1), there exist e′i such that e′i ;;σ M ′

i :
t1 (i = 1, 2), and by the induction hypothesis (2) for t1, we have e′1 ≈dom(σ)

e′2 : t1. Then, by definition, there exist vi, Vi (i = 1, 2) such that ei −→∗ vi and
Mi −→∗ Vi and vi e′i ;;σ Vi M ′

i : t2 for (i = 1, 2), and v1 e′1 ≈dom(σ) v2 e′2 : t2.
Applying the induction hypothesis (1) for t2 to them, σ† − V1 M ′

1 ≈ V2 M ′
2 : t†2.

So we have σ† − V1 ∼ V2 : t†1 → t†2, and hence σ† − M1 ≈ M2 : t†1 → t†2. The
statement (2) can be shown similarly, without the fullness.

Case 2 (t = [t1]a). To show (2), we have two subcases: a ∈ dom(σ) or not. If
a ∈ dom(σ), then, by definition, σ† − σ(a) ≈ σ(a) : αa. Also, by definition,
there exist vi, Vi (i = 1, 2) such that ei −→∗ [vi]a and Mi −→∗ Vi and vi ;;σ

Vi σ(a) : t1 for (i = 1, 2), and σ† − V1 σ(a) ≈ V2 σ(a) : t†1. Applying the
induction hypothesis (2) for t1, we have v1 ≈dom(σ) v2 : t1, which is equivalent
to v1 ∼dom(σ) v2 : t1, so e1 ≈dom(σ) e2 : [t1]a. The case a 6∈ ` is trivial. Showing
(1) is easy.

4.3 Noninterference

Then, we prove the noninterference theorem by reducing it to Lemma 2.

Corollary 2 (Noninterference). If Γ ; ` − e : t and γ1 ≈` γ2 : Γ , then
γ1(e) ≈` γ2(e) : t.

Proof. Choose an arbitrary σ such that dom(σ) = ` and ran(σ) ∩ dom(Γ) = ∅.
By Theorem 6, Γ ; σ − e : t ↘ M and Γ †, σ† − M : t† for some M . Similarly, for
any x ∈ dom(γi) (i = 1, 2), there exists Mxi such that ·; σ − γi(x) : Γ (x) ↘ Mxi

and Γ †, σ† − Mxi : (Γ (x))†. Define δi (i = 1, 2) as a simultaneous substitution
such that dom(δi) = dom(γi) and δi(x) = Mxi for x ∈ dom(δi). Then, by
Theorem 9, γi ;;σ δi : Γ for (i = 1, 2) and so γi(e) ;;σ δi(M) : t for (i = 1, 2).
By applying Theorem 11(1) to the assumption γ1 ≈` γ2 : Γ , we have σ† − δ1 ≈
δ2 : Γ †. Thus, by Lemma 2 (with Remark 2), σ† − δ1(M) ≈ δ2(M) : t†. Finally,
by Theorem 11(2), γ1(e) ≈` γ2(e) : t.

5 Related Work

Proofs of Noninterference. There are many ways to prove noninterference theo-
rems for type-based dependency analyses for higher-order languages. For exam-
ple, Heintze and Riecke [7] and Abadi et al. [1] showed the noninterference theo-
rem for SLam by using denotational semantics. Pottier and Simonet [12] proved
it for Core ML with non-standard operational semantics. Moreover, Miyamoto
and Igarashi [10], in the study of a modal typed calculus λ2

s , showed that the
noninterference theorem for certain types can be easily proved only by using
simple nondeterministic reduction system. In comparison with these proofs, the
proof technique presented in this paper might seem overwhelming to show only
noninterference; nevertheless, we believe it is still interesting since the trans-
lation shows that the notion of dependency can be captured only in terms of
simple types.

Fullness in DCC. As we mentioned in the introduction, the translation from
DCC to System F given by Tse and Zdancewic is not full. Here, we explain the
reason, after quickly reviewing DCC. DCC [1] is an extension of a computational
λ-calculus [11] and uses monads (indexed by a security level) for sealing. Roughly
speaking, a monadic type T` t, the monadic unit η` e, and the bind operation
bind x = e1 in e2 correspond to types for sealing, sealing terms, and unsealing
terms. A type judgment of DCC lacks a level; instead, the notion of protected
types is introduced to prevent information leakage and plays a key role in the
typing rule for bind:

Γ − e1 : T` t1 Γ, x : t1 − e2 : t2 t2 is protected at `

Γ − bind x = e1 in e2 : t2

Intuitively, “t is protected at `” means that observers only at level ` (or higher)
can obtain some bits of information by using the value of t. For example, T` t

and T` t1 × T` t2 and t → T` t′ are all protected at ` but T` t1 + T` t2 is not
(see Abadi et al. [1] for the precise definition). So, this rule ensures that the
value of the whole term cannot be examined at unrelated levels. However, bind
is restrictive in the sense that η` must be placed within the scope of x to make
t2 protected. For example, the term λy : T` bool.bind x = y in η` x is given
type (T` bool) → (T` bool) while λy : T` bool.η` (bind x = y in x) cannot.

In fact, this restriction is a source of the failure of fullness of the translation
by Tse and Zdancewic. Consider the DCC type T`((T` bool) → bool), which is
translated to α` → ((α` → bool) → bool). Then, any DCC terms of the first
type is equivalent to (sealed) constant functions η`(λx : T` bool.c) where c is
either true or false. In System F, however, there is a term λk : α`.λf : α` →
bool.fk of the translated type and it would correspond to an ill typed DCC term
η`(λy : T` bool.bind x = y in x). From this, we can show their translation does
not preserve the logical relations. In fact,

λf.bind f ′ = f in η` (f ′ (η` true))

and
λf.bind f ′ = f in η` (f ′ (η` false))

are logically related at the type (T`((T` bool) → bool)) → (T` bool) and `
since, in DCC, all we can pass to these functions are the constant functions
above. Their translations, however, are not because, in System F, applying them
to the term λk : α`.λf : α` → bool.fk above will distinguish them.

Tse and Zdancewic’s Extended DCC. Interestingly, Tse and Zdancewic also
noticed this restriction of DCC and proposed an extension of (a pure frag-
ment of) DCC by introducing the notion of protection contexts in type judg-
ments. This extension allows terms like λy : T` bool.η`(bind x = y in x) and
η`(λy : T` bool.bind x = y in x) to be well typed. Our λ[] can be consid-
ered a simplification of this extension by dropping the notion of protected types
completely while leaving protection contexts (namely, levels in type judgments).
We also dropped the lattice structure of security levels in DCC and now call
them authorities. We believe that a similar result can be shown when the set of
authorities is equipped with such a structure.

6 Conclusion

We have formalized noninterference for a typed λ-calculus λ[] by logical relations
and proved by reducing it to the basic lemma of logical relation for λ→ through
a translation of λ[] to λ→. Our translation is sound and fully complete and, as a
result, the image of the translation is a complete representation, which captures
dependency of λ[] with typeability in λ→.

Acknowledgements. Comments from anonymous referees helped up improve the
final presentation. We thank Masahito Hasegawa, Eijiro Sumii, Stephen Tse, and
Steve Zdancewic for discussions on this subject. This work is supported in part
by Grant-in-Aid for Scientific Research (B) No. 17300003.

References

[1] Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core cal-
culus of dependency. In POPL ’99: Proceedings of 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 147–160, New York,
NY, USA, 1999. ACM Press.

[2] Philippe de Groote. On the strong normalisation of intuitionistic natural deduc-
tion with permutative-conversions. Information and Computation, 178:441–464,
August 2002.

[3] D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Communications of the ACM, 20(7):504–513, July 1977.

[4] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972. A sum-
mary appeared in the Proceedings of the Second Scandinavian Logic Symposium
(J.E. Fenstad, editor), North-Holland, 1971 (pp. 63–92).

[5] J. Goguen and J. Meseguer. Security policies and security models. In Proceedings
of IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[6] Masahito Hasegawa. Girard translation and logical predicates. Journal of Func-
tional Programming, 10(1):77–89, January 2000.

[7] Nevin Heintze and Jon G. Riecke. The SLam calculus: programming with secrecy
and integrity. In POPL ’98: Proceedings of ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 365–377, 1998.

[8] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice-Hall, 1993.

[9] John C. Mitchell. Foundations for Programming Languages. The MIT Press,
1996.

[10] Kenji Miyamoto and Atsushi Igarashi. A modal foundation for secure information
flow. In FCS ’04: Proceedings of Workshop on Foundations of Computer Security,
pages 187–203, June 2004.

[11] Eugenio Moggi. Notions of computation and monads. Information and Compu-
tation, 1:55–92, 1991.

[12] François Pottier and Vincent Simonet. Information flow inference for ML. ACM
Transactions on Programming Languages and Systems, 25(1):117–158, 2003.

[13] John Reynolds. Towards a theory of type structure. In Proc. Colloque sur la
Programmation, pages 408–425, New York, 1974. Springer-Verlag LNCS 19.

[14] John C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP
Congress, pages 513–523, 1983.

[15] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow secu-
rity. IEEE Journal On Selected Areas In Communications, 21(1):5–19, 2003.

[16] Yan Mei Tang and Pierre Jouvelot. Effect systems with subtyping. In Proceed-
ings of ACM Symposium on Partial Evaluation and Semantics-Based Program
Manipulation(PEPM’95), pages 45–53, 1995.

[17] Stephen Tse and Steve Zdancewic. Translating dependency into parametricity.
In ICFP ’04: Proceedings of 9th ACM International Conference on Functional
Programming, pages 115–125, New York, NY, USA, 2004. ACM Press.

[18] Philip Wadler. Theorems for free! In Proceedings 4th Int. Conf. on Funct. Prog.
Languages and Computer Arch., FPCA’89, London, UK, 11–13 Sept 1989, pages
347–359. ACM Press, New York, 1989.

