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Abstract
Dynamic layer composition is one of the key features in context-
oriented programming (COP), an approach to improving modular-
ity of behavioral variations that depend on the dynamic context of
the execution environment. It allows a layer—a set of new or over-
riding methods that can belong to several classes—to be added to or
removed from existing objects in a disciplined way. We develop a
type system for dynamic layer composition, which may change the
interfaces of objects at run time, based on a variant of ContextFJ, a
core calculus for COP, and prove its soundness.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Language, Theory

Keywords Context-oriented programming, dynamic layer com-
position, type systems

1. Introduction
Context-oriented programming (COP) is an approach to improving
modularity of behavioral variations that depend on dynamic proper-
ties of the execution environment [10]. In traditional programming
paradigms, such behavioral variations tend to be scattered over sev-
eral modules, and system architectures that support their dynamic
composition are often complicated.

Many COP extensions including those designed on top of
Java [2], Smalltalk [9], Common Lisp [6], and JavaScript [15],
are based on object-oriented programming languages and intro-
duce layers of partial methods for defining and organizing behav-
ioral variations and layer activation mechanisms for layer selection
and composition. A partial method in a layer is, in many cases, a
method that can run before, after, or around a (partial) method with
the same name and signature defined in a different layer or a class,
but it can also be a new method that does not exist in a class yet.
A layer groups related partial methods and can be (de)activated at
run-time. It so contributes to the specific behavior of a set of objects
in response to messages sent and received.

In this paper, we develop a simple type system for such dy-
namic composition of layers. Although what the type system guar-
antees is just the absence of “no such method” errors (including the
failure of proceed calls in around-type partial methods), the ex-
istence of partial methods that introduce new behavior to existing
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classes makes the problem interesting, because layer (de)activation
changes the interface of objects at run time. A key idea of our de-
velopment is the introduction of an explicitly declared inter-layer
dependency relation, which plays a role similar to required meth-
ods in type systems for mixins [4, 8, 14]. With the help of this
dependency, the type system will estimate layers activated at each
program point and use this estimation to look up the signature of an
invoked method. We formalize the type system for a variant of Con-
textFJ [11], a COP extension of Featherweight Java [12], and prove
its soundness. ContextFJ supports (around-type) partial methods,
block-structured dynamic activation of layers, and proceed and
super calls.

We also discuss a few variations of layer activation mechanisms
(although we formalize only one of them). Because it turns out
that our type system seems not to work for the layer activation
mechanism used in many COP languages, we prove type soundness
for “a variant” of ContextFJ. Nevertheless, we believe that this
work is of some value as a clarification about how our simple typing
scheme interacts with the design of layer activation mechanisms.

This paper is a continuation of our work [11], in which Con-
textFJ is formalized. There, an even simpler type system for Con-
textFJ is discussed, but it is very restrictive because it prohibits lay-
ers from adding new methods to existing classes.

The rest of the paper is organized as follows. We first start with
reviewing the language mechanisms for COP in Section 2. Sec-
tion 3 reviews the syntax and operational semantics of ContextFJ
and Section 4 defines the type system and proves its soundness. We
discuss related and future work in Section 5.

2. Language Constructs for COP
We briefly overview basic constructs along with their usage. Our
example is a simplified telecom simulation1 in which customers
make, accept, and terminate phone calls.

2.1 The Base Layer
The base layer consists of standard Java classes and methods,
which is always active. The telecom example has Customer and
Connection to represent customers and phone calls between cus-
tomers, respectively.

class Customer { ... }
class Connection {

Connection(Customer a, Customer b) { ... }
void complete() { ... }
void drop() { ... }

}

The following method demonstrates a usage of those classes.

Connection simulate() {

1 This simulation is based on an example distributed along with the AspectJ
compiler [21].



Customer atsushi = ..., hidehiko = ...;
Connection c =

new Connection(atsushi,hidehiko);
// Atsushi calls Hidehiko

c.complete(); // Hidehiko accepts
c.drop(); // Hidehiko hangs up
return c;

}

2.2 Layers and Partial Method Definitions
A layer is a collection of methods and fields2 that are specific to
a certain context. Syntactically, they are written as Java classes
enclosed by the layer construct3. Below, the Timing layer defines
a feature that measures the duration of phone calls. (A COP layer is
usually used to group partial methods of more than one class, but as
an illustrating example for ContextFJ, partial methods of one class
will suffice.)

layer Timing {
class Connection {

Timer timer;
void complete() { proceed(); timer.start(); }
void drop() { timer.stop(); proceed(); }
int getTime() { return timer.getTime(); }

}
}

When a layer is active (as explained in Section 2.3), the methods
defined in that layer, so called partial methods, override those in the
base layer. In the above example, complete and drop are partial
methods.

Unlike other COP languages, we also allow a layer to define a
method that does not exist in the base layer, which we call a layer-
introduced base method. In the above example, getTime is such a
layer-introduced base method.

proceed(...) is similar to super as it delegates behavior to
overridden methods. Whereas super changes the starting point of
the method lookup to the superclass of the class the (partial) method
was defined in, proceed(...) will try first to find the next partial
or base-level definition of the same method in the same (current)
class. If proceed(...) cannot find such a partial method in the
current receiver class or the active layers associated with it, lookup
continues in the superclass of the current lookup class.

Existence of layer-introduced base methods and proceed make
a type system, which statically guarantees success of proceed,
complicated. We will show this in Section 4.

2.3 Layer Activation
Many COP languages offer with for layer activation and without
for layer deactivation. In this work, we consider the ensure con-
struct, which is similar to but different from with, to activate a
layer (their differences are described in Section 2.4) but no con-
struct for deactivation.

When we simply call simulate(), it merely executes the meth-
ods in the base layer because no layers are activated.

By using the ensure construct, we can activate a layer during
the evaluation of its body statement if not already done so. The
following example simulates a phone call with the Timing layer
activated.

ensure Timing {

2 The formal model omits fields defined in layers for simplicity. However, as
far as type safety is concerned, supporting fields does not cause significant
problems.
3 It is also possible to place those additional definitions in each class to be
added, which is the so-called layer-in-class style.

Connection c = simulate();
System.out.println(c.getTime());

}

When simulating calls with the Timing layer activated, complete
and drop, the partial methods defined in Timing, run instead of the
ones in the base layer.

Note that activation of a layer also allows to call layer-introduced
base methods. The above example calls getTime on the returned
Connection object inside the ensure body, which is not possible
without activating Timing.

As in most COP language extensions and also in ours, layer
compositions are effective for the dynamic extent of the execution
of the code block enclosed by their corresponding ensure state-
ment4. So, layers form a stack and are (de)activated in the FIFO
manner.

2.4 Order and Dependency between Layers
When we activate a layer while other layers are active, the par-
tial methods in the last-activated layer override those in the earlier-
activated layers. The following example explains this order of par-
tial methods. The Billing layer below adds a feature that calcu-
lates and charges the cost of a phone call when the call ends.

layer Billing requires Timing {
class Connection {
void charge() {

int cost = ...getTime()...;
...charge the cost on the caller... }

void drop() { proceed(); charge(); }
}

}

When we activate the Timing and Billing layers in this order,
the partial method drop in Billing overrides the one in Timing
because Billing is the most recently activated layer.

ensure Timing {
ensure Billing {
simulate();

}
}

Since both partial methods have proceed, a call to drop in
simulate will stop the timer, perform the base layer’s behavior,
and then calculate the cost of the call based on the duration of the
call obtained through getTime.

Note that Billing depends on Timing as the charge method
in Billing calls getTime, which is a layer-introduced base
method by Timing. We declare this dependency by using the
requires modifier in the layer declaration. In other words, the
following statement, which activates Billing without activating
Timing is incorrect and must be rejected statically. Our type sys-
tem will detect such an erroneous layer activation.

ensure Billing { simulate(); } // incorrect

One might wonder why ensure Billing activates Timing at the
same time because it is apparent that Billing requires Timing.
Actually, one layer can depend on more than one layer, in which
case it is not always clear in which order they should be activated.

2.5 Comparing ensure and with

As we mentioned above, many COP languages have a layer activa-
tion construct called with, which will make sure that the activated
layer is always the first layer for which a method is searched. The

4 Variants of COP languages allow to manage layer compositions on a per-
instance basis [9, 13], which is left as future work in the paper.



difference becomes clear when the same layer is to be activated for
the second time—the second activation will move the designated
layer to the top of the stack of layers. For example,

with Timing {
with Billing {

with Timing { simulate(); }
}

}

will invoke the partial method drop in Timing first5. Also, the
effect of the outer with Timing is disabled until the body of
the inner activation finishes. So, proceed from Billing calls a
method in a base class. On the other hand, ensure will just make
sure the existence of Timing without changing the order of already
activated layers. So, the code where with is replaced by ensure
is the same as the code without the inner activation of Timing
(namely, the second code snippet in the last subsection).

The rearrangement of layers caused by with, however, destroys
the layer ordering in which inter-layer dependency is respected.
For example, there is no layer below Billing, which requires
Timing, while the inner with Timing is executed. Similarly to
double with, without, which deactivates a designated layer, de-
stroys dependency-respecting layer ordering. Thus, for simplicity,
we consider only ensure in this paper and leave a sound type sys-
tem for with and without for future work. We propose ensure
mainly to show that, by adopting ensure, simple dependency dec-
laration is enough to design a sound type system. Comparisons of
with and ensure from programmers’ point of view are interesting
but left for future work.

3. Syntax and Semantics of ContextFJ
In this section, we give the syntax and operational semantics of
ContextFJ, which is an extension of Featherweight Java (FJ) [12]
with (around-type) partial methods, ensure for layer activation,
proceed, and super. As already mentioned, we omit fields defined
in layers for simplicity. Thus, a layer is a set of partial methods; just
as a set of classes is modeled as a class table—a mapping from class
names to class definitions—in FJ, a set of layers will be modeled
as a mapping from layer and class names to method definitions.
The present version of ContextFJ replaces with and without for
layer (de)activation found in the original version [11] with ensure.
Except for the difference in the layer activation mechanism, the
definitions are the same as in the original version.

3.1 Syntax
Let metavariables C, D, and E range over class names; L over layer
names; f and g over field names; m over method names; and x and y
over variables, which contain a special variable this. The abstract
syntax of ContextFJ is given as follows:

CL ::= class C / C { C f; K M } (classes)
K ::= C(C f){ super(f); this.f = f; }

(constructors)
M ::= C m(C x){ return e; } (methods)
e, d ::= x | e.f | e.m(e) | new C(e) (expressions)

| ensure L e
| proceed(e) | super.m(e)
| new C(v)<C,L,L>.m(e)

v, w ::= new C(v) (values)

5 This code is admittedly artificial but in general, it is not unusual that
one layer is to be activated twice in the dynamic extent of a method on
code block execution. For example, it can happen that one method activates
Timing and Billing in this order and then calls another method, which
activates Timing (without knowing it has been activated already).

Following FJ, we use overlines to denote sequences: so, f stands
for a possibly empty sequence f1, · · · , fn and similarly for C, x,
e, and so on. Layers in a sequence are separated by semicolons.
The empty sequence is denoted by •. We also abbreviate pairs
of sequences, writing “C f” for “C1 f1, · · · , Cn fn”, where n is
the length of C and f, and similarly “C f;” as shorthand for the
sequence of declarations “C1 f1;. . .Cn fn;” and “this.f=f;”
for “this.f1=f1;. . .;this.fn=fn;”. We use commas and semi-
colons for concatenations. Sequences of field declarations, param-
eter names, layer names, and method declarations are assumed to
contain no duplicate names.

A class definition CL consists of its name, its superclass name,
field declarations C f, a constructor K, and method definitions M. A
constructor K is a trivial one that takes initial values of all fields
and sets them to the corresponding fields. Unlike the examples
in the last section, we do not provide syntax for layers; partial
methods are registered in a partial method table, explained be-
low. A method M takes x as arguments and returns the value of
expression e. As ContextFJ is a functional calculus like FJ, the
method body consists of a single return statement and all con-
structs including ensure return values. An expression e can be a
variable, field access, method invocation, object instantiation, layer
activation/deactivation, proceed/super call, or a special expres-
sion new C(v)<C,L,L>.m(e), which will be explained shortly. A
value is an object of the form new C(v).

The expression new C(v)<D,L′,L>.m(e), where L′ is as-
sumed to be a prefix of L, is a special run-time expres-
sion and not supposed to appear in classes. It basically means
that m is going to be invoked on new C(v). The annotation
<D,L′,L>, which is used to model super and proceed, indi-
cates where method lookup should start. More concretely, the triple
<D,(L1; · · · ; Li),(L1; · · · ; Ln)> (i ≤ n) means that the search for
the method definition will start from class D of layer Li. So, for ex-
ample, the usual method invocation new C(v).m(e) (without an-
notation) is semantically equivalent to new C(v)<C,L,L>.m(e),
where L is the active layers when this invocation is to be executed.
This triple also plays the role of a “cursor” in the method lookup
procedure and move across layers and base classes until the method
definition is found. Figure 1 illustrates how a cursor proceeds. No-
tice that the third element is needed when the method is not found
in D in any layer including the base: the search continues to layer
Ln of D’s direct superclass.

With the help of this form, we can give a semantics of super
and proceed by simple substitution-based reduction. For example,
consider method invocation new C().m(v). As in FJ, this expres-
sion reduces to the method body where parameters and this are
replaced with arguments v and the receiver new C(), respectively.
Now, what happens to super in the method body? It cannot be re-
placed with the receiver new C() since it would confuse this and
super. Method lookup for super is different from usual (virtual)
method lookup in that it has to start from the direct superclass of
the class in which super appears. So, if the method body contain-
ing super.n() is found in class D, then the search for n has to start
from the direct superclass of D. To express this fact, we replace
super with new C()<E,...> where E is the direct superclass
of D. We can deal with proceed similarly. Suppose the method
body is found in layer Li in D. Then, proceed(e) is replaced
with new C()<D,(L1; · · · ; Li−1),L>.m(e), where L1; · · · ; Li−1

are layers activated before Li.
A ContextFJ program (CT,PT, e) consists of a class table CT ,

which maps a class name to a class definition, a partial method
table PT , which maps a triple C, L, and m of class, layer, and
method names to a method definition, and an expression, which
corresponds to the body of the main method. In what follows, we
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Figure 1. Method lookup in ContextFJ. A circle represents a base
class and an arrow with a white head represents subclassing. A
shaded round rectangle represent a layer, which contains sets of
partial methods (represented by boxes) for base classes. Layers L1
upto Ln have been activated in this order. The cursor, represented
by an arrow pointing to a thick box, goes left first (subfigures (a)–
(c)), goes one level up (to superclass E), and restarts lookup from
the most recently activated layer Ln towards the left (subfigures
(d)–(e)).

assume CT and PT to be fixed and satisfy the following sanity
conditions:

1. CT(C) = class C ... for any C ∈ dom(CT).

2. Object 6∈ dom(CT).

3. For every class name C (except Object) appearing anywhere in
CT , we have C ∈ dom(CT);

4. There are no cycles in the transitive closure of the extends
clauses.

5. PT(m, C, L) = ... m(...){...} for any (m, C, L) ∈ dom(PT).

We introduce dependency between layers expressed by requires
clauses in the next section, where a type system is defined.

Lookup functions. As in FJ, we define a few auxiliary functions
to look up field and method definitions. They are defined by the
rules in Figure 2. The function fields(C) returns a sequence C f of
pairs of a field name and its type by collecting all field declarations

fields(C) = C f

fields(Object) = • (F-OBJECT)

class C / D { C f; ... } fields(D) = D g

fields(C) = D g, C f
(F-CLASS)

mbody(m, C, L′, L) = x.e in D, L′′

class C / D { ... C0 m(C x){ return e; } ...}

mbody(m, C, •, L) = x.e in C, •
(MB-CLASS)

PT(m, C, L0) = C0 m(C x){ return e; }

mbody(m, C, (L′; L0), L) = x.e in C, (L′; L0)
(MB-LAYER)

class C / D { ... M } m 6∈ M
mbody(m, D, L, L) = x.e in E, L′

mbody(m, C, •, L) = x.e in E, L′
(MB-SUPER)

PT(m, C, L0) undefined mbody(m, C, L′, L) = x.e in D, L′′

mbody(m, C, (L′; L0), L) = x.e in D, L′′

(MB-NEXTLAYER)

Figure 2. ContextFJ: Lookup functions.

from C and its superclasses. The function mbody(m, C, L1, L2) re-
turns the parameters and body x.e of method m in class C when the
search starts from L1; the other layer names L2 keep track of the
layers that are activated when the search initially started. It also re-
turns the information on where the method has been found—the in-
formation will be used in reduction rules to deal with proceed and
super. As we mentioned already, the method definition is searched
for in class C in all activated layers and the base definition and, if
there is none, then the search continues to C’s superclass. By read-
ing the rules in a bottom-up manner, we can read off a recursive
search procedure. The rule MB-CLASS means that m is found in
the base class definition C (notice the third argument is •) and the
rule MB-LAYER that m is found in layer L0. The rule MB-SUPER,
which deals with the situation where m is not found in a base class
(expressed by the condition m 6∈ M), motivates the fourth argument
of mbody. The search goes on to C’s superclass D and has to take all
activated layers into account; so, L is copied to the third argument
in the premise. The rule MB-NEXTLAYER means that, if C of L0
does not have m, then the search goes on to the next layer (in L′)
leaving the class name unchanged.

3.2 Operational Semantics
The operational semantics of ContextFJ is given by a reduction
relation of the form L ` e −→ e′, read “expression e reduces
to e′ under the activated layers L”. Here, L do not contain duplicate
names, as we noted earlier. The main rules are shown in Figure 3.

The first four rules are the main computation rules for field ac-
cess and method invocation. The rule R-FIELD for field access is
straightforward: fields tells which argument to new C(..) corre-
sponds to fi. The next three rules are for method invocation. The
rule R-INVK is for method invocation where the cursor of the
method lookup procedure has not been “initialized”; the cursor is
set to be at the receiver’s class and the currently activated layers.
In the rule R-INVKB, the receiver is new C(v) and <C′,L′′,L′> is
the location of the cursor. When the method body is found in the
base-layer class C′′ (denoted by “in C′′, •”), the whole expression



fields(C) = C f

L ` new C(v).fi −→ vi
(R-FIELD)

L ` new C(v)<C,L,L>.m(w) −→ e′

L ` new C(v).m(w) −→ e′
(R-INVK)

mbody(m, C′, L′′, L′) = x.e0 in C′′, • class C′′/ D{...}

L ` new C(v)<C′,L′′,L′>.m(w) −→ new C(v) /this,
w /x,
new C(v)<D,L′,L′>/super

 e0

(R-INVKB)

mbody(m, C′, L′′, L′) = x.e0 in C′′, (L′′′; L0)
class C′′/ D{...}

L ` new C(v)<C′,L′′,L′>.m(w) −→ new C(v) /this,
w /x,
new C(v)<C′′,L′′′,L′>.m/proceed,
new C(v)<D,L′,L′> /super

 e0

(R-INVKP)

ensure(L, L) = L′ L′ ` e −→ e′

L ` ensure L e −→ ensure L e′
(RC-ENSURE)

L ` ensure L v −→ v
(R-ENSUREVAL)

L ` e0 −→ e0
′

L ` e0.f −→ e0
′.f

(RC-FIELD)

L ` e0 −→ e0
′

L ` e0.m(e) −→ e0
′.m(e)

(RC-INVKRECV)

L ` ei −→ ei
′

L ` e0.m(..,ei,..) −→ e0.m(..,ei
′,..)

(RC-INVKARG)

L ` ei −→ ei
′

L ` new C(..,ei,..) −→ new C(..,ei
′,..)

(RC-NEW)

L ` ei −→ ei
′

L ` new C(v)<C′,L′,L′′>.m(..,ei,..) −→
new C(v)<C′,L′,L′′>.m(..,ei

′,..)
(RC-INVKAARG)

Figure 3. ContextFJ: Reduction rules.

reduces to the method body where the formal parameters x and
this are replaced by the actual arguments w and the receiver, re-
spectively. Furthermore, super is replaced by the receiver with the
cursor pointing to the superclass of C′′. The rule R-INVKP, which
is similar to R-INVKB, deals with the case where the method body
is found in layer L0 in class C′′. In this case, proceed in the method
body is replaced with the invocation of the same method, where the
receiver’s cursor points to the next layer L′′′ (dropping L0). Since
the meaning of the annotated invocation is not affected by the lay-
ers in the context (note that L are not significant in these rules), the
substitution for super and proceed also means that their meaning
is the same throughout a given method body, even when they ap-
pear inside ensure. Note that, unlike FJ, reduction in ContextFJ is
call-by-value, requiring receivers and arguments to be values. This

evaluation strategy reflects the fact that arguments should be evalu-
ated under the caller-side context.

The following rules are related to context manipulation. The
rule RC-ENSURE means that e in ensure L e should be execut-
ing by activating L. The auxiliary function ensure(L, L), defined by:

ensure(L, L) = L (if L ∈ L)
ensure(L, L) = L;L (otherwise)

adds L to the end of L if L is not in L (or returns L otherwise).
It only ensures the existence of L without changing the order of
already activated layers. As we have already discussed, this is in
contrast to with statements, which other COP languages usually
provide. A with statement activates a layer but, if the layer is
already activated in the middle of the layer stack, it will be moved
to the top, changing the order of activated layers.

The next rule R-ENSUREVAL means that, once the evaluation
of the body of ensure is finished, it returns the value of the body.

There are other trivial congruence rules to allow subexpressions
to reduce. Note that ContextFJ reduction is call by value, but the
order of reduction of subexpressions is unspecified.

4. Type System
In this section, we give a type system for ContextFJ. As usual,
the role of a type system is to guarantee type soundness, namely,
to prevent statically field-not-found and method-not-found errors
from happening at run time. In ContextFJ, it also means that a
type system should ensure that every proceed() or super() call
succeeds.

A key idea in this type system is to keep track of an (under-)
approximation of layers activated at each program point. Such ap-
proximation gives information on what methods are made available
by layer activation (in addition to those defined in the base layer).
Roughly speaking, a type judgment for an expression is of the form
Λ;Γ ` e : C, where Γ is a type environment, which records types
of variables, and a set Λ of layers that are assumed to be activated
when e is evaluated. This approximated layer information Λ will
be used to typecheck a method invocation expression. For exam-
ple, the call to getTime in partial method charge in Billing in
Section 2 is valid because layer Timing provides getTime. It could
be represented by a type judgment

{Timing}; this : Connection ` this.getTime() : int

where • is the empty type environment. On the other hand,

∅; this : Connection ` this.getTime() : int

is not a valid type judgment because no layer is assumed (repre-
sented by ∅) and the base definition of Connection does not give
method getTime.

As we have already discussed, a program will be typechecked
with information on dependency between layers. Let R be a binary
relation on layer names; (L1, L2) ∈ R intuitively means that layer
L1 requires L2, that is, when L1 is to be activated, L2 has to
have been activated already. The dependency relation R is used
in typechecking the entry point of each partial method: when a
partial method in layer L is typechecked, all the layers related
to L by R are assumed in a type judgment for the body of the
partial method. In what follows, we assume a fixed dependency
relation and write L req Λ, read “layer L requires layers Λ”, when
Λ = {L′ | (L, L′) ∈ R}.

The type system also has to guarantee that the layers assumed
in type judgments are really activated at run time. It is guaranteed
by the typing rule for ensure L below:

L req Λ′ Λ′ ⊆ Λ Λ ∪ {L}; Γ ` e0 : C0

Λ;Γ ` ensure L e0 : C0



First, the third premise means that layer L (which is to be acti-
vated) can be assumed in addition to the already activated layers Λ
when typechecking the body e0 of ensure. Second, the first two
premises guarantee that layers Λ′ that L requires have been already
activated (that is, are included in Λ) when L is activated. Since such
“activated-before” relation is preserved (remember that layers are
always manipulated in the FIFO manner) during program execu-
tion, all calls (including proceed) from L will succeed.

To summarize key technical points, (1) a type judgment is aug-
mented with approximation of activated layers; (2) the method type
lookup function takes activated layers into account; and (3) the typ-
ing rule for ensure guarantees the assumed layers are really acti-
vated at run time. Keeping these in mind, we proceed to a formal
type system.

4.1 Subtyping
The subtyping relation C <: D, which is the same as that in FJ,
is defined as the reflexive and transitive closure of the extends
clauses.

C <: C
(S-REFL)

C <: D D <: E

C <: E
(S-TRANS)

class C / D {...}

C <: D
(S-EXTENDS)

4.2 Method type lookup
We define another auxiliary function to look up the type of a
method. The function mtype(m, C,Λ1,Λ2), defined by the rules
below, takes a method name m, a class name C, and two sets Λ1 and
Λ2 of layer names and returns a pair, written C→C0, of argument
types C and a return type C0. The sets Λ1 and Λ2 stand for statically
known activated layers, in which m is looked for. The first set is
used to look up m in C, whereas the second is used when m is not
found in C and the search continues to C’s superclass. Although
these two sets are the same in most uses of mtype (in fact, we write
mtype(m, C,Λ) for mtype(m, C,Λ,Λ)), we need to distinguish them
for typing proceed, because proceed cannot proceed to where it
is executed, but may proceed to a method of the same name in a
superclass in the same layer.

class C / D {... C0 m(C x){ return e; } ...}

mtype(m, C,Λ1,Λ2) = C→C0
(MT-CLASS)

L ∈ Λ1 PT(m, C, L) = C0 m(C x){ return e; }

mtype(m, C,Λ1,Λ2) = C→C0
(MT-PMETHOD)

class C / D {... M } m 6∈ M
∀L ∈ Λ1.PT(m, C, L) undefined mtype(m, D,Λ2,Λ2) = C→C0

mtype(m, C,Λ1,Λ2) = C→C0
(MT-SUPER)

The rule MT-CLASS is used when m is defined in the base layer;
the rule MT-PMETHOD is used when m is defined in one of the
activated layers; and the rule MT-SUPER is used when m is not
defined in class C. Notice that, in the premise of MT-SUPER, both
third and fourth arguments to mtype are Λ2.

Remark. Note that these rules by themselves do not define
mtype as a (set-theoretic) function on (m, C,Λ1,Λ2) in the sense
that it may be the case that mtype(m, C,Λ1,Λ2) = C→C0 and
mtype(m, C,Λ1,Λ2) = D→D0 are derived but C, C0 6= D, D0. We

later enforce the signature of a method in a class to be the same in
every layer (including the base) by a typing rule for a program.

4.3 Typing
A type environment, denoted by Γ, is a finite mapping from vari-
ables to class names, which are also types in ContextFJ. We write
x:C for a type environment Γ such that dom(Γ) = {x} and
Γ(xi) = Ci for any i. We use L to stand for a location, which
is either • (the main expression), C.m (the body of method m in
class C in the base layer), or L.C.m (the body of method m in class
C in layer L). The typing rules for expressions, methods, classes,
and programs are shown in Figure 4.

Expression typing. A type judgment for expressions is of the
form L; Λ; Γ ` e : C, read “expression e is given type C under
context Γ, location L, and activated layers Λ.” Activated layers Λ
are supposed to be a subset of layers actually activated when the
expression is evaluated at run time. Also note that Λ is a set rather
than a sequence; it means that the type system does not know in
what order layers are activated.

The first four rules T-VAR for variables, T-INVK for method in-
vocation, T-FIELD for field access, T-NEW for object instantiation
are mostly straightforward adaptations of those of FJ. Note that, in
T-INVK, Λ is used to look up the type of method m in C. As dis-
cussed already, the rule T-ENSURE for ensure requires that layers
Λ′ that the newly activated layer L requires be activated; the body
e is checked under the assumption in which L is added to the set of
activated layers.

The next three rules are concerned about super and proceed
calls. The rule T-SUPERB is for super in a method in a base class
C, as represented in the location of the type judgment. The method
type is retrieved as if the receiver type is E, which is the direct
superclass of C, where the present expression appears. The set of
activated layers passed to mtype is assumed to be empty because
base classes cannot assume any layers to be activated. Note that
it is always empty no matter how many ensures surround this
super call. This corresponds to the operational semantics that the
behavior of super is not affected by ensures in the callee. In the
other two rules, the sets of layers given to mtype have also nothing
to do with that in type judgments. The rule T-SUPERP for super
in a partial method defined in L.C is similar. The only difference
is that it can assume the existence of layers Λ′ that L requires and
also L itself. The rule T-PROCEED for proceed is also similar; the
method name to be looked up is taken from the location L.C.m.
Note that the third argument to mtype is just Λ′, which means that
a proceed call cannot proceed to the same method recursively (but
can proceed to a method of the same name in a superclass of the
same layer).

We defer the typing rule for method invocation
new C(v)<D,L,L′>.m(w) on an object with a cursor to the
discussion about type soundness.

Method/class/program typing. A type judgment for methods
is of the form M ok in C (for methods in a base class) or
M ok in L.C (for partial methods), read “method M is well formed
in C (or L.C, respectively).” The typing rules T-METHOD and
T-PMETHOD are straightforward. Both rules check that the method
body is well typed under the type environment that formal param-
eters x are given declared types C and this is given the name of
the class name where the method appears. The type of the method
body has to be a subtype of the declared return type. For methods
in a base class, the method body has to be well typed without as-
suming any activated layers, whereas, for partial methods, layers
(Λ) that the current layer (L) requires can be assumed (as well as
the current layer itself). Unlike FJ, valid method overriding is not
checked here because it requires the whole program to check.



Expression typing: L; Λ; Γ ` e : C

(Γ = x:C)

L; Λ; Γ ` xi : Ci
(T-VAR)

L; Λ; Γ ` e0 : C0 fields(C0) = C f

L; Λ; Γ ` e0.fi : Ci
(T-FIELD)

L; Λ; Γ ` e0 : C0 mtype(m, C0,Λ) = D → D0 L; Λ; Γ ` e : E E <: D

L; Λ; Γ ` e0.m(e) : D0
(T-INVK)

fields(C0) = D f L; Λ; Γ ` e : C C <: D

L; Λ; Γ ` new C0(e) : C0
(T-NEW)

L req Λ′ Λ′ ⊆ Λ L; Λ ∪ {L}; Γ ` e0 : C0

L; Λ; Γ ` ensure L e0 : C0
(T-ENSURE)

class C / E {...} mtype(m′, E, ∅) = D → D0 C.m; Λ; Γ ` e : E E <: D

C.m; Λ; Γ ` super.m′(e) : D0
(T-SUPERB)

class C / E {...} L req Λ′ mtype(m′, E,Λ′ ∪ {L}) = D → D0 L.C.m; Λ; Γ ` e : E E <: D

L.C.m; Λ; Γ ` super.m′(e) : D0
(T-SUPERP)

L req Λ′ mtype(m, C,Λ′,Λ′ ∪ {L}) = D → D0 L.C.m; Λ; Γ ` e : E E <: D

L.C.m; Λ; Γ ` proceed(e) : D0
(T-PROCEED)

Method/class typing: M ok in C

C.m; ∅; x : C, this : C ` e0 : D0 D0 <: C0

C0 m(C x) { return e0; } ok in C
(T-METHOD)

M ok in L.C

L req Λ L.C.m; Λ ∪ {L}; x : C, this : C ` e0 : D0 D0 <: C0

C0 m(C x) { return e0; } ok in L.C
(T-PMETHOD)

CL ok

K = C(D g, C f){ super(g); this.f=f; } fields(D) = D g M ok in C

class C / D { C f; K M } ok
(T-CLASS)

Valid overriding: noconflict(L1, L2) overrideh(L, C) overridev(C, D)

∀m, C.PT(m, C, L1) = C0 m(C x){...} and PT(m, C, L2) = D0 m(D y){...}, then C, C0 = D, D0

noconflict(L1, L2)

∀m. if CT(C) = class C / D { ... C0 m(C x){...} ... } and PT(m, C, L) = D0 m(D y){...}, then C, C0 = D, D0

overrideh(L, C)

∀m. if mtype(m, C, dom(PT), dom(PT)) = C→C0 and mtype(m, D, dom(PT), dom(PT)) = D→D0 and C <: D, then C = D and C0 <: D0

overridev(C, D)

Program typing: ` (CT,PT, e) : C

∀C ∈ dom(CT).CT(C) ok ∀(m, C, L) ∈ dom(PT).PT(m, C, L) ok in L.C
•; ∅; • ` e : C

∀L1, L2 ∈ dom(PT).noconflict(L1, L2)
∀C ∈ dom(CT), L ∈ dom(PT).overrideh(L, C) ∀C, D ∈ dom(CT).overridev(C, D)

` (CT,PT, e) : C
(T-PROG)

Figure 4. ContextFJ: Typing rules.



A class is well formed (written CL OK) when the constructor
matches the field declarations and all methods are well formed.

Finally, a program is well formed when all classes are well
formed, all partial methods are well formed, and the main expres-
sion is well typed under the empty assumption. The other condi-
tions mean that no two layers provide conflicting methods and all
method overriding (by a subclass or a partial method in a layer)
is valid. The predicate noconflict(L1, L2) means that there are no
conflicting methods in L1 and L2; the predicate overrideh(L, C) (h
stands for “horizontally”) mean that all overriding partial methods
in L have the same signatures as the corresponding methods in C;
and the predicate overridev(C, D) (v stands for “vertically”) mean
that method override by a subclass C of D is valid. Note that when
noconflict and overrideh hold for any combination of layers and
classes, mtype is a (set-theoretic) function.

It is interesting to see that covariant overriding of the return type
is allowed only by a based method in a subclass. In fact, we cannot
allow covariant overriding by a partial method because the order of
layer composition varies at run time. The last premise checks that a
method in a subclass correctly overrides a method of the same name
in a superclass; we can allow covariant overriding of the return type
here.

Note that, unlike noconflict and overrideh, checking overridev

for a given pair of classes needs type information on all the layers,
as dom(PT) is used for the third and fourth argument to mtype. We
need to take all the layers into account in case a subclass C defines
m, which is not present in its superclass D, and some layer adds (not
overrides) m to D.

4.4 Type Soundness
This type system is sound with respect to the operational semantics
given in the last section. Type soundness is shown via subject
reduction and progress properties [16, 22]. In order to state these
properties, though, we need to formalize the condition when a
statically assumed layer set matches a run-time layer configuration.
We write L wf , read “a run-time layer configuration L is well
formed”, which is defined as follows:

• wf

L wf L req Λ Λ ⊆ {L}
L;L wf

The first rule means that the empty sequence of layers is well
formed and the second that a sequence L; L is well formed if the
prefix L is well formed and the layers Λ that L requires have already
been activated (Λ ⊆ {L}).6

We also need to give a typing rule for expressions that appear
only at run time, i.e., method invocation on an object with a cursor.

L′ is a prefix of L′′ L′′ wf
fields(C0) = D f L; Λ; Γ ` v : C C <: D
C0 <: D mtype(m, D, {L′}, {L′′}) = F→F0

L; Λ; Γ ` e : E E <: F

L; Λ; Γ ` new C0(v)<D,L
′,L′′>.m(e) : F0

(T-INVKA)

This rule is basically thought as a combination of T-INVK and
T-NEW. One notable point is that the cursor information D, L′, and
L′′ is used to look up the type of m (instead of the receiver’s run-
time class C0 and the assumed set of activated layers Λ).

Now, the soundness theorem is stated below. Proofs of subject
reduction and progress are given in Appendix A; type soundness
follows easily from them.

6 The notation {L} is used to ignore the order in a sequence; formally, it
denotes the set consisting of all elements of L.

THEOREM 1 (Subject Reduction). Suppose given class and par-
tial method tables are well-formed. If •; {L}; Γ ` e : C and L wf
and L ` e −→ e′, then •; {L}; Γ ` e′ : D for some D such that
D <: C.

THEOREM 2 (Progress). Suppose given class and partial method
tables are well-formed. If •; {L}; • ` e : C and L wf, then either e
is a value or L ` e −→ e′ for some e′.

THEOREM 3 (Type Soundness). If ` (CT,PT, e) : C and e re-
duces to a normal form, then e is new D(v) for some v and D such
that D <: C.

5. Discussion
We have formalized a type system for dynamic layer composition
and proved its soundness. One key idea is to approximate activated
layers at each program point with the help of explicitly declared
dependencies between layers. Our result shows that such a depen-
dency relation is sufficient for a particular layer activation mecha-
nism, namely ensure, which does not change the order of already
activated layers.

We discuss other possible layer (de)activation mechanisms.
Many COP languages have with L {...}, which always acti-
vates L as the first layer to be executed by changing the order of
layers when L has been already activated, and without L {...},
which temporarily deactivates L during the execution of the body.
One motivation for with is that a programmer may want to en-
sure partial methods in the activated layer are executed first. The
present type system is not sufficient for such order-changing layer
manipulation because it statically estimates only a lower bound
of activated layers (whose ordering is lost). For example, consider
without L1 {...} when Λ in the type judgment for this ex-
pression is {L1, L2}. Since {L1, L2} gives only a lower-bound,
the run-time layer configuration can be L1; L2, L2; L1, or even
L2; L1; L3. It is unsafe, however, to remove L1 from L2; L1; L3 if
L3 requires L1. Similarly, with L1 may cause trouble when
the run-time configuration is L2; L1; L3 and L3 requires L1: be-
cause it will move L1 and change the configuration to L2; L3; L1,
where L3’s requirement is no longer satisfied. In short, with and
without are difficult because they may break the well-formedness
condition on a run-time layer configuration.

The present type system works if layer manipulation constructs
do not break well-formedness. One compromise between ensure
and with could be to activate the designated layer always as the
first one and leave the already activated one as it is, resulting in
two copies of the same layer in the run-time layer configuration.
However, it may cause a partial method in a layer to run twice for
one method call, leaving programmers surprised (especially when
layers have side effects, which is the case in real COP language
extensions).

Related Work A layer in COP languages is essentially a set of
mixins (or a mixin layer [19]), which can be composed or decom-
posed at run time. An idea similar to our requires clauses can be
found in type systems for mixins [4, 8, 14], where a mixin specifies
the interface of classes to be composed. Our require clauses can
be considered an extension of this idea to a set of interfaces. In a
language with mixins, however, once an object is instantiated, com-
posed mixins are never “deactivated”. Nevertheless, as this paper
shows, a similar idea works—to some extent—even for dynamic
(de)composition. Our requires clauses are not very flexible, be-
cause one has to specify a single set of layers, which are tied to
specific implementations. So, one cannot express dependency like
“this layer requires either L1 or L2” or even “this layer requires any
layer that provides a method of this signature.” It would not be hard
to extend our type system so that dependency can be specified via a



set of method signatures [4, 14] or Java-like interfaces adapted for
layers.

In fact, Clarke and Sergey [5] independently formalize a core
language (also called ContextFJ) for context-oriented programming
(with both with and without but no inheritance) and develop
such a type system. In their type system, each partial/base method
(rather than a layer) is equipped with a set of the signatures of the
methods that it may call as dependency information, which is very
fine-grained. However, their type system turns out to be unsound
because it does not handle removal of layers (caused by without)
properly (personal communication with Clarke and Sergey).

Feature-oriented programming (FOP) [3] and delta-oriented
programming (DOP) [17] also advocate the use of layers or delta
modules respectively to describe behavioral variations. In both ap-
proaches, however, composition with base classes is only static,
namely, happens at compile time. Their type systems [1, 7, 18] also
use explicitly declared dependencies, often called feature models,
for modular typechecking. The languages to specify dependencies
between layers or delta modules are richer than ours, which is just a
set of requires clauses. It is interesting future work to incorporate
feature models in our type system.

Typestate checking [20] is a technique to keep track of state
transition of computational resources (such as files and sockets)
during program execution statically. Our type system, which might
be considered a kind of typestate checking of layer configurations,
is simpler than typestate checking in that there is only one global
resource but inexact because only an approximation of a layer
configuration can be obtained. Note that typestate checking is not
directly applicable because it is usually based on a finite state
transition system, whereas the state space of layer configurations
is infinite.
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A. Proofs
LEMMA 1 (Weakening).

1. If L; Λ; Γ ` e : C, then L; Λ; Γ, x : D ` e : C.
2. If L; Λ; Γ ` e : C, then L; Λ ∪ {L}; Γ ` e : C.

Proof: By straightforward induction on L; Λ; Γ ` e : C. �

LEMMA 2 (Strengthening for values). If L; Λ; Γ ` v : C, then
L′; Λ′; Γ′ ` v : C.

Proof: By straightforward induction on L; Λ; Γ ` v : C. �

LEMMA 3. If fields(C) = C f and D <: C, then fields(D) =
C f, D g for some D and g.

Proof: By straightforward induction on D <: C. �

LEMMA 4. If mtype(m, C,Λ) = D→D0 and D <: C, then
mtype(m, D,Λ) = D→E0 and E0 <: D0 for some E0.

Proof: By induction on D <: C. �

LEMMA 5 (Substitution). If L; Λ; Γ, x : C ` e0 : C0 and L; Λ; Γ `
v : D and D <: C, then L; Λ; Γ ` [v/x]e0 : D0 and D0 <: C0 for
some D0.

Proof: By induction on L; Λ; Γ, x : C ` e0 : C0. �

LEMMA 6 (Substitution for super and proceed).

1. If L req Λ′ and Λ′ ⊆ {L′} and L′; L is a prefix of L and L wf
and L.C.m; Λ; Γ ` e0 : C0 and D0 <: C and fields(D0) = D f
and •; {L}; Γ ` v : E and E <: D and class C / D, then
•; {L}; Γ ` Se0 : C0 where

S =

[
new D0(v)<C,L

′,L>.m/proceed,
new D0(v)<D,L,L> /super

]
.

2. If L wf and C.m; Λ; Γ ` e0 : C0 and D0 <: C and fields(D0) =
D f and •; {L}; Γ ` v : E and E <: D and class C / D, then
•; {L}; Γ ` [new D0(v)<D,L,L>/super]e0 : C0.

Proof: 1. By induction on L.C.m; Λ; Γ ` e0 : C0 with case
analysis on the last typing rule used. We show only main cases
below.
Case T-SUPERP: e0 = super.m′(e)

mtype(m′, D,Λ′ ∪ {L}) = F→C0
L.C.m; Λ; Γ ` e : G
G <: F

Since Se0 = new D0(v)<D,L
′,L′>.m′(Se), it suffices to

show that •; {L}; Γ ` new D0(v)<D,L,L>.m
′(Se) : C0. By

the induction hypothesis, we have •; {L}; Γ ` Se : G. Since
D0 <: C and class C / D, we have D0 <: D. Then, T-INVKA
finishes the case.
Case T-PROCEED: e0 = proceed(e)

mtype(m, C,Λ′,Λ′ ∪ {L}) = F→C0
L.C.m; Λ; Γ ` e : G
G <: F

Since Se0 = new D0(v)<C,L
′,L>.m(Se), it suffices to show

that

•; {L}; Γ ` new D0(v)<C,L
′,L>.m(Se) : C0

but it is easy to show by T-INVKA and the induction hypothe-
sis.

2. Similar. Note that the case T-PROCEED cannot happen. �

LEMMA 7. Suppose L′ is a prefix of L′′ and L′′ wf
and mbody(m, C, L′, L′′) = x.e0 in C′, L and
mtype(m, C, {L′}, {L′′}) = D→D0.

1. If L = L′′′; L0, then L0.C
′.m; Λ′ ∪ {L0}; x : D, this : C′ ` e0 :

E0 and L0 req Λ′ and Λ′ ⊆ {L′′′} and C <: C′ and E0 <: D0
for some E0 and Λ′.

2. If L = •, then C′.m; ∅; x : D, this : C′ ` e0 : E0 and C <: C′

and E0 <: D0 for some E0.

Proof: By induction on mbody(m, C, L′, L′′) = x.e0 in C′, L.

Case MB-CLASS: L′ = •
class C / D {... C0 m(C x){ return e0; } ...}
C′ = C
L = •

By T-CLASS, T-METHOD and MT-CLASS, it must be the case that

C0, C = D0, D
C.m; ∅; x : D, this : C ` e0 : E0
E0 <: D0

for some E0, finishing the case.

Case MB-LAYER: L′ = L′′′; L0
PT(m, C, L0) = C0 m(C x){ return e0; }
C′ = C
L = L′

By T-PMETHOD, it must be the case that

C0, C = D0, D
L0 req Λ
L0.C.m; Λ ∪ {L0}; x : D, this : C ` e0 : E0
E0 <: D0

for some E0. By L′′ wf , we have L′ wf and so Λ ⊆ {L′′′}, finishing
the case.

Case MB-SUPER: L′ = •
class C / D { ... M }
m 6∈ M
mbody(m, D, L′′, L′′) = x.e0 in C′, L

By MT-SUPER, it must be the case that mtype(m, D, {L′′}, {L′′}) =
D→D0. The induction hypothesis and transitivity of subtyping fin-
ish the case.

Case MB-NEXTLAYER: L′ = L′′′; L0
PT(m, C, L0) undefined
mbody(m, C, L′′′, L′′) = x.e0 in C′, L

The induction hypothesis finishes the case. �

Proof of Theorem 1: By induction on L ` e −→ e′ with case
analysis on the last reduction rule used.

Case R-FIELD: e = new C0(v).fi fields(C0) = C f
e′ = vi

By T-FIELD and T-NEW, it must be the case that

•; {L}; Γ ` v : D D <: C C = Ci

and, in particular, •; {L}; Γ ` vi : Di and Di <: Ci, finishing the
case.

Case R-INVK: e = new C0(v).m(w)
L ` new C(v)<C,L,L>.m(w) −→ e′

By T-INVK and T-NEW, it must be the case that

•; {L}; Γ ` v : D fields(C) = C f D <: C
mtype(m, C0) = E→C •; {L}; Γ ` w : F F <: E.



Since C0 <: C0, we have

•; {L}; Γ ` new C0(v)<C0,L,L>.m(w) : C

by T-INVKA. By the induction hypothesis, •; {L}; Γ ` e′ : D for
some D <: C, finishing the case.
Case R-INVKP:

e = new C0(v)<C
′,L′,L′′>.m(w)

mbody(m, C′, L′, L′′) = x.e0 in C′′, (L′′′; L0)
class C′′ / D {...}

e′ =

 new C0(v) /this
w /x
new C0(v)<C

′′,L′′′,L′′>.m/proceed
new C0(v)<D,L

′′,L′′> /super

 e0

By T-INVKA, it must be the case that

L′ is a prefix of L′′ L′′ wf
fields(C0) = C f mtype(m, C′, {L′}, {L′′}) = F→C
•; {L}; Γ ` v : D D <: C C0 <: C′

•; {L}; Γ ` w : E E <: F.

By T-NEW, •; {L}; Γ ` new C0(v) : C0.
By Lemma 7,

L0.C
′′.m; Λ′ ∪ {L0}; x : F, this : C′′ ` e0 : E0

and C′ <: C′′ and E0 <: C and L0 req Λ′ and Λ′ ⊆ {L′′′} for
some E0 and Λ′. By S-TRANS, C0 <: C′′.

By Lemmas 1, 2, 5, and 6, •; {L}; Γ ` e′ : E0
′ for some

E0
′ <: E0. By S-TRANS, E0′ <: C, finishing the case.

Case R-INVKB:
Similar to the case for R-INVKP.
Case RC-ENSURE: e = ensure L e0 e′ = ensure L e0

′

L ` e0 −→ e0
′

By T-ENSURE, it must be the case that •; {L} ∪ {L}; Γ ` e0 : C.
By the induction hypothesis, •; {L} ∪ {L}; Γ ` e0

′ : D for some
D <: C. By T-ENSURE, •; {L}; Γ ` e′ : D, finishing the case.
Case R-ENSUREVAL: e = ensure L v0 e′ = v0

By T-ENSURE, it must be the case that •; {L} ∪ {L}; Γ ` v0 : C.
Then, by Lemma 2, •; {L}; Γ ` v0 : C, finishing the case.
Case RC-FIELD: e = e0.fi L ` e0 −→ e0

′

e′ = e0
′.fi

By T-FIELD, it must be the case that

•; {L}; Γ ` e0 : C0 fields(C0) = C f C = Ci.

By the induction hypothesis, •; {L}; Γ ` e0
′ : D0 for some D0 <:

C0. By Lemma 3, fields(D0) = C f, D g for some D and g. By
T-FIELD, •; {L}; Γ ` e0

′.fi : Ci, finishing the case.
Case RC-INVKRECV: e = e0.m(e) L ` e0 −→ e0

′

e′ = e0
′.m(e)

By T-INVK, it must be the case that

•; {L}; Γ ` e0 : C0 mtype(m, C0, {L}) = D→C
•; {L}; Γ ` e : E E <: D.

By the induction hypothesis, •; {L}; Γ ` e0
′ : D0 for some D0 <:

C0. By Lemma 4, mtype(m, D0, {L}) = D→D and D <: C for some
D. By T-INVK, •; {L}; Γ ` e0

′.m(e) : D, finishing the case.
Case RC-INVKARG: e = e0.m(..,ei,..) L ` ei −→ ei

′

e′ = e0.m(..,ei
′,..)

By T-INVK, it must be the case that

•; {L}; Γ ` e0 : C0 mtype(m, C0, {L}) = D→C
•; {L}; Γ ` e : E E <: D.

By the induction hypothesis, •; {L}; Γ ` ei
′ : Fi for some Fi <: Ei.

By S-TRANS, Fi <: Di. So, by T-INVK, •; {L}; Γ ` e′ : C,
finishing the case.
Case RC-NEW, RC-INVKAARG:
Similar to the case above. �

LEMMA 8. If mtype(m, C,Λ1,Λ2) = D→D0 and L is a prefix of L′

and Λ1 ⊆ {L} and Λ1 ⊆ Λ2 ⊆ {L′} and L′ wf, then there exist x
and e0 and L′′ and C′ (6= Object) such that mbody(m, C, L, L′) =
x.e0 in C′, L′′ and the lengths of x and D are equal.

Proof: By lexicographic induction on mtype(m, C,Λ1,Λ2) =
D→D0 and the length of L.
Case: L = •

class C / D {... C0 m(C x){ return e0; } ...}

By MT-CLASS, it must be the case that D, D0 = C, C0 and the
lengths of C and x are equal. Then, by MB-CLASS, mbody(m, C, •, L′) =
x.e0 in C, •.
Case: L = L′′′, L0

PT(m, C, L0) = E0 m(E x){ return e0; }

By T-PMETHOD, it must be the case that E, E0 = D, D0 and the
lengths of D and x are equal. By MB-LAYER, mbody(m, C, L, L′) =
x.e0 in C, L.
Case: L = • class C / D {... M } m 6∈ M

Λ1 = ∅
By MT-SUPER, we have mtype(m, D, ∅,Λ2) = D→D0. By the in-
duction hypothesis, there exist x and e0 and L′′ and C′ ( 6= Object)
such that mbody(m, D, L′, L′) = x.e0 in C′, L′′ and the lengths
of x and D are equal. By MB-SUPER, mbody(m, C, •, L′) =
x.e0 in C′, L′′, finishing the case.
Case: L = L′′′; L0 PT(m, C, L0) undefined

By the induction hypothesis, there exist x and e0 and L′′ and C′

( 6= Object) such that mbody(m, C, L′′′, L′) = x.e0 in C′, L′′

and the lengths of x and D are equal. By MB-NEXTLAYER,
mbody(m, C, L, L′) = x.e0 in C′, L′′, finishing the case. �

Proof of Theorem 2: By induction on •; Λ; • ` e : C with case
analysis on the last typing rule used.
Case T-VAR, T-SUPER, T-PROCEED:
Cannot happen.
Case T-FIELD: e = e0.fi •; {L}; • ` e0 : C0

fields(C0) = C f C = Ci

By the induction hypothesis, either e0 is a value or there exists e0′

such that L ` e0 −→ e0
′. In the latter case, RC-FIELD finishes the

case. In the former case where e0 is a value, by T-NEW, we have

e0 = new C0(v) •; {L}; • ` v : D D <: C.

So, we have L ` e −→ vi, finishing the case.
Case T-INVK: e = e0.m(e) •; {L}; • ` e0 : C0

mtype(m, C0, {L}) = D→C •; {L}; • ` e : E
E <: D

By the induction hypothesis, there exist i ≥ 0 and ei
′ such that

L ` ei −→ ei
′, in which case RC-INVKRECV or RC-INVKARG

finishes the case, or all ei’s are values v0, v. Then, by T-NEW,
v0 = new C0(w) for some values w. By Lemma 8, there exist
x, e0′, L′′, and C′ (6= Object) such that mbody(m, C0, L, L) =
x.e0 in C′, L′′ and the lengths of x and D are the same. Since
C′ 6= Object, there exists D′ such that class C′ / D′ {...}.
We have two subcases here depending on whether L′′ is empty
or not. We will show the case where L′′ is not empty; the other



case is similar. Let L′′ = L′′′; L0 for some L′′′ and L0. Then, the
expression

e′ =

 new C0(w) /this
v /x
new C0(w)<C

′,L′′′,L>.m/proceed
new C0(w)<D

′,L,L> /super

 e0
′

is well defined (note that the lengths of x and v are equal). Then,
by R-INVKP and R-INVK, L ` e −→ e′.
Case T-NEW: e = new C(e) fields(C) = C f

•; {L}; • ` e : D D <: C

By the induction hypothesis, either (1) e are all values, in which
case e is also a value; or (2) there exist i and ei

′ such that L `
ei −→ ei

′, in which case RC-NEW finishes the case.
Case T-ENSURE: e = ensure L e0 •; {L} ∪ {L}; • ` e0 : C

L req Λ′ Λ′ ⊆ {L}

By the induction hypothesis, either e0 is a value, in which case
R-ENSUREVAL finishes the case, or there exists e0

′ such that
ensure(L, L) ` e0 −→ e0

′, in which case RC-ENSURE finishes
the case (notice that ensure(L, L) wf ).
Case T-INKVA:
Similar to (the second half of) the case for T-INVK. �


