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Abstract. The formal core calculus .FJ has been introduced to model
lightweight family polymorphism, a programming style to support reusable
yet type-safe mutually recursive classes. This paper clarifies the essence
of the features of .FJ, by giving a formal translation from .FJ into a
variant of Featherweight GJ with a little extension of F-bounded poly-
morphism. The extension, which allows self types to appear in mutually
recursive constraints on type variables, is significant to achieve a clear
correspondence between the two languages without losing type safety.
We show that the extended version of Featherweight GJ is type sound
and that the formal translation preserves typing and reduction.

1 Introduction

Simple inheritance with which C++ and Java (without generics) are equipped
is not suitable for extending mutually recursive classes—their subclasses do not
refer to each other since the types of mutual references are the class names,
which cannot be changed when they are inherited. As a result, type safety would
usually be lost by typecasts inserted to sidestep the problem. We have proposed
lightweight family polymorphism [7], a programming style in object-oriented
programming to support reusable yet type-safe mutually recursive classes. Our
proposal solved this problem by introducing new language features that can
be easily applied to Java-like languages. Their semantics has been formalized
as .FJ, an extension of Featherweight Java [5], and its type system has been
proved sound. Actually, however, it had been known that similar programming
is possible with existing features of generics [1] and F-bounded polymorphism [4]
with which Java 5.0 and C# are equipped, although this programming requires a
lot of boilerplate code. It makes us wonder if our proposal is merely a convenient
syntax sugar for Java 5.0—in other words, are there any essential differences
between them?

In this paper, we clarify the essence of the language features supporting
lightweight family polymorphism by giving a translation from .FJ to Feather-
weight GJ [5] (with a small extension, as we will see) and answer the questions
raised above—what works as a syntax sugar and what is a distinguishing charac-
teristic. To clearly reveal correspondence between a program and its translation,
we allow a translation to change only types and class names and do not to change



run-time behavior by, say, inserting casts or additional methods. This transla-
tion is given mainly by applying the technique of Torgersen [8], used to solve the
expression problem, to the mutually recursive setting. Although, most translated
programs are well typed with the original typing rules, program fragments of a
certain form, unfortunately, are not well typed since the typing schema for self
references of the two languages are different. There are workarounds, found in
Torgersen [8] and Bruce et. al. [3], to make them type-check, but they would
change run-time behavior.

To make all translations type-check without changing run-time behavior, we
propose a little extension of F-bounded polymorphism in Java 5.0 and translate
to a variant of Java 5.0 with this extension. This extension allows self types to
appear in mutually recursive constraints on type variables in a generic class.
On the other hand, subclassing and instantiation of such classes will be limited
for safety. As a natural result, the additional typing schema for the extension
resembles that of .FJ involving self references.

To rigorously show that the extension and translation are correct, we give

– a variant of Featherweight GJ (FGJ) [5], a formal core calculus of GJ [1] or
Java 5.0, with extended F-bounded polymorphism,

– a formal translation from .FJ to the extended version of FGJ,
– a type soundness theorem of the extended version of FGJ, and
– theorems of correctness of the formal translation.

The correctness result of the translation states that the proposed extension of
F-bounded polymorphism captures the essential difference between .FJ and (the
original) FGJ.

Besides the theoretical interest, the translation can be used for an imple-
mentation of lightweight family polymorphism, although there has been another
possibility [7] using erasure [1]. The advantage of the present one is that the
translation preserves the original type information without using typecasts.

Rest of This Paper. Section 2 reviews .FJ. Section 3 shows the outline of the
translation. Section 4 formalizes the translation and proves its correctness as well
as type soundness of the extended version of FGJ. Section 5 discusses related
work. Section 6 concludes. A full version of this paper with proofs of the theorems
will be available at http://www.sato.kuis.kyoto-u.ac.jp/~saito/elfp/.

2 .FJ: A Formal Core Calculus of Lightweight Family
Polymorphism

In this section, we review the key features of .FJ to support lightweight fam-
ily polymorphism quite briefly. We would like to refer readers to the original
paper [7] for details and examples.

Figure 1 shows the .FJ syntax. The metavariables C, D, and E range over (sim-
ple) class names; X and Y range over type variable names; f and g range over
field names; m ranges over method names; x ranges over variables. The symbols



F,G ::= C | X family names
A,B ::= C | C.C absolute class names

S,T,U ::= F | F.C | .C types

L ::= class C / C {T f; M NL} top-level class declarations

M ::= <X/C>T m(T x){ ↑ e;} method declarations

NL ::= class C {T f; M} nested class declarations

d,e ::= x | e.f | e.<F>m(e) | new A(e) expressions
v ::= new A(v) values

Fig. 1. .FJ: Syntax.

/ and ↑ are read extends and return, respectively. Although constructor dec-
larations are omitted for simplicity, we assume that every class has an obvious
constructor that takes initial values of all the fields and assigns them. We put
an over-line for a possibly empty sequence. Furthermore, we abbreviate pairs of
sequences in a similar way, writing “T f” for “T1 f1,. . . ,Tn fn”, where n is the
length of T and f and so on. Sequences of type variables, field declarations, pa-
rameter names, method declarations, and nested class declarations are assumed
to contain no duplicate names. We write the empty sequence as • and denote
concatenation of sequences using a comma.

Let us introduce the main judgments of .FJ. The subtyping relation “∆ `
S<:T” is read S is a subtype of T under the bound environment ∆. The typing
judgment “∆;Γ ; A ` e:T” of an expression e is read an expression e has a type
T under the bound environment ∆ and the type environment Γ in the enclosing
class A. Here, a type environment Γ is a finite mapping from variables to types,
written x:T; a bound environment ∆ is a finite mapping from type variables to
their bounds (top-level classes), written X<:C. The reduction relation is written
e−→e′. The type system of .FJ has been proved sound.

The rest of this section shows how to program extensible mutually recursive
classes in lightweight family polymorphism.

Mutually recursive classes are declared as nested classes NL in a top-level
class L. The notion “family” refers to nested classes and its enclosing (top-level)
class. Mutually recursive classes in a family are extended simultaneously when
their enclosing class is extended. Members in a nested class in a top-level class
are inherited by a nested class of the same name in the derived top-level class.
In nested classes, relative path types .C are used for mutual references instead
of absolute nested class names C.C, which are called fully qualified names in the
Java terminology. A relative path type .C, read “dot C”, refers to a nested class C
in the same top-level class and its meaning will be changed when it is inherited
to nested classes in a derived top-level class—relative path types in inherited
members refer to one another among the derived family, as desired.

A simplified and informal .FJ example from [7] implementing graphs com-
posed by nodes and edges, and graphs composed by colored nodes and weighted
edges is:



class Graph {
class Node { void add(.Edge e){ .. }
class Edge { void connect(.Node n){ n.add(this); ..}}

class CWGraph / Graph {
class Node { Color color; }
class Edge { int weight; void connect(.Node n){ n.color;..}}}

where ColorWeightGraph is abbreviated to CWGraph. Since the argument n of
the overriding connect() is of relative path type .Node, the field color of
CWGraph.Node can be accessed on n in CWGraph.Edge without typecasts. They
would be necessary if these classes were written in Java (without generics) since,
for type safety, method signatures cannot be changed covariantly when they are
overridden, i.e., once a method has a parameter of Graph.Node, it cannot be
overridden by CWGraph.Node. The self reference this of a nested class is given a
relative path type, for example, this is of type .Edge in Graph.Edge, so it can
be used as an argument to the method invocation n.add() in connect(). The
reason why this has a relative path type is that the meaning of this changes
in subclasses. The translation will reveal that this is an essential difference from
the original FGJ.

Once variables are declared or objects are created with absolute nested class
names C1.C2, relative path types in the member signatures are resolved to be
absolute with the family names C1. For example, an object new Graph.Edge(..)
has method connect() whose argument type is Graph.Edge. Subtyping between
nested classes is not allowed for safety, for example, CWGraph.Edge cannot be
used as Graph.Edge, even though there is an inheritance relation.

Family-polymorphic methods M overcome the inconvenience associated with
the absence of subtyping. They have family parameters with their bounds <X/C>,
for example:

<G / Graph>void m(G.Node n, G.Edge e){ e.connect(n); }.

This method can work uniformly over families that can instantiate G, such as
Graph and CWGraph. For example, if G is instantiated with Graph, the method
will accept objects of Graph.Node and Graph.Edge.

3 An Outline of the Translation

In this section, we describe the outline of the translation from .FJ to FGJ. On
the way, we show that some translated programs are not well typed because of
the different typing schema of .FJ and FGJ, and then we propose an extension
of F-bounded polymorphism.

3.1 Basic Ideas of the Translation

Nested classes are translated to generic (top-level) classes and all inheritance
relations are made explicit. Nothing except for types and class names will be
changed. For instance, the nested classes Graph.Node and CWGraph.Node are
translated to:



class Graph$Node<Node / Graph$Node<Node,Edge>,
Edge / Graph$Edge<Node,Edge>> {

void add(Edge e){ .. }
}
class CWGraph$Node<Node / CWGraph$Node<Node,Edge>,

Edge / CWGraph$Edge<Node,Edge>>
extends Graph$Node<Node,Edge>{ Color color; }

Here, $ is used to make atomic names for generic classes. Graph$Edge and
CWGraph$Edge are defined with the same parameterization as Graph$Node and
CWGraph$Node, respectively. Relative path types are translated to their corre-
sponding type variables (without “.”). Note that the upper bounds of type
variables are changed when moving to subfamilies so that the functionalities
of mutual references are characterized correctly. For example, color can be ac-
cessed on n, of type Node, in CWGraph$Edge since the upper bound of Node is
CWGraph$Node, which has color. Although classes are no longer nested, generic
classes from a family form a group and they will work together since the F-
bounded constraints in a generic class require other generic classes.

Since these generic classes cannot be instantiated, their non-generic sub-
classes, fixed point classes, need to be declared. They correspond to absolute
class names in .FJ. We add a suffix Fix to generic class names to make the
names for their fixed point classes. A fixed point class Graph$NodeFix extends
Graph$Node and instantiates the type variables with itself and another fixed
point class Graph$EdgeFix, defined simultaneously:
class Graph$NodeFix / Graph$Node<Graph$NodeFix,Graph$EdgeFix>{..}
class Graph$EdgeFix / Graph$Edge<Graph$NodeFix,Graph$EdgeFix>{..}

(The class body contains only constructors.) Note that fixed point classes in a
subfamily are not substitutable for ones in its super family since they are not
in inheritance relations. For example, CWGraph$NodeFix 6<:Graph$NodeFix. This
fact corresponds that in .FJ there is no subtyping between nested classes.

To translate a family-polymorphic method, each type X.C in the method
signature is translated to a type variable X$C, in which $ is also used to make
an atomic name. Then, each of them will be F-bounded in the parameterization
clause by using translated nested classes in X’s upper bound. For example, m()
is translated to:
<G$Node/Graph$Node<G$Node,G$Edge>,
G$Edge/Graph$Edge<G$Node,G$Edge>, G/Graph>

void m(G$Node n, G$Edge e){ .. }

where G.Node and G.Edge are translated to G$Node and G$Edge, respectively.
Note that X$C must be made for all nested classes C in X’s upper bound even
if some of them do not appear in the method signature. For example, even if
m() did not have G.Edge in the signature, the translated m() would have the
same parameterization as above since G$Edge is required to instantiate the upper
bound Graph$Node of G$Node. The actual type argument to a method invocation
is translated similarly: if it is a top-level class, it will be translated to a set of
fixed point classes from the top-level class; if it is a type variable X, it will be
translated to a set of type variables of form X$C.



3.2 An Extension of F-bounded Polymorphism

Although most translated programs are well typed, unfortunately program frag-
ments of a certain form will not be well typed after translation. This is because
the way self references are typed in generic classes is different from that in the
type system of .FJ. In this subsection, we examine this problem and propose an
extension of F-bounded polymorphism in Java 5.0.

This problem occurs when translating a program in which this is passed
to method parameters of relative path types. For instance, n.add(this) in
connect() of Graph$Edge is not well typed, because the typing rules of Java
generics give this type Graph$Edge<N,E>, which does not agree with the argu-
ment type Edge, which is a type variable. However, this is of relative path type
in .FJ, so its type should translate to a type variable so that such translated
method invocations type-check.

In this paper, we modify this design of typing by extending F-bounded poly-
morphism a little. Our proposal, on the one hand, allows the type of this in
a generic class to be a type variable, found from the F-bounded constraints,
just as the type of other mutual references. On the other hand, subclassing and
instantiation of such a generic class will be limited for safety.

More precisely, if the upper bound of a type variable is the same as the name
of the class, the type variable can be given as the type of this. For example, this
has type Edge in Graph$Edge. As a result, n.add(this) in connect() is well
typed. We call such a type variable a self type variable. For type safety, we allow a
class with a self type variable to be either fixed or extended by another class with
a self type variable, and prohibit creating its objects with any type instantiation.
For example, Graph$Edge<Graph$NodeFix,Graph$EdgeFix> cannot be instan-
tiated since we can think its self type is Graph$EdgeFix, which instantiates the
self type variable Graph$Edge. If it were allowed to create its objects, invoking
methods like connect() on them would result in an ill-typed expression, invoking
add() expecting Graph$EdgeFix, the type argument passed to the self type, with
an incompatible argument of type Graph$Edge<Graph$NodeFix,Graph$EdgeFix>.

4 Formalization

In this section, we formalize the extension of F-bounded polymorphism on top
of Featherweight GJ [5] and prove its type system sound. Then, we formalize
the translation from .FJ to the extended version of FGJ. Finally, we prove that
the translation is correct with respect to typing and reduction.

4.1 Featherweight GJ with Self Type Variables

We give the formal definition of Featherweight GJ extended with self type vari-
ables.



Syntax:

S,T,U ::= X | N types

N,P,Q ::= C<T> non-variable types

L ::= class iopt C<X/N>/N{T f; M} class declarations

M ::= <X/N>T m(T x){ ↑ e; } method declarations

d,e ::= x | e.f | e.<T>m(e) | new N(e) expressions
v ::= new N(v) values

Method Typing:

∆ = X<:N, Y<:P ∆ ` T, T ok-type

∆;Y ` P ok-bound

∆;x:T, this:U ` e0:S ∆ ` S<:T
class iopt C<X/N>/N{..}
override(m, N,<Y/P>T→T)

C<X/N>;U ` <Y/P>T m(T x){ ↑ e0;} ok

Class Typing:

∆ = X<:N C<X/N> ` N ok-superclass

∆ ` T ok-type ∆;X ` N ok-bound

C<X> = Ni C<X/N>;Xi ` M ok

` class i C<X/N>/N{T f; M} ok

Well-formedness:

class i D<Y/P>/P{..}

Si =

{
Xj if class j C<X/N>/N{..}
C<X> otherwise

X<:N ` D<S> ok

C<X/N> ` D<S> ok-superclass

class i C<X/N>/N{..} Ti = X
Ti<:C<T> ∈ ∆ ∆ ` C<T> ok

∆;X ` C<T> ok-bound

class C<X/N>/N{..} ∆ ` C<T> ok

∆ ` C<T> ok-type

Fig. 2. FGJ with self type variables: Syntax and selected well-formedness rules and
typing rules for methods and classes.

Syntax. Figure 2 shows the syntax of FGJ with self type variables. The syntax
is extended so that an optional number i is introduced after class in a class
declaration. This i is used to indicate that the i-th type variable in the F-bounded
constraints of a generic class is the self type variable. There are no other changes
from the original FGJ syntax except that typecasts are omitted for simplicity.
Note that the meaning of the metavariables is the same as that in the .FJ syntax.
The new metavariables N, P and Q are introduced to range over non-variable
types.

Typing. Since the extension is small, most typing rules and judgments are the
same as those in the original FGJ and we show only the important changes.
The typing judgments “` L ok” for classes and “C<X/N>; U ` M ok” for methods
are slightly extended, and the well-formedness judgment for types are extended
to three kinds: one “∆ ` T ok-type” for types, one “∆; X ` N ok-bound” for
upper bounds and one “C<X/N> ` N ok-superclass” for superclasses. The typing
judgment ∆; Γ ` e:T for expressions and the subtyping relation ∆ ` S<:T are



the same as the original ones. We abbreviate a sequence of judgments in the
following way: ∆ ` T1 ok-type, . . . , ∆ ` Tn ok-type to ∆ ` T ok-type; ∆; X1 `
T1 ok-bound, . . . , ∆; Xn ` Tn ok-bound to ∆; X ` T ok-bound; and C<X/N>; U `
M1 ok, . . . , C<X/N>; U ` Mn ok to C<X/N>; U ` M ok.

Figure 2 shows selected typing and well-formedness rules. The judgment
“C<X/N>; U ` M ok” is read “a method declaration M in class iopt C<X/N>
/N{..} is ok provided that U is the self type.” The type U is given by the typing
rules for classes.

The judgment “` L ok” is read “a class L is ok.” The typing rule in Figure 2 is
for a class with a self type variable. The type variable Xi, which is indicated by i
after class as the self type, appears the method typing judgment. For example,
this typing rule can be applied to the class declaration of Graph$Node, with now
the number 1 after class, in Section 3:

. . .
Graph$Node<Node, Edge> = Graph$Node<Node, Edge>

Graph$Node<Node / Graph$Node<Node,Edge>,
Edge / Graph$Edge<Node,Edge>>; Node ` M ok

` class 1 Graph$Node<Node / Graph$Node<Node,Edge>,
Edge / Graph$Edge<Node,Edge>> {..M} ok

It is checked if the first type variable Node is truly a self type variable as indicated
by the number 1. Then, the method declarations M are checked with Node as the
self type.

The difference of the well-formedness rules for types, upper bounds and su-
perclasses can be seen in the rules for class types C<T>— each rule has its own
requirement to C<T> besides the common requirement of “∆ ` C<T> ok”, whose
rule is omitted from Figure 2, meaning that the type instantiation is correct. A
superclass D<S> of C<X/N>, where class D<Y/P> is with a self type variable Yi,
is well formed if Yi is instantiated with either a self type variable Xj or the ex-
tending class C<X> itself. An upper bound C<T> of X, where class i C<X/N>{..}
has a self type variable Xi, is well-formed under bound environment ∆ if C<T>
is F-bounded on X, that is, Ti is X. A type C<T> is well formed under bound
environment ∆ if class C<X/N>{..} does not have a self type variable.

Other rules, omitted from Figure 2, for well-formedness are trivial: Object
is always a well-formed type, upper bound and superclass. A type variable X is
a well-formed type under bound environment ∆ if X is in the domain of ∆.

Type Soundness of Featherweight GJ with Self Type Variables. The type system
of FGJ with self type variables is sound with respect to the operational semantics,
as usual. Type soundness is proved in the standard manner via subject reduction
and progress [9, 5]. The reduction relation is written e−→e′.

Theorem 1 (Subject Reduction). If ∆;Γ ` e:T and e −→ e′ then, ∆ `
T′ <: T, for some T′ such that ∆; Γ ` e′:T′.



Theorem 2 (Progress). If ∅; ∅ ` e:T and e is not a value, then e−→e′, for
some e′.

Theorem 3 (Type Soundness). If ∅; ∅ ` e:T and e−→∗e′ with e′ a normal
form, then e′ is a value v with ∅; ∅ ` v:T′ and ∅ ` T′<:T.

4.2 A Formal Translation from .FJ to FGJ with Self Type Variables

Figure 3 shows the definition of the formal translation.

Translation of Types. Translation |T| of type T is defined at the top of the left
column. Note that the two rules in the first row show that the result is a class
name, whereas the three rules in the second row show that the result is a type
variable. Recall that $ is another character used to make an atomic name.

Translation of Expressions. We define an auxiliary function nestedclasses(C) =
E to collect all names E of nested classes in a family C including those of in-
herited ones. Translation |e|∆,Γ,A of an expression e is defined with respect to
bound environment ∆, type environment Γ and enclosing class A. The interest-
ing case is one for method invocations. It relies on translation |F|C of a family
argument F with respect to the upper bound C of the corresponding formal, de-
fined by using nestedclasses. For example, |CWGraph|Graph is CWGraph$NodeFix,
CWGraph$EdgeFix, CWGraph. In translating type arguments F in a method in-
vocation e0.<F>m(e), their upper bounds C of the correspoding formal X are
obtained by using the function mtype to lookup the method signature of m in
the type T0 of the receiver e0. The translation of an object creation requires the
translation of the class name. The translations of variables and field accesses are
straightforward.

Translation of Methods and Classes. The translation of methods and classes is a
little involved due to the fact that inherited nested classes need not be redefined
in a subfamily yet it is legal to mention an absolute type corresponding to such
implicit classes. One way to deal with implicit classes in the translation is to
generate dummy generic classes and their fixed point. To save the generation
of these generic classes, we take another approach by introducing the notion of
ceilings of absolute types. The formal definition of the ceiling dC.Ee of C.E can be
found at the bottom of the left column in Figure 3: the ceiling of C.E is the first
superclass that appears explicitly. Ceilings are used where generic class names
are required in the translated program, such as the translation of upper bounds.
We cannot save, however, fixed point classes for these implicit classes since they
are not substitutable for ones from another family as mentioned before. That is,
CWGraph$NodeFix will be defined whether CWGraph has Node or not.

Type parameterization |X/C| in a method declaration is translated as fol-
lows. The family parameter and its upper bound are translated to a set of type
variables whose upper bounds are generic classes, whose names are obtained
by ceiling. Translation |M|A of a method declaration M in a class A is defined so



Translation of Types:

|C| = C |C.E| = C$EFix
|X| = X |X.E| = X$E |.E| = E

Definition of nestedclasses

nestedclasses(Object) = •

class C/D{ .. NL }
nestedclasses(D) = E′

nestedclasses(C) =

E′, {E | E 6∈ E′,class E{..} ∈ NL}

Translation of Type Arguments:

nestedclasses(C) = E

|F|C = |F.E|, |F|

Translation of Expressions:

|x|∆,Γ,A = x

|e0.fi|∆,Γ,A = |e0|∆,Γ,A.fi

∆; Γ ;A ` e0:T0

mtype .FJ(m, bound∆(T0@A))

= <X/C>U→U0

|e0.<F>m(e)|∆,Γ,A

= |e0|∆,Γ,A.<|F|C>m(|e|∆,Γ,A)

|new A0(e)|∆,Γ,A = new |A0|(|e|∆,Γ,A)

Definition of Ceiling:

dC.Ee =

{
C$E if class E{..} ∈ NL
dD.Ee otherwise

where class C/D{..NL}

Translation of Methods:

nestedclasses(C) = E

|X/C| = |X.E1|/dC.E1e<|X.E|>, . . .,
|X.En|/dC.Ene<|X.E|>,X/C

Γ = x:T,this:thistype(A) ∆ = X<:C

|<X/C>T0 m(T x){ ↑ e0; }|A
= <|X/C|>|T0| m(|T| x){ ↑ |e0|∆,Γ,A;}

Translation of Classes:

nestedclasses(C) = E

|/C| = |.E1|/dC.E1e<|.E|>, . . .,
|.En|/dC.Ene<|.E|>

class C/D{..} nestedclasses(C) = E
nestedclasses(D) = E′

|class Ei {T f; M}|C =

class i C$Ei<|/C|>/dD.Eie<|.E′|>{
|T| f;|M|C.E}

class C/D{..} nestedclasses(C) = E
nestedclasses(D) = E′ E 6∈ E′

|class Ei {T f; M}|C =
class i C$Ei<|/C|>/Object{

|T| f;|M|C.E}

nestedclasses(C) = E

fix (C,E) = class |C.E|/dC.Ee<|C.E|>{}

|class C/D{T f; M NL}|
= class C/D {|T| f;|M|C} |NL|C

fix (C,nestedclasses(C))

Fig. 3. Translation of types, expressions, methods and classes.



that the method body e0 is translated with respect to bound environment from
the type parameterization, type environment from the formal parameters and
enclosing class A. Note that thistype(C.E) = .E and thistype(C) = C in .FJ.

A set of F-bounded constraints |/C| for nested classes in a top-level class
C is defined similarly to |X/C|. The difference is in how to make the names of
type variables. A nested class NL in a top-level class C is translated to a class
|NL|C with a self type variable, consisting of the translated fields and methods,
by using |/C|. The number i indicates the position of the self type variable. If
a nested class does not have a superclass, the superclass of the translated class
will be Object, otherwise it will be a class with a self type variable.

A fixed point class fix (C, E) for an absolute class name C.E is an empty class
that is assumed to have only a constructor declaration. The translation |C| of a
top-level class C is a set of translated nested classes, the fixed point classes given
by using fix and translated rests. Recall that fixed point classes are given for
all nested classes whether they are implicitly inherited or explicitly redefined in
subfamilies.

Properties of the Translation. Now, we prove that the translation preserves typ-
ing and reduction. The translation |∆| of a bound environment ∆ is defined
similarly to |X/C|.
Theorem 4 (Translation Preserves Typing). If a .FJ class table CT is ok
then, by using the typing rules of FGJ with self type variables |CT| is ok and

1. if ∆; Γ ; C ` e:T then, |∆|; |Γ | `FGJ |e|∆,Γ,C:|T|.
2. if ∆; Γ ; C.E ` e:T then, |∆|, |/C|; |Γ | `FGJ |e|∆,Γ,C.E:|T|.
Theorem 5 (Translation Preserves Reduction). If ∆; Γ ; A ` e:T and e−→e′

then, |e|∆,Γ,A−→FGJ |e′|∆,Γ,A.

5 Related Work

Although we extended F-bounded polymorphism, there are workarounds to make
all translated programs type-check without extending the target language. One
is to use typecasts, but the type safety would be lost. The others are to introduce
an expression that will refer to the same object as this, but whose type is a
type variable. One presented in [8] is to introduce an extra argument which is
assumed to accept the receiver object, for example:

void connect(Node n, Edge self) { n.add(self); }
e.connect(n, e);

Another one presented in [3] is to declare abstract methods which will be imple-
mented in fixed point classes so that they simply return this, as follows:

class Graph$Edge<Edge / ...>{
abstract Edge getThis();
void connect(Node n){ n.add(getThis()); }



}
class Graph$EdgeFix / Graph$Edge<...>{

Graph$EdgeFix getThis(){ return this; }
}

However, both change run-time behaivior because the former requires an evalu-
ation of the extra argument and the latter requires an extra method invocation.

LOOJ [2] is another variant of Java 5.0 extended with a special type ThisClass,
which represents self types. Its meaning changes when moving to subclasses as
that of a relative path type changes. Since this is of type ThisClass in LOOJ1,
one may expect that a translation to LOOJ will be successful. However, although
useful in a self-recursive class, ThisClass will not help us, in the mutually re-
cursive setting, since it cannot appear in the upper bounds of type variables as
the following code reveals:
class Graph$Node<Edge/Graph$Edge<ThisClass>> {..} // Not allowed
class Graph$Edge<Node/Graph$Node<ThisClass>> {..} // Not allowed

In Scala [6], we can give self references arbitrary types explicitly. When ob-
jects are created, it is checked if the classes being instantiated are subtypes of
their explicit self types. This mechanism is much more powerful than our ex-
tension of F-bounded polymorphism, in which self types are limited to type
variables.

6 Conclusion

We have shown that the formal translation from .FJ to a variant of FGJ with
the extension of F-bounded polymorphism, namely self type variables. The type
system of FGJ with self type variables has been proved sound and the correctness
of the translation has been proved, too.

The translation has clarified that nested classes, relative path types and
family-polymorphic methods can be considered a convenient syntax sugar for
Java 5.0 in which a lot of complicated parameterizations would be required, and
that absolute class names let us to create objects without defining another set
of classes, namely fixed point classes.

The extension of F-bounded polymorphism captures the essential difference
between lightweight family polymorphism and Java generics. By allowing the self
type in a generic class to be a type variable found in the F-bounded constraints,
it is possible to treat this as one of mutual references with a suitable type
without using any extra workarounds. On the other hand, its subclassing and
instantiation are limited for safety.

We conclude that lightweight family polymorphism provides not only a set
of convenient notations but also a bit more suitable type system than Java 5.0
for extensible mutually recursive classes.

1 More precisely, this is of type @ThisClass representing a narrower type, but it
does not matter in this argument.
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A The Definition of Featherweight GJ with Self Type
Variables

In this section, we show the changes from the original definition of Featherweight
GJ [5] in the typing rules for methods and classes, and type well-formedness. We
replace type well-formedness “∆ ` T ok” by “∆ ` T ok-type” in the typing rules
for expressions. Other rules and relations are the same.

Well-formed Instantiation:

class iopt C<X/N> / N {...}
∆ ` T ok-type ∆ ` T <: [T/X]N

∆ ` C<T> ok
(WF-Class)

Well-formed Superclasses:

C<X/N> ` Object ok-superclass (WFS-Object)

class i D<Y/P>/P{..}

Si =
{
Xj if class j C<X/N>/N{..}
C<X> otherwise

X<:N ` D<S> ok
C<X/N> ` D<S> ok-superclass

(WFS-ClassSelf)

class D<Y/P>/P{..} X<:N ` D<S> ok
C<X/N> ` D<S> ok-superclass

(WFS-Class)

Well-formed Upper bounds:

∆; X ` Object ok-bound (WFB-Object)

class i C<X/N>/N{..} Ti = X
Ti<:C<T> ∈ ∆ ∆ ` C<T> ok

∆; X ` C<T> ok-bound
(WFB-ClassSelf)

class C<X/N>/N{..} ∆ ` C<T> ok
∆; X ` C<T> ok-bound

(WFB-Class)

Well-formed Types:

∆ ` Object ok-type (WFT-Object)

X ∈ dom(∆)
∆ ` X ok-type

(WFT-Var)



class C<X/N>/N{..} ∆ ` C<T> ok
∆ ` C<T> ok-type

(WFT-Class)

Method Typing:

∆ = X<:N, Y<:P ∆ ` T, T ok-type
∆; Y ` P ok-bound

∆; x:T, this:U ` e0:S ∆ ` S<:T
class iopt C<X/N>/N{..}
override(m, N, <Y/P>T→T)

C<X/N>; U ` <Y/P>T m(T x){ ↑ e0;} ok
(GT-Method)

Class Typing:

∆ = X<:N C<X/N> ` N ok-superclass
∆ ` T ok-type ∆; X ` N ok-bound

C<X> = Ni C<X/N>; Xi ` M ok
` class i C<X/N>/N{T f; M} ok

(GT-ClassSelf)

∆ = X<:N C<X/N> ` N ok-superclass
∆ ` T ok-type ∆; X ` N ok-bound

C<X/N>; C<X> ` M ok
` class C<X/N>/N{T f; M} ok

(GT-Class)


