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Abstract

Several recent studies have introduced lightweight ver-

sions of Java: reduced languages in which complex fea-

tures like threads and reection are dropped to enable

rigorous arguments about key properties such as type

safety. We carry this process a step further, omitting

almost all features of the full language (including inter-

faces and even assignment) to obtain a small calculus,

Featherweight Java, for which rigorous proofs are not

only possible but easy.

Featherweight Java bears a similar relation to full

Java as the lambda-calculus does to languages such

as ML and Haskell. It o�ers a similar computational

\feel," providing classes, methods, �elds, inheritance,

and dynamic typecasts, with a semantics closely follow-

ing Java's. A proof of type safety for Featherweight

Java thus illustrates many of the interesting features

of a safety proof for the full language, while remaining

pleasingly compact. The syntax, type rules, and opera-

tional semantics of Featherweight Java �t on one page,

making it easier to understand the consequences of ex-

tensions and variations.

As an illustration of its utility in this regard, we

extend Featherweight Java with generic classes in the

style of GJ (Bracha, Odersky, Stoutamire, and Wadler)

and sketch a proof of type safety. The extended system

formalizes for the �rst time some of the key features of

GJ.

Subject areas: theoretical foundations, language de-

sign and implementation.

1 Introduction

\Inside every large language is a small language

struggling to get out..."

Formal modeling can o�er a signi�cant boost to the de-

sign of complex real-world artifacts such as program-

ming languages. A formal model may be used to de-

scribe some aspect of a design precisely, to state and

prove its properties, and to direct attention to issues

that might otherwise be overlooked. In formulating a

model, however, there is a tension between completeness

and compactness: the more aspects the model addresses

at the same time, the more unwieldy it becomes. Often

it is sensible to choose a model that is less complete but

more compact, o�ering maximum insight for minimum

investment. This strategy may be seen in a urry of

recent papers on the formal properties of Java, which

omit advanced features such as concurrency and reec-

tion and concentrate on fragments of the full language

to which well-understood theory can be applied.

We propose Featherweight Java, or FJ, as a new con-

tender for a minimal core calculus for modeling Java's

type system. The design of FJ favors compactness over

completeness almost obsessively, having just �ve forms

of expression: object creation, method invocation, �eld

access, casting, and variables. Its syntax, typing rules,

and operational semantics �t comfortably on a single

page. Indeed, our aim has been to omit as many fea-

tures as possible { even assignment { while retaining

the core features of Java typing. There is a direct cor-

respondence between FJ and a purely functional core of

Java, in the sense that every FJ program is literally an

executable Java program.

FJ is only a little larger than Church's lambda cal-

culus [3] or Abadi and Cardelli's object calculus [1],

and is signi�cantly smaller than previous formal models

of class-based languages like Java, including those put

forth by Drossopoulou, Eisenbach, and Khurshid [11],

Syme [21], Nipkow and Oheimb [18], and Flatt, Krish-

namurthi, and Felleisen [14, 15]. Being smaller, FJ lets

us focus on just a few key issues. For example, we have

discovered that capturing the behavior of Java's cast

construct in a traditional \small-step" operational se-

mantics is trickier than we would have expected, a point

that has been overlooked or underemphasized in other

models.

One use of FJ is as a starting point for modeling

languages that extend Java. Because FJ is so compact,

we can focus attention on essential aspects of the exten-

sion. Moreover, because the proof of soundness for pure

FJ is very simple, a rigorous soundness proof for even

a signi�cant extension may remain manageable. The

second part of the paper illustrates this utility by en-

riching FJ with generic classes and methods �a la GJ [7].

The model omits some important aspects of GJ (such
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as \raw types" and type argument inference for generic

method calls). Nonetheless, it has been a useful tool

in clarifying our thought, and led to the discovery and

�x of at least one bug in the GJ compiler. Because the

model is small, it is easy to contemplate further exten-

sions, and we have begun the work of adding raw types

to the model; so far, this has revealed at least one corner

of the design that was underspeci�ed.

Our main goal in designing FJ was to make a proof of

type soundness (\well-typed programs don't get stuck")

as concise as possible, while still capturing the essence

of the soundness argument for the full Java language.

Any language feature that made the soundness proof

longer without making it signi�cantly di�erent was a

candidate for omission. As in previous studies of type

soundness in Java, we don't treat advanced features

such as concurrency, inner classes, and reection. Other

Java features omitted from FJ include assignment, in-

terfaces, overloading, messages to super, null pointers,

base types (int, bool, etc.), abstract method declara-

tions, shadowing of superclass �elds by subclass �elds,

access control (public, private, etc.), and exceptions.

The features of Java that we do model include mutually

recursive class de�nitions, object creation, �eld access,

method invocation, method override, method recursion

through this, subtyping, and casting.

One key simpli�cation in FJ is the omission of as-

signment. We assume that an object's �elds are initial-

ized by its constructor and never changed afterwards.

This restricts FJ to a \functional" fragment of Java,

in which many common Java idioms, such as use of

enumerations, cannot be represented. Nonetheless, this

fragment is computationally complete (it is easy to en-

code the lambda calculus into it), and is large enough

to include many useful programs (many of the programs

in Felleisen and Friedman's Java text [12] use a purely

functional style). Moreover, most of the tricky typing

issues in both Java and GJ are independent of assign-

ment. An important exception is that the type inference

algorithm for generic method invocation in GJ has some

twists imposed on it by the need to maintain soundness

in the presence of assignment. This paper treats a sim-

pli�ed version of GJ without type inference.

The remainder of this paper is organized as follows.

Section 2 introduces the main ideas of Featherweight

Java, presents its syntax, type rules, and reduction

rules, and sketches a type soundness proof. Section 3

extends Featherweight Java to Featherweight GJ, which

includes generic classes and methods. Section 4 presents

an erasure map from FGJ to FJ, modeling the tech-

niques used to compile GJ into Java. Section 5 discusses

related work, and Section 6 concludes.

2 Featherweight Java

In FJ, a program consists of a collection of class def-

initions plus an expression to be evaluated. (This ex-

pression corresponds to the body of the main method in

Java.) Here are some typical class de�nitions in FJ.

class Pair extends Object {

Object fst;

Object snd;

Pair(Object fst, Object snd) {

super(); this.fst=fst; this.snd=snd;

}

Pair setfst(Object newfst) {

return new Pair(newfst, this.snd);

}

}

class A extends Object {

A() { super(); }

}

class B extends Object {

B() { super(); }

}

For the sake of syntactic regularity, we always in-

clude the supertype (even when it is Object), we always

write out the constructor (even for the trivial classes

A and B), and we always write the receiver for a �eld

access (as in this.snd) or a method invocation. Con-

structors always take the same stylized form: there is

one parameter for each �eld, with the same name as the

�eld; the super constructor is invoked on the �elds of

the supertype; and the remaining �elds are initialized

to the corresponding parameters. Here the supertype is

always Object, which has no �elds, so the invocations

of super have no arguments. Constructors are the only

place where super or = appears in an FJ program. Since

FJ provides no side-e�ecting operations, a method body

always consists of return followed by an expression, as

in the body of setfst().

In the context of the above de�nitions, the expres-

sion

new Pair(new A(), new B()).setfst(new B())

evaluates to the expression

new Pair(new B(), new B()).

There are �ve forms of expression in FJ. Here, new A(),

new B(), and new Pair(e1,e2) are object constructors,

and e3.setfst(e4) is a method invocation. In the body

of setfst, the expression this.snd is a �eld access, and

the occurrences of newfst and this are variables. FJ

di�ers from Java in that this is an ordinary variable

rather than a special keyword.

The remaining form of expression is a cast. The

expression

((Pair)new Pair(new Pair(new A(), new B()),

new A()).fst).snd

evaluates to the expression

new B().

Here, ((Pair)e7), where e7 is new Pair(...).fst, is

a cast. The cast is required, because e7 is a �eld access

to fst, which is declared to contain an Object, whereas

the next �eld access, to snd, is only valid on a Pair. At

run time, it is checked whether the Object stored in the

fst �eld is a Pair (and in this case the check succeeds).

In Java, one may pre�x a �eld or parameter declara-

tion with the keyword final to indicate that it may not

be assigned to, and all parameters accessed from an in-

ner class must be declared final. Since FJ contains

no assignment and no inner classes, it matters little

whether or not final appears, so we omit it for brevity.



Dropping side e�ects has a pleasant side e�ect: eval-

uation can be easily formalized entirely within the syn-

tax of FJ, with no additional mechanisms for model-

ing the heap. Moreover, in the absence of side e�ects,

the order in which expressions are evaluated does not

a�ect the �nal outcome, so we can de�ne the opera-

tional semantics of FJ straightforwardly using a nonde-

terministic small-step reduction relation, following long-

standing tradition in the lambda calculus. Of course,

Java's call-by-value evaluation strategy is subsumed by

this more general relation, so the soundness properties

we prove for reduction will hold for Java's evaluation

strategy as a special case.

There are three basic computation rules: one for �eld

access, one for method invocation, and one for casts.

Recall that, in the lambda calculus, the beta-reduction

rule for applications assumes that the function is �rst

simpli�ed to a lambda abstraction. Similarly, in FJ the

reduction rules assume the object operated upon is �rst

simpli�ed to a new expression. Thus, just as the slogan

for the lambda calculus is \everything is a function,"

here the slogan is \everything is an object."

Here is the rule for �eld access in action:

new Pair(new A(), new B()).snd �! new B()

Because of the stylized form for object constructors, we

know that the constructor has one parameter for each

�eld, in the same order that the �elds are declared. Here

the �elds are fst and snd, and an access to the snd �eld

selects the second parameter.

Here is the rule for method invocation in action (=

denotes substitution):

new Pair(new A(), new B()).setfst(new B())

�!

�

new B()=newfst;

new Pair(new A(),new B())=this

�

new Pair(newfst, this.snd)

i.e., new Pair(new B(),

new Pair(new A(), new B()).snd)

The receiver of the invocation is the object

new Pair(new A(), new B()), so we look up the

setfst method in the Pair class, where we �nd

that it has formal parameter newfst and body

new Pair(newfst, this.snd). The invocation reduces

to the body with the formal parameter replaced by

the actual, and the special variable this replaced

by the receiver object. This is similar to the beta

rule of the lambda calculus, (�x.e0)e1 �! [e1=x]e0.

The key di�erences are the fact that the class of

the receiver determines where to look for the body

(supporting method override), and the substitution of

the receiver for this (supporting \recursion through

self"). Readers familiar with Abadi and Cardelli's

Object Calculus will see a strong similarity to their &

reduction rule [1]. In FJ, as in the lambda calculus and

the pure Abadi-Cardelli calculus, if a formal parameter

appears more than once in the body this may lead

duplication of the actual, but since there are no side

e�ects this causes no problems.

Here is the rule for a cast in action:

(Pair)new Pair(new A(), new B())

�! new Pair(new A(), new B())

Once the subject of the cast is reduced to an object, it

is easy to check that the class of the constructor is a

subclass of the target of the cast. If so, as is the case

here, then the reduction removes the cast. If not, as in

the expression (A)new B(), then no rule applies and the

computation is stuck, denoting a run-time error.

There are three ways in which a computation may

get stuck: an attempt to access a �eld not declared for

the class, an attempt to invoke a method not declared

for the class (\message not understood"), or an attempt

to cast to something other than a superclass of the class.

We will prove that the �rst two of these never happen

in well-typed programs, and the third never happens

in well-typed programs that contain no downcasts (or

\stupid casts"|a technicality explained below).

As usual, we allow reductions to apply to any subex-

pression of an expression. Here is a computation for the

second example expression, where the next subexpres-

sion to be reduced is underlined at each step.

((Pair)new Pair(new Pair(new A(),

new B()), new A()).fst).snd

�! ((Pair)new Pair(new A(),new B())).snd

�! new Pair(new A(), new B()).snd

�! new B()

We will prove a type soundness result for FJ: if an ex-

pression e reduces to expression e

0

, and if e is well typed,

then e

0

is also well typed and its type is a subtype of

the type of e.

With this informal introduction in mind, we may

now proceed to a formal de�nition of FJ.

2.1 Syntax

The syntax, typing rules, and computation rules for FJ

are given in Figure 1, with a few auxiliary functions in

Figure 2.

The metavariables A, B, C, D, and E range over class

names; f and g range over �eld names; m ranges over

method names; x ranges over parameter names; d and

e range over expressions; CL ranges over class decla-

rations; K ranges over constructor declarations; and M

ranges over method declarations. We write f as short-

hand for f

1

,. . . ,f

n

(and similarly for C, x, e, etc.) and

write M as shorthand for M

1

. . . M

n

(with no commas). We

write the empty sequence as � and denote concatenation

of sequences using a comma. The length of a sequence x

is written #(x). We abbreviate operations on pairs of se-

quences in the obvious way, writing \C f" as shorthand

for \C

1

f

1

,. . . ,C

n

f

n

", and similarly \C f;" as short-

hand for \C

1

f

1

;. . . C

n

f

n

;", and \this.f=f;" as short-

hand for \this.f

1

=f

1

;. . . ;this.f

n

=f

n

;". Sequences of

�eld declarations, parameter names, and method decla-

rations are assumed to contain no duplicate names.

A class table CT is a mapping from class names C

to class declarations CL. A program is a pair (CT ; e) of

a class table and an expression. To lighten the notation

in what follows, we always assume a �xed class table

CT .

The abstract syntax of FJ class declarations, con-

structor declarations, method declarations, and expres-

sions is given at the top left of Figure 1. As in Java, we

assume that casts bind less tightly than other forms of



Syntax:

CL ::= class C extends C {C f; K M}

K ::= C(C f) {super(f); this.f = f;}

M ::= C m(C x) {return e;}

e ::= x

j e.f

j e.m(e)

j new C(e)

j (C)e

Subtyping:

C <

:

C

C <

:

D D <

:

E

C <

:

E

CT (C) = class C extends D {...}

C <

:

D

Computation:

�elds(C) = C f

(new C(e)).f

i

�! e

i

(R-Field)

mbody(m; C) = (x; e

0

)

(new C(e)).m(d)

�! [d=x; new C(e)=this]e

0

(R-Invk)

C <

:

D

(D)(new C(
e
)) �! new C(

e
)

(R-Cast)

Expression typing:

� ` x 2 �(x)

(T-Var)

� ` e

0

2 C

0

�elds(C

0

) =
C f

� ` e

0

.f

i

2 C

i

(T-Field)

� ` e

0

2 C

0

mtype(m; C

0

) = D!C

� ` e 2 C C <

:

D

� ` e

0

.m(e) 2 C

(T-Invk)

�elds(C) = D f

� ` e 2 C C <

:

D

� ` new C(e) 2 C

(T-New)

� ` e

0

2 D D <

:

C

� ` (C)e

0

2 C

(T-UCast)

� ` e

0

2 D C <

:

D C 6= D

� ` (C)e

0

2 C

(T-DCast)

� ` e

0

2 D C 6<

:

D D 6<

:

C

stupid warning

� ` (C)e

0

2 C

(T-SCast)

Method typing:

x : C; this : C ` e

0

2 E

0

E

0

<

:

C

0

CT (C) = class C extends D {...}

override(m; D; C!C

0

)

C

0

m (C x) {return e

0

;} OK IN C

Class typing:

K = C(D g, C f) {super(g); this.f = f;}

�elds(D) = D g M OK IN C

class C extends D {C f; K M} OK

Figure 1: FJ: Main de�nitions



Field lookup:

�elds(Object) = �

CT (C) = class C extends D {C f; K M}

�elds(D) = D g

�elds(C) = D g; C f

Method type lookup:

CT (C) = class C extends D {C f; K M}

B m (B x) {return e;} 2 M

mtype(m; C) =
B
!B

CT (C) = class C extends D {C f; K M}

m is not de�ned in M

mtype(m; C) = mtype(m; D)

Method body lookup:

CT (C) = class C extends D {C f; K M}

B m (B x) {return e;} 2 M

mbody(m; C) = (x; e)

CT (C) = class C extends D {C f; K M}

m is not de�ned in M

mbody(m; C) = mbody(m; D)

Valid method overriding:

mtype(m; D) =
D
!D

0

; implies
C
=

D
and C

0

= D

0

override(m; D; C!C

0

)

Figure 2: FJ: Auxiliary de�nitions

expression. We assume that the set of variables includes

the special variable this, but that this is never used

as the name of an argument to a method.

Every class has a superclass, declared with extends.

This raises a question: what is the superclass of the

Object class? There are various ways to deal with this

issue; the simplest one that we have found is to take

Object as a distinguished class name whose de�nition

does not appear in the class table. The auxiliary func-

tions that look up �elds and method declarations in the

class table are equipped with special cases for Object

that return the empty sequence of �elds and the empty

set of methods. (In full Java, the class Object does have

several methods. We ignore these in FJ.)

By looking at the class table, we can read o� the sub-

type relation between classes. We write C <

:

D when C is

a subtype of D { i.e., subtyping is the reexive and tran-

sitive closure of the immediate subclass relation given

by the extends clauses in CT . Formally, it is de�ned in

the middle of the left column of Figure 1.

The given class table is assumed to satisfy some

sanity conditions: (1) CT (C) = class C... for every

C 2 dom(CT ); (2) Object =2 dom(CT ); (3) for every

class name C (except Object) appearing anywhere in

CT , we have C 2 dom(CT ); and (4) there are no cycles

in the subtype relation induced by CT { that is, the <

:

relation is antisymmetric.

For the typing and reduction rules, we need a few

auxiliary de�nitions, given in Figure 2. The �elds of a

class C, written �elds(C), is a sequence C f pairing the

class of a �eld with its name, for all the �elds declared

in class C and all of its superclasses. The type of the

method m in class C, written mtype(m; C), is a pair, writ-

ten B!B, of a sequence of argument types B and a result

type B. Similarly, the body of the method m in class C,

written mbody(m; C), is a pair, written (x,e), of a se-

quence of parameters x and an expression e. The pred-

icate override(C

0

!C; m; D) judges if a method m with

argument types C and a result type C

0

may be de�ned

in a subclass of D. In case of overriding, if a method

with the same name is declared in the superclass then

it must have the same type.

2.2 Typing

The typing rules for expressions, method declarations,

and class declarations are in the right column of Fig-

ure 1. An environment � is a �nite mapping from vari-

ables to types, written x:C.

The typing judgment for expressions has the form

� ` e 2 C, read \in the environment �, expression e has

type C." The typing rules are syntax directed, with one

rule for each form of expression, save that there are three

rules for casts. The typing rules for constructors and

method invocations check that each actual parameter

has a type that is a subtype of the corresponding formal.

We abbreviate typing judgments on sequences in the

obvious way, writing � ` e 2 C as shorthand for � ` e

1

2

C

1

, . . . , � ` e

n

2 C

n

and writing C <

:

D as shorthand

for C

1

<

:

D

1

, . . . , C

n

<

:

D

n

.

One technical innovation in FJ is the introduction

of \stupid" casts. There are three rules for type casts:

in an upcast the subject is a subclass of the target, in

a downcast the target is a subclass of the subject, and

in a stupid cast the target is unrelated to the subject.

The Java compiler rejects as ill typed an expression con-

taining a stupid cast, but we must allow stupid casts in

FJ if we are to formulate type soundness as a subject

reduction theorem for a small-step semantics. This is

because a sensible expression may be reduced to one

containing a stupid cast. For example, consider the fol-

lowing, which uses classes A and B as de�ned as in the

previous section:

(A)(Object)new B() �! (A)new B()

We indicate the special nature of stupid casts by includ-

ing the hypothesis stupid warning in the type rule for

stupid casts (T-SCast); an FJ typing corresponds to a

legal Java typing only if it does not contain this rule.



(Stupid casts were omitted from Classic Java [14], caus-

ing its published proof of type soundness to be incorrect;

this error was discovered independently by ourselves and

the Classic Java authors.)

The typing judgment for method declarations has

the form M OK IN C, read \method declaration M is ok

if it occurs in class C." It uses the expression typing

judgment on the body of the method, where the free

variables are the parameters of the method with their

declared types, plus the special variable this with type

C.

The typing judgment for class declarations has the

form CL OK, read \class declaration CL is ok." It checks

that the constructor applies super to the �elds of the

superclass and initializes the �elds declared in this class,

and that each method declaration in the class is ok.

The type of an expression may depend on the type

of any methods it invokes, and the type of a method

depends on the type of an expression (its body), so it

behooves us to check that there is no ill-de�ned circu-

larity here. Indeed there is none: the circle is broken

because the type of each method is explicitly declared.

It is possible to load and use the class table before all

the classes in it are checked, so long as each class is

eventually checked.

2.3 Computation

The reduction relation is of the form e �! e

0

, read

\expression e reduces to expression e

0

in one step." We

write �!

�

for the reexive and transitive closure of �!.

The reduction rules are given in the bottom left col-

umn of Figure 1. There are three reduction rules, one

for �eld access, one for method invocation, and one for

casting. These were already explained in the introduc-

tion to this section. We write [d=x; e=y]e

0

for the result

of replacing x

1

by d

1

, . . . , x

n

by d

n

, and y by e in ex-

pression e

0

.

The reduction rules may be applied at any point in

an expression, so we also need the obvious congruence

rules (if e �! e

0

then e.f �! e

0

.f, and the like), which

we omit here.

2.4 Properties

Formal de�nitions are fun, but the proof of the pudding

is in. . . well, the proof. If our de�nitions are sensible, we

should be able to prove a type soundness result, which

relates typing to computation. Indeed we can prove

such a result: if a term is well typed and it reduces to

a second term, then the second term is well typed, and

furthermore its type is a subtype of the type of the �rst

term.

2.4.1 Theorem [Subject Reduction]: If � ` e 2 C

and e �! e

0

, then � ` e

0

2 C

0

for some C

0

<

:

C.

Proof sketch: The main property required in the

proof is the following term-substitution lemma:

If �; x : E ` e 2 D, and � ` d 2 D where D <

:

E,

then � ` [d=x]e 2 C for some C <

:

D.

This is proved by induction on the derivation of �; x :

E ` e 2 D. An interesting case is when e = (C)e

0

, where

the �nal rule used in the derivation is T-DCast. Sup-

pose the type of e

0

is C

0

and C <

:

C

0

. By the induction

hypothesis, � ` [d=x]e 2 D

0

for some D

0

<

:

C

0

. But,

since D

0

and C may or may not be in the subtype rela-

tion, the derivation of � ` (C)[d=x]e 2 C may involve a

stupid warning. On the other hand, if (C)e

0

is derived

using T-UCast, then (C)[d=x]e will also be an upcast.

The theorem itself is now proved by induction on the

derivation of e �! e

0

, with a case analysis on the last

rule used. The case for R-Invk is easy, using the lemma

above. Other base cases are also straightforward, as are

most of the induction steps. The only interesting case is

the congruence rule for casting|that is, the case where

(C)e �! (C)e

0

is derived using e �! e

0

. Using an

argument similar to the term substitution lemma above,

we see that a downcast expression may be reduced to

a stupid cast and an upcast expression will be always

reduced to an upcast. �

We can also show that if a program is well typed,

then the only way it can get stuck is if it reaches a

point where it cannot perform a downcast.

2.4.2 Theorem [Progress]: Suppose e is a well-

typed expression.

(1) If e includes new C

0

(e).f as a subexpression, then

�elds(C

0

) = T f and f 2 f.

(2) If e includes new C

0

(e).m(d) as a subexpression,

then mbody(m; C

0

) = (x; e

0

) and #(x) = #(d).

To state a similar property for casts, we say that an

expression e is safe in � if the type derivations of the

underlying CT and � ` e 2 C contain no downcasts

or stupid casts (uses of rules T-DCast or T-SCast).

In other words, a safe program includes only upcasts.

Then we see that a safe expression always reduces to

another safe expression, and, moreover, typecasts in a

safe expression will never fail, as shown in the following

pair of theorems.

2.4.3 Theorem: [Reduction preserves safety] If e

is safe in � and e�!e

0

, then e

0

is safe in �.

2.4.4 Theorem [Progress of safe programs]:

Suppose e is safe in �. If e has (C)new C

0

(e) as a

subexpression, then C

0

<

:

C.

3 Featherweight GJ

Just as GJ adds generic types to Java, Featherweight

GJ (or FGJ, for short) adds generic types to FJ. Here

is the class de�nition for pairs in FJ, rewritten with

generic type parameters in FGJ.

class Pair<X extends Object, Y extends Object>

extends Object {

X fst;

Y snd;

Pair(X fst, Y snd) {

super(); this.fst=fst; this.snd=snd;

}

<Z extends Object>

Pair<Z,Y> setfst(Z newfst) {

return new Pair<Z,Y>(newfst, this.snd);

}



}

class A extends Object {

A { super(); }

}

class B extends Object {

B { super(); }

}

Both classes and methods may have generic type pa-

rameters. Here X and Y are parameters of the class, and

Z is a parameter of the setfst method. Each type pa-

rameter has a bound ; here X, Y, and Z are each bounded

by Object.

In the context of the above de�nitions, the expres-

sion

new Pair<A,B>(new A(), new B()).setfst<B>(new B())

evaluates to the expression

new Pair<B,B>(new B(), new B())

If we were being extraordinarily pedantic, we would

write A<> and B<> instead of A and B, but we allow the

latter as an abbreviation for the former in order that FJ

is a proper subset of FGJ.

In GJ, type parameters to generic method invoca-

tions are inferred. Thus, in GJ the expression above

would be written

new Pair<A,B>(new A(), new B()).setfst(new B())

with no <B> in the invocation of setfst. So while FJ is

a subset of Java, FGJ is not quite a subset of GJ. We

regard FGJ as an intermediate language { the form that

would result after type parameters have been inferred.

While parameter inference is an important aspect of GJ,

we chose in FGJ to concentrate on modeling other as-

pects of GJ.

The bound of a type variable may not be a type

variable, but may be a type expression involving type

variables, and may be recursive (or even, if there are

several bounds, mutually recursive). For example, if

C<X> and D<Y> are classes with one parameter each,

one may have bounds such as <X extends C<X>> or

even <X extends C<Y>, Y extends D<X>>. For more

on bounds, including examples of the utility of recur-

sive bounds, see the GJ paper [7].

GJ and FGJ are intended to support either of two

implementation styles. They may be implemented di-

rectly, augmenting the run-time system to carry infor-

mation about type parameters, or they may be imple-

mented by erasure, removing all information about type

parameters at run-time. This section explores the �rst

style, giving a direct semantics for FGJ that maintains

type parameters, and proving a type soundness theo-

rem. Section 4 explores the second style, giving an era-

sure mapping from FGJ into FJ and showing a corre-

spondence between reductions on FGJ expressions and

reductions on FJ expressions. The second style corre-

sponds to the current implementation of GJ, which com-

piles GJ into the Java Virtual Machine (JVM), which of

course maintains no information about type parameters

at run-time; the �rst style would correspond to using

an augmented JVM that maintains information about

type parameters.

3.1 Syntax

In what follows, for the sake of conciseness we abbre-

viate the keyword extends to the symbol / and the

keywork return to the symbol ".

The syntax, typing rules, and computation rules for

FGJ are given in Figure 3, with a few auxiliary functions

in Figure 4. The metavariables X, Y, and Z range over

type variables; T, U, and V range over types; and N and

O range over nonvariable types (types other than type

variables). We write X as shorthand for X

1

,. . . ,X

n

(and

similarly for T, N, etc.), and assume sequences of type

variables contain no duplicate names.

The abstract syntax of FGJ is given at the top left

of Figure 3. We allow C<> and m<> to be abbreviated as

C and m, respectively.

As before, we assume a �xed class table CT , which is

a mapping from class names C to class declarations CL,

obeying the same sanity conditions as given previously.

3.2 Typing

A type environment � is a �nite mapping from type

variables to nonvariable types, written X <

:

N, that

takes each type variable to its bound.

Bounds of types

We write bound

�

(T) for the upper bound of T in �, as

de�ned in Figure 4. Unlike calculi such as F

�

[9], this

promotion relation does not need to be de�ned recur-

sively: the bound of a type variable is always a nonva-

riable type.

Subtyping

The subtyping relation is de�ned in the left column of

Figure 3. As before, subtyping is the reexive and tran-

sitive closure of the / relation. Type parameters are in-

variant with regard to subtyping (for reasons explained

in the GJ paper), so T <

:

U does not imply C<T> <

:

C<U>.

Well-formed types

If the declaration of a class C begins class C<X / N>,

then a type like C<T> is well formed only if substituting

T for X respects the bounds N, that is if T <

:

[T=X]N.

We write � ` T ok if type T is well-formed in context

�. The rules for well-formed types appear in Figure 3.

Note that we perform a simultaneous substitution, so

any variable in X may appear in N, permitting recursion

and mutual recursion between variables and bounds.

A type environment � is well formed if � ` �(X) ok

for all X in dom(�). We also say that an environment

� is well formed with respect to �, written � ` � ok,

if � ` �(x) ok for all x in dom(�).

Field and method lookup

For the typing and reduction rules, we need a few aux-

iliary de�nitions, given in Figure 4; these are fairly

straightforward adaptations of the lookup rules given

previously. The �elds of a nonvariable type N, writ-

ten �elds(N), are a sequence of corresponding types and

�eld names, T f. The type of the method invocation m



Syntax:

CL ::= class C<X / N> / N {T f; K M}

K ::= C(T f) {super(f); this.f = f;}

M ::= <X / N> T m (T x) {"e;}

e ::= x

j e.f

j e.m<T>(e)

j new N(e)

j (N)e

T ::= X

j N

N ::= C<T>

Subtyping:

� ` T <

:

T

� ` S <

:

T � ` T <

:

U

� ` S <

:

U

� ` X <

:

�(X)

CT (C) = class C<X / N> / N {...}

� ` C<
T
> <

:

[
T
=
X
]N

Well-formed types:

� ` Object ok

X 2 dom(�)

� ` X ok

CT (C) = class C<X / N> / N {...}

� ` T ok � ` T <

:

[T=X]N

� ` C<T> ok

Computation:

�elds(N) = T f

(new N(e)).f

i

�! e

i

mbody(m<V>; N) = (x; e

0

)

(new N(e)).m<V>(d)

�! [d=x; new N(e)=this]e

0

; ` N <

:

O

(O)(new N(e)) �! new N(e)

Expression typing:

�;� ` x 2 �(x)

�; � ` e

0

2 T

0

�elds(bound

�

(T

0

)) =
T f

�;� ` e

0

.f

i

2 T

i

�;� ` e

0

2 T

0

mtype(m; bound

�

(T

0

)) = <Y / O>U!U

� ` V ok � ` V <

:

[V=Y]O

�;� ` e 2 S � ` S <

:

[V=Y]U

�;� ` e

0

.m<V>(e) 2 [V=Y]U

� ` N ok �elds(N) = T f

�;� ` e 2 S � ` S <

:

T

�;� ` new N(e) 2 N

�;� ` e

0

2 T

0

� ` T

0

<

:

N

�;� ` (N)e

0

2 N

�;� ` e

0

2 T

0

� ` N ok

� ` N <

:

bound

�

(T

0

) N 6= bound

�

(T

0

)

downcast (N; bound

�

(T

0

))

�; � ` (N)e

0

2 N

�;� ` e

0

2 T

0

� ` N ok

� ` bound

�

(T

0

) 6<

:

N � ` N 6<

:

bound

�

(T

0

)

stupid warning

�;� ` (N)e

0

2 N

Method typing:

� = X<

:

N; Y<

:

O

� ` T ok � ` T ok � ` O ok

�; x : T; this : C<X> ` e

0

2 S � ` S <

:

T

CT (C) = class C<X / N> / N {...}

override(m; N; <Z / P>U!U)

<Y / O> T m (T x) {"e

0

;} OK IN C<X / N>

Class typing:

X<

:

N ` N ok X<

:

N ` N ok X<

:

N ` T ok

�elds(N) = U g M OK IN C<X / N>

K = C(U g, T f) {super(g); this.f = f;}

class C<X / N> / N {T f; K M} OK

Figure 3: FGJ: Main de�nitions



Bound of type:

bound

�

(X) = �(X)

bound

�

(N) = N:

Field lookup:

�elds(Object) = �

CT (C) = class C<X / N> / N {S f; K M}

�elds([T=X]N) = U g

�elds(C<
T
>) =

U g
; [
T
=
X
]
S f

Method type lookup:

CT (C) = class C<X / N> / N {S f; K M}

<Y / O> U m (U x) {"e;} 2 M

mtype(m; C<T>) = [T=X](<Y / O>U!U)

CT (C) = class C<X / N> / N {S f; K M}

m is not de�ned in M

mtype(m; C<T>) = mtype(m; [T=X]N)

Method body lookup:

CT (C) = class C<X / N> / N {S f; K M}

<Y / O> U m (U x) {"e

0

;} 2 M

mbody(m<V>; C<T>) = (x; [T=X; V=Y]e

0

)

CT (C) = class C<X / N> / N {S f; K M}

m is not de�ned in M

mbody(m<
V
>; C<

T
>) = mbody(m<

V
>; [

T
=
X
]N)

Valid method overriding:

mtype(m; N) = <Z / P>U!U implies

O,T = [Y=Z](P,U) and � ` T <

:

[Y=Z]U

override(m; N; <
Z
/
P
>
U
!U)

Valid downcast:

� ` C<S> <

:

T and � ` C<S> ok

implies S = T for all S

downcast (C<T>; T)

Figure 4: FGJ: Auxiliary de�nitions

at nonvariable type N, written mtype(m; N), is a type of

the form <X / N>U!U. Similarly, the body of the method

invocation m at nonvariable type N with type parameters

V, written mbody(m<V>; N), is a pair, written (x,e), of a

sequence of parameters x and an expression e.

Typing rules

Typing rules for expressions, methods, and classes ap-

pear in Figure 3.

The typing judgment for expressions is of form

�; � ` e 2 T, read as \in the type environment � and

the environment �, e has type T." Most of the sub-

tleties are in the �eld and method lookup relations that

we have already seen; the typing rules themselves are

straightforward.

In the ruleGT-DCast, the last premise ensures that

the result of the cast will be the same at run time, no

matter whether we use the high-level (type-passing) re-

duction rules de�ned later in this section or the erasure

semantics considered in Section 4. For example, sup-

pose we have de�ned:

class List<X / Object> / Object { ... }

class LinkedList<X / Object> / List<X> { ... }

Now, if o has type Object, then the cast (List<C>)o

is not permitted. (If, at run time, o is bound

to new List<D>(), then the cast would fail in the

type-passing semantics but succeed in the erasure se-

mantics, since (List<C>)o erases to (List)o while

both new List<C>() and new List<D>() erase to

new List().) On the other hand, if cl has type

List<C>, then the cast (LinkedList<C>)cl is permit-

ted, since the type-passing and erased versions of the

cast are guaranteed to either both succeed or both fail.

The typing rule for methods contains one additional

subtlety. In FGJ (and GJ), unlike in FJ (and Java),

covariant subtyping of method results is allowed. That

is, the result type of a method may be a subtype of

the result type of the corresponding method in the su-

perclass, although the bounds of type variables and the

argument types must be identical (modulo renaming of

type variables).

As before, a class table is ok if all its class de�nitions

are ok.

3.3 Reduction

The operational semantics of FGJ programs is only a

little more complicated than what we had in FJ. The

rules appear in Figure 3.

3.4 Properties

FGJ programs enjoy subject reduction and progress

properties exactly like programs in FJ (2.4.1 and 2.4.2).

The basic structures of the proofs are similar to those

of Theorem 2.4.1 and 2.4.2. For subject reduction, how-

ever, since we now have parametric polymorphism com-

bined with subtyping, we need a few more lemmas. The

main lemmas required are a term substitution lemma as

before, plus similar lemmas about the preservation of

subtyping and typing under type substitution. (Read-

ers familiar with proofs of subject reduction for typed

lambda-calculi like F

�

[9] will notice many similarities).

We begin with the three substitution lemmas, which are

proved by straightforward induction on a derivation of

� ` S <

:

T or �; � ` e 2 T.



3.4.1 Lemma: [Type substitution preserves sub-

typing] If �

1

; X<

:

N;�

2

` S <

:

T and �

1

` U <

:

[U=X]N

with �

1

` U ok, and none of X appearing in �

1

, then

�

1

; [U=X]�

2

` [U=X]S <

:

[U=X]T.

3.4.2 Lemma: [Type substitution preserves typ-

ing] If �

1

; X<

:

N; �

2

; � ` e 2 T and �

1

` U <

:

[U=X]N

where �

2

` U ok and none of X appears in �

1

, then

�

1

; [U=X]�

2

; [U=X]� ` [U=X]e 2 S for some S such that

�

1

; [U=X]�

2

` S <

:

[U=X]T.

3.4.3 Lemma: [Term substitution preserves typ-

ing] If �; �; x : T ` e 2 T and, �; � ` d 2 S where

� ` S <

:

T, then �; � ` [d=x]e 2 S for some S such that

� ` S <

:

T.

3.4.4 Theorem [Subject reduction]: If �; � ` e 2

T and e �! e

0

, then �; � ` e

0

2 T

0

, for some T

0

such

that � ` T

0

<

:

T.

Proof sketch: By induction on the derivation of

e �! e

0

with a case analysis on the reduction rule used.

We show in detail just the base case where e is a method

invocation. From the premises of the rule GR-Invk, we

have

e = new N(e).m<V>(d)

mbody(m<V>; N) = (x; e

0

)

e

0

= [d=x; new N(e)=this]e

0

:

By the rule GT-Invk and GT-New, we also have

�; � ` new N(e) 2 N

mtype(m; bound

�

(N)) = <Y / O>U!U

� ` V <

:

[V=Y]O

� ` V ok

�; � ` d 2 S

� ` S <

:

[V=Y]U

T = [V=Y]U:

By examining the derivation of mtype(m; bound

�

(N)),

we can �nd a supertype C<T> of N where

Y<

:

O; x : U; this : C<T> ` e

0

2 S

Y<

:

O ` S <

:

U

and none of the Y appear in T. Now, by Lemma 3.4.2,

;; x : [V=Y]U; this : C<T> ` e

0

2 [V=Y]S:

From this, a straightforward weakening lemma (not

shown here), plus Lemma 3.4.3 and Lemma 3.4.1, gives

�; � ` e

0

2 S

0

� ` S

0

<

:

[V=Y]S

� ` [V=Y]S <

:

[V=Y]U:

Letting T

0

= S

0

�nishes the case, since � ` S

0

<

:

[V=Y]U

by S-Trans. �

3.4.5 Theorem [Progress]: Suppose e is a well-

typed expression.

(1) If e includes new N

0

(e).f as a subexpression, then

�elds(N

0

) = T f and f 2 f.

(2) If e includes new N

0

(e).m<V>(d) as a subexpres-

sion, then mbody(m<V>; N

0

) = (x; e

0

) and #(x) =

#(d).

FGJ is backward compatible with FJ. Intuitively,

this means that an implementation of FGJ can be used

to typecheck and execute FJ programs without changing

their meaning. We can show that a well-typed FJ pro-

gram is always a well-typed FGJ program and that FJ

and FGJ reduction correspond. (Note that it isn't quite

the case that the well-typedness of an FJ program under

the FGJ rules implies its well-typedness in FJ, because

FGJ allows covariant overriding and FJ does not.) In

the statement of the theorem, we use �!

FJ

and �!

FGJ

to show which set of reduction rules is used.

3.4.6 Theorem [Backward compatibility]: If an

FJ program (e; CT ) is well typed under the typing

rules of FJ, then it is also well-typed under the rules of

FGJ. Moreover, for all FJ programs e and e

0

(whether

well typed or not), e �!

FJ

e

0

i� e �!

FGJ

e

0

.

Proof: The �rst half is shown by straightforward in-

duction on the derivation of � ` e 2 C (using FJ typing

rules), followed by an analysis of the rules GT-Method

and GT-Class. In the second half, both directions are

shown by induction on a derivation of the reduction re-

lation, with a case analysis on the last rule used. �

4 Compiling FGJ to FJ

We now explore the second implementation style for GJ

and FGJ. The current GJ compiler works by translation

into the standard JVM, which maintains no informa-

tion about type parameters at run-time. We model this

compilation in our framework by an erasure translation

from FGJ into FJ. We show that this translation maps

well-typed FGJ programs into well-typed FJ programs,

and that the behavior of a program in FGJ matches (in

a suitable sense) the behavior of its erasure under the

FJ reduction rules.

A program is erased by replacing types with their

erasures, inserting downcasts where required. A type is

erased by removing type parameters, and replacing type

variables with the erasure of their bounds. For example,

the class Pair<X,Y> in the previous section erases to the

following:

class Pair extends Object {

Object fst;

Object snd;

Pair(Object fst, Object snd) {

super(); this.fst=fst; this.snd=snd;

}

Pair setfst(Object newfst) {

return new Pair(newfst, this.snd);

}

}

Similarly, the �eld selection

new Pair<A,B>(new A(), new B()).snd

erases to

(B)new Pair(new A(), new B()).snd

where the added downcast (B) recovers type informa-

tion of the original program. We call such downcasts

inserted by erasure synthetic.



4.1 Erasure of Types

To erase a type, we remove any type parameters and

replace type variables with the erasure of their bounds.

Write jTj

�

for the erasure of type T with respect to type

environment �

jTj

�

= C

where bound

�

(T) = C<T>.

4.2 Field and Method Lookup

In FGJ (and GJ), a subclass may extend an instantiated

superclass. This means that, unlike in FJ (and Java),

the types of the �elds and the methods in the subclass

may not be identical to the types in the superclass. In

order to specify a type-preserving erasure from FGJ to

FJ, it is necessary to de�ne additional auxiliary func-

tions that look up the type of a �eld or method in the

highest superclass in which it is de�ned.

For example, we previously de�ned the generic class

Pair<X,Y>. We may declare a specialized subclass

PairOfA as a subclass of the instantiation Pair<A,A>,

which instantiates both X and Y to a given class A.

class PairOfA extends Pair<A,A> {

PairOfA(A fst, A snd) {

super(fst, snd);

}

PairOfA setfst(A newfst) {

return new PairOfA(newfst, this.fst);

}

}

Note that, in the setfst method, the argument type

A matches the argument type of setfst in Pair<A,A>,

while the result type PairOfA is a subtype of the result

type in Pair<A,A>; this is permitted by FGJ's covariant

subtyping, as discussed in the previous section. Erasing

the class PairOfA yields the following:

class PairOfA extends Pair {

PairOfA(Object fst, Object snd) {

super(fst, snd);

}

Pair setfst(Object newfst) {

return new PairOfA(newfst, this.fst);

}

}

Here arguments to the constructor and the method are

given type Object, even though the erasure of A is itself;

and the result of the method is given type Pair, even

though the erasure of PairOfA is itself. In both cases,

the types are chosen to correspond to types in Pair, the

highest superclass in which the �elds and method are

de�ned.

We de�ne variants of the auxiliary functions that

�nd the types of �elds and methods in the highest su-

perclass in which they are de�ned. The maximum �eld

types of a class C, written �eldsmax (C), is the sequence

of pairs of a type and a �eld name de�ned as follows:

�eldsmax (Object) = �

CT (C) = class C<X / N> / D<U> {T f; ... }

� = X<

:

N C g = �eldsmax (D)

�eldsmax (C) = C g; jTj

�

f

The maximum method type of m in C, written

mtypemax (m, C), is de�ned as follows:

CT (C) = class C<X / N> / D<U> {...}

<Y / O>T!T = mtype(m; D<U>)

mtypemax (m; C) = mtypemax (m; D)

CT (C) = class C<X / N> / D<U> {...}

mtype(m; D<U>) unde�ned

<Y / O>T!T = mtype(m; C<X>) � = X<

:

N; Y<

:

O

mtypemax (m; C) = jTj

�

!jTj

�

We also need a way to look up the maximum type

of a given �eld. If �eldsmax (C) = D f then we set

�eldsmax (C)(f

i

) = D

i

.

4.3 Erasure of Expressions

The erasure of an expression depends on the typing of

that expression, since the types are used to determine

which downcasts to insert. The erasure rules are opti-

mized to omit casts when it is trivially safe to do so;

this happens when the maximum type is equal to the

erased type.

Write jej

�;�

for the erasure of a well-typed expres-

sion e with respect to environment � and type environ-

ment �:

jxj

�;�

= x

�;� ` e

0

.f 2 T �;� ` e

0

2 T

0

�eldsmax (jT

0

j

�

)(f) = jTj

�

je

0

.fj

�;�

= je

0

j

�;�

.f

�;� ` e

0

.f 2 T �;� ` e

0

2 T

0

�eldsmax (jT

0

j

�

)(f) 6= jTj

�

je

0

.fj

�;�

= (jTj

�

) je

0

j

�;�

.f

�;� ` e

0

.m<V>(e) 2 T �;� ` e

0

2 T

0

mtypemax (m; jT

0

j

�

) = C!D D = jTj

�

je

0

.m<
V
>(

e
)j

�;�

= je

0

j

�;�

.m(j
e
j

�;�

)

�;� ` e

0

.m<V>(e) 2 T �;� ` e

0

2 T

0

mtypemax (m; jT

0

j

�

) = C!D D 6= jTj

�

je

0

.m<V>(e)j

�;�

= (jTj

�

) je

0

j

�;�

.m(jej

�;�

)

jnew N(
e
)j

�;�

= new jNj

�

(j
e
j

�;�

)

j(N)e

0

j

�;�

= (jNj

�

) je

0

j

�;�

(Strictly speaking, one should think of the erasure

operation as acting on typing derivations rather than

expressions. Since well-typed expressions are in 1-1 cor-

respondence with their typing derivations, the abuse of

notation creates no confusion.)



4.4 Erasure of Methods and Classes

The erasure of a method m with respect to type environ-

ment � in class C, written jMj

�;C

, is de�ned as follows:

� = x:T �

0

= �; Y<

:

O

e

0

= [(jTj

�

0

)x

0

=x]jej

�

0

;�

mtypemax (m; C) = D!D

j<Y / O> T m (T x) {"e;}j

�;C

= D m (D x

0

) {"e

0

;}

(In GJ, the actual erasure is somewhat more complex,

involving the introduction of bridge methods, so that

one ends up with two overloaded methods: one with

the maximum type, and one with the instantiated type.

We don't model that extra complexity here, because it

depends on overloading of method names, which is not

modeled in FJ.)

The erasure of constructors and classes is:

jC(U g, T f) {super(g); this.f = f;}j

�;C

= C(�eldsmax (C)) {super(g); this.f = f;}

� = X<

:

N

jclass C<X / N> / N {T f; K M}j

= class C / jNj

�

{jTj

�

f; jKj

�

jMj

�;C

}

4.5 Properties of Erasure

Having de�ned erasure, we may investigate some of its

properties. First, a well-typed FGJ program erases to a

well-typed FJ program, as expected:

4.5.1 Theorem [Erasure preserves typing]: If an

FGJ class table CT is ok and �; � ` e 2 T, then

j�j

�

` jej

�;�

2 jTj

�

and jCT j is ok using FJ rules.

Proof sketch: By induction on the derivation of

�; � `

FGJ

e 2 T, using the following lemmas: (1) if

� ` N ok then j�elds

FGJ

(N)j

�

<

:

�eldsmax (jNj

�

); (2)

if � ` N ok and methodtype

FGJ

(m; N) = <Y / O>U!U,

then mtypemax (m; jNj

�

) = C!D and j[V=Y]Uj

�

<

:

C and

j[V=Y]Uj

�

<

:

D; and (3) if � ` � ok and �; � ` e 2 T for

some well-formed type environment �, then � ` T ok. �

More interestingly, we would intuitively expect that

erasure from FGJ to FJ should also preserve the reduc-

tion behavior of FGJ programs:

e

reduce (FGJ)

//

erase

��

e

0

erase

��

jej

reduce (FJ)

//

je

0

j

Unfortunately, this is not quite true. For example, con-

sider the FGJ expression

e = new Pair<A,B>(a,b).fst;

where a and b are expressions of type A and B, respec-

tively, and its erasure:

jej

�;�

= (A)new Pair(jaj

�;�

,jbj

�;�

).fst

In FGJ, e reduces to jaj

�;�

, while the erasure jej

�;�

re-

duces to (A)jaj

�;�

in FJ; it does not reduce to jaj

�;�

when a is not a new expression. (Note that it is not

an artifact of our nondeterministic reduction strategy:

it happens even if we adopt a call-by-value reduction

strategy, since, after method invocation, we may obtain

an expression like (A)e where e is not a new expres-

sion.) Thus, the above diagram does not commute even

if one-step reduction (�!) at the bottom is replaced

with many-step reduction (�!

�

). In general, synthetic

casts can persist for a while in the FJ expression, al-

though we expect those casts will eventually turn out

to be upcasts when a reduces to a new expression.

In the example above, an FJ expression d reduced

from jej

�;�

had more synthetic casts than je

0

j

�;�

. How-

ever, this is not always the case: d may have less casts

than je

0

j

�;�

when the reduction step involves method

invocation. Consider the following class and its erasure:

class C<X extends Object> extends Object {

X f;

C(X f) { this.f = f; }

C<X> m() { return new C<X>(this.f); }

}

class C extends Object {

Object f;

C(Object f) { this.f = f; }

C m() { return new C(this.f); }

}

Now consider the FGJ expression

e = new C<A>(new A()).m()

and its erasure

jej

�;�

= new C(new A()).m():

In FGJ,

e �!

FGJ

new C<A>(new C<A>(new A()).f):

In FJ, on the other hand, jej

�;�

reduces to

new C(new C(new A()).f), which has fewer synthetic

casts than new C((A)new C(new A()).f), which is the

erasure of the reduced expression in FGJ. The subtlety

we observe here is that, when the erased term is re-

duced, synthetic casts may become \coarser" than the

casts inserted when the reduced term is erased, or may

be removed entirely as in this example. (Removal of

downcasts can be considered as a combination of two

operations: replacement of (A) with the coarser cast

(Object) and removal of the upcast (Object), which

does not a�ect the result of computation.)

To formalize both of these observations, we de�ne an

auxiliary relation that relates FJ expressions di�ering

only by the addition and replacement of some synthetic

casts. Let us call a well-typed expression d an expansion

of a well-typed expression e, written e =) d, if d is

obtained from e by some combination of (1) addition of

zero or more synthetic upcasts, (2) replacement of some

synthetic casts (D) with (C), where C is a supertype of

D, or (3) removal of some synthetic casts.

4.5.2 Theorem: [Erasure preserves reduction

modulo expansion] If �; � ` e 2 T and e �!

FGJ

�

e

0

, then there exists some FJ expression d

0

such that



je

0

j

�;�

=) d

0

and jej

�;�

�!

FJ

d

0

. In other words, the

following diagram commutes.

e

reduce (FGJ)

�

//

erase

��

e

0

erase

��

je

0

j

��

jej

reduce (FJ)

�

//

d

0

As easy corollaries of this theorem, it can be shown that,

if an FGJ expression e reduces to a \fully-evaluated

expression," then the erasure of e reduces to exactly

its erasure, and that if FGJ reduction gets stuck at a

stupid cast, then FJ reduction also gets stuck because

of the same typecast. We use the metavariable v for

fully evaluated expressions, de�ned as follows:

v ::= new N(v):

4.5.3 Corollary: [Erasure preserves execution

results] If �; � ` e 2 T and e �!

FGJ

�

v, then

jej

�;�

�!

FJ

�

jvj

�;�

.

4.5.4 Corollary: [Erasure preserves typecast er-

rors] If �; � ` e 2 T and e �!

FGJ

�

e

0

, where e

0

has a stuck subexpression (C<S>)new D<T>(e), then

jej

�;�

�!

FJ

�

d

0

such that d

0

has a stuck subexpression

(C)new D(d), where d are expansions of the erasures of

e, in the same position (modulo synthetic casts) as the

erasure of e

0

.

5 Related Work

Core calculi for Java. There are several known

proofs in the literature of type soundness for subsets

of Java. In the earliest, Drossopoulou and Eisen-

bach [11] (using a technique later mechanically checked

by Syme [21]) prove soundness for a fairly large sub-

set of sequential Java. Like us, they use a small-step

operational semantics, but they avoid the subtleties of

\stupid casts" by omitting casting entirely. Nipkow

and Oheimb [18] give a mechanically checked proof of

soundness for a somewhat larger core language. Their

language does include casts, but it is formulated us-

ing a \big-step" operational semantics, which sidesteps

the stupid cast problem. Flatt, Krishnamurthi, and

Felleisen [14, 15] use a small-step semantics and for-

malize a language with both assignment and casting.

Their system is somewhat larger than ours (the syn-

tax, typing, and operational semantics rules take per-

haps three times the space), and the soundness proof,

though correspondingly longer, is of similar complexity.

Their published proof of subject reduction in the earlier

version is slightly awed | the case that motivated our

introduction of stupid casts is not handled properly |

but the problem can be repaired by applying the same

re�nement we have used here.

Of these three studies, that of Flatt, Krishnamurthi,

and Felleisen is closest to ours in an important sense:

the goal there, as here, is to choose a core calculus that

is as small as possible, capturing just the features of

Java that are relevant to some particular task. In their

case, the task is analyzing an extension of Java with

Common Lisp style mixins { in ours, extensions of the

core type system. The goal of the other two systems, on

the other hand, is to include as large a subset of Java

as possible, since their primary interest is proving the

soundness of Java itself.

Other class-based object calculi. The literature

on foundations of object-oriented languages contains

many papers formalizing class-based object-oriented

languages, either taking classes as primitive (e.g., [22, 8,

6, 5]) or translating classes into lower-level mechanisms

(e.g., [13, 4, 1, 20]. Some of these systems (e.g. [20, 8])

include generic classes and methods, but only in fairly

simple forms.

Generic extensions of Java. A number of exten-

sions of Java with generic classes and methods have

been proposed by various groups, including the lan-

guage of Agesen, Freund, and Mitchell [2]; PolyJ, by

Myers, Bank, and Liskov [17]; Pizza, by Odersky and

Wadler [19]; GJ, by Bracha, Oderksy, Stoutamire, and

Wadler [7]; and NextGen, by Cartwright and Steele [10].

While all these languages are believed to be typesafe,

our study of FGJ is the �rst to give rigorous proof of

soundness for a generic extension of Java. We have used

GJ as the basis for our generic extension, but similar

techniques should apply to the forms of genericity found

in the rest of these languages.

6 Discussion

We have presented Featherweight Java, a core language

for Java modeled closely on the lambda-calculus and

embodying many of the key features of Java's type sys-

tem. FJ's de�nition and proof of soundness are both

concise and straightforward, making it a suitable arena

for the study of ambitious extensions to the type sys-

tem, such as the generic types of GJ. We have developed

this extension in detail, stated some of its fundamental

properties, and sketched their proofs.

FJ itself is not quite complete enough to model some

of the interesting subtleties found in GJ. In particular,

the full GJ language allows some parameters to be in-

stantiated by a special \bottom type" *, using a slightly

delicate rule to avoid unsoundness in the presence of as-

signment. Capturing the relevant issues in FGJ requires

extending it with assignment and null values (both of

these extensions seem straightforward, but cost us some

of the pleasing compactness of FJ as it stands). The

other somewhat subtle aspect of GJ that is not accu-

rately modeled in FGJ is the use of bridge methods in

the compilation from GJ to JVM bytecodes. To treat

this compilation exactly as GJ does, we would need to

extend FJ with overloading.

Our formalization of GJ also does not include raw

types, a unique aspect of the GJ design that supports

compatibility between old, unparameterized code and

new, parameterized code. We are currently experiment-

ing with an extension of FGJ with raw types.



Formalizing generics has proven to be a useful appli-

cation domain for FJ, but there are other areas where its

extreme simplicity may yield signi�cant leverage. For

example, work is under way on formalizing Java 1.1's

inner classes using FJ [16].
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