
Featherweight Java: A Minimal Core Calculus for

Java and GJ

ATSUSHI IGARASHI

University of Tokyo

BENJAMIN C. PIERCE

University of Pennsylvania

and

PHILIP WADLER

Avaya Labs

Several recent studies have introduced lightweight versions of Java: reduced languages in which
complex features like threads and reflection are dropped to enable rigorous arguments about
key properties such as type safety. We carry this process a step further, omitting almost all
features of the full language (including interfaces and even assignment) to obtain a small calculus,
Featherweight Java, for which rigorous proofs are not only possible but easy. Featherweight
Java bears a similar relation to Java as the lambda-calculus does to languages such as ML and
Haskell. It offers a similar computational “feel,” providing classes, methods, fields, inheritance,
and dynamic typecasts, with a semantics closely following Java’s. A proof of type safety for
Featherweight Java thus illustrates many of the interesting features of a safety proof for the full
language, while remaining pleasingly compact. The minimal syntax, typing rules, and operational
semantics of Featherweight Java make it a handy tool for studying the consequences of extensions
and variations. As an illustration of its utility in this regard, we extend Featherweight Java with
generic classes in the style of GJ (Bracha, Odersky, Stoutamire, and Wadler) and give a detailed
proof of type safety. The extended system formalizes for the first time some of the key features
of GJ.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions
and Theory; D.3.2 [Programming Languages]: Language Classifications—Object-oriented lan-
guages; D.3.3 [Programming Languages]: Language Constructs and Features—Classes and
objects; Polymorphism; F.3.3 [Logics and Meaning of Programs]: Studies of Program Con-
structs—Object-oriented constructs

This is a revised and extended version of a paper presented in the proceedings of the ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’99), ACM SIGPLAN Notices volume 34 number 10, pages 132–146, October 1999. This
work was done while Igarashi was visiting the University of Pennsylvania as a research fellow of
the Japan Society of the Promotion of Science. Pierce was supported by the University of Penn-
sylvania and the National Science Foundation under grant CCR-9701826, Principled Foundations
for Programming with Objects.
Authors’ addresses: A. Igarashi, Department of Graphics and Computer Science, Graduate School
of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
email: igarashi@graco.c.u-tokyo.ac.jp; B. C. Pierce, Department of Computer and Information
Science, University of Pennsylvania, 200 South 33rd Street, Philadelphia, PA 19104-6389; email:
bcpierce@cis.upenn.edu; P. Wadler, 233 Mount Airy Road, Basking Ridge, NJ 07920; email:
wadler@avaya.com.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1–53.

2 · A. Igarashi et al.

General Terms: Design, Languages, Theory

Additional Key Words and Phrases: Compilation, generic classes, Java, language design, language
semantics

1. INTRODUCTION

“Inside every large language is a small language struggling to get out...”1

Formal modeling can offer a significant boost to the design of complex real-world
artifacts such as programming languages. A formal model may be used to describe
some aspect of a design precisely, to state and prove its properties, and to direct
attention to issues that might otherwise be overlooked. In formulating a model,
however, there is a tension between completeness and compactness: the more as-
pects the model addresses at the same time, the more unwieldy it becomes. Often
it is sensible to choose a model that is less complete but more compact, offering
maximum insight for minimum investment. This strategy may be seen in a flurry of
recent papers on the formal properties of Java, which omit advanced features such
as concurrency and reflection and concentrate on fragments of the full language to
which well-understood theory can be applied.

We propose Featherweight Java, or FJ, as a new contender for a minimal core
calculus for modeling Java’s type system. The design of FJ favors compactness
over completeness almost obsessively, having just five forms of expression: object
creation, method invocation, field access, casting, and variables. Its syntax, typing
rules, and operational semantics fit comfortably on a few pages. Indeed, our aim
has been to omit as many features as possible—even assignment—while retaining
the core features of Java typing. There is a direct correspondence between FJ and
a purely functional core of Java, in the sense that every FJ program is literally an
executable Java program.

FJ is only a little larger than Church’s lambda calculus [Barendregt 1984] or
Abadi and Cardelli’s object calculus [1996], and is significantly smaller than previ-
ous formal models of class-based languages like Java, including those put forth by
Drossopoulou et al. [1999], Syme [1997], Nipkow and von Oheimb [1998], and Flatt
et al. [1998a; 1998b]. Being smaller, FJ lets us focus on just a few key issues. For
example, we have discovered that capturing the behavior of Java’s cast construct
in a traditional “small-step” operational semantics is trickier than we would have
expected, a point that has been overlooked or underemphasized in other models.

1We thank Tony Hoare, to whom the first quote below is attributed, for informing us of the second
one:

Inside every large program is a small program struggling to get out...
—Tony Hoare, Efficient Production of Large Programs (1970)

I’m fat, but I’m thin inside.
Has it ever struck you that there’s a thin man inside every fat man?

—George Orwell, Coming Up For Air (1939)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 3

One use of FJ is as a starting point for modeling languages that extend Java.
Because FJ is so compact, we can focus attention on essential aspects of the ex-
tension. Moreover, because the proof of soundness for pure FJ is very simple, a
rigorous soundness proof for even a significant extension may remain manageable.
The second part of the article illustrates this utility by enriching FJ with generic
classes and methods à la GJ [Bracha et al. 1998]. The model omits some important
aspects of GJ (such as “raw types” and type argument inference for generic method
calls). Nonetheless, it led to the discovery and repair of one bug in the GJ compiler
and, more importantly, has been a useful tool in clarifying our thought. Because
the model is small, it is easy to contemplate further extensions, and we have begun
the work of adding raw types to the model; so far, this has revealed at least one
corner of the design that was underspecified.

Our main goal in designing FJ was to make a proof of type soundness (“well-
typed programs do not get stuck”) as concise as possible, while still capturing the
essence of the soundness argument for the full Java language. Any language feature
that made the soundness proof longer without making it significantly different was
a candidate for omission; we also dropped features that did not appear to interact
with polymorphism in significant ways. As in previous studies of type soundness
in Java, we do not treat advanced mechanisms such as concurrency, inner classes,
and reflection. In addition, the Java features omitted from FJ include assignment,
interfaces, overloading, messages to super, null pointers, base types (int, bool,
etc.), abstract method declarations, shadowing of superclass fields by subclass fields,
access control (public, private, etc.), and exceptions. The features of Java that we
do model include mutually recursive class definitions, object creation, field access,
method invocation, method override, method recursion through this, subtyping,
and casting.

One key simplification in FJ is the omission of assignment. In essence, all fields
and method parameters in FJ are implicitly marked final: we assume that an
object’s fields are initialized by its constructor and never changed afterward. This
restricts FJ to a “functional” fragment of Java, in which many common Java idioms,
such as use of enumerations, cannot be represented. Nonetheless, this fragment is
computationally complete (it is easy to encode the lambda calculus into it), and is
large enough to include many useful programs (many of the programs in Felleisen
and Friedman’s Java text [1998] use a purely functional style). Moreover, most
of the tricky typing issues in both Java and GJ are independent of assignment.
An important exception is that the type inference algorithm for generic method
invocation in GJ has some twists imposed on it by the need to maintain soundness
in the presence of assignment. This article treats a simplified version of GJ without
type inference.

The remainder of this article is organized as follows. Section 2 introduces the
main ideas of Featherweight Java, presents its syntax, type rules, and reduction
rules, and develops a type soundness proof. Section 3 extends Featherweight Java
to Featherweight GJ, which includes generic classes and methods. Section 4 presents
an erasure map from FGJ to FJ, modeling the techniques used to compile GJ into
Java. Section 5 discusses related work, and Section 6 concludes.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 · A. Igarashi et al.

2. FEATHERWEIGHT JAVA

In FJ, a program consists of a collection of class definitions plus an expression to
be evaluated. (This expression corresponds to the body of the main method in full
Java.) Here are some typical class definitions in FJ.

class A extends Object {

A() { super(); }

}

class B extends Object {

B() { super(); }

}

class Pair extends Object {

Object fst;

Object snd;

Pair(Object fst, Object snd) {

super(); this.fst=fst; this.snd=snd;

}

Pair setfst(Object newfst) {

return new Pair(newfst, this.snd);

}

}

For the sake of syntactic regularity, we always (1) include the supertype (even
when it is Object), (2) write out the constructor (even for the trivial classes A

and B), and (3) write the receiver for a field access (as in this.snd) or a method
invocation, even when the receiver is this. Constructors always take the same
stylized form: there is one parameter for each field, with the same name as the
field; the super constructor is invoked on the fields of the supertype; and the
remaining fields are initialized to the corresponding parameters. In this example
the supertype is always Object, which has no fields, so the invocations of super
have no arguments. Constructors are the only place where super or = appears in an
FJ program. Since FJ provides no side-effecting operations, a method body always
consists of return followed by an expression, as in the body of setfst().

In the context of the above definitions, the expression

new Pair(new A(), new B()).setfst(new B())

evaluates to the expression

new Pair(new B(), new B()).

There are five forms of expression in FJ. Here, new A(), new B(), and new Pair(e1,

e2) are object constructors, and e3.setfst(e4) is a method invocation. In the body
of setfst, the expression this.snd is a field access, and the occurrences of newfst
and this are variables. (The syntax of FJ differs from Java in that this is a
variable rather than a keyword.) The remaining form of expression is a cast. The
expression

((Pair)new Pair(new Pair(new A(), new B()), new A()).fst).snd

evaluates to the expression

new B().

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 5

Here, ((Pair)e5), where e5 is new Pair(...).fst, is a cast. The cast is required
because e5 is a field access to fst, which is declared to contain an Object, whereas
the next field access, to snd, is only valid on a Pair. At run time, it is checked
whether the Object stored in the fst field is a Pair (and in this case the check
succeeds).

In Java, we may prefix a field or parameter declaration with the keyword final

to indicate that it may not be assigned to, and all parameters accessed from an
inner class must be declared final. Since FJ contains no assignment and no inner
classes, it matters little whether or not final appears, so we omit it for brevity.

Dropping side effects has a pleasant side effect: evaluation can be easily formal-
ized entirely within the syntax of FJ, with no additional mechanisms for modeling
the heap. Moreover, in the absence of side effects, the order in which expressions
are evaluated does not affect the final outcome (modulo nontermination), so we can
define the operational semantics of FJ straightforwardly using a nondeterministic
small-step reduction relation, following long-standing tradition in the lambda cal-
culus. Of course, Java’s call-by-value evaluation strategy is subsumed by this more
general relation, so the soundness properties we prove for reduction will hold for
Java’s evaluation strategy as a special case.

There are three basic computation rules: one for field access, one for method in-
vocation, and one for casts. Recall that, in the lambda calculus, the beta-reduction
rule for applications assumes that the function is first simplified to a lambda ab-
straction. Similarly, in FJ the reduction rules assume the object operated upon is
first simplified to a new expression. Thus, just as the slogan for the lambda calculus
is “everything is a function,” here the slogan is “everything is an object.”

The following example shows the rule for field access in action:

new Pair(new A(), new B()).snd −→ new B()

Due to the stylized form for object constructors, we know that the constructor has
one parameter for each field, in the same order that the fields are declared. Here the
fields are fst and snd, and an access to the snd field selects the second parameter.

Here is the rule for method invocation in action (/ denotes substitution):

new Pair(new A(), new B()).setfst(new B())

−→

[

new B()/newfst,
new Pair(new A(),new B())/this

]

new Pair(newfst, this.snd)

i.e., new Pair(new B(), new Pair(new A(), new B()).snd)

The receiver of the invocation is the object new Pair(new A(), new B()), so we
look up the setfst method in the Pair class, where we find that it has formal pa-
rameter newfst and body new Pair(newfst, this.snd). The invocation reduces
to the body with the formal parameter replaced by the actual, and the special
variable this replaced by the receiver object. This is similar to the beta rule of
the lambda calculus, (λx.e0)e1 −→ [e1/x]e0. The key differences are the fact
that the class of the receiver determines where to look for the body (supporting
method override), and the substitution of the receiver for this (supporting “recur-
sion through self”). Readers familiar with Abadi and Cardelli’s Object Calculus
will see a strong similarity to their ς reduction rule [Abadi and Cardelli 1996]. In
FJ, as in the lambda calculus and the pure Abadi-Cardelli calculus, if a formal

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 · A. Igarashi et al.

parameter appears more than once in the body it may lead to duplication of the
actual, but since there are no side effects this causes no problems.

Here is the rule for a cast in action:

(Pair)new Pair(new A(), new B()) −→ new Pair(new A(), new B())

Once the subject of the cast is reduced to an object, it is easy to check that the
class of the constructor is a subclass of the target of the cast. If so, as is the case
here, then the reduction removes the cast. If not, as in the expression (A)new B(),
then no rule applies and the computation is stuck, denoting a run-time error.

There are three ways in which a computation may get stuck: an attempt to access
a field not declared for the class; an attempt to invoke a method not declared for
the class (“message not understood”); or an attempt to cast to something other
than a superclass of an object’s run-time class. We prove that the first two of
these never happen in well-typed programs, and the third never happens in well-
typed programs that contain no downcasts (and no “stupid casts”—a technicality
explained below).

As usual, we allow reductions to apply to any subexpression of an expression.
Here is a computation for the second example expression above, where the next
subexpression to be reduced is underlined at each step.

((Pair)new Pair(new Pair(new A(), new B()), new A()).fst).snd

−→ ((Pair)new Pair(new A(),new B())).snd

−→ new Pair(new A(), new B()).snd

−→ new B()

We prove a type soundness result for FJ: if a well-typed expression e reduces to a
normal form, an expression that cannot reduce any further, then the normal form
is either a well-typed value (an expression consisting only of new), whose type is a
subtype of the type of e, or stuck at a failing typecast.

With this informal introduction in mind, we may now proceed to a formal defi-
nition of FJ.

2.1 Syntax

The abstract syntax of FJ class declarations, constructor declarations, method
declarations, and expressions is given at the top of Figure 1. The metavariables
A, B, C, D, and E range over class names; f and g range over field names; m ranges
over method names; x ranges over variables; d and e range over expressions; L

ranges over class declarations; K ranges over constructor declarations; and M ranges
over method declarations. We assume that the set of variables includes the special
variable this, which cannot be used as the name of an argument to a method.
(As we will see later, the restriction is imposed by the typing rules.) Instead, it
is considered to be implicitly bound in every method declaration. The evaluation
rule for method invocation will have the job of substituting an appropriate object
for this, in addition to substituting the argument values for the parameters. Note
that since we treat this in method bodies as an ordinary variable, no special syntax
for it is required.

We write f as shorthand for a possibly empty sequence f1,. . . ,fn (and simi-
larly for C, x, e, etc.) and write M as shorthand for M1. . . Mn (with no commas).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 7

Syntax:

L ::= class C extends C {C f; K M}

K ::= C(C f){super(f); this.f=f;}

M ::= C m(C x){ return e; }

e ::= x | e.f | e.m(e) | new C(e) | (C)e

Subtyping:

C <: C
C <: D D <: E

C <: E

class C extends D {...}

C <: D

Field lookup:

fields(Object) = •

class C extends D {C f; K M} fields(D) = D g

fields(C) = D g, C f

Method type lookup:

class C extends D {C f; K M} B m(B x){ return e; } ∈ M

mtype(m, C) = B→B

class C extends D {C f; K M} m 6∈ M

mtype(m, C) = mtype(m, D)

Method body lookup:

class C extends D {C f; K M} B m(B x){ return e; } ∈ M

mbody (m, C) = x.e

class C extends D {C f; K M} m 6∈ M

mbody (m, C) = mbody (m, D)

Fig. 1. FJ: Syntax, subtyping rules, and auxiliary functions.

We write the empty sequence as • and denote concatenation of sequences using a
comma. The length of a sequence x is written #(x). We abbreviate operations
on pairs of sequences in the obvious way, writing “C f” for “C1 f1,. . .,Cn fn”,
where n is the length of C and f, and similarly “C f;” as shorthand for the
sequence of declarations “C1 f1;. . . Cn fn;” and “this.f=f;” as shorthand for
“this.f1=f1;. . . ;this.fn=fn;”. Sequences of field declarations, parameter names,
and method declarations are assumed to contain no duplicate names. As in Java,
we assume that casts bind less tightly than other forms of expression.

The class declaration class C extends D {C f; K M} introduces a class named
C with superclass D. The new class has fields f with types C, a single constructor
K, and a suite of methods M. The instance variables declared by C are added to

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 · A. Igarashi et al.

Expression typing:

Γ ⊢ x : Γ(x) (T-Var)

Γ ⊢ e0 : C0 fields(C0) = C f

Γ ⊢ e0.fi : Ci

(T-Field)

Γ ⊢ e0 : C0 mtype(m, C0) = D→C Γ ⊢ e : C C <: D

Γ ⊢ e0.m(e) : C
(T-Invk)

fields(C) = D f Γ ⊢ e : C C <: D

Γ ⊢ new C(e) : C
(T-New)

Γ ⊢ e0 : D D <: C

Γ ⊢ (C)e0 : C
(T-UCast)

Γ ⊢ e0 : D C <: D C 6= D

Γ ⊢ (C)e0 : C
(T-DCast)

Γ ⊢ e0 : D C 6<: D D 6<: C stupid warning

Γ ⊢ (C)e0 : C
(T-SCast)

Method typing:

x : C, this : C ⊢ e0 : E0 E0 <: C0

class C extends D {...}

if mtype(m, D) = D→D0, then C = D and C0 = D0

C0 m(C x){ return e0; } OK IN C
(T-Method)

Class typing:

K = C(D g, C f){super(g); this.f=f;} fields(D) = D g M OK IN C

class C extends D {C f; K M} OK

(T-Class)

Fig. 2. FJ: Typing rules.

the ones declared by D and its superclasses, and should have names distinct from
these. (In full Java, instance variables of superclasses may be redeclared, in which
case the redeclaration shadows the original in the current class and its subclasses.
We omit this feature in FJ.) The methods of C, on the other hand, may either
override methods with the same names that are already present in D or add new
functionality special to C.

The constructor declaration C(D g; C f){super(g); this.f=f;} shows how to
initialize the fields of an instance of C. Its form is completely determined by the
instance variable declarations of C and its superclasses: it must take exactly as
many parameters as there are instance variables, and its body must consist of a call

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 9

Computation:

fields(C) = C f

(new C(e)).fi −→ ei

(R-Field)

mbody(m, C) = x.e0

(new C(e)).m(d) −→ [d/x, new C(e)/this]e0
(R-Invk)

C <: D

(D)(new C(e)) −→ new C(e)
(R-Cast)

Congruence:

e0 −→ e0
′

e0.f −→ e0
′.f

(RC-Field)

e0 −→ e0
′

e0.m(e) −→ e0
′.m(e)

(RC-Invk-Recv)

ei −→ ei
′

e0.m(. . . ,ei, . . .) −→ e0.m(. . . ,ei
′, . . .)

(RC-Invk-Arg)

ei −→ ei
′

new C(. . . ,ei, . . .) −→ new C(. . . ,ei
′, . . .)

(RC-New-Arg)

e0 −→ e0
′

(C)e0 −→ (C)e0
′

(RC-Cast)

Fig. 3. FJ: Reduction rules.

to the superclass constructor to initialize its fields from the parameters g, followed
by an assignment of the parameters f to the new fields of the same names declared
by C. (These constraints are actually enforced by the typing rule for classes in
Figure 2.)

The method declaration D m(C x){ return e; } introduces a method named
m with result type D and parameters x of types C. The body of the method is
the single statement return e;. The variables x and the special variable this are
bound in e. As we will see later, the typing rules prohibit this from appearing as
a method parameter name.

A class table CT is a mapping from class names C to class declarations L. A
program is a pair (CT , e) of a class table and an expression. To lighten the notation
in what follows, we always assume a fixed class table CT .

Every class has a superclass, declared with extends. This raises a question: what
is the superclass of the class Object? There are various ways to deal with this issue;
the simplest one that we have found is to take Object as a distinguished class name
whose definition does not appear in the class table. The auxiliary functions that
look up fields and method declarations in the class table are equipped with special

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 · A. Igarashi et al.

cases for Object that return the empty sequence of fields and the empty set of
methods. (In full Java, the class Object does have several methods. We ignore
these in FJ.)

By looking at the class table, we can read off the subtype relation between classes.
We write C <: D when C is a subtype of D, i.e., subtyping is the reflexive and
transitive closure of the immediate subclass relation given by the extends clauses
in CT . Formally, it is defined in the middle of Figure 1.

The given class table is assumed to satisfy some sanity conditions: (1) CT (C) =
class C ... for every C ∈ dom(CT); (2) Object /∈ dom(CT); (3) for every class
name C (except Object) appearing anywhere in CT , we have C ∈ dom(CT); and
(4) there are no cycles in the subtype relation induced by CT , i.e., the relation
<: is antisymmetric. Given these conditions, we can identify a class table with a
sequence of class declarations in an obvious way. Note that the types defined by
the class table are allowed to be recursive, in the sense that the definition of a class
A may use the name A in the types of its methods and instance variables. Indeed,
even mutual recursion between class definitions is allowed.

For the typing and reduction rules, we need a few auxiliary definitions, given at
the bottom of Figure 1. We write m 6∈ M to mean that the method definition of the
name m is not included in M. The fields of a class C, written fields(C), is a sequence
C f pairing the class of each field with its name, for all the fields declared in class C
and all of its superclasses. The type of the method m in class C, written mtype(m, C),
is a pair, written B→B, of a sequence of argument types B and a result type B. (In
Java proper, method body lookup is based not only on the method name but also
on the static types of the actual arguments to deal with overloading, which we drop
from FJ.) Similarly, the body of the method m in class C, written mbody(m, C), is a
pair, written x.e, of a sequence of parameters x and an expression e. Note that the
functions mtype(m, C) and mbody(m, C) are both partial functions: since Object is
assumed to have no methods in FJ, both mtype(m, Object) and mbody(m, Object)
are undefined.

2.2 Typing

The typing rules for expressions, method declarations, and class declarations are
in Figure 2. An environment Γ is a finite mapping from variables to types, written
x:C. The typing judgment for expressions has the form Γ ⊢ e : C, read “in the
environment Γ, expression e has type C.” We abbreviate typing judgments on
sequences in the obvious way, writing Γ ⊢ e : C as shorthand for Γ ⊢ e1 : C1, . . . ,
Γ ⊢ en : Cn and writing C <: D as shorthand for C1 <: D1, . . . , Cn <: Dn. The
typing rules are syntax directed, with one rule for each form of expression, save
that there are three rules for casts. Most of them are straightforward adaptations
of the rules in Java; the typing rules for constructors and method invocations check
that each actual parameter has a type that is a subtype of the corresponding formal
parameter.

One technical innovation in FJ is the introduction of “stupid” casts. There are
three rules for type casts: in an upcast the subject is a subclass of the target; in
a downcast the target is a subclass of the subject; and in a stupid cast the target
is unrelated to the subject. The Java compiler rejects as ill typed an expression
containing a stupid cast, but we must allow stupid casts in FJ if we are to formulate

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 11

type soundness as a subject reduction theorem for a small-step semantics. This is
because an expression without stupid casts may reduce to one containing a stupid
cast. For example, consider the following, which uses classes A and B as defined in
the previous section:

(A)(Object)new B() −→ (A)new B()

We indicate the special nature of stupid casts by including the hypothesis stupid
warning in the type rule for stupid casts (T-SCast); an FJ typing corresponds to
a legal Java typing only if it does not contain this rule. (Stupid casts were omitted
from Classic Java [Flatt et al. 1998a], causing its published proof of type soundness
to be incorrect; this error was discovered independently by ourselves and the Classic
Java authors.)

The typing judgment for method declarations has the form M OK IN C, read
“method declaration M is ok when it occurs in class C.” It uses the expression typing
judgment on the body of the method, where the free variables are the parameters
of the method with their declared types, plus the special variable this with type
C. (Thus, a method with a parameter of name this is not allowed, as the type
environment is ill formed.) In case of overriding, if a method with the same name
is declared in the superclass, then it must have the same type.

The typing judgment for class declarations has the form L OK, read “class dec-
laration L is ok.” It checks that the constructor applies super to the fields of the
superclass and initializes the fields declared in this class, and that each method
declaration in the class is ok.

The type of an expression may depend on the type of any methods it invokes,
and the type of a method depends on the type of an expression (its body); so, it
behooves us to check that there is no ill-defined circularity here. Indeed, there is
none: the circle is broken because the type of each method is explicitly declared. It
is possible to load the class table and define the auxiliary functions mtype, mbody ,
and fields before all the classes in it are checked. Thus, each method body can
independently typecheck, without inspecting the bodies of other methods it may
invoke.

2.3 Reduction

The reduction relation is of the form e −→ e′, read “expression e reduces to ex-
pression e′ in one step.” We write −→∗ for the reflexive and transitive closure of
−→.

The reduction rules are given in Figure 3. There are three reduction rules, one
for field access, one for method invocation, and one for casting. These were already
explained in the introduction to this section. We write [d/x, e/y]e0 for the result
of replacing x1 by d1, . . . , xn by dn, and y by e in expression e0.

The reduction rules may be applied at any point in an expression, so we also
need the obvious congruence rules (if e −→ e′ then e.f −→ e′.f, and the like),
which also appear in the figure.2

2We have chosen here to work with a nondeterministic reduction relation, similar to the full beta-
reduction relation of the lambda-calculus. Naturally, more restricted reduction strategies can also
be defined. For example, a call-by-value variant of FJ can be found in Pierce [2002].

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 · A. Igarashi et al.

2.4 Properties

Formal definitions are fun, but the proof of the pudding is in. . . well, the proof. If
our definitions are sensible, we should be able to prove a type soundness result,
which relates typing to computation. Indeed we can prove such a result: if a term
is well typed and it reduces to a normal form, then it is either a value of a subtype
of the original term’s type, or an expression that gets stuck at a downcast. The
type soundness theorem (Theorem 2.4.3) is proved by using the standard technique
of subject reduction and progress theorems [Wright and Felleisen 1994].

Theorem 2.4.1 (Subject Reduction). If Γ ⊢ e : C and e −→ e′, then Γ ⊢
e′ : C′ for some C′ <: C.

Proof. See Appendix A.1.

We can also show, that if a program is well typed, then the only way it can get
stuck is if it reaches a point where it cannot perform a downcast.

Theorem 2.4.2 (Progress). Suppose e is a well-typed expression.

(1) If e includes new C0(e).f as a subexpression, then fields(C0) = C f and f ∈ f

for some C and f.

(2) If e includes new C0(e).m(d) as a subexpression, then mbody(m, C0) = x.e0

and #(x) = #(d) for some x and e0.

Proof. If e has new C0(e).f as a subexpression, then, by well-typedness of the
subexpression, it is easy to check that fields(C0) is well defined and f appears in it.
Similarly, if e has new C0(e).m(d) as a subexpression, then, it is also easy to show
mbody(m, C) = x.e0 and #(x) = #(d) from the fact that mtype(m, C) = C→D where
#(x) = #(C).

To state type soundness formally, we give the definition of values, given by the
following syntax:

v ::= new C(v).

Theorem 2.4.3 (FJ Type Soundness). If ∅ ⊢ e : C and e −→∗ e′ with e′

a normal form, then e′ is either (1) a value v with ∅ ⊢ v : D and D <: C, or an
expression containing (D)new C(e) where C 6<: D.

Proof. Immediate from Theorems 2.4.1 and 2.4.2.

To state a similar property for casts, we say that an expression e is cast-safe in
Γ if the type derivations of the underlying CT and Γ ⊢ e : C contain no downcasts
or stupid casts (uses of rules T-DCast or T-SCast). In other words, a cast-safe
program includes only upcasts. Then we see that a cast-safe expression always
reduces to another cast-safe expression, and, moreover, typecasts in a cast-safe
expression never fail, as shown in the following pair of theorems. (The proofs are
straightforward.)

Theorem 2.4.4 (Reduction Preserves Cast-Safety). If e is cast-safe in
Γ and e−→e′, then e′ is cast-safe in Γ.

Theorem 2.4.5 (Progress of Cast-Safe Programs). Suppose e is cast-safe
in Γ. If e has (C)new C0(e) as a subexpression, then C0 <: C.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 13

Corollary 2.4.6 (No Typecast Errors in Cast-Safe Programs). If e is
cast-safe in ∅ and e−→∗e′ with e′ a normal form, then e′ is a value v.

3. FEATHERWEIGHT GJ

Just as GJ adds generic types to Java, Featherweight GJ (or FGJ, for short) adds
generic types to FJ. Here is the class definition for pairs in FJ, rewritten with
generic type parameters in FGJ.

class A extends Object {

A() { super(); }

}

class B extends Object {

B() { super(); }

}

class Pair<X extends Object, Y extends Object> extends Object {

X fst;

Y snd;

Pair(X fst, Y snd) {

super(); this.fst=fst; this.snd=snd;

}

<Z extends Object> Pair<Z,Y> setfst(Z newfst) {

return new Pair<Z,Y>(newfst, this.snd);

}

}

Both classes and methods may have generic type parameters. Here X and Y are
parameters of the class, and Z is a parameter of the method setfst. Each type
parameter has a bound ; here X, Y, and Z are each bounded by Object.

In the context of the above definitions, the expression

new Pair<A,B>(new A(), new B()).setfst(new B())

evaluates to the expression

new Pair<B,B>(new B(), new B())

If we were being extraordinarily pedantic, we would write A<> and B<> instead of
A and B, but we allow the latter as an abbreviation for the former in order that FJ
is a proper subset of FGJ.

In GJ, type parameters to generic method invocations are inferred. Thus, in GJ
the expression above would be written

new Pair<A,B>(new A(), new B()).setfst(new B())

with no in the invocation of setfst. So while FJ is a subset of Java, FGJ is not
quite a subset of GJ. We regard FGJ as an intermediate language—the form that
would result after type parameters have been inferred. (In fact, type arguments
are not even optional in GJ: it is not allowed to supply explicit type arguments
to a generic method, due to a parsing problem. For example, the GJ expression
e.m<A,B>(e′) is parsed as the two expressions “e.m < A” and “B > (e′)”, sepa-
rated by a comma. One possible way to have control over inferred type arguments
is to change the (static) types of (value) arguments by inserting upcasts on them;
see the GJ paper by Bracha et al. [1998] for details.) While parameter inference

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 · A. Igarashi et al.

Syntax:

T ::= X | N

N ::= C<T>

L ::= class C<X ⊳ N> ⊳ N {T f; K M}

K ::= C(T f){super(f); this.f=f;}

M ::= <X ⊳ N> T m(T x){ return e; }

e ::= x | e.f | e.m<T>(e) | new N(e) | (N)e

Fig. 4. FGJ: Syntax.

is an important aspect of GJ, we chose in FGJ to concentrate on modeling other
aspects of GJ.

The bound of a type variable may not be a type variable, but may be a type
expression involving type variables, and may be recursive (or even, if there are
several bounds, mutually recursive). For example, if C<X> and D<Y> are classes
with one parameter each, one may have bounds such as <X extends C<X>> or even
<X extends C<Y>, Y extends D<X>>. For more on bounds, including examples
of the utility of recursive bounds, see the GJ paper by Bracha et al. [1998].

GJ and FGJ are intended to support either of two implementation styles. They
may be implemented by type-passing, augmenting the run-time system to carry
information about type parameters, or they may be implemented by erasure, re-
moving all information about type parameters at run time. This section explores
the first style, giving a direct semantics for FGJ that maintains type parameters,
and proving a type soundness theorem. Section 4 explores the second style, giving
an erasure mapping from FGJ into FJ and showing a correspondence between re-
ductions on FGJ expressions and reductions on FJ expressions. The second style
corresponds to the current implementation of GJ, which compiles GJ into the Java
Virtual Machine (JVM), which of course maintains no information about type pa-
rameters at run time; the first style would correspond to using an augmented JVM
that maintains information about type parameters.

3.1 Syntax

The abstract syntax of FGJ is given in Figure 4. In what follows, for the sake of
conciseness we abbreviate the keyword extends to the symbol ⊳ . The metavari-
ables X, Y, and Z range over type variables; S, T, U, and V range over types; and N,
P, and Q range over nonvariable types (types other than type variables). We write
X as shorthand for X1,. . . ,Xn (and similarly for T, N, etc.), and assume sequences of
type variables contain no duplicate names. We allow C<> and m<> to be abbreviated
as C and m, respectively.

As before, we assume a fixed class table CT , a mapping from class names C to
class declarations L and the essentially same sanity conditions. (For condition (4),
we use the relation C ✂ D between class names, defined in Figure 5, as the reflexive
and transitive closure induced by the clause C<X ⊳ N> ⊳ D<T>.)

As in FJ, for the typing and reduction rules, we need a few auxiliary definitions,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 15

Subclassing:

C ✂ C
C ✂ D D ✂ E

C ✂ E

class C<X ⊳ N> ⊳ D<T> {...}

C ✂ D

Field lookup:

fields(Object) = • (F-Object)

class C<X ⊳ N> ⊳ N {S f; K M} fields([T/X]N) = U g

fields(C<T>) = U g, [T/X]S f
(F-Class)

Method type lookup:

class C<X ⊳ N> ⊳ N {S f; K M}

<Y ⊳ P> U m(U x){ return e; } ∈ M

mtype(m, C<T>) = [T/X](<Y ⊳ P>U→U)
(MT-Class)

class C<X ⊳ N> ⊳ N {S f; K M} m 6∈ M

mtype(m, C<T>) = mtype(m, [T/X]N)
(MT-Super)

Method body lookup:

class C<X ⊳ N> ⊳ N {S f; K M}

<Y ⊳ P> U m(U x){ return e0; } ∈ M

mbody(m<V>, C<T>) = x.[T/X, V/Y]e0

(MB-Class)

class C<X ⊳ N> ⊳ N {S f; K M} m 6∈ M

mbody(m<V>, C<T>) = mbody(m<V>, [T/X]N)
(MB-Super)

Fig. 5. FGJ: Auxiliary functions.

given in Figure 5; these are fairly straightforward adaptations of the lookup rules
given previously. The fields of a nonvariable type N, written fields(N), are a sequence
of corresponding types and field names, T f. The type of the method invocation m

at nonvariable type N, written mtype(m, N), is a type of the form <X ⊳ N>U→U. In this
form, the variables X are bound in N, U, and U, and we regard α-convertible ones as
equivalent; application of type substitution [T/X] is defined in the customary man-
ner. When X ⊳ N is empty, we abbreviate <>U→U to U→U. The body of the method
invocation m at nonvariable type N with type parameters V, written mbody(m<V>, N),
is a pair, written x.e, of a sequence of parameters x and an expression e.

3.2 Typing

An environment Γ is a finite mapping from variables to types, written x:T; a type
environment ∆ is a finite mapping from type variables to nonvariable types, written
X<:N, which takes each type variable to its bound. The main judgments of the FGJ
type system consist of one for subtyping ∆ ⊢ S <: T, one for type well-formedness
∆ ⊢ T ok, and one for typing ∆; Γ ⊢ e : T. We abbreviate a sequence of judgments
in the obvious way: ∆ ⊢ S1 <: T1, . . . , ∆ ⊢ Sn <: Tn to ∆ ⊢ S <: T; ∆ ⊢ T1 ok, . . . ,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 · A. Igarashi et al.

Bound of type:

bound∆(X) = ∆(X)
bound∆(N) = N

Subtyping:

∆ ⊢ T <: T (S-Refl)

∆ ⊢ S <: T ∆ ⊢ T <: U

∆ ⊢ S <: U
(S-Trans)

∆ ⊢ X <: ∆(X) (S-Var)

class C<X ⊳ N> ⊳ N {...}

∆ ⊢ C<T> <: [T/X]N
(S-Class)

Well-formed types:

∆ ⊢ Object ok (WF-Object)

X ∈ dom(∆)

∆ ⊢ X ok
(WF-Var)

class C<X ⊳ N> ⊳ N {...}

∆ ⊢ T ok ∆ ⊢ T <: [T/X]N

∆ ⊢ C<T> ok
(WF-Class)

Valid downcast:

dcast(C, D) dcast(D, E)

dcast(C, E)

class C<X ⊳ N> ⊳ D<T> {...}

X = FV (T)

dcast(C, D)

(FV (T) denotes the set of type variables in T.)

Valid method overriding:

mtype(m, N) = <Z ⊳ Q>U→U0 implies P,T = [Y/Z](Q,U) and Y<:P ⊢ T0 <: [Y/Z]U0

override(m, N, <Y ⊳ P>T→T0)

Fig. 6. FGJ: Subtyping and type well-formedness rules.

∆ ⊢ Tn ok to ∆ ⊢ T ok; and ∆; Γ ⊢ e1 : T1, . . . , ∆; Γ ⊢ en : Tn to ∆; Γ ⊢ e : T.

Bounds of types. We write bound∆(T) for the upper bound of T in ∆, as defined
in Figure 6. Unlike calculi such as F≤ [Cardelli et al. 1994], this promotion relation
does not need to be defined recursively: the bound of a type variable is always a
nonvariable type.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 17

Expression typing:

∆;Γ ⊢ x : Γ(x) (GT-Var)

∆; Γ ⊢ e0 : T0 fields(bound∆(T0)) = T f

∆;Γ ⊢ e0.fi : Ti

(GT-Field)

∆; Γ ⊢ e0 : T0 mtype(m, bound∆(T0)) = <Y ⊳ P>U→U

∆ ⊢ V ok ∆ ⊢ V <: [V/Y]P ∆; Γ ⊢ e : S ∆ ⊢ S <: [V/Y]U

∆;Γ ⊢ e0.m<V>(e) : [V/Y]U
(GT-Invk)

∆ ⊢ N ok fields(N) = T f ∆;Γ ⊢ e : S ∆ ⊢ S <: T

∆;Γ ⊢ new N(e) : N
(GT-New)

∆; Γ ⊢ e0 : T0 ∆ ⊢ bound∆(T0) <: N

∆; Γ ⊢ (N)e0 : N
(GT-UCast)

∆; Γ ⊢ e0 : T0 ∆ ⊢ N ok ∆ ⊢ N <: bound∆(T0)
N = C<T> bound∆(T0) = D<U> dcast(C, D)

∆; Γ ⊢ (N)e0 : N
(GT-DCast)

∆; Γ ⊢ e0 : T0 ∆ ⊢ N ok N = C<T> bound∆(T0) = D<U>

C 6✂ D D 6✂ C stupid warning

∆; Γ ⊢ (N)e0 : N
(GT-SCast)

Method typing:

∆ = X<:N, Y<:P ∆ ⊢ T, T, P ok
∆; x : T, this : C<X> ⊢ e0 : S ∆ ⊢ S <: T

class C<X ⊳ N> ⊳ N {...} override(m, N, <Y ⊳ P>T→T)

<Y ⊳ P> T m(T x){ return e0; } OK IN C<X ⊳ N>
(GT-Method)

Class typing:

X<:N ⊢ N, N, T ok fields(N) = U g M OK IN C<X ⊳ N>
K = C(U g, T f){super(g); this.f = f;}

class C<X ⊳ N> ⊳ N {T f; K M} OK
(GT-Class)

Fig. 7. FGJ: Typing rules.

Subtyping. The subtyping relation ∆ ⊢ S <: T, read as “S is subtype of T in ∆,”
is defined in Figure 6. As before, subtyping is the reflexive and transitive closure
of the extends relation. Type parameters are invariant with regard to subtyping
(for the usual reasons; a type parameter can be both argument and result type of
one method), so ∆ ⊢ T <: U does not imply ∆ ⊢ C<T> <: C<U>.

Well-formed types. If the declaration of a class C begins class C<X ⊳ N>, then a
type like C<T> is well formed only if substituting T for X respects the bounds N,
i.e., if T <: [T/X]N. We write ∆ ⊢ T ok if type T is well formed in context ∆. The

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 · A. Igarashi et al.

Computation:

fields(N) = T f

(new N(e)).fi −→ ei

(GR-Field)

mbody(m<V>, N) = x.e0

(new N(e)).m<V>(d) −→ [d/x, new N(e)/this]e0

(GR-Invk)

∅ ⊢ N <: P

(P)(new N(e)) −→ new N(e)
(GR-Cast)

Congruence:

e0 −→ e0
′

e0.f −→ e0
′.f

(GRC-Field)

e0 −→ e0
′

e0.m<T>(e) −→ e0
′.m<T>(e)

(GRC-Inv-Recv)

ei −→ ei
′

e0.m<T>(. . . ,ei, . . .) −→ e0.m<T>(. . . ei
′, . . .)

(GRC-Inv-Arg)

ei −→ ei
′

new N(. . . ,ei, . . .) −→ new N(. . . ei
′, . . .)

(GRC-New-Arg)

e0 −→ e0
′

(N)e0 −→ (N)e0
′

(GRC-Cast)

Fig. 8. FGJ: Reduction rules.

rules for well-formed types appear in the middle of Figure 6. Note that we perform
a simultaneous substitution, so any variable in X may appear in N, permitting
recursion and mutual recursion between variables and bounds.

A type environment ∆ is well formed if ∆ ⊢ ∆(X) ok for all X in dom(∆). We
also say that an environment Γ is well formed with respect to ∆, written ∆ ⊢ Γ ok,
if ∆ ⊢ Γ(x) ok for all x in dom(Γ).

Typing rules. Typing rules for expressions, methods, and classes appear in Fig-
ure 7. The typing judgment for expressions is of the form ∆; Γ ⊢ e : T, read as
“in the type environment ∆ and the environment Γ, the expression e has type T.”
Most of the subtleties are in the field and method lookup relations that we have
already seen; the typing rules themselves are straightforward.

In the rule GT-DCast, the last premise dcast(C, D) ensures that the result of
the cast will be the same at run time, no matter whether we use the high-level
(type-passing) reduction rules defined later in this section or the erasure semantics
considered in Section 4. Intuitively, when C<T> <: D<U> holds, all the type argu-
ments T of C must “contribute” for the relation to hold. For example, suppose we

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 19

have defined the following two classes:

class List<X ⊳ Object> ⊳ Object { ... }

class LinkedList<X ⊳ Object> ⊳ List<X> { ... }

Now, if o has type Object, then the cast (List<C>)o is not permitted. (If, at
run time, o is bound to new List<D>(), then the cast would fail in the type-
passing semantics but succeed in the erasure semantics, since (List<C>)o erases
to (List)o while both new List<C>() and new List<D>() erase to new List().)
On the other hand, if cl has type List<C>, then the cast (LinkedList<C>)cl is
permitted, since the type-passing and erased versions of the cast are guaranteed to
either both succeed or both fail. The formal definition of dcast(C, D) appears in
Figure 6. (In GJ, raw types are provided to overcome the lack of expressiveness
caused by this restriction. In the above example, programmers could write an
expression like (List)o, instead of (List<C>)o, though type argument information
is lost at that point; here, the type List is called the raw type from the class List.
For simplicity, we do not model raw types in this article and are currently working
on them [Igarashi et al. 2001].)

The typing rule for methods contains one additional subtlety. In FGJ (and GJ),
unlike in FJ (and Java), covariant overriding on the method result type is allowed
(see the rule for valid method overriding at the bottom of Figure 6), i.e., the result
type of a method may be a subtype of the result type of the corresponding method
in the superclass, although the bounds of type variables and the argument types
must be identical (modulo renaming of type variables).

As before, a class table is ok if all its class definitions are ok.

3.3 Reduction

The operational semantics of FGJ programs is only a little more complicated than
what we had in FJ. The rules appear in the right column of Figure 8. In the rule
GR-Cast, the empty environment ∅ indicates the fact that whether or not N is a
subtype of P must be checked without information on run-time type arguments.

3.4 Properties

Type Soundness. FGJ programs enjoy subject reduction, progress properties, and
thus a type soundness property exactly like programs in FJ (Theorems 3.4.1, 3.4.2,
and 3.4.3), The basic structures of the proofs are similar to those of Theorems 2.4.1
and 2.4.2. For subject reduction, however, since we now have parametric polymor-
phism combined with subtyping, we need a few more lemmas. The main lemmas
required are a term substitution lemma as before, plus similar lemmas about the
preservation of subtyping and typing under type substitution. (Readers familiar
with proofs of subject reduction for typed lambda-calculi like F≤ [Cardelli et al.
1994] will notice many similarities). The required lemmas include three substi-
tution lemmas, which are proved by straightforward induction on a derivation of
∆ ⊢ S <: T or ∆; Γ ⊢ e : T. In the following proof, the underlying class table is
assumed to be ok.

Theorem 3.4.1 (Subject Reduction). If ∆; Γ ⊢ e : T and e −→ e′, then
∆; Γ ⊢ e′ : T′, for some T′ such that ∆ ⊢ T′ <: T.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 · A. Igarashi et al.

Proof. See Appendix A.2.

Theorem 3.4.2 (Progress). Suppose e is a well-typed expression.

(1) If e includes new N0(e).f as a subexpression, then fields(N0) = T f and f ∈ f

for some T and f.

(2) If e includes new N0(e).m<V>(d) as a subexpression, then mbody(m<V>, N0) =
x.e0 and #(x) = #(d) for some x and e0.

Proof. Similar to the proof of Theorem 2.4.2.

As we did for FJ, we will give the definition of FGJ values below, to state FGJ
type soundness formally:

w ::= new N(w).

Theorem 3.4.3 (FGJ Type Soundness). If ∅; ∅ ⊢ e : T and e −→∗ e′ with e′

a normal form, then e′ is either (1) an FGJ value w with ∅; ∅ ⊢ w : S and ∅ ⊢ S <: T

or (2) an expression containing (P)new N(e) where ∅ ⊢ N 6<: P.

Proof. Immediate from Theorems 3.4.1 and 3.4.2.

Backward compatibility. FGJ is backward compatible with FJ. Intuitively, this
means that an implementation of FGJ can be used to typecheck and execute FJ
programs without changing their meaning. In the following statements, we use
subscripts FJ or FGJ to show which set of rules is used.

Lemma 3.4.4. If CT is an FJ class table, then fields
FJ

(C) = fields
FGJ

(C) for all
C ∈ dom(CT).

Lemma 3.4.5. Suppose CT is an FJ class table. Then, mtype
FJ

(m, C) = C → C

if and only if mtype
FGJ

(m, C) = C → C. Similarly, mbody
FJ

(m, C) = x.e if and only
if mbody

FGJ
(m, C) = x.e.

Proof. Both lemmas are easy. Note that in an FJ class table all substitutions
in the derivations are empty and that there are no polymorphic methods.

We can show that a well-typed FJ program is always a well-typed FGJ program
and that FJ and FGJ reduction correspond. (Note that it is not quite the case that
the well-typedness of an FJ program under the FGJ rules implies its well-typedness
in FJ, because FGJ allows covariant overriding and FJ does not. In other words,
FGJ is not a conservative extension of FJ.)

Theorem 3.4.6 (Backward Compatibility). If an FJ program (e, CT) is
well typed under the typing rules of FJ, then it is also well typed under the rules of
FGJ. Moreover, for all FJ programs e and e′ (whether well typed or not), e −→FJ e

′

if and only if e −→FGJ e
′.

Proof. The first half is shown by straightforward induction on the derivation of
Γ ⊢ e : C (using FJ typing rules), followed by an analysis of the rules T-Method
and T-Class. In the proof of the second half, both directions are shown by induc-
tion on a derivation of the reduction relation, with a case analysis on the last rule
used.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 21

4. COMPILING FGJ TO FJ

We now explore the second implementation style for GJ and FGJ. The current
GJ compiler works by translation into the standard JVM, which maintains no
information about type parameters at run time. We model this compilation in
our framework by an erasure translation from FGJ into FJ. We show that this
translation maps well-typed FGJ programs into well-typed FJ programs, and that
the behavior of a program in FGJ matches (in a suitable sense) the behavior of its
erasure under the FJ reduction rules.

A program is erased by replacing types with their erasures, inserting downcasts
where required. A type is erased by removing type parameters, and replacing type
variables with the erasure of their bounds. For example, the class Pair<X,Y> in
the previous section erases to the following:

class Pair extends Object {

Object fst;

Object snd;

Pair(Object fst, Object snd) {

super(); this.fst=fst; this.snd=snd;

}

Pair setfst(Object newfst) {

return new Pair(newfst, this.snd);

}

}

Similarly, the field selection

new Pair<A,B>(new A(), new B()).snd

erases to

(B)new Pair(new A(), new B()).snd

where the added downcast (B) recovers type information of the original program.
We call such downcasts inserted by erasure synthetic. A key property of the erasure
transformation is that it satisfies a so-called cast-iron guarantee: if the FGJ pro-
gram is well typed, then no downcast inserted by the erasure transformation will
fail at run time. In the following discussion, we often distinguish synthetic casts
from typecasts derived from original FGJ programs by superscripting typecast ex-
pressions, writing (C)se. Otherwise, they behave exactly the same as ordinary
typecasts.

4.1 Erasure of Types

To erase a type, we remove any type parameters and replace type variables with
the erasure of their bounds. Write |T|∆ for the erasure of type T with respect to
type environment ∆, defined by

|T|∆ = C

where bound∆(T) = C<T>.

4.2 Field and Method Lookup

In FGJ (and GJ), a subclass may extend an instantiated superclass. This means
that, unlike in FJ (and Java), the types of the fields and the methods in the subclass

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 · A. Igarashi et al.

may not be identical to the types in the superclass. In order to specify a type-
preserving erasure from FGJ to FJ, it is necessary to define additional auxiliary
functions that look up the type of a field or method in the highest superclass in
which it is defined.

For example, consider a slight variant of the generic class Pair<X,Y>, where the
method setfst is not declared to be polymorphic, taking an argument of the same
element type X:

class Pair<X extends Object, Y extends Object> extends Object {

X fst; Y snd;

Pair(X fst, Y snd) {

super(); this.fst=fst; this.snd=snd;

}

Pair<X,Y> setfst(X newfst) {

return new Pair<X,Y>(newfst, this.snd);

}

}

Note that the erasure of this class is the same as above. Then, a subclass PairOfA,
declared below as a subclass of the instantiation Pair<A,A>, instantiates both X

and Y.

class PairOfA extends Pair<A,A> {

PairOfA(A fst, A snd) { super(fst, snd); }

PairOfA setfst(A newfst) {

return new PairOfA(newfst, this.snd);

}

}

In the setfst method, the argument type A matches the argument type of setfst
in Pair<A,A>, while the result type PairOfA is a subtype of the result type in
Pair<A,A>; this is permitted by FGJ’s covariant subtyping, as discussed in the
previous section. Erasing the class PairOfA yields the following:

class PairOfA extends Pair {

PairOfA(Object fst, Object snd) { super(fst, snd); }

Pair setfst(Object newfst) {

return new PairOfA((A)newfst, (A)this.snd);

}

}

Here, arguments to the constructor and the method are given type Object, even
though the erasure of A is itself; and the result of the method is given type Pair,
even though the erasure of PairOfA is itself. In both cases, the types are chosen to
correspond to types in Pair, the highest superclass in which the fields and method
are defined. Notice that the synthetic cast (A) is inserted at where the parameter
newfst appears: it is required to recover type information of the original program,
as well as the one at this.snd.

We define variants of the auxiliary functions that find the types of fields and
methods in the highest superclass in which they are defined. The maximum field
types of a class C, written fieldsmax (C), is the sequence of pairs of a type and a
field name defined as follows:

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 23

fieldsmax (Object) = •

class C<X ⊳ N> ⊳ D<U> {T f; ... }

∆ = X<:N C g = fieldsmax (D)

fieldsmax (C) = C g, |T|∆ f

The maximum method type of m in C, written mtypemax (m, C), is defined as follows:

class C<X ⊳ N> ⊳ D<U> {...} <Y ⊳ P>T→T = mtype(m, D<U>)

mtypemax (m, C) = mtypemax (m, D)

class C<X ⊳ N> ⊳ D<U> {... M } mtype(m, D<U>) undefined
<Y ⊳ P> T m(T x){ return e; } ∈ M ∆ = X<:N, Y<:P

mtypemax (m, C) = |T|∆→|T|∆

We also need a way to look up the maximum type of a given field. If fieldsmax (C) =
D f, then we set fieldsmax (C)(fi) = Di.

4.3 Erasure of Expressions

The erasure of an expression depends on the typing of that expression, since the
types are used to determine which downcasts to insert. The erasure rules are
optimized to omit casts when it is trivially safe to do so; this happens when the
maximum type is equal to the erased type.

Write |e|∆,Γ for the erasure of a well-typed expression e with respect to environ-
ment Γ and type environment ∆:

|x|∆,Γ = x (E-Var)

∆; Γ ⊢ e0.f : T ∆; Γ ⊢ e0 : T0

fieldsmax (|T0|∆)(f) = |T|∆

|e0.f|∆,Γ = |e0|∆,Γ.f
(E-Field)

∆; Γ ⊢ e0.f : T ∆; Γ ⊢ e0 : T0

fieldsmax (|T0|∆)(f) 6= |T|∆

|e0.f|∆,Γ = (|T|∆)s|e0|∆,Γ.f
(E-Field-Cast)

∆; Γ ⊢ e0.m<V>(e) : T ∆; Γ ⊢ e0 : T0

mtypemax (m, |T0|∆) = C→D D = |T|∆

|e0.m<V>(e)|∆,Γ = |e0|∆,Γ.m(|e|∆,Γ)
(E-Invk)

∆; Γ ⊢ e0.m<V>(e) : T ∆; Γ ⊢ e0 : T0

mtypemax (m, |T0|∆) = C→D D 6= |T|∆

|e0.m<V>(e)|∆,Γ = (|T|∆)s|e0|∆,Γ.m(|e|∆,Γ)
(E-Invk-Cast)

|new N(e)|∆,Γ = new |N|∆(|e|∆,Γ) (E-New)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 · A. Igarashi et al.

|(N)e0|∆,Γ = (|N|∆) |e0|∆,Γ (E-Cast)

(Strictly speaking, we should think of the erasure operation as acting on typing
derivations rather than expressions. Since well-typed expressions are in 1-1 corre-
spondence with their typing derivations, the abuse of notation creates no confusion.)

4.4 Erasure of Methods and Classes

The erasure of a method m with respect to type environment ∆ in class C, written
|M|∆,C, is defined as follows:

Γ = x:T, this : C<X> ∆ = X<:N, Y<:P

mtypemax (m, C) = D→D ei =

{

xi
′ if Di = |Ti|∆

(|Ti|∆)sxi
′ otherwise

|<Y ⊳ P> T m(T x){ return e0; }|X<:N,C = D m(D x′){ return [e/x]|e0|∆,Γ; }

(E-Method)

The erasure of a method definition involves one subtlety, as discussed in the example
of PairOfA. When the erasure |Ti|∆ of the type of a parameter is different from
the corresponding argument type from mtypemax , the synthetic cast (|Ti|∆)s has
to be inserted everywhere the parameter appears.

Remark. In GJ, the actual erasure is somewhat more complex, involving the
introduction of bridge methods, so that one ends up with two overloaded methods:
one with the maximum type and one with the instantiated type. For example, the
erasure of PairOfA would be

class PairOfA extends Pair {

PairOfA(Object fst, Object snd) {

super(fst, snd);

}

Pair setfst(A newfst) {

return new PairOfA(newfst, (A)this.snd);

}

Pair setfst(Object newfst) {

return this.setfst((A)newfst);

}

}

where the second definition of setfst is the bridge method, which overrides the
definition of setfst in Pair. We do not model that extra complexity here, because
it depends on overloading of method names, which is not modeled in FJ; here,
instead, the rule E-Method merges two methods into one by inline-expanding the
body of the actual method into the body of the bridge method.

The erasure of constructors and classes is

|C(U g, T f) {super(g); this.f = f;}|C
= C(fieldsmax (C)) {super(g); this.f = f;}

(E-Constructor)

∆ = X<:N

|class C<X extends N> extends N {T f; K M}|
= class C extends |N|∆{|T|∆ f; |K|C |M|∆,C}

(E-Class)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 25

e
reduce (FGJ)

//

erase

��

e′

erase

��

|e|
reduce (FJ)

// |e′|

Fig. 9. Commuting diagram.

We write |CT | for the erasure of a class table CT , defined in the obvious way.

4.5 Properties of Compilation

Having defined erasure, we may investigate some of its properties. As in the dis-
cussion of backward compatibility, we often use subscripts FJ or FGJ to avoid
confusion.

Preservation of Typing. First, a well-typed FGJ program erases to a well-typed
FJ program, as expected; moreover, synthetic casts are not stupid.

Theorem 4.5.1 (Erasure Preserves Typing). If an FGJ class table CT is
ok and ∆; Γ ⊢FGJ e : T, then |CT | is ok using the FJ typing rules and |Γ|∆ ⊢FJ

|e|∆,Γ : |T|∆. Moreover, every synthetic cast in |CT | and |e|∆,Γ does not involve a
stupid warning.

Proof. See Appendix A.3.

Preservation of Execution. More interestingly, we would intuitively expect that
erasure from FGJ to FJ should also preserve the reduction behavior of FGJ pro-
grams, as in the commuting diagram shown in Figure 9. Unfortunately, this is not
quite true. For example, consider the FGJ expression

e = new Pair<A,B>(a,b).fst,

where a and b are expressions of type A and B, respectively, and consider its erasure

|e|∆,Γ = (A)snew Pair(|a|∆,Γ,|b|∆,Γ).fst.

In FGJ, e reduces to a, while the erasure |e|∆,Γ reduces to (A)s|a|∆,Γ in FJ; it
does not reduce to |a|∆,Γ when a is not a new expression. (Note that it is not an
artifact of our nondeterministic reduction strategy: it happens even if we adopt a
call-by-value reduction strategy, since, after method invocation, we may obtain an
expression like (A)se where e is not a new expression.) Thus, the above diagram
does not commute even if one-step reduction (−→) at the bottom is replaced with
many-step reduction (−→∗). In general, synthetic casts can persist for a while in
the FJ expression, although we expect those casts will eventually turn out to be
upcasts when a reduces to a new expression.

In the example above, an FJ expression d reduced from |e|∆,Γ had more synthetic
casts than |e′|∆,Γ. However, this is not always the case: d may have less casts than
|e′|∆,Γ when the reduction step involves method invocation. Consider the FGJ
expression

e = new Pair<A,B>(a, b).setfst(b′)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 · A. Igarashi et al.

e
reduce (FGJ)

∗
//

erase

��

e′

erase
��

|e′|

��

|e|
reduce (FJ)

∗
// d′

Fig. 10.

and its erasure

|e|∆,Γ = new Pair(|a|∆,Γ,|b|∆,Γ).setfst(|b′|∆,Γ)

where a is an expression of type A and b and b′ are of type B. In FGJ,

e −→FGJ new Pair<B,B>(b′,new Pair<A,B>(a,b).snd).

In FJ, on the other hand,

|e|∆,Γ −→FJ new Pair(|b′|∆,Γ,new Pair(|a|∆,Γ,|b|∆,Γ).snd)

which has fewer synthetic casts than

new Pair(|b′|∆,Γ,(B)
snew Pair(|a|∆,Γ,|b|∆,Γ).snd),

which is the erasure of the reduced expression in FGJ. The subtlety we observe here
is that when the erased term is reduced synthetic casts may become “coarser” than
the casts inserted when the reduced term is erased, or may be removed entirely as
in this example. (Removal of downcasts can be considered as a combination of two
operations: replacement of (A)s with the coarser cast (Object)s and removal of
the upcast (Object)s, which does not affect the result of computation.)

To formalize both of these observations, we define an auxiliary relation that
relates FJ expressions differing only by the addition and replacement of some syn-
thetic casts. Suppose Γ ⊢FJ e : C. Let us call an expression d an expansion of e
under Γ, written Γ ⊢ e

exp

=⇒ d, if d is obtained from e by some combination of (1)
addition of zero or more synthetic upcasts, (2) replacement of some synthetic casts
(D)s with (C)s, where C is a supertype of D, or (3) removal of some synthetic casts,
and Γ ⊢FJ d : D for some D.

Example 4.5.2. Suppose Γ = x:A, y:B, z:B for given classes A and B. Then,

Γ ⊢ x
exp

=⇒ (A)sx

and

Γ ⊢ new Pair(z,(B)snew Pair(x,y).snd)
exp

=⇒ new Pair(z,new Pair(x,y).snd).

Then, reduction commutes with erasure modulo expansion:

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 27

e
reduce (FGJ)

//

erase
��

e′

erase
��

|e|

��

|e′|

��

d
R-Cast

∗
//

reduce (FJ)
// d′

Fig. 11.

Theorem 4.5.3 (Erasure Preserves Reduction Modulo Expansion). If
∆; Γ ⊢ e : T and e −→FGJ

∗ e′, then there exists some FJ expression d′ such that
|Γ|∆ ⊢ |e′|∆,Γ

exp

=⇒ d′ and |e|∆,Γ −→FJ
∗ d′. In other words, the diagram in Figure 10

commutes.

Proof. See Appendix A.4.

Conversely, for the execution of an erased expression, there is a corresponding
execution in FGJ semantics:

Theorem 4.5.4 (Erased Program Reflects FGJ Execution). Suppose
that ∆; Γ ⊢ e : T and |Γ|∆ ⊢ |e|∆,Γ

exp

=⇒ d. If d reduces to d′ with zero or more
steps by removing synthetic casts, followed by one step by other kinds of reduction,
then e−→FGJe

′ for some e′ and |Γ|∆ ⊢ |e′|∆,Γ
exp

=⇒ d′. In other words, the diagram
shown in Figure 11 commutes.

Proof. Also see Appendix A.4.

As easy corollaries of these theorems, it can be shown that, if an FGJ expression
e reduces to a “fully evaluated expression,” then the erasure of e reduces to exactly
its erasure and vice versa. Similarly, if FGJ reduction gets stuck at a stupid cast,
then FJ reduction also gets stuck because of the same typecast and vice versa.

Corollary 4.5.5 (Erasure Preserves Execution Results). If ∆; Γ ⊢ e :

T and e −→FGJ
∗ w, then |e|∆,Γ −→FJ

∗ |w|∆,Γ. Similarly, if ∆; Γ ⊢ e : T and
|e|∆,Γ −→FJ

∗ v, then there exists an FGJ value w such that e −→FGJ
∗ w and

|w|∆,Γ = v.

Proof. By Theorem 4.5.3, there must exist an FJ expression d such that |e|∆,Γ

−→FJ
∗d and |Γ|∆ ⊢ |w|∆,Γ

exp

=⇒d. Since the FJ value |w|∆,Γ does not include any
typecasts, d is obtained only by adding some (synthetic) upcasts. Therefore, d

reduces to |w|∆,Γ.
The second part follows from a similar argument using Theorem 4.5.4.

Corollary 4.5.6 (Erasure Preserves Typecast Errors). If ∆; Γ ⊢ e :

T and e −→FGJ
∗ e′, where e′ has a stuck subexpression (C<S>)new D<T>(e), then

|e|∆,Γ −→FJ
∗ d′ such that d′ has a stuck subexpression (C)new D(d), where d are

expansions of the erasures of e, at the same position (modulo synthetic casts) as
the erasure of e′. Similarly, if ∆; Γ ⊢ e : T and |e|∆,Γ −→FJ

∗ e′, where e′

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 · A. Igarashi et al.

has a stuck subexpression (C)new D(e), then there exists an FGJ expression d

such that e −→FGJ
∗ d and |Γ|∆ ⊢ |d|∆,Γ

exp

=⇒ e′ and d has a stuck subexpression
(C<S>)new D<T>(d), where e are expansions of the erasures of d, at the same po-
sition (modulo synthetic casts) as e′.

Proof. Similar to the proof of Corollary 4.5.5 using Theorem 4.5.4.

5. RELATED WORK

Core calculi for Java. There are several known proofs in the literature of type
soundness for subsets of Java. In the earliest, Drossopoulou et al. [1999] (using a
technique later mechanically checked by Syme [1997]) prove soundness for a fairly
large subset of sequential Java. Like us, they use a small-step operational seman-
tics, but they avoid the subtleties of “stupid casts” by omitting casting entirely.
Nipkow and von Oheimb [1998] give a mechanically checked proof of soundness
for a somewhat larger core language. Their language does include casts, but it
is formulated using a “big-step” operational semantics, which sidesteps the stupid
cast problem. Flatt et al. [1998a; 1998b] use a small-step semantics and formalize
a language with both assignment and casting. Their system is somewhat larger
than ours (the syntax, typing, and operational semantics rules take perhaps three
times the space), and the soundness proof, though correspondingly longer, is of
similar complexity. Their published proof of subject reduction in the earlier ver-
sion is slightly flawed—the case that motivated our introduction of stupid casts
is not handled properly—but the problem can be repaired by applying the same
refinement we have used here.

Of these three studies, that of Flatt et al. is closest to ours in an important
sense: the goal there, as here, is to choose a core calculus that is as small as
possible, capturing just the features of Java that are relevant to some particular
task. In their case, the task is analyzing an extension of Java with Common Lisp
style mixins—in ours, extensions of the core type system. The goal of the other
two systems, on the other hand, is to include as large a subset of Java as possible,
since their primary interest is proving the soundness of Java itself.

Other class-based object calculi. The literature on foundations of object-oriented
languages contains many papers formalizing class-based object-oriented languages,
either taking classes as primitive (e.g., Wand [1989], Bruce [1994], Bono et al. [1999;
1999]) or translating classes into lower-level mechanisms (e.g., Fisher and Mitchell
[1998], Bono and Fisher [1998], Abadi and Cardelli [1996], and Pierce and Turner
[1994]). Some of these systems (e.g., Pierce and Turner [1994] and Bruce [1994])
include generic classes and methods, but only in fairly simple forms.

Generic extensions of Java. A number of extensions of Java with generic classes
and methods have been proposed by various groups, including the language of
Agesen et al. [1997], PolyJ, by Myers et al. [1997], Pizza, by Odersky and Wadler
[1997], GJ, by Bracha et al. [1998], NextGen, by Cartwright and Steele Jr. [1998],
and LM, by Viroli and Natali [2000]. While all these languages are believed to be
typesafe, our study of FGJ is the first to give rigorous proof of soundness for a
generic extension of Java. We have used GJ as the basis for our generic extension,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 29

but similar techniques should apply to the forms of genericity found in the rest of
these languages.

Recently, Duggan [1999] has proposed a technique to translate monomorphic
classes to parametric classes by inferring type argument information. He has also
defined a polymorphic extension of Java, slightly less expressive than GJ (for ex-
ample, polymorphic methods are not allowed, and a subclass must have the same
number of type arguments as its superclass). Type soundness theorem of the lan-
guage is mentioned, but the stupid cast problem is not taken into account.

6. DISCUSSION

We have presented Featherweight Java, a core language for Java modeled closely on
the lambda-calculus and embodying many of the key features of Java’s type system.
FJ’s definition and proof of soundness are both concise and straightforward, making
it a suitable arena for the study of ambitious extensions to the type system, such
as the generic types of GJ. We have developed this extension in detail, stated some
of its fundamental properties, and given their proofs.

It was pleasing to discover that FGJ could be formulated as a straightforward
extension of FJ, giving us additional confidence that the design of GJ was on the
right track. Our investigation of FGJ led us to uncover one bug in the compiler,
involving a subtle relation between subtyping and raw types (see below). Most
importantly, however, FGJ has given us useful vocabulary and notation for thinking
about the design of GJ.

FJ itself is not quite complete enough to model some of the interesting sub-
tleties found in GJ. In particular, the full GJ language allows some parameters to
be instantiated by a special “bottom type” *, using a delicate rule to avoid un-
soundness in the presence of assignment. Moreover, nonstandard subtyping like
C<*> <: C<T> is allowed when the type argument of the left-hand side is * (recall
that type constructors are invariant). Capturing the relevant issues in FGJ would
require extending it with assignment and null values (both of these extensions
seem straightforward, but cost us some of the pleasing compactness of FJ as it
stands). Another subtle aspect of GJ that is not accurately modeled in FGJ is the
use of bridge methods in the compilation from GJ to JVM bytecodes. To treat this
compilation exactly as GJ does, we would need to extend FJ with overloading.

The present formalization of GJ also does not include raw types, a unique aspect of
the GJ design that supports compatibility between old, unparameterized code and
new, parameterized code. We are currently experimenting with an extension of FGJ
with raw types. A preliminary result [Igarashi et al. 2001] has already uncovered
that the currently implemented typing system (version 0.6m, as of August 1999) of
raw types is unsound; a repaired version of the type system to be incorporated in
the next release is proved to be sound.

Formalizing generics has proven to be a useful application domain for FJ, but
there are other areas where its extreme simplicity may yield significant leverage.
Igarashi and Pierce [2000] formalized a core of Java 1.1’s inner classes on top of
FJ; League, et al. [2001] have developed type-preserving compilation of FJ to a
typed intermediate language; Studer [2000] studied a recursion-theoretic denota-
tional semantics of FJ; Schultz [2001] has used a variant of FJ as a formal basis of
partial evaluation for class-based object-oriented languages; and Ancona and Zucca

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 · A. Igarashi et al.

[2001] have developed a module language for Java, where its core language used for
formalization is very close to FJ.

APPENDIX

A.1 Proof of Theorem 2.4.1

Before giving the proof, we develop a number of required lemmas.

Lemma A.1.1. If mtype(m, D) = C→C0, then mtype(m, C) = C→C0 for all C <: D.

Proof. Straightforward induction on the derivation of C <: D. Note that whether
m is defined in CT (C) or not, mtype(m, C) should be the same as mtype(m, E) where
class C ⊳E {...}.

Lemma A.1.2 (Term Substitution Preserves Typing). If Γ, x : B ⊢ e : D,
and Γ ⊢ d : A where A <: B, then Γ ⊢ [d/x]e : C for some C <: D.

Proof. By induction on the derivation of Γ, x : B ⊢ e : D. The intuitions are
exactly the same as for the lambda-calculus with subtyping (details vary a little, of
course).

Case T-Var. e = x D = Γ(x)

If x 6∈ x, then the conclusion is immediate, since [d/x]x = x. On the other hand,
if x = xi and D = Bi, then, since [d/x]x = [d/x]xi = di, letting C = Ai finishes the
case.

Case T-Field. e = e0.fi Γ, x : B ⊢ e0 : D0

fields(D0) = C f D = Ci

By the induction hypothesis, there is some C0 such that Γ ⊢ [d/x]e0 : C0 and
C0 <: D0. Then, it is easy to show that

fields(C0) = fields(D0), D g

for some D g. Therefore, by the rule T-Field, Γ ⊢ ([d/x]e0).fi : Ci.

Case T-Invk. e = e0.m(e) Γ, x : B ⊢ e0 : D0 mtype(m, D0) = E→D

Γ, x : B ⊢ e : D D <: E

By the induction hypothesis, there are some C0 and C such that

Γ ⊢ [d/x]e0 : C0 C0 <: D0

Γ ⊢ [d/x]e : C C <: D

By Lemma A.1.1, mtype(m, C0) = E→D. Then, C <: E by the transitivity of <:.
Therefore, by the rule T-Invk, Γ ⊢ [d/x]e0.m([d/x]e) : D.

Case T-New. e = new D(e) fields(D) = D f

Γ, x : B ⊢ e : C C <: D

By the induction hypothesis, there are E such that Γ ⊢ [d/x]e : E and E <: C. Then,
E <: D, by transitivity of <:. Therefore, by the rule T-New, Γ ⊢ new D([d/x]e) : D.

Case T-UCast. e = (D)e0 Γ, x : B ⊢ e0 : C C <: D

By the induction hypothesis, there is some E such that Γ ⊢ [d/x]e0 : E and E <: C.
Then, E <: D by transitivity of <:; this yields Γ ⊢ (D)([d/x]e0) : D by the rule
T-UCast.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 31

Case T-DCast. e = (D)e0 Γ, x : B ⊢ e0 : C D <: C D 6= C

By the induction hypothesis, there is some E such that Γ ⊢ [d/x]e0 : E and E <: C.
If E <: D or D <: E, then Γ ⊢ (D)([d/x]e0) : D by the rule T-UCast or T-DCast,
respectively. On the other hand, if both D 6<: E and E 6<: D, then Γ ⊢ (D)([d/x]e0) : D

(with a stupid warning) by the rule T-SCast.

Case T-SCast. e = (D)e0 Γ, x : B ⊢ e0 : C D 6<: C C 6<: D

By the induction hypothesis, there is some E such that Γ ⊢ [d/x]e0 : E and E <: C.
This means that E 6<: D. (To see this, note that each class in FJ has just one
superclass. It follows that if both E <: C and E <: D, then either C <: D or D <: C.)
So Γ ⊢ (D)([d/x]e0) : D (with a stupid warning), by T-SCast.

Lemma A.1.3 (Weakening). If Γ ⊢ e : C, then Γ, x : D ⊢ e : C.

Proof. Straightforward induction.

Lemma A.1.4. If mtype(m, C0) = D→D, and mbody(m, C0) = x.e, then, for some
D0 with C0 <: D0, there exists C <: D such that x : D, this : D0 ⊢ e : C.

Proof. By induction on the derivation of mbody(m, C0). The base case (where m

is defined in C0) is easy, since m is defined in CT (C0) and x : D, this : C0 ⊢ e : C by
T-Method. The induction step is also straightforward.

We are now ready to give the proof of the subject reduction theorem.

Proof of Theorem 2.4.1. By induction on a derivation of e −→ e′, with a
case analysis on the reduction rule used.

Case R-Field. e = (new C0(e)).fi e′ = ei fields(C0) = D f

By rule T-Field, we have

Γ ⊢ new C0(e) : D0 C = Di

for some D0. Again, by the rule T-New,

Γ ⊢ e : C C <: D D0 = C0

In particular, Γ ⊢ ei : Ci, finishing the case, since Ci <: Di.

Case R-Invk. e = (new C0(e)).m(d) mbody(m, C0) = x.e0

e′ = [d/x, new C0(e)/this]e0

By the rules T-Invk and T-New, we have

Γ ⊢ new C0(e) : C0 mtype(m, C0) = D→C

Γ ⊢ d : C C <: D

for some C and D. By Lemma A.1.4, x : D, this : D0 ⊢ e0 : B for some D0 and B

where C0 <: D0 and B <: C. By Lemma A.1.3, Γ, x : D, this : D0 ⊢ e0 : B. Then, by
Lemma A.1.2, Γ ⊢ [d/x, new C0(e)/this]e0 : E for some E <: B. Then E <: C by
transitivity of <:. Finally, letting C′ = E finishes this case.

Case R-Cast. e = (D)(new C0(e)) C0 <: D e′ = new C0(e)

The proof of Γ ⊢ (D)(new C0(e)) : C must end with the rule T-UCast, since the
derivation ending with T-SCast or T-DCast contradicts the assumption C0 <: D.
By the rules T-UCast and T-New, we have Γ ⊢ new C0(e) : C0 and D = C, which
finish the case.

The cases for congruence rules are easy. We show just one:

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 · A. Igarashi et al.

Case RC-Cast. e = (D)e0 e′ = (D)e0
′ e0 −→ e0

′

There are three subcases, according to the last typing rule used.

Subcase T-UCast. Γ ⊢ e0 : C0 C0 <: D D = C

By the induction hypothesis, Γ ⊢ e0
′ : C0

′ for some C0
′ <: C0. Then, C0

′ <: C, by
transitivity of <:. Therefore, by the rule T-UCast, Γ ⊢ (C)e0

′ : C (without any
additional stupid warning).

Subcase T-DCast. Γ ⊢ e0 : C0 D <: C0 D = C 6= C0

By the induction hypothesis, Γ ⊢ e0
′ : C0

′ for some C0
′ <: C0. If either C0

′ <: C

or C <: C0
′, then Γ ⊢ (C)e0

′ : C by the rule T-UCast or T-DCast (without any
additional stupid warning). On the other hand, if both C0

′ 6<: C and C 6<: C0
′, then,

Γ ⊢ (C)e0
′ : C with stupid warning by the rule T-SCast.

Subcase T-SCast. Γ ⊢ e0 : C0 D 6<: C0 C0 6<: D D = C

By the induction hypothesis, Γ ⊢ e0
′ : C0

′ for some C0
′ <: C0. Then, both

C0
′ 6<: C and C 6<: C0

′ also hold following the same argument found in the proof
of Lemma A.1.2 (the case for T-SCast). Therefore, Γ ⊢ (C)e0

′ : C with stupid
warning.

A.2 Proof of Theorem 3.4.1

Before giving the proof, we develop a number of required lemmas.

Lemma A.2.1 (Weakening). Suppose ∆, X<:N ⊢ N ok and ∆ ⊢ U ok.

(1) If ∆ ⊢ S <: T, then ∆, X<:N ⊢ S <: T.

(2) If ∆ ⊢ S ok, then ∆, X<:N ⊢ S ok.

(3) If ∆; Γ ⊢ e : T, then ∆; Γ, x : U ⊢ e : T and ∆, X<:N; Γ ⊢ e : T.

Proof. Each of them is proved by straightforward induction on the derivation
of ∆ ⊢ S <: T and ∆ ⊢ S ok and ∆; Γ ⊢ e : T.

Lemma A.2.2. If ∆ ⊢ E<V> <: D<U> and D 6✂ C and C 6✂ D, then E 6✂ C and C 6✂ E.

Proof. It is easy to see that ∆ ⊢ E<V> <: D<U> implies E ✂ D. The conclusions
are easily proved by contradiction. (A similar argument is found in the proof of
Lemma A.1.2.)

Lemma A.2.3. Suppose dcast(C, D) and ∆ ⊢ C<T> <: D<U>. If ∆ ⊢ C<T′> <:

D<U>, then T′ = T.

Proof. The case where dcast(C, D) because dcast(C, E) and dcast(E, D) is easy:
note that from every derivation of ∆ ⊢ C<T> <: D<U> we can also derive ∆ ⊢ C<T> <:

E<V> and ∆ ⊢ E<V> <: D<U> for some V. Finally, if D is the direct superclass of C, by
the rule S-Class, D<U> = [T/X]D<V> where class C<X ⊳ N> ⊳ D<V> {...} for some
V. Similarly, D<U> = [T′/X]D<V>, since FV (V) = X. Then, it must be the case that
T = T′, finishing the proof.

Lemma A.2.4. If dcast(C, E) and C ✂ D ✂ E with C 6= D 6= E, then dcast(C, D)
and dcast(D, E).

Proof. Easy.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 33

Lemma A.2.5 (Type Substitution Preserves Subtyping). If ∆1, X<:N, ∆2 ⊢
S <: T and ∆1 ⊢ U <: [U/X]N with ∆1 ⊢ U ok and none of X appearing in ∆1, then
∆1, [U/X]∆2 ⊢ [U/X]S <: [U/X]T.

Proof. By induction on the derivation of ∆1, X<:N, ∆2 ⊢ S <: T.

Case S-Refl. Trivial.

Case S-Trans, S-Class. Easy.

Case S-Var. S = X T = (∆1, X<:N, ∆2)(X)

If X ∈ dom(∆1) ∪ dom(∆2), then the conclusion is immediate. On the other hand,
if X = Xi, then, by assumption, we have ∆1 ⊢ Ui <: [U/X]Ni. Finally, Lemma A.2.1
finishes the case.

Lemma A.2.6 (Type Substitution Preserves Type Well-Formedness).
If ∆1, X<:N, ∆2 ⊢ T ok and ∆1 ⊢ U <: [U/X]N with ∆1 ⊢ U ok and none of X appearing
in ∆1, then ∆1, [U/X]∆2 ⊢ [U/X]T ok.

Proof. By induction on the derivation of ∆1, X<:N, ∆2 ⊢ T ok, with a case
analysis on the last rule used.

Case WF-Object. Trivial.

Case WF-Var. T = X X ∈ dom(∆1, X<:N, ∆2)

The case X ∈ Xi follows from ∆1 ⊢ U ok and Lemma A.2.1; otherwise immediate.

Case WF-Class. T = C<T> ∆1, X<:N, ∆2 ⊢ T ok
∆1, X<:N, ∆2 ⊢ T <: [T/Y]P
class C<Y ⊳ P> ⊳ N {...}

By the induction hypothesis,

∆1, [U/X]∆2 ⊢ [U/X]T ok.

On the other hand, by Lemma A.2.5, ∆1, [U/X]∆2 ⊢ [U/X]T <: [U/X][T/Y]P. Since
Y<:P ⊢ P by the rule GT-Class, P does not include any of X as a free variable.
Thus, [U/X][T/Y]P = [[U/X]T/Y]P, and finally, we have ∆1, [U/X]∆2 ⊢ C<[U/X]T> ok
by WF-Class.

Lemma A.2.7. Suppose ∆1, X<:N, ∆2 ⊢ T ok and ∆1 ⊢ U <: [U/X]N with ∆1 ⊢
U ok and none of X appearing in ∆1. Then, ∆1, [U/X]∆2 ⊢ bound∆1, [U/X]∆2

([U/X]T) <:

[U/X](bound∆1,X<:N,∆2
(T)).

Proof. The case where T is a nonvariable type is trivial. The case where T

is a type variable X and X ∈ dom(∆1) ∪ dom(∆2) is also easy. Finally, if T is a
type variable Xi, then bound∆1, [U/X]∆2

([U/X]T) = Ui and [U/X](bound∆1,X<:N,∆2
(T)) =

[U/X]Ni; the assumption ∆1 ⊢ U <: [U/X]N and Lemma A.2.1 finish the proof.

Lemma A.2.8. If ∆ ⊢ S <: T and fields(bound∆(T)) = T f, then fields(bound∆(S))
= S g and Si = Ti and gi = fi for all i ≤ #(f).

Proof. By straightforward induction on the derivation of ∆ ⊢ S <: T.

Case S-Refl. Trivial.

Case S-Var. Trivial because bound∆(S) = bound∆(T).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

34 · A. Igarashi et al.

Case S-Trans. Easy.

Case S-Class. S = C<T> T = [T/X]N
class C<X ⊳ N> ⊳ N {S g; ...}

By the rule F-Class, fields(C<T>) = U f, [T/X]S g where U f = fields([T/X]N).

Lemma A.2.9. If ∆ ⊢ T ok and mtype(m, bound∆(T)) = <Y ⊳ P>U→U0, then for
any S such that ∆ ⊢ S <: T and ∆ ⊢ S ok, we have mtype(m, bound∆(S)) =
<Y ⊳ P>U→U0

′ and ∆, Y<:P ⊢ U0
′ <: U0.

Proof. By straightforward induction on the derivation of ∆ ⊢ S <: T with a
case analysis by the last rule used.

Case S-Refl. Trivial.

Case S-Var. Trivial because bound∆(S) = bound∆(T).

Case S-Trans. Easy.

Case S-Class. S = C<T> T = [T/X]N
class C<X ⊳ N> ⊳ N { ... M}

If M do not include a declaration of m, it is easy to show the conclusion, since

mtype(m, bound∆(S)) = mtype(m, bound∆(T))

by the rule MT-Super.
On the other hand, suppose M includes a declaration of m. By straightforward

induction on the derivation of mtype(m, T), we can show

mtype(m, T) = [T/X](<Y ⊳ P′>U′→U0
′′)

where <Y ⊳ P′>U′→U0
′′ = mtype(m, N). Without loss of generality, we can assume

that X and Y are distinct and, in particular, that [T/X]U0
′′ = U0. By GT-Method,

it must be the case that

<Y ⊳ P′> W0
′ m(U′ x){...} ∈ M

and

X<:N, Y<:P′ ⊢ W0
′<:U0

′′.

By Lemmas A.2.5 and A.2.1, we have

∆, Y<:P ⊢ [T/X]W0
′<:U0.

Since mtype(m, bound∆(S)) = mtype(m, S) = [T/X](<Y ⊳ P′>U′→W0
′) by MT-Class,

letting U0
′ = [T/X]W0

′ finishes the case.

Lemma A.2.10 (Type Substitution Preserves Typing). If ∆1, X<:N, ∆2;
Γ ⊢ e : T and ∆1 ⊢ U <: [U/X]N where ∆1 ⊢ U ok and none of X appears in ∆1, then
∆1, [U/X]∆2; [U/X]Γ ⊢ [U/X]e : S for some S such that ∆1, [U/X]∆2 ⊢ S <: [U/X]T.

Proof. By induction on the derivation of ∆1, X<:N, ∆2; Γ ⊢ e : T with a case
analysis on the last rule used.

Case GT-Var. Trivial.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 35

Case GT-Field. e = e0.fi ∆1, X<:N, ∆2; Γ ⊢ e0 : T0

fields(bound∆1, X<:N, ∆2
(T0)) = T f T = Ti

By the induction hypothesis, ∆1, [U/X]∆2; [U/X]Γ ⊢ [U/X]e0 : S0 and ∆1, [U/X]∆2 ⊢
S0 <: [U/X]T0 for some S0. By Lemma A.2.7,

∆1, [U/X]∆2 ⊢ bound∆1, [U/X]∆2
([U/X]T0) <: [U/X](bound∆1, X<:N, ∆2

(T0)).

Then, it is easy to show

∆1, [U/X]∆2 ⊢ bound∆1, [U/X]∆2
(S0) <: [U/X](bound∆1, X<:N, ∆2

(T0)).

By Lemma A.2.8, fields(bound∆1, [U/X]∆2
(S0)) = S g and we have fj = gj and Sj =

[U/X]Tj for j ≤ #(f). By the rule GT-Field, ∆1, [U/X]∆2; [U/X]Γ ⊢ [U/X]e0.fi : Si.
Letting S = Si (= [U/X]Ti) finishes the case.

Case GT-Invk. e = e0.m<V>(e) ∆1, X<:N, ∆2; Γ ⊢ e0 : T0

mtype(m, bound∆1,X<:N,∆2
(T0)) = <Y ⊳ P>W→W0

∆1, X<:N, ∆2 ⊢ V ok ∆1, X<:N, ∆2 ⊢ V <: [V/Y]P
∆1, X<:N, ∆2; Γ ⊢ e : S ∆1, X<:N, ∆2 ⊢ S <: [V/Y]W
T = [V/Y]W0

By the induction hypothesis,

∆1, [U/X]∆2; [U/X]Γ ⊢ [U/X]e0 : S0

∆1, [U/X]∆2 ⊢ S0 <: [U/X]T0

and

∆1, [U/X]∆2; [U/X]Γ ⊢ [U/X]e : S′

∆1, [U/X]∆2 ⊢ S′ <: [U/X]S.

By using Lemma A.2.7, it is easy to show

∆1, [U/X]∆2 ⊢ bound∆1, [U/X]∆2
(S0) <: [U/X](bound∆1, X<:N, ∆2

(T0)).

Then, by Lemma A.2.9,

mtype(m, bound∆1,[U/X]∆2
(S0)) = <Y ⊳ [U/X]P>[U/X]W→W0

′

∆1, [U/X]∆2, Y<:[U/X]P ⊢ W0
′ <: [U/X]W0.

By Lemma A.2.6,

∆1, [U/X]∆2 ⊢ [U/X]V ok

Without loss of generality, we can assume that X and Y are distinct and that none
of Y appear in U; then [U/X][V/Y] = [[U/X]V/Y][U/X]. By Lemma A.2.5,

∆1, [U/X]∆2 ⊢ [U/X]V <: [U/X][V/Y]P (= [[U/X]V/Y][U/X]P)
∆1, [U/X]∆2 ⊢ [U/X]S <: [U/X][V/Y]W (= [[U/X]V/Y][U/X]W).

By the rule S-Trans,

∆1, [U/X]∆2 ⊢ S′ <: [[U/X]V/Y][U/X]W.

By Lemma A.2.5, we have

∆1, [U/X]∆2 ⊢ [V/Y]W0
′ <: [U/X][V/Y]W0 (= [[U/X]V/Y][U/X]W0).

Finally, by the rule GT-Invk,

∆1, [U/X]∆2, [U/X]Γ ⊢ ([U/X]e0).m<[U/X]V>([U/X]d) : S

where S = [V/Y]W0
′, finishing the case.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

36 · A. Igarashi et al.

Case GT-New, GT-UCast. Easy.

Case GT-DCast. e = (N)e0 ∆ = ∆1, X<:N, ∆2

∆; Γ ⊢ e0 : T0 ∆ ⊢ N <: bound∆(T0)
N = C<T> bound∆(T0) = E<V> dcast(C, E)

By the induction hypothesis, ∆1, [U/X]∆2; [U/X]Γ ⊢ [U/X]e0 : S0 for some S0 such
that ∆1, [U/X]∆2 ⊢ S0 <: [U/X]T0. Let ∆′ = ∆1, [U/X]∆2. We have three subcases
according to a relation between S0 and [U/X]N.

Subcase. ∆′ ⊢ bound∆′(S0) <: [U/X]N

By the rule GT-UCast, ∆′; Γ ⊢ [U/X]((N)e0) : [U/X]N.

Subcase. ∆′ ⊢ [U/X]N <: bound∆′(S0) [U/X]N 6= bound∆′(S0)

By using Lemma A.2.7 and the fact that ∆ ⊢ S <: T implies ∆ ⊢ bound∆(S) <:

bound∆(T), we have ∆′ ⊢ bound∆′(S0) <: [U/X]bound∆(T0). Then, C ✂ D ✂ E where
bound∆′(S0) = D<W>. If C 6= D 6= E, we have, by Lemma A.2.4, dcast(C, D); the rule
GT-DCast finishes the subcase. The case C = D cannot happen, since it implies
[U/X]N = bound∆′(S0). Finally, the other case D = E is trivial.

Subcase. ∆′ ⊢ [U/X]N 6<: bound∆′(S0) ∆′ ⊢ bound∆′(S0) 6<: [U/X]N

By using Lemma A.2.7 and the fact that ∆′ ⊢ S <: T implies ∆′ ⊢ bound∆′(S) <:

bound∆′(T), we have ∆′ ⊢ bound∆′(S0) <: [U/X](bound∆(T0)).
Let bound∆′(S0) = D<W>. We show below that by contradiction, that nei-

ther C ✂ D nor D ✂ C holds. Suppose C ✂ D. Then, there exist some V′ such
that ∆′ ⊢ C<V′> <: bound∆′(S0). By Lemma A.2.4, we have dcast(C, D); it
follows from Lemma A.2.3 that C<V′> = [U/X]N, contradicting the assumption
∆′ ⊢ [U/X]N <:6 bound∆′(S0); thus, C 6✂ D. On the other hand, suppose D ✂ C.
Since we have ∆′ ⊢ bound∆′(S0) <: [U/X](bound∆(T0)), we can have C<V′> such that
∆′ ⊢ bound∆′(S0) <: C<V′> and ∆′ ⊢ C<V′> <: [U/X](bound∆(T0)). Then, [U/X]N =
C<V′> by Lemma A.2.3, contradicting the assumption ∆′ ⊢ bound∆′(S0) 6<: [U/X]N;
thus, D 6✂ C.

Finally, by the rule GT-SCast, ∆; Γ ⊢ [T/X]((N)e0) : [T/X]N with stupid warn-
ing.

Case GT-SCast. e = (N)e0 ∆ = ∆1, X<:N, ∆2 ∆; Γ ⊢ e0 : T0

N = C<T> bound∆(T0) = E<V> C 6✂ E E 6✂ C

By the induction hypothesis, ∆1, [U/X]∆2; [U/X]Γ ⊢ [U/X]e0 : S0 for some S0 such
that ∆1, [U/X]∆2 ⊢ S0 <: [U/X]T0. Using Lemma A.2.7, we have ∆1, [U/X]∆2 ⊢
bound∆1, [U/X]∆2

(S0) <: [U/X](bound∆(T0)). Let bound∆1, [U/X]∆2
(S0) = D<W>. Since

it is the case that [U/X](bound∆(T0)) = E<[U/X]V>, by Lemma A.2.2, D 6✂ C and
C 6✂ D. By the rule GT-SCast, ∆1, [U/X]∆2; [U/X]Γ ⊢ [U/X](N)e0 : [U/X]N with
stupid warning, finishing the case.

Lemma A.2.11 (Term Substitution Preserves Typing). If ∆; Γ, x : T ⊢
e : T and ∆; Γ ⊢ d : S where ∆ ⊢ S <: T, then ∆; Γ ⊢ [d/x]e : S for some S such
that ∆ ⊢ S <: T.

Proof. By induction on the derivation of ∆; Γ, x : T ⊢ e : T with a case analysis
on the last rule used.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 37

Case GT-Var. e = x

If x ∈ dom(Γ), then the conclusion is immediate, since [d/x]x = x. On the other
hand, if x = xi and T = Ti, then letting S = Si finishes the case.

Case GT-Field. e = e0.fi ∆; Γ, x : T ⊢ e0 : T0

fields(bound∆(T0)) = T f T = Ti

By the induction hypothesis, ∆; Γ ⊢ [d/x]e0 : S0 for some S0 such that ∆ ⊢ S0 <: T0.
By Lemma A.2.8, fields(bound∆(S0)) = S g such that Sj = Tj and fj = gj for all
j ≤ #(T). Therefore, by the rule GT-Field, ∆; Γ ⊢ [d/x]e0.fi : T.

Case GT-Invk. e = e0.m<V>(e) ∆; Γ, x : T ⊢ e0 : T0

mtype(m, bound∆(T0)) = <Y ⊳ P>U→U ∆ ⊢ V ok
∆ ⊢ V <: [V/Y]P ∆; Γ, x : T ⊢ e : S

∆ ⊢ S <: [V/Y]U T = [V/Y]U

By the induction hypothesis, ∆; Γ ⊢ [d/x]e0 : S0 for some S0 such that ∆ ⊢ S0 <: T0

and ∆; Γ ⊢ [d/x]e : W for some W such that ∆ ⊢ W <: S. By Lemma A.2.9,
mtype(m, bound∆(S0)) = <Y ⊳ P>U→U′ and ∆, Y<:P ⊢ U′ <: U. By Lemma A.2.5, ∆ ⊢
[V/Y]U′ <: [V/Y]U. By the rule GT-Method, ∆; Γ ⊢ [d/x](e0.m<V>(e)) : [V/Y]U′.
Letting S = [V/Y]U′ finishes the case.

Case GT-New, GT-UCast. Easy.

Case GT-DCast. e = (N)e0 ∆; Γ, x : T ⊢ e0 : T0

∆ ⊢ N <: bound∆(T0) N = C<U>

bound∆(T0) = E<V> dcast(C, E)

By the induction hypothesis, ∆; Γ ⊢ [d/x]e0 : S0 for some S0 such that ∆ ⊢ S0 <: T0.
We have three subcases according to a relation between S0 and N.

Subcase. ∆ ⊢ bound∆(S0) <: N

By the rule GT-UCast, ∆; Γ ⊢ [d/x]((N)e0) : N.

Subcase. ∆ ⊢ N <: bound∆(S0) N 6= bound∆(S0)

By using Lemma A.2.7 and the fact that ∆ ⊢ S <: T implies ∆ ⊢ bound∆(S) <:

bound∆(T), we have ∆ ⊢ bound∆(S0) <: bound∆(T0). Then, C ✂ D ✂ E where
bound∆(S0) = D<W>. If C 6= D 6= E, we have, by Lemma A.2.4, dcast(C, D); the rule
GT-DCast finishes the subcase. The case C = D cannot happen, since it implies
N = bound∆(S0), and the other case D = E is trivial.

Subcase. ∆ ⊢ N 6<: bound∆(S0) ∆ ⊢ bound∆(S0) 6<: N

Let bound∆(S0) = D<W>. We show that, by contradiction C 6✂ D and D 6✂ C.
Suppose C ✂ D. Then, we can have C<U′> such that ∆ ⊢ C<U′> <: D<W>. By

transitivity of <: and the fact that ∆ ⊢ S0 <: T0 implies ∆ ⊢ bound∆(S0) <:

bound∆(T0), we have ∆ ⊢ C<U′> <: bound∆(T0). Thus, U′ = U, contradicting
the assumption ∆ ⊢ N 6<: bound∆(S0) (= D<W>). On the other hand, suppose
D ✂ C. Since we have ∆ ⊢ bound∆(S0) <: bound∆(T0), we can have C<V′> such
that ∆ ⊢ bound∆(S0) <: C<V′> and ∆′ ⊢ C<V′> <: bound∆(T0). Then, N = C<V′> by
Lemma A.2.3, contradicting the assumption ∆ ⊢ bound∆(S0) <: N; thus, D 6✂ C.

Finally, by the rule GT-SCast, ∆; Γ ⊢ [d/x]((N)e0) : N with stupid warning.

Case GT-SCast. ∆; Γ, x : T ⊢ e0 : T0 N = C<U> bound∆(T0) = E<V>

C 6✂ E E 6✂ C

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

38 · A. Igarashi et al.

By the induction hypothesis, ∆; Γ ⊢ [d/x]e0 : S0 for some S0 such that ∆ ⊢ S0 <: T0,
which implies ∆ ⊢ bound∆(S0) <: bound∆(T0). Let bound∆(S0) = D<W>. By
Lemma A.2.2, we have D 6✂ C and C 6✂ D. Then, by the rule GT-SCast, ∆; Γ ⊢
[d/x]((N)e0) : N again with stupid warning.

Lemma A.2.12. If mtype(m, C<T>) = <Y ⊳ P>U→U and mbody(m<V>, C<T>) =
x.e0 where ∆ ⊢ C<T> ok and ∆ ⊢ V ok and ∆ ⊢ V <: [V/Y]P, then there exist some
N and S such that ∆ ⊢ C<T> <: N and ∆ ⊢ N ok and ∆ ⊢ S <: [V/Y]U and ∆ ⊢ S ok
and ∆; x : [V/Y]U, this : N ⊢ e0 : S.

Proof. By induction on the derivation of mbody(m<V>, C<T>) = x.e using Lem-
mas A.2.5 and A.2.10.

Case MB-Class. class C<X ⊳ N> ⊳P {... M}

<Y ⊳ Q> T0 m(S x){ return e; } ∈ M

Let Γ = x : S, this : C<X> and ∆′ = X<:N, Y<:Q. By the rules GT-Class and
GT-Method, we have ∆′; Γ ⊢ e : S0 and ∆′; Γ ⊢ S0 <: T0 for some S0. Since
∆ ⊢ C<T> ok, we have ∆ ⊢ T <: [T/X]N by the rule WF-Class. By Lemmas A.2.1,
A.2.5, and A.2.10,

∆, Y<:[T/X]Q ⊢ [T/X]S0 <: [T/X]T0

and

∆, Y<:[T/X]Q; x : [T/X]S, this : C<T> ⊢ [T/X]e : S0
′

where

∆, Y<:[T/X]Q ⊢ S0
′ <: [T/X]S0.

Now, we can assume X and Y are distinct without loss of generality. By the rule
MT-Class, we have

[T/X]Q = P [T/X]S = U [T/X]T0 = U.

Again, by the rule S-Trans and Lemmas A.2.5 and A.2.10,

∆ ⊢ [V/Y]S0
′ <: [V/Y]U

and

∆; x : [V/Y]U, this : C<T> ⊢ [V/Y][T/X]e : S0
′′.

where

∆ ⊢ S0
′′ <: [V/Y]S0

′.

Since we can assume that any of Y does not occur in T without loss of generality,

e0 = [T/X, V/Y]e = [V/Y][T/X]e.

Letting N = C<T> and S = S0
′′ finishes the case.

Case MB-Super. class C<X ⊳ N> ⊳ N {... M} m 6∈ M

Immediate from the induction hypothesis and the fact that ∆ ⊢ C<T> <: [T/X]N.

Proof of Theorem 3.4.1. By induction on the derivation of e −→ e′ with a
case analysis on the reduction rule used. We show the main cases.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 39

Case GR-Field. e = new N(e).fi fields(N) = T f e′ = ei

By the rules GT-Field and GT-New, we have

∆; Γ ⊢ new N(e) : N

∆; Γ ⊢ e : S

∆ ⊢ S <: T.

In particular, ∆; Γ ⊢ ei : Si finishes the case.

Case GR-Invk. e = new N(e).m<V>(d) mbody(m<V>, N) = x.e0

e′ = [d/x, new N(e)/this]e0

By the rules GT-Invk and GT-New, we have

∆; Γ ⊢ new N(e) : N mtype(m, bound∆(N)) = <Y ⊳ P>U→U

∆ ⊢ V ok ∆ ⊢ V <: [V/Y]P
∆; Γ ⊢ d : S ∆ ⊢ S <: [V/Y]U
T = [V/Y]U ∆ ⊢ N ok

By Lemma A.2.12, ∆; x : [V/Y]U, this : P ⊢ e0 : S for some P and S such that
∆ ⊢ N <: P where ∆ ⊢ P ok, and ∆ ⊢ S <: [V/Y]U where ∆ ⊢ S ok. Then, by
Lemmas A.2.1 and A.2.11, ∆; Γ ⊢ [d/x, new N(e)/this]e0 : T0 for some T0 such
that ∆ ⊢ T0 <: S. By the rule S-Trans, we have ∆ ⊢ T0 <: T. Finally, letting
T′ = T0 finishes the case.

Case GR-Cast. Easy.

Case GRC-Field. e = e0.f e′ = e0
′.f e0 −→ e0

′

By the rule GT-Field, we have

∆; Γ ⊢ e0 : T0

fields(bound∆(T0)) = T f

T = Ti

By the induction hypothesis, ∆; Γ ⊢ e0
′ : T0

′ for some T0
′ such that ∆ ⊢ T0

′ <: T0.
By Lemma A.2.8, fields(bound∆(T0

′)) = T′ g and, for j ≤ #(f), we have gi = fi

and Ti
′ = Ti. Therefore, by the rule GT-Field, ∆; Γ ⊢ e0

′.f : Ti
′. Letting T′ = Ti

′

finishes the case.

Case GRC-Inv-Recv. e = e0.m<V>(e) e′ = e0
′.m<V>(e)

e0 −→ e0
′

By the rule GT-Invk, we have

∆; Γ ⊢ e0 : T0 mtype(m, bound∆(T0)) = <Y ⊳ P>T→U

∆ ⊢ V ok ∆ ⊢ V <: [V/Y]P
∆ ⊢ e : S ∆ ⊢ S <: [V/Y]T
T = [V/Y]U

By the induction hypothesis, ∆; Γ ⊢ e0
′ : T0

′ for some T0
′ such that ∆ ⊢ T0

′ <: T0.
By Lemma A.2.9, mtype(m, bound∆(T0

′)) = <Y ⊳ P>T→V and ∆, Y<:P ⊢ V <: U.
By Lemma A.2.5, ∆ ⊢ [V/Y]V <: [V/Y]U. Then, by the rule GT-Invk, ∆; Γ ⊢
e0

′.m<V>(e) : [V/Y]V. Letting T0
′ = [V/Y]V finishes the case.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

40 · A. Igarashi et al.

Case GRC-Cast. e = (N)e0 e′ = (N)e0
′ e0 −→ e0

′

There are three subcases according to the last typing rule: GT-UCast, GT-DCast,
and GT-SCast. These subcases are similar to the subcases in the case for GT-DCast
in the proof of Lemma A.2.11.

Case GRC-Inv-Arg, GRC-New-Arg. Easy.

A.3 Proof of Theorem 4.5.1

First, we show that if an expression is well typed then its type is well formed
(Lemma A.3.4). Note that we assume that the underlying GJ class table CT is ok.

Lemma A.3.1. If ∆ ⊢ S <: T and ∆ ⊢ S ok for some well-formed type environ-
ment ∆, then ∆ ⊢ T ok.

Proof. By induction on the derivation of ∆ ⊢ S <: T with a case analysis on the
last rule used. The cases for S-Refl and S-Trans are easy.

Case S-Var. S = X T = ∆(X)

T must be well formed, since ∆ is well formed.

Case S-Class. S = C<T> T = [T/X]N
class C<X ⊳ N> ⊳ N {...}

∆ ⊢ T ok ∆ ⊢ T <: [T/X]N

Since CT (C) is ok, we also have X<:N ⊢ N ok by the rule GT-Class. Then, by
Lemmas A.2.1 and A.2.6, ∆ ⊢ [T/X]N ok.

Lemma A.3.2. If fields
FGJ

(N) = U f and ∆ ⊢ N ok for some well-formed type
environment ∆, then ∆ ⊢ U ok.

Proof. By induction on the derivation of fields
FGJ

(N) with a case analysis on
the last rule used.

Case F-Object. Trivial.

Case F-Class. N = C<T>

class C<X ⊳ N> ⊳P {S g′; K M}

fields
FGJ

([T/X]P) = V g

U f = V g, [T/X]S g′

Since CT (C) is ok, by the rule GT-Class, X<:N ⊢ P ok. By Lemmas A.2.1 and
A.2.6, ∆ ⊢ [T/X]P ok. Then, by the induction hypothesis, ∆ ⊢ V ok. Since ∆ ⊢
C<T> ok, we have ∆ ⊢ T ok and ∆ ⊢ T <: [T/X]N by the rule WF-Class. On the
other hand, by the rule GT-Class, we have X<:N ⊢ S ok. Finally, by Lemmas A.2.1
and A.2.6, ∆ ⊢ [T/X]S ok, finishing the case.

Lemma A.3.3. If mtype
FGJ

(m, N) = <Y ⊳ P>U→U0 and ∆ ⊢ N ok for some well-
formed type environment ∆, then ∆, Y<:P ⊢ U0 ok.

Proof. By induction on the derivation of mtype
FGJ

(m, N) with a case analysis
on the last rule used.

Case MT-Class. N = C<T>

class C<X ⊳ N> ⊳ P {... M}

<Y ⊳ Q> S0 m(S x){ return e0; } ∈ M

[T/X](<Y ⊳ Q>S→S0) = <Y ⊳ P>U→U0

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 41

Without loss of generality, we can assume that X and Y are distinct and that [T/X]Q =
P and [T/X]S0 = U0. By the rules GT-Class and GT-Method, we have

X<:N, Y<:Q ⊢ S0 ok.

On the other hand, since ∆ ⊢ N ok, we have ∆ ⊢ T ok and ∆ ⊢ T <: [T/X]N by the
rule WF-Class. Then, by Lemmas A.2.1 and A.2.6,

∆, Y<:[T/X]Q ⊢ [T/X]S0 ok,

finishing the case.

Case MT-Super. Since CT (C) is ok, by the rule GT-Class, X<:N ⊢ P ok.
By Lemmas A.2.1 and A.2.6, ∆ ⊢ [T/X]P ok. The induction hypothesis finishes the
case.

Lemma A.3.4. If ∆ ⊢ Γ ok and ∆; Γ ⊢FGJ e : T for some well-formed type
environment ∆, then ∆ ⊢ T ok.

Proof. By induction on the derivation of ∆; Γ ⊢FGJ e : T with a case analysis
on the last rule used.

Case GT-Var. Immediate from the definition of the well-formedness of Γ.

Case GT-Field. ∆; Γ ⊢FGJ e0 : T0 fields
FGJ

(bound∆(T0)) = T f

By the induction hypothesis, ∆ ⊢ T0 ok. Since ∆ is well formed, ∆ ⊢ bound∆(T0) ok.
Then, by Lemma A.3.2, we have ∆ ⊢ T ok, finishing the case.

Case GT-Invk. ∆; Γ ⊢FGJ e0 : T0

mtype
FGJ

(m, bound∆(T0)) = <Y ⊳ P>U→U0

∆ ⊢ V ok ∆ ⊢ V <: [V/Y]P
∆; Γ ⊢FGJ e : S ∆ ⊢ S <: [V/Y]U T = [V/Y]U0

By the induction hypothesis, ∆ ⊢ T0 ok. Since ∆ is well formed, ∆ ⊢ bound∆(T0) ok.
Then, by Lemma A.3.3, ∆, Y<:P ⊢ U0 ok. Finally, by Lemma A.2.6, we have
∆ ⊢ [V/Y]U0 ok, finishing the case.

Case GT-UCast. ∆; Γ ⊢FGJ e0 : T0 ∆ ⊢ T0 <: N N = T

By the induction hypothesis, ∆ ⊢ T0 ok. By Lemma A.3.1, ∆ ⊢ N ok, finishing the
case.

Case GT-New, GT-DCast, GT-SCast. Immediate from the fact that T is
well formed by a premise of the rules.

After developing several lemmas about erasure, we prove Theorem 4.5.1. Note
that in the following discussions the erased class table |CT | is not assumed to be
ok; even so, however, if CT is ok, then the erased class table |CT | itself is well
defined, and thus fields

FJ
, mtype

FJ
, mbody

FJ
, and <:FJ can be defined from |CT |.

Lemma A.3.5. If ∆ ⊢ S <:FGJ T, then |S|∆ <:FJ |T|∆.

Proof. Straightforward induction on the derivation of ∆ ⊢ S <:FGJ T.

Lemma A.3.6. If ∆1, X<:N, ∆2 ⊢ U ok where none of X appear in ∆1, and
∆1 ⊢ T <:FGJ [T/X]N, then |[T/X]U|∆1, [T/X]∆2

<:FJ |U|∆.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

42 · A. Igarashi et al.

Proof. If U is nonvariable or a type variable Y 6∈ X, then the result is trivial.
If U is a type variable Xi, it is also easy, since [T/X]U = Ti and, by Lemma A.3.5,
|Ti|∆1, [T/X]∆2

= |Ti|∆1
<:FJ |[T/X]Ni|∆1

= |Ni|∆ = |X|∆.

Lemma A.3.7. If ∆ ⊢ C<U> ok and fields
FGJ

(C<U>) = V f, then fieldsmax (C) =
D f and |V|∆ <:FJ D.

Proof. By induction on the derivation of fields
FGJ

(C<U>) using Lemma A.3.6
and the fact that ∆ ⊢ U <: [U/X]N, where class C<X ⊳ N> ..., derived from the rule
WF-Class.

Lemma A.3.8. If ∆ ⊢ C<T> ok and mtype
FGJ

(m, C<T>) = <Y ⊳ P>U→U0 where
∆ ⊢ V <:FGJ [V/Y]P, then mtypemax (m, C) = C→C0 and |[V/Y]U|∆ <:FJ C and
|[V/Y]U0|∆ <:FJ C0.

Proof. Since ∆ ⊢ C<T> ok, we can have a sequence of type S such that S1 = C<T>

and Sn = Object and ∆ ⊢ Si <:FGJ Si+1 derived by the rule S-Class for any i. We
prove by induction on the length n (≥ 2) of the sequence.

Case. n = 2

It must be the case that

class C<X ⊳ N> ⊳Object { ...

<Y ⊳ Q>W0 m (W x) {...} ...}.

By the definition of mtypemax , C = |W|X<:N, Y<:Q and C0 = |W0|X<:N, Y<:Q. Without loss

of generality, we can assume X and Y are distinct. By the definition of mtype
FGJ

,

[T/X]Q = P

[T/X]W = U

[T/X]W0 = U0,

and therefore

∆ ⊢ V <:FGJ [V/Y][T/X]Q.

Moreover, by the rule WF-Class, we have

∆ ⊢ T <: [T/X]N (= [V/Y][T/X]N since Y do not appear in [T/X]N).

By Lemma A.3.6, |[V/Y][T/X]W|∆ <:FJ C and |[V/Y][T/X]W0|∆ <:FJ C0, finishing the
case.

Case. n = k + 1

Suppose

class C<X ⊳ N> ⊳N {...}.

Note that ∆ ⊢ C<T> <:FGJ [T/X]N by the rule S-Class. Now, we have three subcases:

Subcase. mtype
FGJ

(m, [T/X]N) is undefined. The method m must be declared in
C. Similarly for the base case above.

Subcase. mtype
FGJ

(m, [T/X]N) is well defined, and m is defined in C. By the rule
GT-Method, it must be the case that

mtype
FGJ

(m, [T/X]N) = <Y ⊳ P>U→U0
′

where ∆, Y<:P ⊢ U0 <:FGJ U0
′. By Lemmas A.2.5 and A.3.5, |[V/Y]U0|∆ <:FJ

|[V/Y]U0
′|∆. The induction hypothesis and transitivity of <:FJ finish the subcase.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 43

Subcase. mtype
FGJ

(m, [T/X]N) is well defined, and m is not defined in C. It is easy
because mtype

FGJ
(m, [T/X]N) = mtype

FGJ
(m, C<T>) by the rule MT-Super. The

induction hypothesis finishes the subcase.

Proof of Theorem 4.5.1. We prove the theorem in two steps: first, it is
shown that if ∆; Γ ⊢FGJ e : T then |Γ|∆ ⊢FJ |e|∆,Γ : |T|∆; and second, we show
|CT | is ok.

The first part is proved by induction on the derivation of ∆; Γ ⊢FGJ e : T with a
case analysis on the last rule used.

Case GT-Field. e = e0.fi ∆; Γ ⊢FGJ e0 : T0

fields
FGJ

(bound∆(T0)) = T f T = Ti

By the induction hypothesis, we have |Γ|∆ ⊢FJ |e0|∆ : |T0|∆. By Lemma A.3.4,
∆ ⊢ T0 ok. Then, whether T0 is a type variable or not, we have by Lemma A.3.7
fieldsmax (|T0|∆) = C f and |T|∆ <: C. Note that by definition it is obvious that
fields

FJ
(C) = fieldsmax (C). By the rule T-Field, we have |Γ|∆ ⊢FJ |e0|∆,Γ.fi : Ci.

If |Ti|∆ = Ci, then the equation |e0.fi|∆,Γ = |e0|∆,Γ.fi derived from the rule
E-Field finishes the case. On the other hand, if |Ti|∆ 6= Ci, then

|e0.fi|∆,Γ = (|Ti|∆)
s|e0|∆,Γ.fi

by the rule E-Field-Cast and |Γ|∆ ⊢FJ (|T|∆)s|e0|∆,Γ.fi : |T|∆ by the rule
T-DCast, finishing the case. Note that the synthetic cast is not stupid.

Case GT-Invk. Similar to the case above.

Case GT-New, GT-UCast, GT-DCast, GT-SCast. Easy. Notice that
the nature of the cast (up, down, or stupid) is also preserved.

The second part (|CT | is ok) follows from the first part with examination of
the rules GT-Method and GT-Class. We show that if M OK IN C<X ⊳ N> then
|M|X<:N, C OK IN C. Suppose

M = <Y ⊳ P> T m(T x){ return e0; }

|M|X<:N, C OK IN C = D m(D x′){ return e0
′; }

mtypemax (m, C) = D→D

Γ = x : T
∆ = X<:N, Y<:P

ei =

{

xi
′ if Di = |Ti|∆

(|Ti|∆)sxi
′ otherwise

e0
′ = [e/x](|e0|∆, (Γ,this:C<X>)).

By the rule GT-Method, we have

∆ ⊢ T, T, P ok
∆; Γ, this : C<X> ⊢FGJ e0 : S

∆ ⊢ S <:FGJ T

if mtype
FGJ

(m, N) = <Z ⊳ Q>U→U, then P, T = [Y/Z](Q, U) and ∆ ⊢ T <:FGJ [Y/Z]U

where class C<X ⊳ N> ⊳ N {...}. We must show that

x′ : D, this : C ⊢FJ e
′ : E

E <:FJ D

if mtype
FJ

(m, |N|∆) = E→D′, then E = D and D′ = D

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

44 · A. Igarashi et al.

for some E. By the result of the first part, |Γ|∆, this : C ⊢FJ |e|∆,Γ : |S|∆. Since,
by Lemma A.3.8, |Ti|∆ <: Di, we have xi

′ : Di ⊢ ei : |Ti|∆. By Lemma A.2.11,

x′ : D, this : C ⊢ e0
′ : C0

for some C0 where C0 <:FJ |S|∆. On the other hand, by Lemma A.3.8, |T|∆ <:FJ D.
Since we have |S|∆ <:FJ |T|∆ by Lemma A.3.5, C0 <:FJ D by transitivity of <:. Let E
be C0. Finally, suppose mtypemax (m, |N|∆) is well defined. Then, mtype

FGJ
(m, N) is

also well defined. By definition, mtypemax (m, |N|∆) = D→D = mtype
FJ

(m, |N|∆).
It is easy to show that L OK in FGJ implies |L| OK in FJ.

A.4 Proof of Theorems 4.5.3 and 4.5.4

In the rest of this section, we prove these theorems and corollaries; we first prove
the required lemmas.

Lemma A.4.1. If Γ, x:B ⊢ e
exp

=⇒ e′ and Γ ⊢FJ d : A where A <:FJ B, then
Γ ⊢ [d/x]e

exp

=⇒ [d/x]e′.

Proof. By induction on the derivation of Γ, x:B ⊢FJ e : C.

Lemma A.4.2. Suppose dom(Γ) = dom(Γ′) and ∆ = ∆1, X<:N, ∆2 where none
of X appears in ∆1. If ∆; Γ ⊢FGJ e : T and ∆1 ⊢ U <:FGJ [U/X]N where ∆1 ⊢ U ok,
and ∆1, [U/X]∆2 ⊢ Γ′(x) <:FGJ [U/X]Γ(x) for all x ∈ dom(Γ), then |e|∆,Γ is obtained
from |[U/X]e|∆1, [U/X]∆2,Γ′ by some combination of replacements of some synthetic
casts (D)s with (C)s where D <: C, or removals of some synthetic casts.

Proof. By induction on the derivation of ∆; Γ ⊢ e : T with a case analysis on
the last rule used.

Case GT-Var. Trivial.

Case GT-Field. e = e0.f ∆; Γ ⊢ e0 : T0

fields
FGJ

(bound∆(T0)) = T f T = Ti

By the induction hypothesis, |e0|∆,Γ is obtained from |[U/X]e0|∆1, [U/X]∆2, Γ′ by some
combination of replacements of some synthetic casts (D)s with (C)s where D <:FJ C,
or removals of some synthetic casts. By Theorem 4.5.1, |Γ|∆ ⊢FJ |e0|∆,Γ : |T0|∆.
By Lemma A.3.7, fieldsmax (|T0|∆) = C f and |T|∆ <:FJ C.

We now have two subcases.

Subcase. |Ti|∆ 6= Ci

By the rule E-Field-Cast,

|e|∆,Γ = (|Ti|∆)
s|e0|∆,Γ.fi.

We now must show that |[U/X]e|∆1, [U/X]∆2, Γ′ = (D)s|[U/X]e0|∆1, [U/X]∆2, Γ′.fi for
some D <:FJ |T|∆. By Lemmas A.2.10 and A.2.11,

∆1, [U/X]∆2; Γ
′ ⊢FGJ [U/X]e0 : S0

∆1, [U/X]∆2 ⊢ S0 <:FGJ [U/X]T0.

By Lemmas A.2.7 and A.2.8,

fields
FGJ

(bound∆1, [U/X]∆2
(S0)) = ([U/X]T f), T′ g.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 45

Then, by Lemma A.3.6,

|[U/X]Ti|∆1, [U/X]∆2
<:FJ |Ti|∆.

On the other hand,

fieldsmax (|S0|∆1, [U/X]∆2
) = C f, D g

for some D. Therefore, by the rule E-Field-Cast,

|[U/X]e|∆1, [U/X]∆2, Γ′ = (|[U/X]Ti|∆1, [U/X]∆2
)s|[U/X]e|∆1, [U/X]∆2, Γ′.fi,

finishing the subcase.

Subcase. |Ti|∆ = Ci

Similar to the subcase above.

Case GT-Method. e = e0.m<V>(d) ∆; Γ ⊢FGJ e0 : T0

mtype
FGJ

(m, bound∆(T0)) = <Y ⊳ P>U→U0

∆ ⊢ V ok ∆ ⊢ V <:FGJ [V/Y]P
∆; Γ ⊢FGJ d : S ∆ ⊢ S <:FGJ [V/Y]U
T = [V/Y]U0

By the induction hypothesis, |d|∆,Γ are obtained from |[U/X]d|∆1, [U/X]∆2, Γ′ by some
combination of replacements of some synthetic casts (D)s with (C)s where D <:FJ C,
or removals of some synthetic casts. By Theorem 4.5.1, |Γ|∆ ⊢FJ |e0|∆,Γ : |T0|∆.
By Lemma A.3.8, mtypemax (m, |T0|∆) = E→E0 and |T|∆ <:FJ E0.

Now we have two subcases:

Subcase. |T|∆ 6= E0

By the rule E-Invk-Cast,

|e|∆,Γ = (|T|∆)
s|e0|∆,Γ.m(|d|∆,Γ).

Now, we must show that

|[U/X]e|∆1, [U/X]∆2, Γ′ = (D)s|[U/X]e0|∆1, [U/X]∆2, Γ′.m(|[U/X]d|∆1, [U/X]∆2, Γ′)

for some D <:FJ |T|∆. By Lemmas A.2.10 and A.2.11,

∆1, [U/X]∆2; Γ
′ ⊢FGJ [U/X]e0 : S0

∆1, [U/X]∆2 ⊢ S0 <:FGJ [U/X]T0.

Without loss of generality, we can assume X and Y are distinct. By Lemmas A.2.7
and A.2.9, we have

mtype
FGJ

(m, bound∆1, [U/X]∆2
(S0)) = <Y ⊳ [U/X]P>[U/X]U→U0

′

∆1, [U/X]∆2, Y<:[U/X]P ⊢ U0
′ <:FGJ [U/X]U0.

By Lemma A.2.5,

∆1, [U/X]∆2 ⊢ [U/X]V <:FGJ [U/X][V/Y]P (= [[U/X]V/Y]([U/X]P))

and by the same lemma,

∆1, [U/X]∆2 ⊢ [[U/X]V/Y]U0
′ <:FGJ [[U/X]V/Y][U/X]U0 (= [U/X][V/Y]U0 = [U/X]T).

Then, by Lemmas A.3.5 and A.3.6,

|[[U/X]V/Y]U0
′|∆1, [U/X]∆2

<:FJ |[U/X]T|∆1, [U/X]∆2
<:FJ |T|∆.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

46 · A. Igarashi et al.

On the other hand, it is easy to show that

mtypemax (m, |S0|∆1, [U/X]∆2
) = mtypemax (m, |[U/X]T0|∆1, [U/X]∆2

) = E→E0.

Then, by the rule E-Invk-Cast,

|[U/X]e|∆1, [U/X]∆2, Γ′

= (|[[U/X]V/Y]U0
′|∆1, [U/X]∆2

)s|[U/X]e0|∆1, [U/X]∆2, Γ′.m(|[U/X]d|∆1, [U/X]∆2, Γ′),

finishing the subcase.

Subcase. |T|∆,Γ = E0

Similar to the subcase above.

Case GT-New, GT-UCast, GT-DCast, GT-SCast. Immediate from the
induction hypothesis.

Lemma A.4.3. Suppose

(1) mbody
FGJ

(m<V>, C<T>) = x.e,

(2) mtype
FGJ

(m, C<T>) = <Y ⊳ P>U→U0,

(3) ∆ ⊢ C<T> ok,

(4) ∆ ⊢ V <:FGJ [V/Y]P,

(5) ∆ ⊢ W <:FGJ [V/Y]U, and

(6) mbody
FJ

(m, C) = x.e′.

Then, |x : W, this : C<T>|∆ ⊢ |e|∆, x:W, this:C<T>
exp

=⇒ e′.

Proof. By induction on the derivation of mbody
FGJ

(m<V>, C<T>) with a case
analysis on the last rule used.

Case MB-Class. class C<X ⊳ N> ⊳N { ...

<Y ⊳ Q> S0 m(S x){ return e0; }}

[T/X, V/Y]e0 = e

[T/X]Q = P

[T/X]S = U

[T/X]S0 = U0

Let ∆′ = X<:N, Y<:Q and Γ = x : S, this : C<X>. By the rule WF-Class,
∆ ⊢ T <:FGJ [T/X]N (= [V/Y][T/X]N). By Lemma A.4.2, |e0|∆′, x:S, this:C<X> is ob-
tained from |e|∆, x:W, this:C<T> by some combination of replacements of some syn-
thetic casts (B)s with (A)s where B <:FJ A, or removals of some synthetic casts. By
Theorem 4.5.1,

|x : S, this : C<X>|∆′ ⊢FJ |e0|∆′, x:S,this:C<X> : |S0|∆′ .

Now, let mtypemax (m, C) = D→D and

ei =

{

xi if Di = |Si|∆′

(|Si|∆′)sxi otherwise

for i = 1, . . . , #(x). Since e′ = [e/x]|e0|∆′,Γ and |W|∆ <:FJ |[V/Y]U|∆ <:FJ |S|∆′ , by
Lemmas A.3.5 and A.3.6, each ei is either a variable or a variable with an upcast
under the environment |x : W, this : C<T>|∆. Then, we have

|x : W, this : C<T>|∆ ⊢FJ e
′ : D

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 47

e
reduce (FGJ)

//

erase

��

e′

erase
��

|e′|

��

|e|
reduce (FJ)

// d′

Fig. 12.

for some D such that D <:FJ |S0|∆′ by Lemma A.1.2. Therefore, we have

|x : W, this : C<T>|∆ ⊢ |e|∆, x:W,this:C<T>
exp

=⇒ e′,

finishing the case.

Case MB-Super. class C<X ⊳ N> ⊳ D<S> { ... M } m 6∈ M

By the induction hypothesis,

|x : W, this : [T/X]D<S>|∆ ⊢ |e|∆, x:W, this:D<[T/X]S>
exp

=⇒ e′.

By Lemma A.4.1,

|x : W, this : C<T>|∆ ⊢ |e|∆, x:W, this:D<[T/X]S>
exp

=⇒ e′.

Then, by Lemma A.4.2, |e|∆, x:W, this:D<[T/X]S> is obtained from |e|∆, x:W, this:C<T> by
some combination of replacements of some synthetic casts (B)s with (A)s where
B <:FJ A, or removals of some synthetic casts. On the other hand, by Lemma A.1.2,

|x : W, this : C<T>|∆ ⊢FJ e
′ : E

for some E. Therefore,

|x : W, this : C<T>|∆ ⊢ |e|∆, x:W, this:C<T>
exp

=⇒ e′,

finishing the case.

Lemma A.4.4. If ∆; Γ ⊢FGJ e : T and e −→FGJ e′, then there exists some FJ
expression d′ such that |Γ|∆ ⊢FJ |e′|∆,Γ

exp

=⇒ d′ and |e|∆,Γ −→FJ d
′. In other words,

the diagram shown in Figure 12 commutes.

Proof. By induction on the derivation of e −→FGJ e′ with a case analysis on
the last reduction rule used. We show the main base cases.

Case GR-Field. e = new N(e).fi fields
FGJ

(N) = T f e′ = ei

We have two subcases depending on the last erasure rule used.

Subcase E-Field-Cast. |e|∆,Γ = (D)s(new C(|e|∆,Γ).fi)

We have |N|∆ = C by definition of erasure. Since fields
FJ

(C) = C f for some C, we
have |e|∆,Γ −→FJ (D)s|ei|∆,Γ. On the other hand, by Theorem 3.4.1, ∆; Γ ⊢FGJ

ei : Ti such that ∆ ⊢ Ti <:FGJ T. By Theorem 4.5.1, |T|∆ = D and |Γ|∆ ⊢FJ |ei|∆,Γ :

|Ti|∆. Since |Ti|∆ <:FJ D by Lemma A.3.5, (D)s|ei|∆,Γ is obtained by adding an
upcast to |ei|∆,Γ.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

48 · A. Igarashi et al.

e
reduce (FJ)

//

��

e′

��

d
reduce (FJ)

∗
// d′

Fig. 13.

Subcase E-Field. |e|∆,Γ = new C(|e|∆,Γ).fi

Follows from the induction hypothesis.

Case GR-Invk. e = new C<T>(e).m<V>(d)

mbody
FGJ

(m<V>, C<T>) = x.e0

e′ = [d/x, new C<T>(e)/this]e0

We have two subcases depending on the last erasure rule used.

Subcase E-Invk-Cast. |e|∆,Γ = (D)s(new C(|e|∆,Γ).m(|d|∆,Γ))

Since mbody
FGJ

(m<V>, C<T>) is well defined, mbody
FJ

(m, C) is also well defined. Let
mbody

FJ
(m, C) = x.e0

′ and Γ′ = x : U, this : C<T> where U are types of d. Then, by
Lemma A.4.3,

|Γ′|∆ ⊢ |e0|∆,Γ′

exp

=⇒ e0
′.

By Lemma A.4.1,

|Γ|∆ ⊢ |e′|∆,Γ
exp

=⇒ [|d|∆,Γ/x, |new C<T>(e)|∆,Γ/this]e0
′.

Note that |e′|∆,Γ = [|d|∆,Γ/x, |new C<T>(e)|∆,Γ/this]|e0|∆,Γ′ . By Theorems 3.4.1
and 4.5.1,

|Γ|∆ ⊢FJ |e′|∆,Γ : |T′|∆

for some T′ such that ∆ ⊢ T′ <:FGJ T. By Lemma A.3.5, |T′|∆ <:FJ D. Thus,

|Γ|∆ ⊢ |e′|∆,Γ
exp

=⇒ (D)s|e′|∆,Γ.

Finally,

|Γ|∆ ⊢ |e′|∆,Γ
exp

=⇒ (D)s[|d|∆,Γ/x, |new C<T>(e)|∆,Γ/this]e0
′.

Subcase E-Invk. Similarly to the subcase above.

Case GR-Cast. Easy.

Lemma A.4.5. If Γ ⊢FJ e : C and e −→FJ e
′ and Γ ⊢ e

exp

=⇒ d, then there exists
some FJ expression d′ such that Γ ⊢ e′

exp

=⇒ d′ and d −→FJ
∗ d′. In other words, the

diagram shown in Figure 13 commutes.

Proof. By induction on the derivation of e −→FJ e
′ with a case analysis on the

last reduction rule used.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 49

e
reduce (FGJ)

//

erase

��

(1)

e′
reduce (FGJ)

∗
//

erase

��

e′′

erase

��

(2) |e′′|

��

|e′|
reduce (FJ)

∗
//

��

(3)

d′

��

|e|
reduce (FJ)

// d
reduce (FJ)

∗
// d′′

Fig. 14.

e
reduce (FGJ)

//

erase

��

e′

erase
��

|e′|

��

|e|
reduce (FJ)

// d

Fig. 15.

Case R-Field. e = new C(e).fi fields
FJ

(C) = C f e′ = ei

The expansion d must have a form of ((D1)
s · · · (Dn)

snew C(d)).fi where Γ ⊢
e

exp

=⇒ d and C <:FJ Di for 1 ≤ i ≤ n because each Di is introduced as an upcast.
Thus, d −→FJ

∗ new C(d).fi −→FJ di.
The other base cases are similar, and the cases for induction steps are straight-

forward.

Proof of Theorem 4.5.3. By induction on the length n of reduction sequence
e −→FGJ

∗ e′.

Case. n = 0

Trivial.

Case. e −→FGJ e
′ −→FGJ

∗ e′′

We have the commuting diagram shown in Figure 14. Commutation (1) is proved
by Lemma A.4.4, (2) by the induction hypothesis and (3) by Lemma A.4.5.

Lemma A.4.6. Suppose ∆; Γ ⊢FGJ e : T. If |e|∆,Γ−→FJd, then e−→FGJe
′ for

some e′ and |Γ|∆ ⊢ |e′|∆,Γ
exp

=⇒ d. In other words, the diagram in Figure 15
commutes.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

50 · A. Igarashi et al.

Proof. By induction on the derivation of |e|∆,Γ−→FJd with a case analysis by
the last rule used. We show only a few main cases.

Case RC-Cast. We have two subcases according to whether the cast is
synthetic (|e|∆,Γ = (C)se0) or not (|e|∆,Γ = (C)e0). The latter case follows from
the induction hypothesis. We show the former case where

|e|∆,Γ = (C)se0

e0 −→FJ d0

d = (C)sd0.

Then e0 must be either a field access or a method invocation. We have another
case analysis with the last reduction rule for the derivation of e0 −→FJ d0. The
cases for RC-Field, RC-Invk-Recv, and RC-Invk-Arg are omitted, since they
follow from the induction hypothesis.

Subcase R-Field. e0 = new D(e).fi

d0 = ei

fields
FJ

(D) = C f

By inspecting the derivation of |e|∆,Γ, it must be the case that

e = new D<T>(e′).fi

|e′|∆,Γ = e

fieldsmax (D) = C f

|T|∆ = C 6= Ci.

By Theorems 3.4.2 and 3.4.1, we have e −→FGJ ei
′ and ∆; Γ ⊢FGJ ei

′ : S and
∆ ⊢ S <:FGJ T. By Theorem 4.5.1, |Γ|∆ ⊢FJ |ei

′|∆,Γ : |S|∆. By Lemma A.3.5,
|S|∆ <:FJ |T|∆. Then, |Γ|∆ ⊢ ei

exp

=⇒ (|T|∆)ei, finishing the case.

Subcase R-Invk. e0 = new D(d).m(e)

mbody
FJ

(m, D) = x.em

d0 = [e/x, new D(d)/this]em

By inspecting the derivation of |e|∆,Γ, it must be the case that

e = new D<T>(d′).m<V>(e′) |d′|∆,Γ = d |e′|∆,Γ = e

mtype
FGJ

(m, D<T>) = <Y ⊳ P>U→U0 [V/Y]U0 = T

mtypemax (m, D) = C→C0 |T|∆ = C 6= C0.

By Theorems 3.4.2 and 3.4.1, it must be the case that

e −→FGJ [e′/x, new D<T>(d′)/this]em
′

mbody
FGJ

(m<V>, D<T>) = x.em
′

∆; Γ ⊢FGJ [e′/x, new D<T>(d′)/this]em
′ : S

for some S such that ∆ ⊢ S <: T. By Theorem 4.5.1 and the fact that

|[e′/x, new D<T>(d′)/this]em
′|∆,Γ = [e/x, new D(d)/this]|em

′|∆, x:W, this:D<T>

where W are the types of e′, we have

|Γ|∆ ⊢FJ [e/x, new D(d)/this]|em
′|∆, x:W, this:D<T> : |S|∆.

Since |S|∆ <:FJ |T|∆ by Lemma A.3.5,

|Γ|∆ ⊢ [e/x, new D(d)/this]|em
′|∆, x:W, this:D<T>

exp

=⇒ (|T|∆)s[e/x, new D(d)/this]|em
′|∆, x:W, this:D<T>.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 51

|e|
reduce (FJ)

//

��

e′

��

d
R-Cast

∗
//

reduce (FJ)
// d′

Fig. 16.

On the other hand, by Lemma A.4.3,

|x : W, this : D<T>|∆ ⊢ |em
′|∆, x:W, this:D<T>

exp

=⇒ em.

By Lemma A.4.1,

|Γ|∆ ⊢ [e/x, new D(d)/this]|em
′|∆, x:W, this:D<T>

exp

=⇒ [e/x, new D(d)/this]em.

Then,

|Γ|∆ ⊢ (|T|∆)s[e/x, new D(d)/this]|em
′|∆, x:W, this:D<T>

exp

=⇒ (|T|∆)s[e/x, new D(d)/this]em.

Finally, we have, by the fact that C = |T|∆ and transitivity of the expansion relation,

|Γ|∆ ⊢ |[e′/x, new D<T>(d′)/this]em
′|∆,Γ

exp

=⇒ (C)[e/x, new D(d)/this]em
′.

Case R-Field. Similar to the subcase for R-Field in the case for RC-Cast
above.

Case R-Invk. Similar to the subcase for R-Invk in the case for RC-Cast
above. The case for R-Cast and the other cases for induction steps are straight-
forward.

Lemma A.4.7. Suppose ∆; Γ ⊢FGJ e : T and |Γ|∆ ⊢ |e|∆,Γ
exp

=⇒ d. If d reduces
to d′ with zero or more steps by removing synthetic casts, followed by one step by
other kinds of reduction, then |e|∆,Γ−→FJe

′ and |Γ|∆ ⊢ e′
exp

=⇒ d′. In other words,
the diagram in Figure 16 commutes.

Proof. By induction on the derivation of the last reduction step with a case
analysis by the last rule used.

Case R-Field. d −→FJ
∗ new C(e).fi fields

FJ
(C) = C f d′ = ei

The expression d must be of the form ((D1)
s . . .(Dn)

snew C(e′)).fi where C <: Di

for any i and each ei
′ reduces to ei by removing upcasts (in several steps). In

other words, |Γ|∆ ⊢ e′
exp

=⇒ e. Moreover, since |Γ|∆ ⊢ |e|∆,Γ
exp

=⇒ d, the expression
|e|∆,Γ must be of the form either new C(e′′).fi or (D)snew C(e′′).fi, where |Γ|∆ ⊢
e′′

exp

=⇒ e′. Therefore, |e|∆,Γ −→FJ ei
′′ or |e|∆,Γ −→FJ (D)

sei
′′. It is easy to see

|Γ|∆ ⊢ (D)sei
′′ exp

=⇒ ei

and

|Γ|∆ ⊢ ei
′′ exp

=⇒ ei.

Other base cases are similar; induction steps are straightforward.

Proof of Theorem 4.5.4. Follows from Lemmas A.4.6 and A.4.7.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

52 · A. Igarashi et al.

ACKNOWLEDGMENTS

We thank Robert Harper and the anonymous referees of OOPSLA’99 and TOPLAS
for their valuable comments and suggestions.

REFERENCES

Abadi, M. and Cardelli, L. 1996. A Theory of Objects. Springer-Verlag, New York, NY.

Agesen, O., Freund, S. N., and Mitchell, J. C. 1997. Adding type parameterization to the Java
language. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’97). SIGPLAN Notices volume 32, number
10. ACM Press, Atlanta, GA, 49–65.

Ancona, D. and Zucca, E. 2001. True modules for Java-like languages. In Proceedings of the
15th European Conference on Object-Oriented Programming (ECOOP2001), J. L. Knudsen,
Ed. Lecture Notes in Computer Science. Springer-Verlag, Budapest, Hungary.

Barendregt, H. P. 1984. The Lambda Calculus, Revised ed. North Holland, Amsterdam, The
Netherlands.

Bono, V. and Fisher, K. 1998. An imperative first-order calculus with object extension. In
Proceedings of the 12th European Conference on Object-Oriented Programming (ECOOP’98),
E. Jul, Ed. Lecture Notes in Computer Science, vol. 1445. Springer-Verlag, Brussels, Belgium,
462–497.

Bono, V., Patel, A. J., and Shmatikov, V. 1999. A core calculus of classes and mixins. In
Proceedings of the 13th European Conference on Object-Oriented Programming (ECOOP’99).
Lecture Notes in Computer Science, vol. 1628. Springer-Verlag, Lisbon, Portugal, 43–66.

Bono, V., Patel, A. J., Shmatikov, V., and Mitchell, J. C. 1999. A core calculus of classes
and objects. In Proceedings of the the 15th Conference on the Mathematical Foundations
of Programming Semantics (MFPS XV). Electronic Notes in Theoretical Computer Science,
vol. 20. Elsevier, New Orleans, LA. Available through http://www.elsevier.nl/locate/entcs/

volume20.html.

Bracha, G., Odersky, M., Stoutamire, D., and Wadler, P. 1998. Making the future safe for
the past: Adding genericity to the Java programming language. In Proceedings of the ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA’98), C. Chambers, Ed. ACM SIGPLAN Notices volume 33 number 10. ACM
Press, Vancouver, BC, 183–200.

Bruce, K. B. 1994. A paradigmatic object-oriented programming language: Design, static typing
and semantics. J. Funct. Program. 4, 2 (April), 127–206. Preliminary version in POPL 1993,
under the title “Safe type checking in a statically typed object-oriented programming language”.

Cardelli, L., Martini, S., Mitchell, J. C., and Scedrov, A. 1994. An extension of system F
with subtyping. Inf. Comput. 109, 1–2, 4–56. Preliminary version in TACS ’91 (Sendai, Japan,
pp. 750–770).

Cartwright, R. and Steele Jr., G. L. 1998. Compatible genericity with run-time types for
the Java programming language. In Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA’98), C. Chambers,
Ed. SIGPLAN Notices volume 33 number 10. ACM Press, Vancouver, BC, 201–215.

Drossopoulou, S., Eisenbach, S., and Khurshid, S. 1999. Is the Java Type System Sound?
Theory and Practice of Object Systems 7, 1, 3–24. Preliminary version in ECOOP ’97.

Duggan, D. 1999. Modular type-based reverse engineering of parameterized types in Java code.
In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’99), L. M. Northrop, Ed. ACM SIGPLAN Notices,
volume 34, number 10. ACM Press, Denver, CO, 97–113.

Felleisen, M. and Friedman, D. P. 1998. A Little Java, A Few Patterns. The MIT Press,
Cambridge, MA.

Fisher, K. and Mitchell, J. C. 1998. On the relationship between classes, objects, and data
abstraction. Theory and Practice of Object Systems 4, 1, 3–25.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Featherweight Java · 53

Flatt, M., Krishnamurthi, S., and Felleisen, M. 1998a. Classes and mixins. In Proceedings

of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM
Press, San Diego, CA, 171–183.

Flatt, M., Krishnamurthi, S., and Felleisen, M. 1998b. A programmer’s reduction semantics
for classes and mixins. Tech. Rep. TR97-293, Computer Science Department, Rice University.
February. Corrected version appeared in June, 1999.

Igarashi, A. and Pierce, B. C. 2000. On inner classes. In Proceedings of the 14th European
Conference on Object-Oriented Programming (ECOOP2000), E. Bertino, Ed. Lecture Notes in
Computer Science, vol. 1850. Springer-Verlag, Cannes, France, 129–153. Extended version to
appear in Inf. Comput.

Igarashi, A., Pierce, B. C., and Wadler, P. 2001. A recipe for raw types. In Informal Pro-
ceedings of the 8th International Workshop on Foundations of Object-Oriented Languages
(FOOL8). London, England. Available through http://www.cs.williams.edu/~kim/FOOL/

FOOL8.html.

League, C., Trifonov, V., and Shao, Z. 2001. Type-preserving compilation of Feath-
erweight Java. In Informal Proceedings of the 8th International Workshop on Founda-
tions of Object-Oriented Languages (FOOL8). London, England. Available through http://

www.cs.williams.edu/~kim/FOOL/FOOL8.html.

Myers, A. C., Bank, J. A., and Liskov, B. 1997. Parameterized types for Java. In Proceedings
of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM
Press, Paris, France, 132–145.

Nipkow, T. and von Oheimb, D. 1998. Javalight is type-safe — definitely. In Proceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press,
San Diego, CA, 161–170.

Odersky, M. and Wadler, P. 1997. Pizza into Java: Translating theory into practice. In Proceed-
ings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
ACM Press, Paris, France, 146–159.

Pierce, B. C. 2002. Types and Programming Languages. MIT Press, Cambridge, MA.

Pierce, B. C. and Turner, D. N. 1994. Simple type-theoretic foundations for object-oriented
programming. J. Funct. Program. 4, 2 (April), 207–247. Preliminary version in Principles of
Programming Languages (POPL), 1993.

Schultz, U. 2001. Partial evaluation for class-based object-oriented languages. In Proceedings of
the 2nd Symposium on Programs as Data Objects (PADO II), O. Danvy and A. Filinski, Eds.
Lecture Notes in Computer Science, vol. 2053. Springer-Verlag, Aarhus, Denmark, 173–197.

Studer, T. 2000. Constructive foundations for Featherweight Java. Available through http://

iamwww.unibe.ch/~tstuder/.

Syme, D. 1997. Proving Java type soundness. Tech. Rep. 427, Computer Laboratory, University
of Cambridge. June.

Viroli, M. and Natali, A. 2000. Parametric polymorphism in Java: an approach to translation
based on reflective features. In Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA’00), D. Lea, Ed.
ACM SIGPLAN Notices, volume 35, number 10. ACM Press, Minneapolis, MN, 146–165.

Wand, M. 1989. Type inference for objects with instance variables and inheritance. Tech. Rep.
NU-CCS-89-2, College of Computer Science, Northeastern University. February. Also in Carl
A. Gunter and John C. Mitchell, editors, Theoretical Aspects of Object-Oriented Programming:
Types, Semantics, and Language Design (MIT Press, 1994).

Wright, A. K. and Felleisen, M. 1994. A syntactic approach to type soundness. Inf. Com-
put. 115, 1 (November), 38–94.

Received July 2000; accepted December 2000

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

