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Abstract

We propose a general, powerful framework of type systems
for the π-calculus, and show that we can obtain as its in-
stances a variety of type systems guaranteeing non-trivial
properties like deadlock-freedom and race-freedom. A key
idea is to express types and type environments as abstract
processes: We can check various properties of a process by
checking the corresponding properties of its type environ-
ment. The framework clarifies the essence of recent complex
type systems, and it also enables sharing of a large amount
of work such as a proof of type preservation, making it easy
to develop new type systems.

1 Introduction

1.1 Motivation

Static guarantee of the correctness of concurrent programs is
important: Because concurrent programs are more complex
than sequential programs (due to non-determinism, dead-
lock, etc.), it is hard for programmers to debug concurrent
programs or reason about their behavior.

A number of advanced type systems have recently been
proposed to analyze various properties of concurrent pro-
grams, such as input/output modes [27], multiplicities (how
often each channel is used) [17], race conditions [4, 6], dead-
lock [14, 18, 30, 38], livelock [16], and information flow [8, 10].

Unfortunately, however, there has been no satisfactorily
general framework of type systems for concurrent program-
ming languages: Most type systems have been designed in
a rather ad hoc manner for guaranteeing certain specific
properties. The lack of a general framework kept it difficult
to compare, integrate, or extend the existing type systems.
Also, a lot of tasks (such as proving type soundness) had to
be repeated for each type system. This situation stands in
contrast with that of type systems for functional program-
ming languages, where a number of useful analyses (such
as side-effect analysis, region inference [36], and exception
analysis [3, 26]) can be obtained as instances of the effect
analysis [34, 35].
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The goal of this paper is therefore to establish a gen-
eral framework of type systems for concurrent processes, so
that various advanced type systems can be derived as its
instances. As in many other type systems, we use the π-
calculus as a target language: It is simple yet expressive
enough to model modern concurrent/distributed program-
ming languages.

1.2 Main Ideas

A main idea of the present work is to express types and
type environments as abstract processes. So, a type judg-
ment Γ ⊲ P , which is normally read as “The process P is
well-typed under the type environment Γ,” means that the
abstract process Γ is a correct abstraction of the process P ,
in the sense that P satisfies a certain property (like race-
freedom and deadlock-freedom) if its abstraction Γ satisfies
the corresponding property. (In this sense, our type system
may be regarded as a kind of abstract interpretation [2].) We
define such a relation Γ ⊲ P by using typing rules. Because
we use a much simpler process calculus to express type envi-
ronments than the π-calculus, it is easier to check properties
of Γ than to check those of P directly.

To see how type environments can be expressed as
abstract processes, let us review the ideas of our pre-
vious type systems for deadlock/livelock-freedom [16, 18,
33]. Let x![y1, . . . , yn]. P be a process that sends the tu-
ple [y1, . . . , yn] along the channel x and then behaves like
P , and x?[y1, . . . , yn]. Q be a process that receives a tuple
[z1, . . . , zn] along x, binds y1, . . . , yn to z1, . . . , zn, and then
behaves like Q. Let us write P |Q for a parallel execution
of P and Q, and 0 for inaction. In our previous type sys-
tems [18, 33], the process P = x![z] |x?[y]. y![ ] | z?[ ]. z?[ ].0
is roughly typed as follows:

x : [[ ]/O]/(O|I), z : [ ]/(O|I.I) ⊲ P

Types of the form [τ1, . . . , τn]/U are channel types: The
part [τ1, . . . , τn] means that the channel is used for commu-
nicating a tuple of values of types τ1, . . . , τn, and the part
U (called a usage) expresses how channels are used for in-
put/output. For example, the part O|I.I of the type of z
means that z is used for output (denoted by O) and for two
successive inputs (denoted by I.I) in parallel. By focusing
on the usage parts, we can view the above type environment
as a collection of abstract processes, each of which performs
a pair of co-actions I and O on each channel. Indeed, we
can reduce the type environment by canceling I and O of the
usage of x and obtain x : [[ ]/O]/0, z : [ ]/(O|I.I), which is a



type environment of the process z![ ] | z?[ ]. z?[ ]. 0, obtained
by reducing P . By further reducing the type environment,
we obtain x : [[ ]/O]/0, z : [ ]/I, which indicates that an in-
put on z may remain after P is fully reduced. Based on
this idea, we developed type systems for deadlock/livelock-
freedom [16, 18, 33].

We push the above “type environments as abstract
processes” view further, and express type environments
as CCS-like processes (unlike in CCS [22], however, we
have no operator for hiding or creating channels). The
type environment of the above process P is expressed as
x![τ ]. z![τ ′] |x?[τ ].0 | z?[τ ′]. z?[τ ′].0. It represents not only
how each channel is used, but also the order of communica-
tions on different channels, such as the fact that an out-
put on z occurs only after an output on x succeeds (as
indicated by the part x![τ ]. z![τ ′]). The parts enclosed by
square brackets abstract the usage of values transmitted
through channels. Thanks to this generalization, we can rea-
son about not only deadlock-freedom but also other prop-
erties such as race conditions within a single framework.
The new type system can also guarantee deadlock-freedom
of more processes, such as that of concurrent objects with
non-uniform service availability [30, 31].

1.3 Contributions

Contributions of this paper are summarized as follows:

• We develop a general framework of type systems, which
we call a generic type system — just as a generic func-
tion is parametrized by types and can be instantiated to
functions on various arguments by changing the types,
the generic type system is parameterized by a subtyp-
ing relation and a consistency condition of types and
it can be instantiated to a variety of type systems by
changing the subtyping relation and the consistency
condition.

• We prove that the general type system satisfies several
important properties (such as subject reduction), inde-
pendently of a choice of the subtyping relation and the
consistency condition. Therefore, there is no need to
prove them for each type system.

• We show that a variety of non-trivial type systems
(such as those ensuring deadlock-freedom and race-
freedom) can indeed be derived as instances of the gen-
eral type system, and prove their correctness.

1.4 The Rest of This Paper

Section 2 introduces the syntax and the operational se-
mantics of our target process calculus. Section 3 presents
our generic type system and shows its properties. As
its instances, Section 4 derives a variety of type systems
and proves their correctness. To further demonstrate the
strength of our framework, Section 5 shows that deadlock
and race conditions of concurrent objects can also be ana-
lyzed within our generic type system. Section 6 describes
preliminary results of our ongoing studies on the power of
our generic type system. Section 7 discusses limitations and
extensions of our generic type system. Section 8 discusses
related work and Section 9 concludes this paper. For the

space restriction, we omit some technical details in this ex-
tended abstract. They are found in the full paper [11].1

2 Target Language

2.1 Syntax

Our calculus is basically a subset of the polyadic π-
calculus [23]. To state properties of a process, we annotate
each input or output operation with a label.

Definition 2.1.1 [processes]: The set of processes is de-
fined by the following syntax.

P (processes) ::= 0 | G1 + · · · + Gn | (P |Q)
| (νx1, . . . , xn) P | ∗P

G (guarded processes)
::= x!t[y1, . . . , yn]. P | x?t[y1, . . . , yn]. P

Here, x, y, and z range over a countably infinite set Var of
variables. t ranges over a countably infinite set T of labels
called events. We assume that Var ∩ T = ∅.

Notation 2.1.2: We write x̃ for a (possibly empty) se-
quence x1, . . . , xn, and ‖x̃‖ for the length n of the sequence
x̃. (νx̃1) · · · (νx̃n) P is abbreviated to (ν̃x1..n)P or (ν̃x) P .
As usual, ỹ in x?[ỹ]. P and x̃ in (νx̃)P are called bound vari-
ables. The other variables are called free variables. We as-
sume that α-conversions are implicitly applied so that bound
variables are always different from each other and from free
variables. The expression [z1/x1, . . . , zn/xn]P , abbreviated
to [z̃/x̃]P , denotes a process obtained from P by replacing all
free occurrences of x1, . . . , xn with z1, . . . , zn. We often omit
the inaction 0 and write x!t[ỹ] for x!t[ỹ].0. When events
are not important, we omit them and just write x![ỹ]. P and
x?[ỹ]. P for x!t[ỹ]. P and x?t[ỹ]. P respectively. We give a
higher precedence to + and (νx̃) than to | .

The meanings of 0, x!t[ỹ]. P , x?t[ỹ]. P , and P |Q have
already been explained. G1 + · · · + Gn (where G1, . . . , Gn

are input or output processes) denotes an external choice: It
behaves like one of G1, . . . , Gn depending on enabled com-
munications. (νx̃) P creates fresh channels x̃ and then ex-
ecutes P .2 ∗P denotes infinitely many copies of P running
in parallel.

2.2 Operational Semantics

As usual [23], we define a reduction semantics by using a
structural relation and a reduction relation. For technical
convenience, we do not require the structural relation to be
symmetric. The reduction relation P −→ Q is annotated

with a term of the form xt,t′ or ǫt,t′ . The term records on
which channel and events the reduction is performed: It is
used to state properties of a process in Section 4.

Definition 2.2.1: The structural preorder � is the least re-
flexive and transitive relation closed under the rules in Fig-
ure 1 (P ≡ Q denotes (P � Q) ∧ (Q � P )).

Definition 2.2.2: The reduction relation
l

−→ is the least
relation closed under the rules in Figure 2.

1Available from
http://www.yl.is.s.u-tokyo.ac.jp/~koba/publications.html.

2This is operationally the same as (νx1) · · · (νxn) P , but we dis-
tinguish them in the type system given in Section 3.
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P |0 ≡ P (SPCong-Zero)

P |Q ≡ Q |P (SPCong-Commut)

P | (Q |R) ≡ (P |Q) |R (SPCong-Assoc)

∗P � ∗P |P (SPCong-Rep)

(νx̃)P |Q � (νx̃) (P |Q)(if x̃ are not free in Q)
(SPCong-New)

P � P ′ Q � Q′

P |Q � P ′ |Q′ (SPCong-Par)

P � Q

(νx̃) P � (νx̃) Q
(SPCong-CNew)

Figure 1: Structural Preorder

· · · + x!t[z̃]. P + · · · | · · · + x?t′ [ỹ]. Q + · · ·
xt,t′

−→ P | [z̃/ỹ]Q (R-Com)

P
l

−→ Q

P |R
l

−→ Q |R
(R-Par)

P
yt,t′

−→ Q y ∈ {x̃}

(νx̃) P
ǫt,t′

−→ (νx̃) Q

(R-New1)

P
l

−→ Q (l = ǫt,t′) ∨ (l = yt,t′ ∧ y 6∈ {x̃})

(νx̃) P
l

−→ (νx̃) Q
(R-New2)

P � P ′ P ′ l
−→ Q′ Q′ � Q

P
l

−→ Q
(R-SPCong)

Figure 2: Reduction Relation

Notation 2.2.3: We write P −→ Q if P
l

−→ Q for some l.

Notation 2.2.4: When R1,R2 are binary relations on a
set S, we write R∗

1 for the reflexive and transitive closure of
R1, and R1R2 for the composition of R1 and R2.

3 Generic Type System

3.1 Types

As explained in Section 1, we extend ordinary type environ-
ments and express them as abstract processes. In the rest
of this paper, we call them process types (or, just types in
short). For most of the process constructors introduced in
the previous section, there are the corresponding construc-
tors for process types. We use the same symbols for them
to clarify the correspondence.

Definition 3.1.1 [types]: The sets of tuple types and pro-
cess types are defined by the following syntax.

τ (tuple types) ::= (x1, . . . , xn)Γ
Γ (process types)

::= 0 | α | γ1 + · · · + γn | (Γ1 |Γ2) | Γ1&Γ2 | µα.Γ
γ ::= x!t[τ ].Γ | x?t[τ ]. Γ | t.Γ

Here, the metavariable α ranges over the set of type vari-
ables.

Notation 3.1.2: The tuple type (x̃)Γ binds the variables
x̃ in Γ. We assume that α-conversions are implicitly applied
so that bound variables are always different from each other
and free variables. In this paper, we restrict the syntax of
tuple types so that (x̃)Γ does not contain any free variables
or free type variables. (It is possible to remove this restric-
tion: See Section 7.) We write [ỹ/x̃]Γ for a process type
obtained by substituting ỹ for all free occurrences of x̃ in Γ.
We write ∗Γ for µα.(Γ |α). We often omit 0 and write x!t[τ ]
and x?t[τ ] for x!t[τ ].0 and x?t[τ ].0 respectively. We also

abbreviate x!t[( )0]. Γ and x?t[( )0].Γ to x!t[ ]. Γ and x?t[ ]. Γ
respectively. We assume that µα.Γ binds α in Γ. We write
[Γ/α] for the capture-avoiding substitution of Γ for α. We
write Null(Γ) if Γ does not contain a process type of the
form x?t[τ ].Γ1 or x!t[τ ].Γ1. When τ = (x̃)Γ, we call ‖x̃‖
the arity of τ and write ‖τ‖.

The tuple type (x1, . . . , xn)Γ is the type of an n-tuple,
whose elements x1, . . . , xn should be used according to Γ. 0
is the type of the inaction. x!t[τ ]. Γ is the type of a process
that uses x for sending a tuple of type τ , and then behaves
according to Γ. The output on x must be tagged with t.
Similarly, x?t[τ ].Γ is the type of a process that uses x for
receiving a tuple of type τ , and then behaves according to Γ.
For example, if a process should have type x?t1 [ ]. y!t2 [ ].0,
then x?t1 [ ]. y!t2 [ ] is allowed but neither y!t2 [ ]. x?t1 [ ].0 nor
x?t1 [ ].0 | y!t2 [ ] is. In this way, we can express more precise
information on the usage of channels than previous type sys-
tems [17, 18, 27]. t.Γ is the type of a process that behaves
according to Γ after some action annotated with t (which
is an input or an output action on some channel) occurs.3

Γ1 |Γ2 is the type of a process that behaves according to
Γ1 and Γ2 in parallel. The type γ1 + · · · + γn represents
an external choice: A process of that type must behave ac-
cording to one of γ1, . . . , γn, depending on the communica-
tions provided by the environment. On the other hand, the
type Γ1&Γ2 represents an internal choice: A process of that
type can behave according to either Γ1 or Γ2, irrespectively
of what communications are provided by the environment.

For example, the process type x!t[ ]. y!t
′

[ ]&y!t
′

[ ]. x!t[ ] means
that x and y can be used sequentially for output in any or-

der; So, both x!t[ ]. y!t
′

[ ] and y!t
′

[ ]. x!t[ ] can have this type.4

3Instead of t.Γ, we could introduce process types t?.Γ and t!.Γ to
distinguish between input and output actions. We do not do so in
this paper for simplicity.

4So, Γ1&Γ2 is similar to an intersection type Γ1 ∧ Γ2. The differ-
ence is that a value of type Γ1&Γ2 can be used only once according
to either Γ1 or Γ2.
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We use the standard notation µα.Γ for recursive types. For
example, µα.(x?t[τ ]. α) is the type of a process that uses x
for receiving a tuple of type τ repeatedly.

Notice that, unlike the π-calculus processes in Sec-
tion 2, the process types contain no operators for creating
fresh channels or passing channels through other channels.
Thanks to this, we can check properties of types (as abstract
processes) more easily than those of the π-calculus processes.
Instead, we have some operators that do not have their coun-
terparts in processes. A process type of the form t.Γ plays
an important role in guaranteeing complex properties like
deadlock-freedom. For example, we can express the type of
(νx) (x?t1 [ ]. y!t2 [ ] | y?t3 [ ]. 0) as t1.y!t2 [ ] | y?t3 [ ], which im-
plies that the output on y is not performed until an action
labelled with t1 succeeds. Since actually it never succeeds,
we know that the input from y is kept waiting forever.

3.2 Subtyping

We introduce a subtyping relation Γ1 ≤ Γ2, meaning that
a process of type Γ1 may behave like that of type Γ2. For
example, Γ1&Γ2 ≤ Γ1 should hold. The subtyping relation
depends on the property we want to guarantee: For example,
if we are only concerned with arity-mismatch errors [7, 37],
we may identify t.Γ with Γ, and x!t[τ ].Γ with x!t[τ ] |Γ, but
we cannot do so if we are concerned with more complex
properties like deadlock-freedom. Therefore, we state here
only necessary conditions that should be satisfied by the
subtyping relations of all instances of our type system.

We need some auxiliary operations.

Definition 3.2.1: Let S be a subset of Var. Unary opera-
tions Γ↓S and Γ↑S on process types are defined by:

0↓S = 0

α↓S = α

(x?t[τ ].Γ)↓S =

{
x?t[τ ]. (Γ↓S) if x ∈ S
t.(Γ↓S) otherwise

(x!t[τ ].Γ)↓S =

{
x!t[τ ]. (Γ↓S) if x ∈ S
t.(Γ↓S) otherwise

(t.Γ)↓S = t.(Γ↓S)

(γ1 + · · · + γn)↓S = (γ1↓S) + · · · + (γn↓S)

(Γ1 |Γ2)↓S = (Γ1↓S) | (Γ2↓S)

(Γ1&Γ2)↓S = (Γ1↓S)&(Γ2↓S)

(µα.Γ)↓S = µα.(Γ↓S)

Γ↑S = Γ↓Var\S

Γ↓S extracts from Γ information on the usage of only the
channels in S, while Γ↑S extracts information on the usage
of the channels not in S.

Example 3.2.2: Let Γ = y?t[τ ′]. x!t
′

[τ ′]. 0. Then Γ↓{x} =

t.x!t
′

[τ ].0 and Γ↑{x} = y?t[τ ]. t′.0.

Definition 3.2.3 [subtyping]: A preorder ≤ on process
types is a proper subtyping relation if it satisfies the rules
given in Figure 3 (Γ1

∼= Γ2 denotes Γ1 ≤ Γ2 ∧ Γ2 ≤ Γ1).

In the rest of this paper, we assume that ≤ always de-
notes a proper subtyping relation. We extend ≤ to a sub-
typing relation on tuple types by: τ1 ≤ τ2 if and only if
there exist x̃, Γ1, and Γ2 such that τ1 = (x̃)Γ1, τ2 = (x̃)Γ2,
and Γ1 ≤ Γ2.

The axiom Γ↓S |Γ↑S ≤ Γ allows us to forget in-
formation on dependencies between some channels. For

example, if Γ = y?t[τ ′]. x!t
′

[τ ′].0, then Γ↓{x} |Γ↑{x} =

t.x!t
′

[τ ]. 0 | y?t[τ ]. t′.0 is a subtype of Γ. Notice that
Γ↓{x} |Γ↑{x} expresses a more liberal usage of x, y than Γ:
While Γ means that x is used for output only after y is used
for input, Γ↓{x} |Γ↑{x} only says that x is used for output
after some event t, not necessarily an input from y.

3.3 Reduction of Process Types

We want to reason about the behavior of a process by in-
specting the behavior of its abstraction, i.e., process type.
We therefore define reduction of process types, so that each
reduction step of a process is matched by a reduction step
of its process type. For example, the reduction of a process

x?t1 [z]. z!t2 [ ] | x!t2 [y] −→ y!t2 [ ]

is matched by:

x?t1 [τ ] |x!t3 [τ ]. y!t2 [ ] −→ y!t2 [ ]

for τ = (z)z!t2 [ ]. As is the case for reductions of processes,
we annotate each reduction with information on which chan-
nel and events are involved in the reduction.

Definition 3.3.1: A reduction relation Γ1
L

−→ Γ2 on pro-
cess types (where L ⊆ T∪{xt1,t2 | (x ∈ Var)∧(t1, t2 ∈ T)})
is the least relation closed under the rules in Figure 4.

We write Γ −→ Γ′ when Γ
L

−→ Γ′ for some L.

3.4 Consistency of Process Types

If a process type is a correct abstraction of a process, we
can verify a property of the process by verifying the corre-
sponding property of the process type. When a process type
satisfies such a property, we say that the process type is con-
sistent. The consistency condition depends on the property
we require for processes. So, we state here only necessary
conditions that every consistency condition should satisfy.
Consistency conditions for specific instances are given in
Section 4.

Definition 3.4.1 [well-formedness]: A process type Γ is
well-formed, written WF (Γ), if there exist no x, τ1, τ2, t1,
t2, Γ1, Γ2, and Γ3 that satisfy the following conditions:

1. Γ −→∗ · · ·+x!t1 [τ1].Γ1+· · · | · · ·+x?t2 [τ2].Γ2+· · · |Γ3.

2. τ1 � τ2.

Remark 3.4.2: We could replace the first condition
with “Γ contains x!t1 [τ1] and x?t2 [τ2],” which can be
checked more easily. We do not do so, however,
to allow maximal flexibility of type systems. Under
the above condition, we can allow process types like
x?t1 [τ1]. x!t2 [τ2] |x!t3 [τ1]. x?t4 [τ2], which allows x to be used
for first communicating a value of type τ1, and then for com-
municating a value of type τ2.

Definition 3.4.3 [consistency]: A predicate ok on pro-
cess types is a proper consistency predicate if it satisfies the
following conditions:
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Γ |0 ∼= Γ (Sub-Empty)

Γ1 |Γ2
∼= Γ2 |Γ1 (Sub-Commut)

Γ1 | (Γ2 |Γ3) ∼= (Γ1 |Γ2) |Γ3 (Sub-Assoc)

µα.Γ ∼= [µα.Γ/α]Γ (Sub-Rec)

Γ1&Γ2 ≤ Γi (i ∈ {1, 2}) (Sub-IChoice)

Γ ≤ Γ′

∗Γ ≤ ∗Γ′ (Sub-Rep)

Γ1 ≤ Γ′
1 Γ2 ≤ Γ′

2

Γ1 |Γ2 ≤ Γ′
1 |Γ

′
2

(Sub-Par)

γi ≤ γ′
i for each i ∈ {1, . . . , n}

γ1 + · · · + γn ≤ γ′
1 + · · · + γ′

n

(Sub-Choice)

Γ ≤ Γ′

Γ↓S ≤ Γ′↓S

(Sub-Restrict)

Γ ≤ Γ′

[y/x]Γ ≤ [y/x]Γ′ (Sub-Subst)

(Γ↓S |Γ↑S) ≤ Γ (Sub-Divide)

Figure 3: Necessary Conditions on Subtyping Relation

τ1 ≤ τ2

· · · + x!t1 [τ1].Γ1 + · · · | · · · + x?t2 [τ2].Γ2 + · · ·
{xt1,t2}
−→ Γ1 |Γ2

(TER-Com)

Γ
∅

−→ Γ (TER-Skip)

· · · + t.Γ + · · ·
{t}
−→ Γ (TER-Ev)

Γ1
L1−→ Γ′

1 Γ2
L2−→ Γ′

2

Γ1 |Γ2
L1∪L2−→ Γ′

1 |Γ
′
2

(TER-Par)

Γ1 ≤ Γ′
1 Γ′

1

L
−→ Γ′

2 Γ′
2 ≤ Γ2

Γ1
L

−→ Γ2

(TER-Sub)

Figure 4: Reduction of Process Types

1. If ok(Γ), then WF (Γ).

2. If ok(Γ) and Γ −→ Γ′, then ok(Γ′).

3. If ok(Γ1) and Null(Γ2), then ok(Γ1 |Γ2)

In the rest of this paper, we assume that ok always refers
to a proper consistency predicate.

Because process types form a much simpler process cal-
culus than the π-calculus, we expect that the predicate ok
is normally much easier to verify than the corresponding
property of a process. The actual procedure to verify ok ,
however, depends on the definition of the subtyping relation
≤ : If we are not interested in linearity information [17], we
can introduce the rule Γ |Γ ∼= Γ so that the reductions of a
process type can be reduced to a finite-state machine. But
if we take ≤ to be the least proper subtyping relation, we
need to use a more complex system like Petri nets, as is the
case for our previous type system for deadlock-freedom [18].

3.5 Typing

A type judgment is of the form Γ⊲P , where Γ is a closed (i.e.,
containing no free type variables) process type. It means
that P behaves as specified by Γ.

Typing rules are given in Figure 5. The rules (T-Par),
(T-Choice), and (T-Rep) say that an abstraction of a pro-
cess constructed by using a process constructor | , +, or ∗
can be obtained by composing abstractions of its subpro-
cesses with the corresponding constructor of process types.

The key rules are (T-Out), (T-In), and (T-New).
Note that channels can be dynamically created and passed
through other channels in the process calculus, while in the

calculus of process types, there are no corresponding mech-
anisms. So, we must somehow approximate the behavior of
a process in those rules.

In the rule (T-Out), we cannot express information that
[z̃] is passed through x at the type level. Instead, we put
[z̃/ỹ]Γ2, which expresses how the channels z̃ are used by a
receiver, into the continuation of the output action.

In the rule (T-In), information on how received chan-
nels ỹ are used is put into the tuple type (ỹ)(Γ↓{ỹ}). Be-
cause we want to keep only information on the usage of ỹ,
we apply ·↓{ỹ} to remove information on the usage of the
other variables. Information on the usage of the other vari-
ables is kept in the continuation Γ↑{y1,...,yn} of the input ac-

tion. For example, consider a process x?t1 [y]. y?t2 [ ]. z!t3 [ ].
Its subprocess y?t2 [ ]. z!t3 [ ] is typed under the process type
y?t2 [ ]. z!t3 [ ]. 0. By applying (T-In), we obtain the following
type judgment:

x?t1 [(y)y?t2 [ ]. t3.0]. t2.z!t3 [ ].0 ⊲ x?t1 [y]. y?t2 [ ]. z!t3 [ ]

Notice that the parameter type (y)y?t2 [ ]. t3.0 of the channel
x carries only information that some event t3 occurs after
y is used for input, not that z is used for output. On the
other hand, the continuation part t2.z!t3 [ ]. 0 says just that
z is used for output only after some event t2 occurs.

In the rule (T-New), we check by the condition
ok(Γ↓{x̃}) that x̃ are used in a consistent manner, and forget
information on the use of x̃ by ·↑{x̃}.

3.6 Properties of the Type System

The general type system given above is parameterized by
the subtyping relation ≤ and the consistency predicate ok ,
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0 ⊲ 0 (T-Zero)

Γ1 ⊲ P1 Γ2 ⊲ P2

Γ1 |Γ2 ⊲ P1 |P2

(T-Par)

Γ ⊲ P

∗Γ ⊲ ∗P
(T-Rep)

Γ′ ⊲ P Γ ≤ Γ′

Γ ⊲ P
(T-Sub)

γi ⊲ Gi for each i ∈ {1, . . . , n}

γ1 + · · · + γn ⊲ G1 + · · · + Gn

(T-Choice)

Γ1 ⊲ P

x!t[(ỹ)Γ2]. (Γ1 | [z̃/ỹ]Γ2) ⊲ x!t[z̃]. P
(T-Out)

Γ ⊲ P

x?t[(ỹ)(Γ↓{ỹ})]. (Γ↑{ỹ}) ⊲ x?t[ỹ]. P
(T-In)

Γ ⊲ P ok(Γ↓{x̃})

Γ↑{x̃} ⊲ (νx̃) P
(T-New)

Figure 5: Typing Rules

which determine the exact properties of each instance of the
type system. As we show below, however, several impor-
tant properties can be proved independently of a choice of
the subtyping relation and the consistency predicate. In
particular, we can prove that if Γ ⊲ P holds, Γ is a correct
abstraction of P in the sense that P satisfies a certain in-
variant property if Γ satisfies the corresponding property
(Theorem 3.6.2).

Type Preservation

We define a mapping l# from labels of process reductions

to labels of type reductions by: (xt1,t2)
#

= {xt1,t2} and

(ǫt1,t2)
#

= {t1, t2}. The following theorem guarantees that
if Γ ⊲ P holds, for every reduction of P , there is a corre-
sponding reduction of Γ.

Theorem 3.6.1 [subject reduction]: If Γ⊲P and P
l

−→

Q with WF (Γ), then there exists Γ′ such that Γ
l#

−→ Γ′ and
Γ′ ⊲ Q.

As a corollary, it follows that a process satisfies a certain
invariant condition p if the process type of P satisfies the
corresponding consistency condition.

Theorem 3.6.2: Suppose p(P ) holds for any Γ such that
Γ ⊲ P and ok(Γ). If Γ ⊲ P and ok(Γ), then p(Q) holds for
every Q such that P −→∗ Q.

Proof: By mathematical induction on the length of the
reduction sequence P −→ · · · −→ Q, using Theorem 3.6.1
and the fact that ok is preserved by reduction. ✷

Normalization of Type Derivation

The normal derivation theorem given below is useful for
studying a relationship between a process and its process
type, and also for developing type-check/reconstruction al-
gorithms. We write Γ ⊲N P if Γ ⊲ P is derivable by using
(T-Sub) only immediately before (T-In) or (T-Out).

Theorem 3.6.3 [normal derivation]: If Γ⊲P , then Γ′⊲N

P for some Γ′ such that Γ ≤ Γ′.

Proof: This follows from the fact that each application of
the rule (T-Sub) above a rule except for (T-In) and (T-

Out) can be permuted downwards. ✷

As a corollary, it follows that if a process is trying to
perform an input action, its process type is also trying to
perform the corresponding action. (A similar property holds
also for output.)

Corollary 3.6.4: If Γ⊲(ν̃x1..k) (· · ·+y?t[z̃]. P +· · · |Q) and
ok(Γ), then the following conditions hold.

1. If y 6∈ {x̃1, . . . , x̃k}, then Γ ≤ · · · + y?t[τ ].Γ1 + · · · |Γ2

for some τ, Γ1, and Γ2.

2. If y ∈ {x̃1, . . . , x̃k}, then Γ ≤ · · · + t.Γ1 + · · · |Γ2 for
some Γ1 and Γ2.

Conversely, if a process type obtained by normal deriva-
tion is trying to perform some action, the process is also
trying to perform the corresponding action.

Theorem 3.6.5:

1. If · · · + t.Γ1 + · · · |Γ2 ⊲N P , then P �
(ν̃x1..k) (y?t[z̃]. Q |R) or P � (ν̃x1..k) (y!t[z̃]. Q |R),
with y ∈ {x̃1, . . . , x̃k}.

2. If · · · + y?t[τ ].Γ1 + · · · |Γ2 ⊲N P , then P �
(ν̃x1..k) (y?t[z̃]. Q |R) with y 6∈ {x̃1, . . . , x̃k}.

Proof: Trivial by the definition of Γ ⊲N P . ✷

Type Check/Reconstruction

By using Theorem 3.6.3, we can also formalize a common
part of type-check/reconstruction algorithms: By reading
the typing rules in a bottom-up manner, we can develop
an algorithm that inputs a process expression and outputs
a set of subtype constraints and consistency conditions on
process types (see Appendix A). A process is typable if
and only if the set of constraints output by the algorithm
is satisfiable. Thus, to develop a type-check/reconstruction
algorithm for each instance of our type system, it suffices to
develop an algorithm to solve constraints on process types.
Such algorithms have already been developed for specific
type systems [12, 18].

4 Applications

We show that a variety of type systems — those for arity-
mismatch check, race detection, deadlock detection, and
static garbage-channel collection — can indeed be obtained
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as instances of the generic type system. Thanks to the com-
mon properties in Section 3.6, only a small amount of extra
work is necessary to define each instance and prove its cor-
rectness.

The invariant properties of well-typed processes that the
type systems should guarantee are shown in Table 1. The
condition p1(P ) means that no arity-mismatch error occurs
immediately. (So, if p1 is an invariant condition, no arity-
mismatch error occurs during reduction of P .) p2(P ) means
that P is not in a race condition on any output actions
annotated with t. p3(P ) means that P is not deadlocked
on any actions annotated with t in the sense that when-
ever P is trying to perform an action annotated with t, P
can be further reduced. p4(P ) means that after a channel
has been used for an input action annotated with t, it is
no longer used. So, it is safe to deallocate the channel af-
ter the action annotated with t. For example, the process
(νx) (x!t1 [ ] |x!t2 [ ] |x?t3 [ ]. x?t[ ].0) satisfies this property.

Table 2 shows the consistency condition for each type
system. ok2(Γ) means that no race occurs on output actions
annotated with t during reductions of the abstract process
Γ. ok3(Γ) means that whenever Γ is reduced to a process
type trying to perform an action annotated with an event
t′ less than or equal to t, Γ can be further reduced on some
channel or on an event less than t′. (Here, we assume that
≺ is some well-founded relation on events, and t 4 t′ means
t ≺ t′ or t = t′.) ok4(Γ) means that, after Γ has been
reduced on an action involving a channel x and the event
t, the reduced process type no longer performs an input or
output action on the same channel.

Let ≤ be the least proper subtyping relation. We can
prove the following type-soundness theorem for all of the
above type systems. By Theorem 3.6.2, it suffices to show
that Γ ⊲ P and ok i(Γ) imply pi(P ) for each i, by using The-
orems 3.6.3–3.6.5 (see Appendix B.2).

Theorem 4.1: Let ok be ok i (i ∈ {1, 2, 3, 4}). If Γ ⊲ P and
ok(Γ), then pi(Q) holds for every Q such that P −→∗ Q.

Actually, ≤ can be any proper subtyping relation ex-
cept for the case i = 3. Choosing an appropriate subtyping
relation for each type system would simplify type-checking
or type-reconstruction. For example, in the above type sys-
tems, we can identify t.Γ with Γ by the rule t.Γ ∼= Γ, except
for the case i = 3. For a naive arity-mismatch check [7, 37],
we can ignore the order of communications by introducing
rules like x?t[τ ].Γ ∼= x?t[τ ] |Γ.

The following examples indicate that our framework not
only subsumes many of the existing type systems but also
provides more powerful type systems than them (see also
Section 5).

Example 4.2: The process x?[y]. x?[ ].0 |x![w]. x![ ] is well
typed in the first (i = 1) type system. So, unlike in ear-
lier type systems [7, 37] for arity-mismatch check, the same
channel can be used for communicating values of different
types.5

Example 4.3: The second type system guarantees that the
process (νl, x) (l!t0 [ ] | ∗l?t1 [ ]. x!t[ ]. l!t3 [ ] |x?t4 [ ]. 0) is race-
free on the channel x. So, unlike the linear π-calculus [17],
our type system can guarantee lack of race conditions even
on channels that are used more than once.6

5Yoshida’s type system [38] also allows such use of channels.
6Flanagan and Abadi’s type system [4] also gives such a guarantee.

Because their target calculus has locks as primitives, the problem is
a little simpler.

Example 4.4: The third type system rejects the pro-
cess P = (νx) (νy) (x?t[ ]. y!t1 [ ] | y?t2 [ ]. x!t3 [ ]). The
type of the sub-process x?t[ ]. y!t1 [ ] | y?t2 [ ]. x!t3 [ ] is
x?t[ ]. y!t1 [ ] | y?t2 [ ]. x!t3 [ ]. So, in order for P to be well-
typed, the following constraints must be satisfied:

ok3(x?t[ ]. t1.0 | t2.x!t3 [ ])
ok3(t.y!t1 [ ] | y?t2 [ ]. t3.0)

The former constraint requires that t2 ≺ t (because the in-
put from x succeeds only after the event t2 succeeds), while
the latter requires that t ≺ t2, hence a contradiction.

Remark 4.5: A type environment in a usual type sys-
tem corresponds to the equivalence class of a process type
with respect to the relation ∼= derived from an appropri-
ate subtyping relation. (Recall that Γ1

∼= Γ2 is defined as
Γ1 ≤ Γ2 ∧ Γ2 ≤ Γ1.) For example, the type environment

x : [[ ]/O]/(O|I), z : [ ]/(O|I.I)

given in Section 1 corresponds to the equivalence class of a
process type

x!t[(y)y!t[ ]] |x?t[(y)y!t[ ]] | z!t[ ] | z?t[ ]. z?t[ ],

with respect to ∼= that satisfy the rules x!t[τ ].Γ ∼= x!t
′

[τ ].Γ,

x?t[τ ].Γ ∼= x?t′ [τ ].Γ, t.Γ ∼= Γ, and (Γ↓S |Γ↑S) ∼= Γ. The
last rule removes information on the order of communica-
tions between different channels. A type environment of the
linear π-calculus [17] is obtained by further removing infor-
mation on channel usage, by adding the rules x!t[τ ].Γ ∼=
x!t[τ ] |Γ, x?t[τ ].Γ ∼= x?t[τ ] |Γ, and Γ |Γ ∼= ∗Γ. A type en-
vironment of the input-only/output-only channel type sys-
tem [27] is obtained by further adding the rule ∗Γ ∼= Γ.

5 Further Applications: Analysis of Race and Deadlock of
Concurrent Objects

The type systems for race- and deadlock-freedom, presented
in the last section, are indeed powerful enough to guarantee
some useful properties about concurrent objects. In essence,
a concurrent object is regarded as a set of processes that
provides a collection of services (e.g., methods) [13, 19, 29],
just as a sequential object is a set of functions. Clients refer
to an object through a record of channels that represent
locations of those services. Hence, by giving an appropriate
type to the record, we can enforce a certain protocol that
clients should respect. Since our type system can capture, in
particular, temporal dependency on the utilized services, it
is possible to guarantee race-freedom of accesses to methods,
studied by Abadi, Flanagan and Freund [4, 6], and deadlock-
freedom for objects with non-uniform service availability,
studied by Puntigam [30]. Note that, so far, these properties
have been discussed only for languages with primitive notion
of objects. This section demonstrates how our type system
can guarantee these properties.

We first describe race-free accesses to methods. For ex-
ample, the following process waits for a request on newob,
and upon receiving a request, creates an object with a lock
l, a method m to print out the string “Hello, ” appended to
a given string, and a channel r to receive a reply from the
method, and exports its interface [l,m, r] through the reply
channel r′.

∗newob? [r′]. (νl, m, r) (

l!t
′

[ ] | ∗m?t′ [s]. print!t
′

[”Hello, ”]. print!t
′

[s]. r!t
′

[ ]
| r′![l, m, r])
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p1(P )
There exist no x̃1,. . . , x̃k, x, z̃, w̃, t, t′, Q1, Q2, and Q3 such that P � (ν̃x1..k) (· · ·+x!t[z̃]. Q1 + · · · | · · ·+

x?t′ [w̃]. Q2 + · · · |Q3) with ‖z̃‖ 6= ‖w̃‖.

p2(P )
There exist no x, x̃1, . . . , x̃n, z̃, w̃, t′, Q1, Q2, Q3 such that

P � (ν̃x1..n) (· · · + x!t[z̃]. Q1 + · · · | · · · + x!t
′

[w̃]. Q2 + · · · |Q3).

p3(P )
If there exist x̃1, . . . , x̃n, y, z̃, Q, R such that P � (ν̃x1..n) (· · ·+ y?t[z̃]. Q + · · · |R) or P � (ν̃x1..n) (· · ·+
y!t[z̃]. Q + · · · |R), then P −→ P ′ for some P ′.

p4(P ) For any t′, x, w̃1, . . . , w̃n, P ′, and Q, if P −→∗� (ν̃w1..n) P ′ and P ′ xt′,t

−→−→∗ Q, then there exist no
Q1, Q2 such that Q � (ν̃u) (· · · + x?[ỹ]. Q1 + · · · |Q2) or Q � (ν̃u) (· · · + x![ỹ]. Q1 + · · · |Q2).

Table 1: Properties of Processes

ok1(Γ) WF (Γ)

ok2(Γ) WF (Γ), and there exist no x, t′, τ1, τ2, Γ1, Γ2, Γ3 such that Γ −→∗ · · ·+x!t[τ1].Γ1+ · · · | · · ·+x!t
′

[τ2]. Γ2+
· · · |Γ3.

ok3(Γ)
WF (Γ), and if t′ 4 t, Γ −→∗ Γ′ and Γ′ is · · · + y?t′ [τ ].Γ1 + · · · |Γ2 or · · · + y!t

′

[τ ].Γ1 + · · · |Γ2 for some

y, τ , t′, Γ1, Γ2, then Γ′ L
−→ Γ′′ for some L and Γ′′ such that (i) L = {xt1,t2} or (ii) L = {t′′} and t′′ ≺ t′.

ok4(Γ) WF (Γ), and for any x, t′, and Γ′, if Γ −→∗xt′,t

−→ Γ′, then there exist no τ , t′′, Γ1, Γ2 such that Γ′ −→∗

· · · + x?t′′ [τ ].Γ1 + · · · |Γ2 or Γ′ −→∗ · · · + x!t
′′

[τ ].Γ1 + · · · |Γ2.

Table 2: Consistency Conditions

Since the method m should not be invoked simultaneously,7

clients should acquire and release the lock l before and after
the invocation of m, respectively. Indeed by using ok2, it
is guaranteed that there are no simultaneous outputs to m:
The exported interface [l,m, r] (through which clients access
to the object) can be given a type:

(l, m, r) ⋆ l?t′ [ ]. m!t[String]. r?t′ [ ]. l!t
′

[ ],

where ⋆Γ abbreviates µα.(0&(Γ |α)), meaning that the tuple
can be used according to Γ by arbitrarily many processes.
(Here, we assume that the subtyping relation ≤ satisfies
t.Γ ∼= Γ.) Then, a client

l?t′ [ ].m!t[”Atsushi”]. r?t′ [ ]. l!t
′

[ ]

| l?t′ [ ].m!t[”Naoki”]. r?t′ [ ]. l!t
′

[ ]

is well typed, but m!t[”Atsushi”]. r?t′ [ ]. · · · is not. The
above type of the interface roughly corresponds to the object
type [m : ς(l)String → Unit · {l} · +] of Abadi and Flana-
gan’s type system [4], which means that the method m can
be invoked only after the lock on the object is acquired.

Similarly, we can express non-uniform service availability
in our type system. For example, this is a process that
creates a one-place buffer:

∗newbuf ? [r]. (νput, get, b) (
b![ ] | ∗b?[ ]. put?[x]. get?[r′]. (r′![x] | b![ ])
| r![put, get])

Now, two methods put and get are provided but they are
available only alternately. By using ok3, we can guaran-
tee that invocations of the methods put and get never get
deadlocked. The interface [put, get] can be given a type:

(put, get)µα.(0&(put!t[τ ] |∞.get!t[(r)r!t[τ ]].∞.α)),

which says that an output to put must come in paral-
lel to or before an output to get. (Here, ∞.Γ abbrevi-
ates µα.(Γ&t1.α& · · ·&tn.α) where {t1, . . . , tn} is the set of

7We do not want an output like “Hello Hello ”.

events occurring in the program. It means that it is allowed
to wait for arbitrary events before using the value according
to Γ.) Then, both

put!t[v] | (νr) get!t[r]. r?[x]. · · ·

and
put!t[v]. (νr) get!t[r]. r?[x]. · · ·

are well-typed (and hence never get deadlocked on put! and
get!) while (νr′) get!t[r′]. r′?[x]. put!t[v]. · · · is not.

6 Towards a General Type Soundness Theorem

In Section 3.6, we have shown that a process satisfies a cer-
tain property p if its process type satisfies the corresponding
consistency condition ok . However, it was left to the de-
signer of a specific type system to find a consistency condi-
tion that corresponds to a process property of interest and
prove that the correspondence is indeed correct. In fact, in
Section 4, we had to find a suitable consistency condition
on process types and prove its correctness (Theorem 4.1)
for each type system. Also, there remains a general ques-
tion about the power of our generic type system: What kind
of type system can be obtained as an instance? Clearly, not
all properties can be verified in our type system: For exam-
ple, the property “a process can create at most n channels”
cannot be verified, because process types contain no infor-
mation on channel creation. This section gives a partial
answer to those questions: For a certain class of properties
of processes, there is indeed a systematic way for obtain-
ing the corresponding consistency condition ok on process
types, so that the instantiated type system is sound. For
lack of space, details are omitted: They are found in the full
paper [11].

We first introduce logical formulas [1, 32] to formally
state properties of processes and types.

Definition 6.1: The set Prop of formulas is given by the
following syntax (i, j denote variables ranging over the set
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Nat of non-negative integers and n denotes a non-negative
integer or a variable ranging over Nat):

A ::= tt | x!tn | x?tn | (A |B) | 〈l〉A | ev(A)
| ¬A | A ∨ B | ∃x.A | ∃t.A | ∃i : C.A

C ::= {i1 6= j1, . . . , ik 6= jk}

A formula A describes a property of both processes and
types. Intuitively, x!tn means that some sub-process is
ready to output an n-tuple on the channel x and that the
output is tagged with t. Similarly, x?tn means that some
sub-process is ready to input an n-tuple. The formula A |B
means that the process is parallel composition of a process
satisfying A and another process satisfying B. 〈l〉A means
that the process can be reduced in one step to a process
satisfying A and that the reduction is labelled with l. ev(A)
means that the process can be reduced to a process satisfy-
ing A in a finite number of steps.8

As a property of processes, the formal semantics [[A]]pr of

each formula (i.e., the set of processes satisfying the formula)
is defined by (Proc is the set of processes and FV (A) is the
set of free variables in A):9

[[tt]]
pr

=Proc

[[x!tn]]
pr

= {P | P � (ν̃x1..k) (· · · + x!t[ỹ]. Q + · · · |R),
x 6∈ {x̃1, . . . , x̃k}, ‖ỹ‖ = n}

[[x?tn]]
pr

= {P | P � (ν̃x1..k) (· · · + x?t[ỹ]. Q + · · · |R),
x 6∈ {x̃1, . . . , x̃k}, ‖ỹ‖ = n}

[[A |B]]
pr

= {P | P � (ν̃x1..k) (Q |R), Q ∈ [[A]]
pr

,
R ∈ [[B]]

pr
, {x̃1, . . . , x̃k} ∩ FV (A |B) = ∅}

[[〈l〉A]]pr = {P | P
l

−→ Q, Q ∈ [[A]]pr}
[[ev(A)]]

pr
= {P | P −→∗ Q, Q ∈ [[A]]

pr
}

[[¬A]]
pr

=Proc\[[A]]
pr

· · ·

Similarly, a formula can be regarded also as a property
of process types (Type is the set of process types):

[[tt]]
ty

=Type

[[x!tn]]
ty

= {Γ | Γ ≤ · · · + x!t[τ ].∆1 + · · · |∆2, ‖τ‖ = n}

[[x?tn]]
ty

= {Γ | Γ ≤ · · · + x?t[τ ].∆1 + · · · |∆2, ‖τ‖ = n}
[[A |B]]

ty
= {Γ | Γ ≤ (∆1 |∆2), ∆1 ∈ [[A]]

ty
, ∆2 ∈ [[B]]

ty
}

[[〈l〉A]]
ty

= {Γ | Γ
l#

−→ ∆, ∆ ∈ [[A]]
ty
}

[[ev(A)]]
ty

= {Γ | Γ −→∗ ∆, ∆ ∈ [[A]]
ty
}

[[¬A]]
ty

=Type\[[A]]
ty

· · ·

We can show that for any negative formula A defined below,
a process P satisfies A (i.e., P ∈ [[A]]pr) if its process type
Γ satisfies the same formula A. Our type system is there-
fore sound at least for properties described using negative
formulas.

Definition 6.2 [positive/negative formulas]: The set
F+ (F−, resp.) of positive (negative, resp.) formulas are

8Instead, we could introduce a general fixed-point operator [32].
9Formally, [[A]]

pr
is parameterized by an assignment of variables

to non-negative integers: See the full paper [11].

the least set satisfying the following rules:

tt ∈ F+ ∩ F−

x!tn, x?tn ∈ F+

A, B ∈ F+ ⇒
A |B, A ∨ B, 〈l〉A, ev(A), ∃x.A,∃t.A,∃i : C.A ∈ F+

A, B ∈ F− ⇒ A ∨ B,∃x.A,∃t.A,∃i : C.A ∈ F−

A ∈ F+ ⇒ ¬A ∈ F−

A ∈ F− ⇒ ¬A ∈ F+

Theorem 6.3: Suppose Γ ⊲ P and WF (Γ). If A ∈ F− and
Γ ∈ [[A]]

ty
, then P ∈ [[A]]

pr
holds. Conversely, if A ∈ F+

and P ∈ [[A]]
pr

, then Γ ∈ [[A]]
ty

holds.

Proof sketch: This follows by induction on the structure
of A. The cases for 〈l〉A and ev(A) follow from Theo-
rem 3.6.1 and the cases for x!tn, x?tn, and A |B follow from
Theorem 3.6.3 and Corollary 3.6.4. The other cases follow
immediately from the definitions of [[A]]pr and [[A]]ty. ✷

Corollary 6.4 [type soundness]: Let A ∈ F− and P be
a closed process. Suppose that ok(Γ) implies Γ ∈ [[A]]

ty
.

Suppose also that Γ ⊲ P and ok(Γ). Then, if P −→∗

(ν̃x) (νỹ) Q, then (ν̃x) Q ∈ [[A]]
pr

.

Intuitively, the last sentence of the above corollary means
that all the channels created during reductions of P are
used according to A. The corollary implies that, in order
to guarantee that property, it suffices to define the consis-
tency condition ok by ok(Γ) ⇐⇒ WF (Γ) ∧ inv(A) (where
inv(A) = ¬ev(¬A)).

The type systems for lack of arity mismatch, race detec-
tion, garbage-channel collection discussed in Section 4 can
be automatically obtained by using the above corollary: For
example, in the case of arity-mismatch check, we can let A be

¬ev(∃x.∃t, t′.∃i, j : {i 6= j}.(x!ti |x?t′j)). In the case of race

detection, we can let A be ¬ev(∃x.∃t′.∃i, j : ∅.(x!ti |x!t
′

j)).
We can also obtain a variant of the linear channel type sys-
tem [17]. Let A be ¬∃x.∃t1, t2, t3.∃n.ev(〈xt1,t2〉ev(x!t3n ∨
x?t3n)); Then it is guaranteed that every channel is used at
most once.

Note that our type system is sound also for some non-
negative formulas: Indeed, the deadlock-free property is not
described as a non-negative formula, but our type system is
still sound as proved in Appendix B.2. It is left for future
work to identify a larger class of properties for which our
type system is sound, and obtain a general type soundness
theorem (like Corollary 6.4 above) for that class.

7 Limitations and Extensions

Although a variety of type systems can be obtained as its
instances, our generic type system is of course not general
enough to obtain all kinds of type systems. There are two
major sources of limitations of our type system: One is the
way in which processes are abstracted, and the other is the
way the consistency condition ok on types is formalized.

Limitations caused by abstraction Because information on
channel creation is lost in process types (recall the rule (T-

New)), we cannot obtain type systems to guarantee proper-
ties like “at most n channels are created.” We can overcome
that limitation to some extent, by introducing a process type

9



newk.Γ, which means that the process behaves like Γ after
creating k channels.

Some information is also lost in the rule (T-In): Because
information on the usage of bound channels (expressed by
Γ↓{ỹ}) is put into the continuation of an output process and

that on the usage of free channels (expressed by Γ↑{ỹ}) is
put into the continuation of the input process, the causal-
ity information between communications on bound channels
and those on free channels is lost. We can improve the type
system by removing the restriction that tuple types can-
not contain free variables (Notation 3.1.2) and changing the
rule (T-In) into the following rule, to allow an arbitrary de-
composition of information on the usage of bound and free
channels:

Γ ⊲ P Γ1 |Γ2 ≤ Γ FV (Γ2) ∩ {ỹ} = ∅

x?t[(ỹ)Γ1].Γ2 ⊲ x?t[ỹ]. P

This kind of extension is necessary to account for some exist-
ing type systems like Abadi and Flanagan’s type system for
race detection [4]. In fact, the analysis of race discussed in
Section 5 works only when the lock l and the other interfaces
m and r are created simultaneously and passed together;
Otherwise, dependencies between the usage of l, m and r
are lost. To get rid of such restriction, the above extension
of the rule (T-In) and an extension of the rule (T-New)
discussed in the next paragraph is necessary.

Limitations caused by the formalization of ok To obtain
common properties useful for proving type soundness (in
Sections 3.6 and 6), we required that the consistency con-
dition ok must be an invariant condition (recall Defini-
tion 3.4.3). This requirement is, however, sometimes too
strong. For example, suppose that we want to guarantee a
property “Before a channel x is used for output, y must be
used for input.” (This kind of requirement arises, for exam-
ple, in ensuring safe locking [5].) Note that this property is
not an invariant condition: Once y is used for input, x can
be used immediately. One way to overcome this limitation
would be to annotate each channel creation (νx̃) with the
history of reductions, and parameterize ok with the history.

Another limitation comes from the side condition
ok(Γ↓{x̃}) of the rule (T-New): Because of the opera-
tion ·↓{x̃}, only the causality between simultaneously cre-
ated channels can be directly controlled. We can overcome
this limitation by parameterizing the condition ok with a
set of channels of interest, and replacing ok(Γ↓{x̃}) with

ok(Γ, {x̃}).

Other extensions There are many other useful extensions.
Combining our type system with polymorphism, existential
types, etc. would be useful. We expect that polymorphism
can be introduced in a similar manner to Pierce and San-
giorgi’s polymorphic π-calculus [28].

The type system for deadlock-freedom in Section 4 is ac-
tually naive. More special treatment of event tags t is nec-
essary to obtain a sophisticated type system for deadlock-
freedom [14] (see the full paper [11]).

Besides type-soundness proofs and type inference issues
studied in this paper, it would be interesting to formalize
other aspects of type systems through our generic type sys-
tem. Typed process equivalence would be especially impor-
tant, because it is hard even for specific type systems [17,
27, 28].

Another interesting extension is generalization of the tar-
get language. If we can replace the π-calculus with a more
abstract process calculus like Milner’s action calculi [24],
type systems for other process calculi can also be discussed
uniformly.

8 Related Work

General framework of type systems Previous proposals
of a general framework [9, 20, 21] are (i) so abstract (e.g.,
[9, 20]) that only a limited amount of work can be shared
for developing concrete type systems, and/or (ii) not gen-
eral (e.g., [20, 21]) enough to account for recent advanced
type systems. Honda’s framework [9] is more abstract than
ours. Moreover, his framework only deal with what he call
additive systems, where the composability of processes are
determined solely by channel-wise compatibility: So, it can-
not deal with properties like deadlock-freedom, for which
inter-channel dependency is important. On the other hand,
his framework can deal with a wide range of process cal-
culi as target languages, not only the π-calculus. In König’s
type system based on hypergraphs [20], type environments
do not change during reduction of a process. So, it cannot
deal with dynamically changing properties like linearity [17].
Moreover, the target calculus is less expressive than the π-
calculus, our target calculus: It cannot express dynamic cre-
ation of channels.

Other type systems viewing types as processes Some pre-
vious type systems also use process-like structures to ex-
press types. Yoshida’s type system [38] (which guarantees a
certain deadlock-freedom property) uses graphs to express
the order of communications. Her type system is, however,
specialized for a particular property, and the condition cor-
responding to our consistency condition seems too strong,
even for guaranteeing deadlock-freedom.

Nielson and Nielson [25] also use CCS-like process terms
to express the behavior of CML programs. Because their
analysis approximates a set of channels by using an abstract
channel called a region, it is not suitable for analyses of
deadlock-freedom (see [14] for the reason), race detection,
linearity analysis, etc, where the identify of a channel is
important.

Process-like terms have been used as types also in type
systems for deadlock-freedom [30] and related properties [31]
of concurrent objects. As briefly outlined in Section 5, our
type system can guarantee such properties without having
concurrent objects as primitives.

Abstract interpretation As mentioned in Section 1, our
generic type system can be viewed as a kind of abstract
interpretation framework [2], in the sense that properties of
programs are verified by reasoning about abstract versions
of those programs. From this viewpoint, our contribution
is a novel formalization of a specific subclass of abstract
interpretation for the π-calculus (for which no satisfactory
general abstract interpretation framework has been devel-
oped to the authors’ knowledge) as a type system. Another
novelty seems to be that while conventional abstract inter-
pretation often uses a denotational semantics to claim the
soundness of an analysis, our type system uses an opera-
tional semantics, which seems to be more convenient for
analyses of concurrent processes.

10



Non-standard type systems for functional languages Un-
like standard type systems for functional languages, our type
system keeps track of not only the shape of each value but
also information on how each value is accessed. In this re-
spect, there seems to be some connection between our type
system and non-standard type systems for functional lan-
guages, especially those for memory management [15, 36]. It
would be interesting to study whether they can be encoded
into some extension of our generic type system.

9 Conclusion

We have proposed a general type system for concurrent pro-
cesses, where types are expressed as abstract processes. We
have shown that a variety of non-trivial type systems can
be obtained as its instances, and that their correctness can
be proved in a uniform manner. Future work includes a
study of a more general version of the type soundness theo-
rem in Section 6, and extensions of our generic type system
discussed in Section 7, to give a complete account of the
existing type systems for the π-calculus.
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Appendix

A Type Reconstruction

The type reconstruction algorithm PT given below takes a
process expression as input and outputs a pair of a type
environment (extended with expressions like α↑S and α↓S)
and a set of constraints on variables in the type environment.
Each constraint is of the form either ok(Γ) or α ≤ Γ. The
obtained pair gives a principal typing of the input in the
sense that all the possible type environments, under which
the process expression is well typed, are obtained from the
type environment in the pair, by replacing free variables in
the constraint so that the constraint is satisfied.

PT (P ) = (Γ, C) :

PT (0) = (0, ∅)
PT (x!t[z̃]. P0) =

let (Γ0, C0) = PT (P0)
in (x!t[(z̃)αx]. (α |αx), C0 ∪ {α ≤ Γ0})
(where α and αx are fresh)

PT (x?t[ỹ]. P0) =
let (Γ0, C0) = PT (P0)
in (x?t[(ỹ)α↓{ỹ}]. (α↑{ỹ}), C0 ∪ {α ≤ Γ0})
(where α is fresh)

PT (P1 |P2) =
let (Γ1, C1) = PT (P1)

(Γ2, C2) = PT (P2)
in (Γ1 |Γ2, C1 ∪ C2)

PT (P1 + · · · + Pn) =
let (Γ1, C1) = PT (P1)

...
(Γn, Cn) = PT (Pn)

in (Γ1 + · · · + Γn, C1 ∪ · · · ∪ Cn)
PT (∗P0) =

let (Γ0, C0) = PT (P0)
in (∗Γ0, C0)

PT ((νx̃) P0) =
let (Γ0, C0) = PT (P0)
in (Γ0↑{x̃}, C0 ∪ {ok(Γ0↓{x̃})})

B Proofs of Theorems

B.1 Proof of Subject Reduction Theorem (Theo-
rem 3.6.1)

Lemma B.1.1: (Γ↑S1
)↑S2

= (Γ↑S2
)↑S1

= Γ↑S1∪S2
.

Proof: By induction on the structure of Γ. ✷

Lemma B.1.2 [inversion]: Suppose Γ ⊲ P .

1. If P = P1 |P2, then there exist Γ1 and Γ2 such that
Γi ⊲ Pi for i = 1, 2 and Γ ≤ Γ1 |Γ2.

2. If P = P1 + · · · + Pn, then there exist Γ1, . . . , Γn such
that Γi ⊲ Pi for i = 1, . . . , n and Γ ≤ Γ1 + · · · + Γn.

3. If P = x!t[ỹ]. P0, then there exist Γ0 and Γx such that
Γ0 ⊲ P0 and Γ ≤ x!t[(ỹ)Γx]. (Γ0 |Γx).

4. If P = x?t[ỹ]. P0, then there exists Γ0 such that Γ0 ⊲P0

and Γ ≤ x?t[(ỹ)Γ0↓{ỹ}]. (Γ0↑{ỹ}).

12



5. If P = (νx̃)P0, then there exists Γ0 such that Γ0 ⊲ P0

and Γ ≤ Γ0↑{x̃} with ok(Γ↓{x̃}).

6. If P = ∗P0, then there exists Γ0 such that Γ0 ⊲ P0 and
Γ ≤ ∗Γ0.

Proof: Immediate from the fact that a type derivation of
Γ⊲P must end with an application of the rule corresponding
to the form of P , followed by zero or more applications of
the rule T-Sub. ✷

Lemma B.1.3: If Γ
S

−→ Γ′, then Γ↑{x̃}
S′

−→ Γ′↑{x̃} where

S′ is the least set that satisfies the following conditions:

1. xt1,t2
i ∈ S implies xt1,t2

i 6∈ S′ and {t1, t2} ⊆ S′;

2. t ∈ S implies t ∈ S′; and

3. yt1,t2 ∈ S and y 6∈ {x̃} imply yt1,t2 ∈ S′.

Proof: By induction on the derivation of Γ
S

−→ Γ′ with a
case analysis on the last rule used. We show only the main
base case below; the other cases are easy.

Case TER-Com: Γ = · · · + y!t1 [τ1]. Γ1 + · · ·
| · · · + y?t2 [τ2].Γ2 + · · ·

Γ′ = Γ1 |Γ2 S = {yt1,t2}
τ1 ≤ τ2

We have two subcases according to whether y ∈ {x̃} or not.
We will show the subcase where y = xi; the other subcase is
easy. Since Γ↑{x̃} = · · ·+t1.Γ1↑{x̃}+· · · | · · ·+t2.Γ2↑{x̃}+· · ·,
it is easy to show that

Γ↑{x̃}

{t1,t2}−→ Γ1↑{x̃} |Γ2↑{x̃}

finishing the subcase. ✷

Lemma B.1.4: If WF (Γ↓S) and WF (Γ↑S), then WF (Γ).

Proof: Suppose WF (Γ) does not hold. Then, there exist
x, τ1, τ2, t1, t2, Γ1, Γ2, and Γ3 such that

Γ −→∗ · · · + x!t1 [τ1]. Γ1 + · · · | · · · + x?t2 [τ2].Γ2 + · · · |Γ3

and τ1 � τ2. By using Lemma B.1.3 repeatedly, either

Γ↑S −→∗ · · · + x!t1 [τ1]. (Γ1↑S) + · · ·
| · · · + x?t2 [τ2]. (Γ2↑S) + · · · |Γ3↑S

or

Γ↓S −→∗ · · · + x!t1 [τ1]. (Γ1↓S) + · · ·
| · · · + x?t2 [τ2]. (Γ2↓S) + · · · |Γ3↓S,

contradicting the assumption WF (Γ↓S) and WF (Γ↑S). ✷

Lemma B.1.5 [substitution]: If Γ ⊲ P , then [y/x]Γ ⊲
[y/x]P .

Proof: By straightforward induction on the derivation of
Γ ⊲ P . ✷

Lemma B.1.6: If Γ ⊲ P and P � Q, then Γ ⊲ Q.

Proof: By structural induction on the derivation of P � Q
with a case analysis of the last rule used. We show a few
interesting cases below; the other cases are easy.

Case: P = (νx̃) P1 |P2 Q = (νx̃) (P1 |P2)
x̃ are not free in P2

By Lemma B.1.2, there exist Γ1, Γ′
1, and Γ2 such that Γi ⊲

Pi for i ∈ {1, 2} and Γ ≤ Γ′
1 |Γ2 and Γ′

1 ≤ Γ1↑{x̃} with

ok(Γ1↓{x̃}). By the rule T-Par, Γ1 |Γ2 ⊲ P1 |P2. Without
loss of generality, we can assume x̃ are not free in P2 so
that Γ2↑{x̃} = Γ2 and Null(Γ2↓{x̃}). Then, (Γ1 |Γ2)↑{x̃} =

Γ1↑{x̃} |Γ2 and, by the third condition in Definition 3.4.3,

ok((Γ1 |Γ2)↓{x̃}). Thus,

Γ1↑{x̃} |Γ2 ⊲ (νx̃) (P1 |P2)

by the rule T-New. Finally, it is easy to show Γ ≤
Γ1↑{x̃} |Γ2, and so, by the rule T-Sub, Γ ⊲ Q.

Case: P = ∗P0 Q = ∗P0 |P0

By Lemma B.1.2, we have Γ0 ⊲ P0 and Γ ≤ ∗Γ0. Then, by
the rule T-Par, Γ0 | ∗Γ0 ⊲P0 | ∗P0. Since ∗Γ0 ≤ Γ0 | ∗Γ0, by
using the rule T-Sub, Γ ⊲ Q. ✷

Proof of Theorem 3.6.1: By induction on the deriva-

tion of P
l

−→ Q with a case analysis on the last rule used.
We show only main cases below.

Case R-Com: P = · · · + x!t[z̃]. P0 + · · ·

| · · · + x?t′ [ỹ]. Q0 + · · ·

Q = P0 | [z̃/ỹ]Q0 l = xt,t′

By Lemma B.1.2 and the subtyping rules, there exist Γ1,
Γ2, and Γ3 such that

Γ ≤ · · · + x!t[(z̃)Γ3]. (Γ1 |Γ3) + · · ·

| · · · + x?t′ [(ỹ)Γ2↓{ỹ}]. (Γ2↑{ỹ})
Γ1 ⊲ P0 Γ2 ⊲ Q0.

Then, since WF (Γ), it must be the case that (z̃)Γ3 ≤
(ỹ)Γ2↓{ỹ}, that is, Γ3 ≤ [z̃/ỹ]Γ2↓{ỹ}. We can show

Γ
{xt,t′}
−→ Γ1 | [z̃/ỹ]Γ2

by the following calculation:

Γ
{xt,t′}
−→ Γ1 |Γ3 |Γ2↑{ỹ}

≤ Γ1 | [z̃/ỹ]Γ2↓{ỹ} |Γ2↑{ỹ}

= Γ1 | [z̃/ỹ](Γ2↓{ỹ} |Γ2↑{ỹ})
≤ Γ1 | [z̃/ỹ]Γ2 (Sub-Divide and Sub-Subst)

By Lemma B.1.5, [z̃/ỹ]Γ2 ⊲ [z̃/ỹ]Q0. Finally, by the rule
T-Par, Γ1 | [z̃/ỹ]Γ2 ⊲ P0 | [z̃/ỹ]Q0, finishing the case.

Case R-Par: P = P0 |R P0
l

−→ Q0 Q = Q0 |R

By Lemma B.1.2, there exist Γ1 and Γ2 such that

Γ ≤ Γ1 |Γ2 Γ1 ⊲ P0 Γ2 ⊲ R

To use the induction hypothesis, we show WF (Γ1) by
contradiction. Suppose WF (Γ1) does not hold. Then,
WF (Γ1 |Γ2) does not hold, either; it means WF (Γ) does
not hold. Thus, WF (Γ1).

By the induction hypothesis, there exists Γ′
1 such that

Γ1
l#

−→ Γ′
1 and Γ′

1 ⊲ Q0. By the rules TER-Skip, TER-

Par, and TER-Sub, Γ
l#

−→ Γ′
1 |Γ2. By the rule T-Par,

Γ′
1 |Γ2 ⊲ Q0 |R, finishing the case.
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Case R-New1: P = (νx̃) P0 P0
yt,t′

−→ Q0 y ∈ {x̃}

Q = (νx̃) Q0 l = ǫt,t′

By Lemma B.1.2, there exists Γ0 such that

Γ0 ⊲ P0 Γ ≤ Γ0↑{x̃} ok(Γ0↓{x̃}).

To use the induction hypothesis, we will show WF (Γ0).
Since WF (Γ0↓{x̃}) and WF (Γ0↑{x̃}) from the assumptions,

we have WF (Γ0) by Lemma B.1.4.
By the induction hypothesis, there exists Γ′

0 such that

Γ0

{yt,t′}
−→ Γ′

0 and Γ′
0 ⊲ Q0. By Lemma B.1.3, Γ0↑{x̃}

{t,t′}
−→

Γ′
0↑{x̃} and Γ0↓{x̃}

{yt,t′}
−→ Γ′

0↓{x̃}. Then, ok(Γ′
0↓{x̃}) and, by

the rule T-New, Γ′
0↑{x̃} ⊲ (νx̃) Q0, finishing the case. ✷

B.2 Proof of Theorem 4.1

Lemma B.2.7: Let ≤ be any proper subtyping relation
and ok be ok1. If Γ ⊲ P and ok(Γ), then p1(P ) holds.

Proof: Suppose that Γ⊲P and ok(Γ) hold but p1(P ) does
not hold. By the definition of p1, there exist Q1 and Q2

such that

P � (ν̃x1..k) (· · · + x!t[z̃]. Q1 + · · ·

| · · · + x?t′ [w̃]. Q2 + · · · |Q3)

with ‖z̃‖ 6= ‖w̃‖. By Theorem 3.6.3, it must be the case that

Γk ⊲N · · · + x!t[z̃]. Q1 + · · · | · · · + x?t′ [w̃]. Q2 + · · · |Q3

ok1(Γi↓{x̃i}
) for each i ∈ {1, . . . , k}

Γi−1 = Γi↑{x̃i}
for each i ∈ {1, . . . , k}

Γ ≤ Γ0

Γ ≤ Γ0 and ok1(Γ) imply ok1(Γ0). By the typing rules, Γk

must be of the form · · ·+x!t[τ ].∆1 + · · · | · · ·+x!t[τ ′].∆1 +
· · · |∆3 with ‖τ‖ = ‖z̃‖ 6= ‖w̃‖ = ‖τ ′‖. This con-
tradicts with the facts ok1(Γ0) and ok1(Γi↓{x̃i}

) for each

i ∈ {1, . . . , k}. ✷

Lemma B.2.8: Let ≤ be any proper subtyping relation
and ok be ok2. If Γ ⊲ P and ok(Γ), then p2(P ) holds.

Proof: Similar to the proof of Lemma B.2.7. ✷

Lemma B.2.9: Let ≤ be the least proper subtyping re-
lation, and let ok be ok3. If Γ ⊲ P and ok(Γ), then p3(P )
holds.

Proof: The proof proceeds by induction on t. Suppose Γ⊲
P , ok(Γ), and P −→∗ P ′ = (ν̃x1..n) (· · ·+y?t[z̃]. Q+· · · |R).
(The case where P −→∗ P ′ = (ν̃x1..n) (· · · + y!t[z̃]. Q +
· · · |R) is similar.)

Without loss of generality, we can assume that y is free
in P ′. Otherwise, by Theorem 3.6.3, we have

Γn ⊲ · · · + y?t[z̃]. Q + · · · |R

Γi−1 = Γi↑{x̃i}
for i = 1, . . . , n

ok(Γi↓{x̃i}
) for i = 1, . . . , n

Γ ≤ Γ0

y ∈ {x̃j} for some j

By Lemma B.1.1, we have

Γj↓{x̃j}
⊲ (νw̃) (ν̃x1..j−1) (ν̃xj+1..n) (· · ·+ y?t[z̃]. Q + · · · |R)

and ok(Γj↓{x̃j}
).

By Theorem 3.6.1 and the definition of ok , there exists
∆ such that ∆ ⊲ P ′ and Γ −→∗ ∆. By Theorem 3.6.3, there
exists τ, Γ1, and Γ2 such that

∆ ≤ · · · + y?t′ [τ ]. Γ1 + · · · |Γ2

· · · + y?t′ [τ ]. Γ1 + · · · |Γ2 ⊲N P ′

Because ok(Γ) holds, it must be the case that Γ′ L
−→ Γ′′

for some L such that (i) L = {xt1,t2} or (ii) L = {t′′}
and t′′ ≺ t′. So, by the typing rules, one of the following
conditions must hold (c.f. Lemma 3.6.5):

1. P ′ � (ν̃u1..m) (· · · + w?t′′ [z̃]. Q1 + · · · |Q2) with w ∈
{ũ1, . . . , ũm}.

2. P ′ � (ν̃u1..m) (· · · + w!t
′′

[z̃]. Q1 + · · · |Q2) with w ∈
{ũ1, . . . , ũm}.

3. P ′ � (ν̃u1..m) (· · ·+x!t1 [z̃]. Q1+ · · · | · · ·+x?t2 [z̃]. Q2+
· · · |Q3).

In the first and second cases, P ′ −→ follows by induction
hypothesis. In the third case, P ′ −→ follows immediately.
✷

Lemma B.2.10: Let ≤ be any proper subtyping relation
and ok be ok4. If Γ ⊲ P and ok(Γ), then p4(P ) holds.

Proof: Suppose that Γ ⊲ P and ok4(Γ) hold. Suppose

also that P −→∗� (ν̃w) P ′ and P ′ xt′,t

−→−→∗ (ν̃u) (· · · +
x?[ỹ]. Q1 + · · · |Q2). Without loss of generality (c.f. the
proof of Lemma B.2.9), we can assume that x is free in P .
So, we have

P −→∗xt′,t

−→−→∗ (ν̃w) (ν̃u) (· · · + x?t′′ [ỹ]. Q1 + · · · |Q2).

By Theorem 3.6.1, there exists Γ′ such that Γ −→∗xt′,t

−→−→∗

Γ′ and Γ′ ⊲(ν̃w) (ν̃u) (· · ·+x?t′′ [ỹ]. Q1 + · · · |Q2). By Corol-

lary 3.6.4, it must be the case that Γ′ ≤ · · ·+ x?t′′ [τ ].Γ′
1 +

· · · |Γ′
2. This contradicts with the assumption ok4(Γ). The

case for output is similar. ✷

Proof of Theorem 4.1: This follows immediately from
Lemmas B.2.7–B.2.10 and Theorem 3.6.2. ✷
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