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Abstract

We propose a general, powerful framework of type systems for the π-calculus, and show that
we can obtain as its instances a variety of type systems guaranteeing non-trivial properties like
deadlock-freedom and race-freedom. A key idea is to express types and type environments as
abstract processes: We can check various properties of a process by checking the corresponding
properties of its type environment. The framework clarifies the essence of recent complex type
systems, and it also enables sharing of a large amount of work such as a proof of type preservation,
making it easy to develop new type systems.

1 Introduction

1.1 Motivation

Static guarantee of the correctness of concurrent programs is important: Since concurrent programs
are more complex than sequential programs (due to non-determinism, deadlock, etc.), it is hard for
programmers to debug concurrent programs or reason about their behavior.

A number of advanced type systems have recently been proposed to analyze various properties
of concurrent programs, such as input/output modes [40], multiplicities (how often each channel is
used) [30], race conditions [10, 12], deadlock [27, 31, 43, 52], livelock [28], and information flow [19, 22,
23].

Unfortunately, however, there has been no satisfactorily general framework of type systems for
concurrent programming languages: Most type systems have been designed in a rather ad hoc manner
for guaranteeing certain specific properties. The lack of a general framework kept it difficult to
compare, integrate, or extend the existing type systems. Moreover, a lot of tasks (such as proving
type soundness) had to be repeated for each type system. This situation stands in contrast with that
of type systems for functional programming languages, where a number of useful analyses (such as
side-effect analysis, region inference [49], and exception analysis [8, 39]) can be obtained as instances
of the effect analysis [47, 48].

The goal of this paper is therefore to establish a general framework of type systems for concurrent
processes, so that various advanced type systems can be derived as its instances. As in many other
type systems, we use the π-calculus as a target language: It is simple yet expressive enough to model
modern concurrent/distributed programming languages.

∗A preliminary summary of this paper appeared in Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages.
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1.2 Main Ideas

The main idea of the present work is to express types and type environments as abstract processes.
A type judgment Γ . P , which is normally read as “The process P is well-typed under the type
environment Γ,” means that the abstract process Γ is a correct abstraction of the process P , in the
sense that P satisfies a certain property (like race-freedom and deadlock-freedom) if its abstraction
Γ satisfies the corresponding property. (In this sense, our type system may be regarded as a kind of
abstract interpretation [5].) We define such a relation Γ . P by using typing rules. Because we use a
much simpler process calculus to express type environments than the π-calculus, it is easier to check
properties of Γ than to check those of P directly.

To see how type environments can be expressed as abstract processes, let us review the ideas of
our previous type systems for deadlock/livelock-freedom [28, 31, 46]. Let x![y1, . . . , yn]. P be a process
that sends the tuple [y1, . . . , yn] along the channel x and then behaves like P , and x?[y1, . . . , yn]. Q
be a process that receives a tuple [z1, . . . , zn] along x, binds y1, . . . , yn to z1, . . . , zn, and then behaves
like Q. Let us write P |Q for a parallel execution of P and Q, and 0 for inaction. In our previous
type systems [31, 46], the process P = x![z] |x?[y]. y![ ] | z?[ ]. z?[ ].0 is roughly typed as follows:

x : [[ ]/O]/(O|I), z : [ ]/(O|I.I) . P

Types of the form [τ1, . . . , τn]/U are channel types: The part [τ1, . . . , τn] means that the channel is
used for communicating a tuple of values of types τ1, . . . , τn, and the part U (called a usage) expresses
how channels are used for input/output. For example, the part O|I.I of the type of z means that
z is used for output (denoted by O) and for two successive inputs (denoted by I.I) in parallel. By
focusing on the usage parts, we can view the above type environment as a collection of abstract
processes, each of which performs a pair of co-actions I and O on each channel. Indeed, we can reduce
the type environment by canceling I and O of the usage of x and obtain x : [[ ]/O]/0, z : [ ]/(O|I.I),
which is a type environment of the process z![ ] | z?[ ]. z?[ ].0, obtained by reducing P . By further
reducing the type environment, we obtain x : [[ ]/O]/0, z : [ ]/I, which indicates that an input on z may
remain after P is fully reduced. Based on this idea, we developed type systems for deadlock/livelock-
freedom [28, 31, 46].

We push the above “type environments as abstract processes” view further, and express type envi-
ronments as CCS-like processes (unlike in CCS [35], however, we have no operator for hiding or creating
channels). The type environment of the above process P is expressed as x![τ ]. z![τ ′] |x?[τ ].0 | z?[τ ′]. z?[τ ′].0.
It represents not only how each channel is used, but also the order of communications on different
channels, such as the fact that an output on z occurs only after an output on x succeeds (as indi-
cated by the part x![τ ]. z![τ ′]). The parts enclosed by square brackets abstract the usage of values
transmitted through channels. Thanks to this generalization, we can reason about not only deadlock-
freedom but also other properties such as race conditions within a single framework. The new type
system can also guarantee deadlock-freedom of more processes, such as that of concurrent objects with
non-uniform service availability [43, 44].

1.3 Contributions

Contributions of this paper are summarized as follows:

• We develop a general framework of type systems, which we call a generic type system — just as a
generic function is parameterized by types, so that it can be instantiated to functions on various
arguments by changing the types, the generic type system is parameterized by a subtyping
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relation and a consistency condition of types and it can be instantiated to a variety of type
systems by changing the subtyping relation and the consistency condition (see Section 3).

• We prove that the general type system satisfies several important properties (such as subject
reduction), independently of a choice of the subtyping relation and the consistency condition.
Therefore, there is no need to prove them for each type system. Using those properties, we also
prove a general type soundness property, from which the soundness of a certain class of instances
of the generic type system can be immediately obtained (see Section 4).

• We show that a variety of non-trivial type systems (such as those ensuring deadlock-freedom
and race-freedom) can indeed be derived as instances of the general type system, and prove their
soundness. Thanks to the general properties mentioned above, the proof for each instance of the
generic type system is quite short; indeed, the soundness of most of the instances follows as an
immediate corollary of the general type soundness theorem (see Sections 5 and 6).

1.4 The Rest of This Paper

Section 2 introduces the syntax and the operational semantics of our target process calculus. Sec-
tion 3 presents our generic type system and Section 4 discusses the soundness of the generic type
system. Section 5 derives a variety of type systems as instances of the generic type system. To further
demonstrate the strength of our framework, Section 6 shows that deadlock and race conditions of
concurrent objects can also be analyzed within our generic type system. Section 7 formalizes a part of
type-checking/reconstruction algorithms that is common to all instances of the generic type system.
Section 8 discusses limitations and extensions of our generic type system. Section 9 discusses related
work and Section 10 concludes this paper.

2 Target Language

This section introduces the syntax and the operational semantics of our target language.

2.1 Syntax

Our calculus is basically a subset of the polyadic π-calculus [36]. To state properties of a process, we
annotate each input or output operation with a label.

Definition 2.1.1 [processes]: The set of processes is defined by the following syntax.

P (processes) ::= 0 | G1 + · · ·+ Gn | (P |Q) | (νx1, . . . , xn) P | ∗P
G (guarded processes) ::= x!t[y1, . . . , yn]. P | x?t[y1, . . . , yn]. P

Here, x, y, and z range over a countably infinite set Var of variables. t ranges over a countably infinite
set T of labels called events. We assume that Var ∩T = ∅.

Notation 2.1.2: We write x̃ for a (possibly empty) sequence x1, . . . , xn, and ‖x̃‖ for the length n
of the sequence x̃. (νx̃1) · · · (νx̃n) P is abbreviated to (ν̃x1..n) P or (ν̃x) P . As usual, ỹ in x?[ỹ]. P
and x̃ in (νx̃)P are called bound variables. The other variables are called free variables. We assume
that α-conversions are implicitly applied so that bound variables are always different from each other
and from free variables. The expression [z1/x1, . . . , zn/xn]P , abbreviated to [z̃/x̃]P , denotes a process
obtained from P by replacing all free occurrences of x1, . . . , xn with z1, . . . , zn. We often omit the
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P |0 ≡ P (SP-Zero)

P |Q ≡ Q |P (SP-Commut)

P | (Q |R) ≡ (P |Q) |R (SP-Assoc)

∗P ¹ ∗P |P (SP-Rep)
(νx̃) P |Q ¹ (νx̃) (P |Q)(if x̃ are not free in Q) (SP-New)

P ¹ P ′ Q ¹ Q′

P |Q ¹ P ′ |Q′ (SP-Par)

P ¹ Q

(νx̃) P ¹ (νx̃) Q
(SP-CNew)

Figure 1: Structural Preorder

inaction 0 and write x!t[ỹ] and x?t[ỹ] for x!t[ỹ].0 and x?t[ỹ].0 respectively. When events are not
important, we omit them and just write x![ỹ]. P and x?[ỹ]. P for x!t[ỹ]. P and x?t[ỹ]. P respectively.
We also abbreviate x!t[ ]. P and x?t[ ]. P to x!t. P and x?t. P respectively. We give precedence to
prefixes ((νx̃) , x!t[ỹ]. , and x?t[ỹ]. ), +, and | in this order.

The meanings of 0, x!t[ỹ]. P , x?t[ỹ]. P , and P |Q have already been explained. G1 + · · · + Gn

(where G1, . . . , Gn are input or output processes) denotes an external choice: It behaves like one of
G1, . . . , Gn depending on enabled communications. (νx̃) P creates fresh channels x̃ and then executes
P .1 ∗P denotes infinitely many copies of P running in parallel.

2.2 Operational Semantics

As usual [36], we define a reduction semantics by using a structural relation and a reduction relation.
For technical convenience, we do not require the structural relation to be symmetric. The reduction
relation P −→ Q is annotated with a label (which we call a reduction label) of the form xt,t′ or εt,t

′
. A

reduction label records which channels and events are involved in the reduction: The label xt,t′ means
that a communication occurss on a channel x and the output and input processes are labeled with t
and t′ respectively. The reduction label εt,t

′
means that a communication occurs on a bound channel

and the output and input processes are labeled with with t and t′ respectively. Reduction labels are
used to state properties of a process in Section 5.

Definition 2.2.1: The structural preorder ¹ is the least reflexive and transitive relation closed under
the rules in Figure 1 (P ≡ Q denotes (P ¹ Q) ∧ (Q ¹ P )).

Definition 2.2.2: Let l be a reduction label, and S be a set of variables. We define l↑S by:

(xt,t′)↑S =
{

εt,t
′

if x ∈ S

xt,t′ otherwise

(εt,t
′
)↑S = εt,t

′

1This is operationally the same as (νx1) · · · (νxn) P , but we distinguish them in the type system given in Section 3.
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· · ·+ x!t[z̃]. P + · · · | · · ·+ x?t′ [ỹ]. Q + · · · xt,t′−→ P | [z̃/ỹ]Q (R-Com)

P
l−→ Q

P |R l−→ Q |R
(R-Par)

P
l−→ Q

(νx̃) P
l↑{x̃}−→ (νx̃) Q

(R-New)

P ¹ P ′ P ′ l−→ Q′ Q′ ¹ Q

P
l−→ Q

(R-SP)

Figure 2: Reduction Relation

Definition 2.2.3: The reduction relation l−→ is the least relation closed under the rules in Figure 2.

Notation 2.2.4: We write P −→ Q if P
l−→ Q for some l.

Notation 2.2.5: When R1,R2 are binary relations on a set S, we write R∗1 for the reflexive and
transitive closure of R1, and R1R2 for the composition of R1 and R2.

3 Generic Type System

This section introduces our generic type system and shows its properties.

3.1 Types

We first define the syntax of types. We have two kinds of types: types of tuples (called tuple types) and
those of processes (called process types). Process types correspond to the type environments mentioned
in Section 1; they express abstract behavior of processes. We assume that we have countably infinite
sets of type variables for each size of tuples. We write α(n) for a type variable ranging over a type of
n-tuples.

Definition 3.1.1 [types]: The sets of tuple types and process types are defined by the following
syntax.

τ (n) (n-ary tuple types) ::= α(n) | (x1, . . . , xn)Γ | µα(n).τ (n)

Γ (process types) ::= 0 | γ1 + · · ·+ γn | (Γ1 |Γ2) | Γ1&Γ2 | τ (n)〈x1, . . . , xn〉
γ ::= x!t[τ (n)]. Γ | x?t[τ (n)]. Γ | t.Γ

A meta-variable τ (n) ranges over the type of n-tuples. We often omit n when it is not important or it
is clear form the context.

The tuple type (x1, . . . , xn)Γ is the type of an n-tuple, whose elements x1, . . . , xn should be used
according to Γ. We use the standard notation µα.τ for recursive types. Recursive types are used to
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express a channel that is used infinitely often (e.g., a channel that is repeatedly used for input), as
well as a channel that carries itself (e.g., x!t[x]). Examples are given later in Example 3.1.6.

0 is the type of the inaction. x!t[τ (n)]. Γ is the type of a process that uses x for sending an n-tuple
of type τ , and then behaves according to Γ. The output on x must be tagged with t. Similarly,
x?t[τ (n)].Γ is the type of a process that uses x for receiving an n-tuple of type τ , and then behaves
according to Γ. In this way, we can express more precise information on the usage of channels than
previous type systems [30, 31, 40]. t.Γ is the type of a process that behaves according to Γ after some
action annotated with t (which is an input or an output action on some channel) occurs.2 Γ1 |Γ2 is
the type of a process that behaves according to Γ1 and Γ2 in parallel. The type γ1 + · · ·+γn represents
an external choice: A process of that type must behave according to one of γ1, . . . , γn, depending on
the communications provided by the environment. On the other hand, the type Γ1&Γ2 represents
an internal choice: A process of that type can behave according to either Γ1 or Γ2, irrespectively of
what communications are provided by the environment. The type τ (n)〈x1, . . . , xn〉 describes a process
that uses channels x1, . . . , xn according to type τ . Here, the arity information is used to exclude out
ill-formed types like ((x)Γ)〈y, z〉.

Notation 3.1.2: We write ‖τ (n)‖ for the arity n. We have two kinds of binders: one for (channel)
variables and the other for type variables. The tuple type (x̃)Γ binds the variables x̃ in Γ. We assume
that µα.Γ binds the type variable α in Γ. We assume that α-conversions are implicitly applied so
that bound variables are always different from each other and free variables. We write [ỹ/x̃] and [τ/α]
for the capture-avoiding substitution of ỹ for x̃ and that of τ for α respectively. We write ∗Γ for
(µα.( )(Γ |α〈 〉))〈 〉 (where α does not appear in Γ); It is the type of infinitely many copies of a process
of type Γ. We often omit 0 and write x!t[τ ], x?t[τ ], and t for x!t[τ ].0, x?t[τ ].0, and t.0 respectively.
We also abbreviate x!t[( )0]. Γ and x?t[( )0]. Γ to x!t.Γ and x?t. Γ respectively. We write Null(Γ) if Γ
does not contain a process type of the form x?t[τ ]. Γ1 or x!t[τ ].Γ1. We give precedence to prefixes (t.,
x!t[τ ]. , and x?t[τ ]. ), +, &, and | in this order.

Definition 3.1.3: A tuple type or process type is closed if it contains no free type variables. A tuple
or process type is semi-closed if it contains no free type variables inside [ ]. A tuple type τ is contractive
in α if τ contains free occurences of α only inside [ ].

Example 3.1.4: A process type x?[µα.(x)(x?t[τ ]. α〈x〉)].α′〈x〉 is semi-closed, but not closed. x![α] is
contractive in α but x?[α]. α〈 〉 is not.

Notice that for most of the process constructors introduced in the previous section, there are the
corresponding constructors for process types. The same symbols are used for them to clarify the
correspondence. Unlike the π-calculus processes in Section 2, however, the process types contain no
operators for creating fresh channels or passing channels through other channels. Thanks to this, we
can check properties of types (as abstract processes) more easily than those of the π-calculus processes.
Instead, we have some operators that do not have their counterparts in processes. An internal choice
Γ1&Γ2 is necessary to express non-deterministic behavior of a process. For example, suppose that a
process P1 behaves like Γ1 and a process P2 behaves like Γ2. Then, the process νx(x! |x?. P1 |x?. P2)
behaves like Γ1&Γ2. A process type of the form t.Γ plays an important role in guaranteeing complex
properties like deadlock-freedom. For example, we can express the type of (νx) (x?t1 . y!t2 | y?t3) as
t1.y!t2 | y?t3 , which implies that the output on y is not performed until an action labeled with t1

succeeds. Since actually it never succeeds, we know that the input from y is kept waiting forever.
2Instead of t.Γ, we could introduce process types t?.Γ and t!.Γ to distinguish between input and output actions. We

do not do so in this paper for simplicity.
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Example 3.1.5: The process type x?t1 . y!t2 describes a process that uses x for input and then uses y
for output. So, the process x?t1 . y!t2 has this type, but neither y!t2 . x?t1 nor x?t1 | y!t2 has this type.
The process type x!t. y!t

′
&y!t

′
. x!t describes a process that uses x and y once for output sequentially

in any order; So, both x!t. y!t
′
and y!t

′
. x!t can have this type.3 The process x!t | y!t

′
, however, does

not have this type.

Example 3.1.6: The type (x, y)(x?[τ ]. y![τ ]) describes a pair whose first element should be first used
for sending a value of type τ , and then whose second element should be used for receiving a value of
type τ . The type µα.(x)(x?t[τ ]. α〈x〉) describes a channel that is used for receiving a tuple of type
τ repeatedly. The type µα.(x)(x?t[α]) describes a channel that is used for receiving a channel of the
same type (so, the received channel is again used for receiving a channel of the same type).

We define the set of free (channel) variables in a process type as follows. Note that FV(Γ) is
sometimes different from the set of variables appearing free syntactically: For example, x is not an
element of FV(((y)0)〈x〉). Intuitively, FV(Γ) denotes the set of free variables whose renaming changes
the meaning of Γ. For example, x is in the set FV(x?t) since renaming of x with a different variable
(y, for example) changes the meaning of the process type. On the other hand, x is not an element
of FV(((z)0)〈x〉) since ((z)0)〈x〉 is essentially equivalent to 0 (with respect to the subtyping relation
introduced later) and renaming of x with y does not change its meaning.

Definition 3.1.7: Let Γ be a process type. The set FV(Γ) of variables is defined by:

FV(0) = ∅
FV(x?t[τ ].Γ) = {x} ∪ FV(τ) ∪ FV(Γ)
FV(x!t[τ ].Γ) = {x} ∪ FV(τ) ∪ FV(Γ)

FV(t.Γ) = FV(Γ)
FV(γ1 + · · ·+ γn) = FV(γ1) ∪ · · · ∪ FV(γn)

FV(Γ1 |Γ2) = FV(Γ1) ∪ FV(Γ2)
FV(Γ1&Γ2) = FV(Γ1) ∪ FV(Γ2)

FV(τ〈x̃〉) = FV(τ) ∪ {xi | i ∈ FVI(τ)}
FV(α) = ∅

FV((x̃)Γ) = FV(Γ)\{x̃}
FV(µα.τ) = FV(τ)

FVI(α) = ∅
FVI((x̃)Γ) = {i | xi ∈ FV(Γ)}
FVI(µα.τ) = FVI(τ)

We define operations on types. The operation Γ↓S defined below extracts from Γ information on
the usage of only the channels in S, while Γ↑S extracts information on the usage of the channels not
in S.

Definition 3.1.8: Let S be a subset of Var∪Nat. Then, unary operations ·↓S and ·↑S on semi-closed
tuple types and process types are defined by:

0↓S = 0
3So, Γ1&Γ2 is similar to an intersection type Γ1 ∧ Γ2. The difference is that a value of type Γ1&Γ2 can be used only

once according to either Γ1 or Γ2.
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(x?t[τ ]. Γ)↓S =
{

x?t[τ ]. (Γ↓S) if x ∈ S
t.(Γ↓S) otherwise

(x!t[τ ]. Γ)↓S =
{

x!t[τ ]. (Γ↓S) if x ∈ S
t.(Γ↓S) otherwise

(t.Γ)↓S = t.(Γ↓S)
(γ1 + · · ·+ γn)↓S = (γ1↓S) + · · ·+ (γn↓S)

(Γ1 |Γ2)↓S = (Γ1↓S) | (Γ2↓S)
(Γ1&Γ2)↓S = (Γ1↓S)&(Γ2↓S)

(τ〈x1, . . . , xn〉)↓S = (τ↓S∪S′)〈x1, . . . , xn〉
where S′ = {i | xi ∈ S}

α↓S = α

((x1, . . . , xn)Γ)↓S = (x1, . . . , xn)(Γ↓S′)
where S′ = (S\Nat) ∪ {xi | i ∈ S}

(µα.τ)↓S = µα.(τ↓S)
Γ↑S = Γ↓Var\S

Example 3.1.9: Let Γ = y?t[τ ]. x!t
′
[τ ′]. Then Γ↓{x} = t.x!t

′
[τ ′] and Γ↑{x} = y?t[τ ]. t′.

3.2 Subtyping

We introduce a subtyping relation Γ1 ≤ Γ2, meaning that a process of type Γ1 may behave like that
of type Γ2. For example, Γ1&Γ2 ≤ Γ1 should hold. The subtyping relation depends on the property
we want to guarantee: For example, if we are only concerned with arity-mismatch errors [16, 50], we
may identify t.Γ with Γ, and x!t[τ ].Γ with x!t[τ ] |Γ, but we cannot do so if we are concerned with
more complex properties like deadlock-freedom. Therefore, we state here only necessary conditions
that should be satisfied by the subtyping relations of all instances of our type system.

Definition 3.2.1 [subtyping]: A preorder ≤ on process types and tuple types is a proper subtyping
relation if it satisfies the rules given in Figure 3 (Γ1

∼= Γ2 denotes Γ1 ≤ Γ2 ∧ Γ2 ≤ Γ1).

In the rest of this paper, we assume that ≤ always denotes a proper subtyping relation.
Some explanation of the rules for recursive types would be required. The rule (Sub-Unfold)

allows some occurences of a recursive type variable α to be replaced by its definition. The rule (Sub-
Rec) is the same as the contraction rule of Amadio and Cardelli [1], except for the definition of
contractiveness. The standard rule for unfolding recursive types:

µα.τ ∼= [µα.τ/α]τ

can be obtained from (Sub-Unfold) and (Sub-Rec). The rule (Sub-Rep) is a degenerated case of
the following standard rule:

Σ, α ≤ α′ . τ ≤ τ ′

Σ . µα.τ ≤ µα′.τ ′

Here, Σ is a sequence of assumptions of the form α1 ≤ α2. It is possible to replace (Sub-Rep) with
the above rule. Then, (Sub-Rep) is derivable using this rule as follows:
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.Γ ≤ Γ′ α ≤ α′ . α ≤ α′
· · ·

α ≤ α′ . ( )(Γ |α〈 〉) ≤ ( )(Γ′ |α′〈 〉)
.µα.( )(Γ |α〈 〉) ≤ µα′.( )(Γ′ |α′〈 〉)

.(µα.( )(Γ |α〈 〉))〈 〉 ≤ (µα′.( )(Γ′ |α′〈 〉))〈 〉
In addition to the rules in Figure 3, we sometimes use the following axiom in examples.

Γ is closed (i.e., Γ contains no free type variables)
(Γ↓S |Γ↑S) ≤ Γ

(Sub-Divide)

This axiom is not required for type soundness to hold, but it makes more processes to be typed.
The rule allows us to forget information about dependencies between some channels. For example, if
Γ = y?t[τ ]. x!t

′
[τ ′], then Γ↓{x} |Γ↑{x} = t.x!t

′
[τ ′] | y?t[τ ]. t′ is a subtype of Γ. Note that the closedness

of Γ is required since, without that condition, we would get α〈 〉 |α〈 〉 ≤ α〈 〉. Notice that Γ↓{x} |Γ↑{x}
expresses a more liberal usage of x, y than Γ: While Γ means that x is used for output only after y is
used for input, Γ↓{x} |Γ↑{x} only says that x is used for output after some event t, not necessarily an
input from y.

3.3 Reduction of Process Types

We want to reason about the behavior of a process by inspecting the behavior of its abstraction, i.e.,
process type. We therefore define reduction of process types, so that each reduction step of a process
is matched by a reduction step of its process type. For example, the reduction of a process

x?t1 [z]. z!t2 |x!t3 [y] −→ y!t2

is matched by:
x?t1 [τ ] |x!t3 [τ ]. y!t2 −→ y!t2

for τ = (z)z!t2 . As in the case for reductions of processes, we annotate each reduction with information
about which channel and events are involved in the reduction.

Definition 3.3.1: A reduction relation Γ1
L−→ Γ2 on process types (where L ∈ T ∪ {xt1,t2 | (x ∈

Var) ∧ (t1, t2 ∈ T)} ∪ {εt1,t2 | t1, t2 ∈ T}) is the least relation closed under the rules in Figure 4.

We write Γ −→ Γ′ when Γ L−→ Γ′ for some L.
The rule (TER-Com2) is used to simulate communication on inner channels. For example, the

process reduction:

(νx) (x!t1 |x?t2) εt1,t2−→ (νx)0

is simulated by:

t1 | t2
εt1,t2−→ 0.

The rule (TER-Ev) allows a process type of the form t.Γ to be reduced by itself. This is used to
model communication of a process with an unknown environment. This rule is necessary to reason
about behavior of a process in a compositional manner. For example, consider a process:

(νx) (y?t1 . x!t2 [1] |x?t3 [y]. z!t4 [y + 1]),

9



Γ |0 ∼= Γ (Sub-Empty)

Γ1 |Γ2
∼= Γ2 |Γ1 (Sub-Commut)

Γ1 | (Γ2 |Γ3) ∼= (Γ1 |Γ2) |Γ3 (Sub-Assoc)

[α/β]τ ′ = τ

µα.τ ∼= µα.[µα.τ/β]τ ′
(Sub-Unfold)

[τ ′/α]τ ∼= τ ′ τ is contractive in α

τ ′ ∼= µα.τ
(Sub-Rec)

((x̃)Γ)〈ỹ〉 ∼= [ỹ/x̃]Γ (Sub-Beta)

Γ ≤ Γ′

(x̃)Γ ≤ (x̃)Γ′
(Sub-Abs)

τ ≤ τ ′

τ〈x̃〉 ≤ τ ′〈x̃〉 (Sub-App)

Γ1&Γ2 ≤ Γi (i ∈ {1, 2}) (Sub-IChoice)

Γ ≤ Γ′

∗Γ ≤ ∗Γ′ (Sub-Rep)

Γ1 ≤ Γ′1 Γ2 ≤ Γ′2
Γ1 |Γ2 ≤ Γ′1 |Γ′2

(Sub-Par)

γi ≤ γ′i for each i ∈ {1, . . . , n}
γ1 + · · ·+ γn ≤ γ′1 + · · ·+ γ′n

(Sub-Choice)

Γ ≤ Γ′

Γ↓S ≤ Γ′↓S

(Sub-Restrict)

Γ ≤ Γ′

[y/x]Γ ≤ [y/x]Γ′
(Sub-Subst)

Figure 3: Necessary Conditions on Subtyping Relation
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τ1 ≤ τ2

· · ·+ x!t1 [τ1].Γ1 + · · · | · · ·+ x?t2 [τ2]. Γ2 + · · · xt1,t2−→ Γ1 |Γ2

(TER-Com1)

· · ·+ t1.Γ1 + · · · | · · ·+ t2.Γ2 + · · · εt1,t2−→ Γ1 |Γ2 (TER-Com2)

· · ·+ t.Γ + · · · t−→ Γ (TER-Ev)

Γ1
L−→ Γ′1

Γ1 |Γ2
L−→ Γ′1 |Γ2

(TER-Par)

Γ1 ≤ Γ′1 Γ′1
L−→ Γ′2 Γ′2 ≤ Γ2

Γ1
L−→ Γ2

(TER-Sub)

Figure 4: Reduction of Process Types

which communicates with an environment through channels y and z. To check that the channel x is
used in a consistent manner (without looking at the environment), we drop information about y and
z and check the behavior of the following type:

t1.x!t2 [int ]. |x?t3 [int ]. t4.

By reducing the type:

t1.x!t2 [int ]. |x?t3 [int ]. t4
t1−→ x!t2 [int ]. |x?t3 [int ]. t4

xt2,t3−→ t4
t4−→ 0,

we find that there is no wrong communication on x.

3.4 Consistency of Process Types

If a process type is a correct abstraction of a process, we can verify a property of the process by verifying
the corresponding property of the process type instead. We write ok for the corresponding property of
process types and call it a consistency condition. The consistency condition depends on the property
that we require for processes. So, we state here only necessary conditions that every consistency
condition should satisfy. Consistency conditions for specific instances are given in Section 5.

The following well-formedness condition requires that there is no disagreement about communica-
tion between input and output processes. For example, the process type x?[string ] |x![int ] is ill-formed,
since it specifies that a sub-process is waiting to receive a string along x and another sub-process is
trying to send an integer along the same channel.

Definition 3.4.1 [well-formedness]: A process type Γ is well-formed, written WF (Γ), if there exist
no x, τ1, τ2, t1, t2, Γ1, Γ2, and Γ3 that satisfy the following conditions:

1. Γ −→∗≤ · · ·+ x!t1 [τ1].Γ1 + · · · | · · ·+ x?t2 [τ2]. Γ2 + · · · |Γ3.

2. τ1 � τ2.

11



Remark 3.4.2: It is possible to replace the first condition with “Γ contains x!t1 [τ1] and x?t2 [τ2],”
which can be checked more easily. We do not do so, however, to make type systems flexible. Under
the above condition, we can allow process types like x?t1 [τ1]. x!t2 [τ2] |x!t3 [τ1]. x?t4 [τ2], which allows x
to be used for first communicating a value of type τ1, and then for communicating a value of type τ2.

Definition 3.4.3 [consistency]: A predicate ok on process types is a proper consistency predicate if
it satisfies the following conditions:

1. If ok(Γ), then WF (Γ).

2. If ok(Γ) and Γ −→ Γ′, then ok(Γ′).

3. If ok(Γ1) and Null(Γ2), then ok(Γ1 |Γ2)

In the rest of this paper, we assume that ok always refers to a proper consistency predicate. We
say that a process type Γ is consistent if WF (Γ) holds.

Because process types form a much simpler process calculus than the π-calculus, we expect that
the predicate ok is normally much easier to verify than the corresponding property of a process. The
actual procedure to verify ok , however, depends on the definition of the subtyping relation ≤ : If
we are not interested in linearity information [30], we can introduce the rule Γ |Γ ∼= Γ so that the
reductions of a process type can be reduced to a finite-state machine. If we take ≤ to be the least
proper subtyping relation, however, we need to use a more complex system like Petri nets, as in the
case for our previous type system for deadlock-freedom [31].

3.5 Typing

A type judgment is of the form Γ . P , where Γ is a closed (i.e., containing no free type variables)
process type. It means that P behaves as specified by Γ.

Typing rules are given in Figure 5. The rules (T-Par), (T-Choice), and (T-Rep) say that an
abstraction of a process constructed by using a process constructor | , +, or ∗ can be obtained by
composing abstractions of its subprocesses with the corresponding constructor for process types.

The key rules are (T-Out), (T-In), and (T-New). Note that channels can be dynamically created
and passed through other channels in the process calculus, while in the calculus of process types, there
are no corresponding mechanisms. So, we must somehow approximate the behavior of a process in
those rules.

In the rule (T-Out), we cannot express information that [z̃] is passed through x at the type
level. Instead, we put [z̃/ỹ]Γ2, which expresses how the channels z̃ are used by a receiver, into the
continuation of the output action.

In the rule (T-In), the lefthand assumption means that P uses free channels according to Γ1 |Γ2,
and the righthand assumption means that information about the usage of received channels ỹ is not
in Γ2 but in Γ1. In the conclusion, the information about the usage of ỹ is put into the tuple type
(ỹ)Γ2. Information about the usage of other channels is put into either the tuple type (ỹ)Γ2, so that
the usage of those channels is taken into account by the output process, or the continuation Γ1, so
that the usage of those channels is taken into account by this input process. For example, consider a
process x?t1 [y]. y?t2 . z!t3 . Its subprocess y?t2 . z!t3 has the process type y?t2 . z!t3 . By applying (T-Sub)
and (Sub-Divide), we obtain the following type judgment:

t2.z!t3 | y?t2 . t3 . y?t2 . z!t3

12



0 . 0 (T-Zero)

Γ1 . P1 Γ2 . P2

Γ1 |Γ2 . P1 |P2
(T-Par)

Γ . P

∗Γ . ∗P (T-Rep)

Γ′ . P Γ ≤ Γ′

Γ . P
(T-Sub)

γi . Gi for each i ∈ {1, . . . , n}
γ1 + · · ·+ γn . G1 + · · ·+ Gn

(T-Choice)

Γ1 . P

x!t[(ỹ)Γ2]. (Γ1 | [z̃/ỹ]Γ2) . x!t[z̃]. P
(T-Out)

Γ1 |Γ2 . P FV(Γ1) ∩ {ỹ} = ∅
x?t[(ỹ)Γ2]. Γ1 . x?t[ỹ]. P

(T-In)

Γ . P ok(Γ↓{x̃}) FV(Γ↑{x̃}) ∩ {x̃} = ∅
Γ↑{x̃} . (νx̃) P

(T-New)

Figure 5: Typing Rules

By applying (T-In), we obtain:

x?t1 [(y)y?t2 . t3]. t2.z!t3 . x?t1 [y]. y?t2 . z!t3

The parameter type (y)y?t2 . t3 of the channel x carries information that y is used for input and then
some event t3 occurs. On the other hand, the continuation part t2.z!t3 says that some event t2 occurs
after the input on x, and then z is used for output. Alternatively, we can obtain the following type
judgment:

x?t1 [(y)y?t2 . z!t3 ] . x?t1 [y]. y?t2 . z!t3

This judgment means that y is used for input and then z is used for output.
In the rule (T-New), we check by the condition ok(Γ↓{x̃}) that x̃ are used in a consistent manner,

and forget information about the use of x̃ by ·↑{x̃}. The condition FV(Γ↑{x̃}) ∩ {x̃} = ∅ ensures that
x is no longer visible from the outside.

The rules (T-Out) and (T-In) are asymmetric in the sense that information about the continuation
of a receiver process is transfered to a sender process but not vice versa. This design choice is motivated
by the observation that the names of the channels transmitted via a communication are statically
known only to the sender, so that we must put information about how the transmitted channels are
used by the receiver into the type of the sender. For example, consider a process containing x?[y]. y!
and x![z] as sub-processes. Since the name z may not be in the scope of the sub-process x?[y]. y!, we
have to put information that z is used for output into the type of x![z], as x![τ ]. z!. An extension to
treat input and output processes in a more symmetric manner is discussed in Section 8.
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Example 3.5.1: Consider a process x?t1 [y]. l?t2 . y!t3 . l!t4 . After receiving a channel y on x, it receives
a null tuple on l, sends a null tuple on y, and sends a null tuple on l. (If l is used as a lock, “receiving
a value on l” and “sending a value on l” are interpreted as “acquiring lock l” and “releasing lock l”
respectively: See Section 6.) The parallel composition of the above process with x!t5 [z] is typed as
follows:

· · ·
l?t2 . y!t3 . l!t4 . l?t2 . y!t3 . l!t4

x?t1 [τ ] . x?t1 [y]. l?t2 . y!t3 . l!t4
· · ·

x!t5 [τ ]. l?t2 . z!t3 . l!t4 . x!t5 [z]
x?t1 [τ ] |x!t5 [τ ]. l?t2 . z!t3 . l!t4 . x?t1 [y]. l?t2 . y!t3 . l!t4 |x!t5 [z]

In the derivation above, τ denotes (y)l?t2 . y!t3 . l!t4 . The conclusion implies that after a communication
on x, lock l is acquired, a null tuple is sent on z, and then l is released.

Example 3.5.2: Consider a process x!t1 [x] | ∗x?t2 [y]. y!t3 [y]. Let τ be µα.(x)(x!t3 [α]. α〈x〉) and τ ′ be
its expansion: (x)(x!t3 [τ ]. τ〈x〉). Then, the process is typed as follows:

x!t1 [τ ′]. τ ′〈x〉 . x!t1 [x]

y!t3 [τ ]. τ〈y〉 . y!t3 [y]
0 | y!t3 [τ ]. τ〈y〉 . y!t3 [y]
x?t2 [τ ′] . x?t2 [y]. y!t3 [y]
∗x?t2 [τ ′] . ∗x?t2 [y]. y!t3 [y]

x!t1 [τ ′]. τ ′〈x〉 | ∗x?t2 [τ ′] . x!t1 [x] | ∗x?t2 [y]. y!t3 [y]

4 Type Soundness

The general type system given above is parameterized by the subtyping relation ≤ and the consistency
predicate ok , which determine the exact properties of each instance of the type system. Therefore,
proofs of type soundness also depend on each instance. As we show below, however, several important
properties can be proved independently of a choice of the subtyping relation and the consistency
predicate. In Section 4.1, we show a collection of basic properties of the generic type system. These
properties imply that the behavior of a process is simulated by its type in a certain sense, so that we
can check properties of a process by checking the corresponding properties of the process’s type.

Since the properties in Section 4.1 are rather low-level, some work is still necessary to prove the
type soundness of each instance of the generic type system (though the work would be much easier
than proving soundness of each type system from scratch). In Section 4.2, we show a more “high-level”
theorem about type soundness. From the theorem, we can automatically obtain type soundness of a
certain class of instances of the generic type system.

4.1 Basic Properties of the Generic Type System

Type Preservation

First, Theorem 4.1.1 below guarantees that if Γ . P holds, for every reduction of P , there is a cor-
responding reduction of Γ and the reduced process has the reduced process type. In this sense the
behavior of a well-typed process is modeled by its process type.

Theorem 4.1.1 [subject reduction]: If Γ .P and P
l−→ P ′ with WF (Γ), then there exists Γ′ such

that Γ l−→ Γ′ and Γ′ . P ′.
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Proof: See Appendix A.1. 2

As a corollary, it follows that a process satisfies a certain invariant condition p if the type of P satisfies
the corresponding consistency condition.

Theorem 4.1.2: Suppose p(P ) holds for any Γ such that Γ . P and ok(Γ). If Γ . P and ok(Γ), then
p(Q) holds for every Q such that P −→∗ Q.

Proof: By mathematical induction on the length of the reduction sequence P −→ · · · −→ Q, using
Theorem 4.1.1 and the fact that ok is preserved by reduction (of process types). 2

Normalization of Type Derivation

The normal derivation theorem given below states that, from any type derivation, it is possible to ob-
tain a “syntax-directed” type derivation of the same conclusion. It is useful for studying a relationship
between a process and its process type, and also for developing type-check/reconstruction algorithms.
We write Γ .N P if Γ . P is derivable by using (T-Sub) only immediately before (T-In) or (T-Out).

Theorem 4.1.3 [normal derivation]: If Γ . P , then Γ′ .N P for some Γ′ such that Γ ≤ Γ′.

Proof: This follows from the fact that each application of the rule (T-Sub) above a rule except for
(T-In) and (T-Out) can be permuted downwards. 2

As a corollary, it follows that if a process is trying to perform an input action, its process type is
also trying to perform the corresponding action. (A similar property holds also for output.)

Corollary 4.1.4: If Γ . (ν̃x1..k) (· · · + y?t[z̃]. P + · · · |Q) and ok(Γ), then the following conditions
hold.

1. If y 6∈ {x̃1, . . . , x̃k}, then Γ ≤ · · ·+ y?t[τ ]. Γ1 + · · · |Γ2 for some τ, Γ1, and Γ2.

2. If y ∈ {x̃1, . . . , x̃k}, then Γ ≤ · · ·+ t.Γ1 + · · · |Γ2 for some Γ1 and Γ2.

Conversely, if a process type obtained by normal derivation is trying to perform some action, the
process is also trying to perform the corresponding action.

Theorem 4.1.5:

1. If · · · + t.Γ1 + · · · |Γ2 .N P , then P ¹ (ν̃x1..k) (· · · + y?t[z̃]. Q + · · · |R) or P ¹ (ν̃x1..k) (· · · +
y!t[z̃]. Q + · · · |R) with y ∈ {x̃1, . . . , x̃k}.

2. If · · ·+y?t[τ ]. Γ1 + · · · |Γ2 .N P , then P ¹ (ν̃x1..k) (· · ·+y?t[z̃]. Q+ · · · |R) with y 6∈ {x̃1, . . . , x̃k}.

Proof: Trivial by the definition of Γ .N P . 2
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4.2 General Type Soundness Theorem

In Section 4.1, we have shown that a process satisfies a certain property p if its process type satisfies
the corresponding consistency condition ok . However, it is left to the designer of a specific type system
to find a consistency condition that corresponds to a process property of interest and prove that the
correspondence is indeed correct. There also remains a general question about the power of our generic
type system: What kind of type system can be obtained as an instance? Clearly, not all properties can
be verified in our type system: For example, the property “a process can create at most n channels”
cannot be verified, because process types does not carry information about channel creation. This
section gives a partial answer to those questions: For a certain class of properties of processes, there
is indeed a systematic way for obtaining the corresponding consistency condition ok on process types,
so that the instantiated type system is sound.

We first introduce logical formulas [2, 45] to formally state properties of processes and types.

Definition 4.2.6: The set Prop of formulas is given by the following syntax:

A ::= true | x!tn | x?tn | (A |B) | 〈l〉A | ev(A)
| ¬A | A ∨B | ∃x.A | ∃t.A | ∃ζ : C.A

C ::= {m1 6= n1, . . . ,mk 6= nk}
Here, the meta-variable ζ ranges over the set IVar of variables (called integer variables), disjoint
from Var. The meta-variables n, mi, ni range over the union of the set IVar and the set Nat of
non-negative integers. We often abbreviate ¬(¬A ∨ ¬B) to A ∧B.

A formula A describes a property of both processes and types. Intuitively, x!tn means that some
sub-process is ready to output an n-tuple on the channel x and that the output is tagged with t.
Similarly, x?tn means that some sub-process is ready to input an n-tuple. A formula A |B means
that the process is parallel composition of a process satisfying A and another process satisfying B. A
formula 〈l〉A means that the process can be reduced in one step to a process satisfying A and that
the reduction is labeled with l. A formula ev(A) means that the process can be reduced to a process
satisfying A in a finite number of steps.4 For example, the formula

¬∃t, t′.∃ζ1, ζ2 : ∅.ev(x!tζ1 |x!t
′
ζ2)

means that no two processes try to output a value on x simultaneously.
We define the formal semantics of formulas below. As usual, ∃x.A, ∃t.A, and ∃ζ : C.A bind x, t,

and ζ respectively. We write FIV(A) for the set of free integer variables in A. We define substitutions
for variables, events, and integer variables in a customary manner. For example, [n/ζ]A denotes the
formula obtained from A by substituting n for all free occurrences of ζ. We write FV(A) for the set
of free variables (in Var), and FIV(A) for the set of free integer variables (in IVar).

Definition 4.2.7: The size of a formula A, written size(A), is defined by:

size(true) = size(x!tn) = size(x?tn) = 1
size(A |B) = size(A ∨B) = size(A) + size(B) + 1
size(〈l〉A) = size(ev(A)) = size(¬A) = size(∃x.A) = size(∃t.A) = size(∃ζ : C.A) = size(A) + 1

We define the semantics [[A]]pr of a formula A as the set of processes satisfying A. To define it, we
introduce an auxiliary function [[A]]Spr, which denotes the set of processes satisfying A provided that
all channels in S are invisible.

4It is possible to introduce a general fixed-point operator [45] instead, but we did not do so in this paper for simplicity.
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Definition 4.2.8: Let A be a formula such that FIV(A) = ∅, and let S be a finite set of variables.
The sets [[A]]pr and [[A]]Spr of processes are defined by (Proc is the set of processes):

[[A]]pr = [[A]]∅pr

[[true]]Spr = Proc

[[x!tn]]Spr = {P | P ¹ (ν̃x1..k) (· · ·+ x!t[ỹ]. Q + · · · |R), x 6∈ S ∪ {x̃1, . . . , x̃k}, ‖ỹ‖ = n}
[[x?tn]]Spr = {P | P ¹ (ν̃x1..k) (· · ·+ x?t[ỹ]. Q + · · · |R), x 6∈ S ∪ {x̃1, . . . , x̃k}, ‖ỹ‖ = n}
[[A |B]]Spr = {P | P ¹ (ν̃x1..k) (Q |R), Q ∈ [[A]]S∪{x̃1,...,x̃k}

pr , R ∈ [[B]]S∪{x̃1,...,x̃k}
pr }

[[〈l〉A]]Spr = {P | P l′−→ Q, l = l′↑S , Q ∈ [[A]]Spr}
[[ev(A)]]Spr = {P | P −→∗ Q,Q ∈ [[A]]Spr}

[[¬A]]Spr = Proc\[[A]]Spr

[[A ∨B]]Spr = [[A]]Spr ∪ [[B]]Spr

[[∃x.A]]Spr =
⋃

y∈Var

[[[y/x]A]]Spr

[[∃t.A]]Spr =
⋃

t′∈T

[[[t′/t]A]]Spr

[[∃ζ : C.A]]Spr = {P | P ∈ [[[n/ζ]A]]Spr, n ∈ Nat, |= [n/ζ]C}
Here, |= C means that all the inequalities i 6= j hold. We write P |= A when P ∈ [[A]]pr holds.

It is easy to prove that [[A]]pr and [[A]]Spr are well defined, by induction on the size of A.
We show some properties of [[A]]Spr.

Lemma 4.2.9: If (νx̃) P
l−→ Q, then there exists Q′ such that P

l′−→ Q′ with (νx̃) Q′ ¹ Q and
l′↑{x̃} = l.

Proof: This follows by straightforward induction on derivation of (νx̃) P
l−→ Q. 2

Lemma 4.2.10: If P ¹ Q, then P ∈ [[A]]Spr if and only if Q ∈ [[A]]Spr.

Proof: This lemma follows by induction on the size of A. 2

Lemma 4.2.11: Suppose that P ∈ Proc, A ∈ Prop, and S ∪ {x̃} ⊆ Var. Suppose also that
S ∩ {x̃} = ∅. Then, (νx̃)P ∈ [[A]]Spr holds if and only if P ∈ [[A]]S∪{x̃}pr holds.

Proof: The proof proceeds by induction on the size of A. We show only main cases; The other cases
are similar or trivial.

• Case A = x!tn: the required property follows by:

(νx̃) P ∈ [[A]]Spr ⇐⇒ ((νx̃) P ¹ (νx̃) (ν̃x1..k) (· · ·+ x!t[ỹ]. Q + · · · |R))
∧(x 6∈ S ∪ {x̃} ∪ {x̃1, . . . , x̃k}) ∧ ‖ỹ‖ = n

⇐⇒ (P ¹ (ν̃x1..k) (· · ·+ x!t[ỹ]. Q + · · · |R))
∧(x 6∈ S ∪ {x̃} ∪ {x̃1, . . . , x̃k}) ∧ ‖ỹ‖ = n

⇐⇒ P ∈ [[A]]S∪{x̃}pr
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• Case A = A1 |A2: the required property follows by:

(νx̃) P ∈ [[A]]Spr ⇐⇒ (νx̃) P ¹ (νx̃) (ν̃x1..k) (P1 |P2)
∧P1 ∈ [[A1]]

S∪{x̃}∪{x̃1,...,x̃k}
pr ∧ P2 ∈ [[A2]]

S∪{x̃}∪{x̃1,...,x̃k}
pr

⇐⇒ P ¹ (ν̃x1..k) (P1 |P2)
∧P1 ∈ [[A1]]

S∪{x̃}∪{x̃1,...,x̃k}
pr ∧ P2 ∈ [[A2]]

S∪{x̃}∪{x̃1,...,x̃k}
pr

⇐⇒ P ∈ [[A]]S∪{x̃}pr

• Case A = 〈l〉B: Suppose (νx̃) P ∈ [[A]]Spr. Then, there exists Q such that (νx̃) P
l′−→ Q with

l′↑S = l and Q ∈ [[B]]Spr. By Lemma 4.2.9, there exists Q′ such that P
l′′−→ Q′ with (νx̃) Q′ ¹ Q

and l′′↑{x̃} = l′. By Lemma 4.2.10 and Q ∈ [[B]]Spr, we have (νx̃) Q′ ∈ [[B]]Spr. By induction

hypothesis, we have Q′ ∈ [[B]]S∪{x̃}pr . Since l′′↑S∪{x̃} = l′↑S = l, we have P ∈ [[A]]S∪{x̃}pr as
required.

On the other hand, suppose P ∈ [[A]]S∪{x̃}pr , with S∩{x̃} = ∅. Then, there exists Q and l′ such that

P
l′−→ Q with l′↑S∪{x̃} = l and Q ∈ [[B]]S∪{x̃}pr . By rule (R-New), we have (νx̃) P

l′↑{x̃}−→ (νx̃) Q.

By applying the induction hypothesis to Q ∈ [[B]]S∪{x̃}pr , we obtain (νx̃) Q ∈ [[B]]Spr. Since
(l′↑{x̃})↑S = l′↑S∪{x̃} = l, we have (νx̃) P ∈ [[A]]Spr as required. 2

A formula is interpreted also as a property of process types (Type is the set of process types):

Definition 4.2.12: Let A be a formula such that FIV(A) = ∅, and The set [[A]]ty and [[A]]Sty of
process types are defined by:

[[true]]ty = Type

[[x!tn]]ty = {Γ | Γ ≤ · · ·+ x!t[τ ]. ∆1 + · · · |∆2, ‖τ‖ = n}
[[x?tn]]ty = {Γ | Γ ≤ · · ·+ x?t[τ ]. ∆1 + · · · |∆2, ‖τ‖ = n}
[[A |B]]ty = {Γ | Γ ≤ (∆1 |∆2), ∆1 ∈ [[A]]ty,∆2 ∈ [[B]]ty}
[[〈l〉A]]ty = {Γ | Γ l−→ ∆,∆ ∈ [[A]]ty}

[[ev(A)]]ty = {Γ | Γ −→∗ ∆,∆ ∈ [[A]]ty}
[[¬A]]ty = Type\[[A]]ty

[[A ∨B]]ty = [[A]]ty ∪ [[B]]ty

[[∃x.A]]ty =
⋃

y∈Var

[[[y/x]A]]ty

[[∃t.A]]ty =
⋃

t′∈T

[[[t′/t]A]]ty

[[∃ζ : C.A]]ty = {Γ | Γ ∈ [[[n/ζ]A]]ty, n ∈ Nat, |= [n/ζ]C}
[[A]]Sty = {Γ | Γ↑S ∈ [[A]]ty}

We write Γ |= A when Γ ∈ [[A]]ty holds.

To formally define what property of process types corresponds to a property of processes, we
introduce two binary relations on formulas.
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x!tn ↪→ x!tn (F-Out)

x?tn ↪→ x?tn (F-In)

A ↪→ B

〈l〉A ↪→ 〈l〉B (F-Red)

A ↪→ B

ev(A) ↪→ ev(B)
(F-Ev)

A1 ↪→ B1 A2 ↪→ B2

A1 |A2 ↪→ B1 |B2
(F-Par)

A ½ B

¬B ↪→ ¬A
(F-Neg1)

A ↪→ B

¬B ½ ¬A
(F-Neg2)

Figure 6: Inference Rules for Proving A ½ B and A ↪→ B

Notation 4.2.13: We write GS(A) for the set of substitutions that map all the free integer variables
in A to non-negative integers.

Definition 4.2.14: Binary relations ½ and ↪→ on formulas are defined by:

A ½ B ⇐⇒ ∀Γ ∈ Type, P ∈ Proc, S ⊆ Var, θ ∈ GS(A |B)
((Γ . P ∧WF (Γ) ∧ Γ ∈ [[θA]]Sty) ⇒ P ∈ [[θB]]Spr)

A ↪→ B ⇐⇒ ∀Γ ∈ Type, P ∈ Proc, S ⊆ Var, θ ∈ GS(A |B).
((Γ . P ∧WF (Γ) ∧ P ∈ [[θA]]Spr) ⇒ Γ ∈ [[θB]]Sty)

Intuitively, A ½ B means that if a process type satisfies the property A, every process of that type
satisfies the property B. Conversely, A ↪→ B means that if a process satisfies A, its type satisfies B.

We obtain sound inference rules to derive the relations A ½ B and A ↪→ B as shown in Figure 6.
We have also standard logical rules like:

A ½ B

A ½ B ∨ C

A ½ C B ½ C

A ∨B ½ C

The soundness of inference rules is proved as follows.

Lemma 4.2.15: The inference rules in Figure 6 are sound.

Proof: Without loss of generality, we can assume that formulas do not contain free integer variables.
The soundness of the rules (F-Out) and (F-In) follow immediately from Corollary 4.1.4.

To show the soundness of (F-Red), suppose that A ↪→ B, P ∈ [[〈l〉A]]Spr, and Γ.P . By P ∈ [[〈l〉A]]Spr,

there must exist Q and l′ such that P
l′−→ Q with l′↑S = l and Q ∈ [[A]]Spr. By Theorem 4.1.1, there
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exists ∆ such that Γ l′−→ ∆ and ∆ . Q. By Lemma A.1.3 in Appendix, we have Γ↑S
l−→ ∆↑S . By the

assumption A ↪→ B, we have ∆ ∈ [[B]]Sty, that is, ∆↑S ∈ [[B]]ty. So, we have Γ↑S ∈ [[〈l〉B]]ty, that is,
Γ ∈ [[〈l〉B]]Sty as required. The soundness of (F-Ev) follows similarly.

To show the soundness of (F-Par), suppose A1 ↪→ B1, A2 ↪→ B2, P ∈ [[A1 |A2]]
S
pr, and Γ . P with

WF (Γ). By the assumption P ∈ [[A1 |A2]]
S
pr, there exists P1, P2, x̃1, . . . , x̃k such that

P ¹ (ν̃x1..k) (P1 |P2)
P1 ∈ [[A1]]

S∪{x̃1,...,x̃k}
pr

P2 ∈ [[A2]]
S∪{x̃1,...,x̃k}
pr

By Lemma A.1.6, we have Γ . (ν̃x1..k) (P1 |P2). By Theorem 4.1.3, we have

∆1 . P1

∆2 . P2

Γ ≤ ∆1↑{x̃1,...,x̃n} |∆2↑{x̃1,...,x̃n}
WF ((∆1 |∆2)↓{x̃i}) for i = 1, . . . , k

Note that WF (∆1) and WF (∆2) follows from the last two conditions and WF (Γ). So, by the as-
sumptions A1 ↪→ B1 and A2 ↪→ B2, we have ∆1 ∈ [[B1]]

S∪{x̃1,...,x̃k}
ty and ∆2 ∈ [[B2]]

S∪{x̃1,...,x̃k}
ty , which

implies ∆1↑{x̃1,...,x̃n} ∈ [[B1]]
S
ty and ∆2↑{x̃1,...,x̃n} ∈ [[B2]]

S
ty. By Γ ≤ ∆1↑{x̃1,...,x̃n} |∆1↑{x̃1,...,x̃n}, we have

Γ ∈ [[B1 |B2]]
S
ty as required.

To show the soundness of (F-Neg1), suppose that A ½ B, P ∈ [[¬B]]Spr, and Γ . P . It suffices
to show Γ 6∈ [[A]]Sty. Suppose Γ ∈ [[A]]Sty. Then, by A ½ B, it must be the case that P ∈ [[B]]Spr.
But this contradicts with the assumption P ∈ [[¬B]]Spr = Proc\[[B]]Spr. The proof of the soundness of
(F-Neg2) is similar. 2

By using Lemma 4.2.15, we can show that for any negative formula A defined below, a process P
satisfies A (i.e., P ∈ [[A]]pr) if its process type Γ satisfies the same formula A. Therefore, our type
system can be used at least for reasoning about properties described using negative formulas.

Definition 4.2.16 [positive/negative formulas]: The set F+ (F−, resp.) of positive (negative,
resp.) formulas are the least set satisfying the following rules:

true ∈ F+ ∩ F−
x!tn, x?tn ∈ F+

A,B ∈ F+ ⇒ A |B, A ∨B, 〈l〉A, ev(A), ∃x.A,∃t.A,∃ζ : C.A ∈ F+

A,B ∈ F− ⇒ A ∨B, ∃x.A,∃t.A,∃ζ :C.A ∈ F−
A ∈ F+ ⇒ ¬A ∈ F−
A ∈ F− ⇒ ¬A ∈ F+

Intuitively, a formula is positive (negative, resp.) if sub-formulas of the form A |B, 〈l〉A, ev(A), x!tn,
x?tn appear only in positions where the negation is applied an even (odd, resp.) number of times.

Theorem 4.2.17: Suppose Γ . P and WF (Γ). For any S ⊆ Var, if A ∈ F− with FIV(A) = ∅ and
Γ ∈ [[A]]Sty, then P ∈ [[A]]Spr holds. Conversely, for any S ⊆ Var, if A ∈ F+ with FIV(A) = ∅ and
P ∈ [[A]]Spr, then Γ ∈ [[A]]Sty holds.
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Proof: The proof proceeds by induction on the size of A. The cases for x!tn, x?tn, A1 |A2, 〈l〉A′,
ev(A′), and ¬A′ follow immediately from Lemma 4.2.15.

Suppose A = A1 ∨ A2 ∈ F− and Γ ∈ [[A]]ty. By the definition of F−, it must be the case that
A1, A2 ∈ F−. By the assumption Γ ∈ [[A]]ty, Γ ∈ [[Ai]]ty for i = 1 or 2. By using induction hypothesis,
we obtain P ∈ [[Ai]]pr ⊆ [[A]]pr as required. The other cases are similar. 2

Lemma 4.2.18: If {x̃} ∩ FV(P ) = ∅, then P ∈ [[A]]pr if and only if (νx̃) P ∈ [[A]]pr.

Proof: This follows by straightforward induction on the structure of A. 2

Corollary 4.2.19 [type soundness]: Let A ∈ F− and P be a closed process. Suppose that ok(Γ)
implies Γ ∈ [[A]]ty for any Γ ∈ Type. Suppose also that Γ.P and ok(Γ). Then, if P −→∗¹ (ν̃x) (νỹ) Q,
then (ν̃x)Q ∈ [[A]]pr.

Proof: By applying Theorem 4.1.1 to Γ.P and P −→∗¹ (ν̃x1..k) (νỹ) Q, we have Γ′ . (ν̃x1..k) (νỹ) Q
for some Γ′ with ok(Γ′). By Theorem 4.1.3, we have ∆ such that ∆ . Q with Γ′ ≤ ∆↑{x̃1,...,x̃k,ỹ}
and ok(∆↓{ỹ}). By the assumption, we have ∆↓{ỹ} ∈ [[A]]ty. Let {w̃} = FV(∆)\{x̃1, . . . , x̃k, ỹ}.
Since ∆↓{ỹ} = ∆↑{x̃1,...,x̃k,w̃}, we have ∆ ∈ [[A]]{x̃1,...,x̃k,w̃}

ty . By using Theorem 4.2.17, we obtain
Q ∈ [[A]]{x̃1,...,x̃k,w̃}

pr , which implies (νw̃) (ν̃x1..k)Q ∈ [[A]]pr by Lemma 4.2.11. By Lemma 4.2.18, we
have (ν̃x1..k) Q ∈ [[A]]pr as required. 2

Intuitively, the last sentence of the above corollary means that all the channels created during
reductions of P are used according to A. The corollary implies that, in order to guarantee that
property, it suffices to define the consistency condition ok by ok(Γ) ⇐⇒ WF (Γ)∧Γ |= inv(A) (where
inv(A) = ¬ev(¬A)).

Using the above corollary, we can obtain various type systems. For example, we can obtain a variant
of the linear channel type system [30]. Let A be ¬∃x.∃t1, t2, t3.∃ζ.ev(〈xt1,t2〉ev(x!t3ζ ∨ x?t3ζ)); Then
it is guaranteed that every channel is used at most once. More examples are given in Section 5.

Note that our generic type system can be used also for reasoning about properties described by
some non-negative formulas: Indeed, the deadlock-freedom property is not described as a non-negative
formula, but as we show in Section 5, we can obtain a type system for deadlock-freedom as an instance
of our generic type system and show its soundness (by using not the above corollary but more basic
theorems presented in Section 4).

5 Applications

We show that a variety of type systems — those for arity-mismatch check, race detection, static
garbage-channel collection, and deadlock detection, — can indeed be obtained as instances of the
generic type system. Thanks to the common properties shown in Section 4, only a small amount of
extra work is necessary to define each instance and prove its correctness.

Table 1 shows the invariant properties of processes that should be guaranteed by those type
systems. The condition p1(P ) means that no arity-mismatch error occurs immediately. (So, if p1 is
an invariant condition, no arity-mismatch error occurs during reduction of P .) p2(P ) means that P
is not in a race condition on any output actions annotated with t. p3(P ) means that it is not the
case that an input process labeled with t can be reduced and the same channel is used for input or
output after that. The invariance of that property means that after a channel has been used for an
input action annotated with t, the channel is no longer used. So, it is safe to deallocate the channel
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p1(P ) P ¹ (ν̃w)P ′ implies P ′ |= ¬∃x.∃t1, t2.∃ζ1, ζ2 : {ζ1 6= ζ2}.(x!t1ζ1 |x?t2ζ2)
p2(P ) P ¹ (ν̃w)P ′ implies P ′ |= ¬∃x.∃t1.∃ζ1, ζ2.(x!tζ1 |x!t1ζ2)
p3(P ) P ¹ (ν̃w)P ′ implies P ′ |= ¬∃x.∃t1, t2.∃ζ.〈xt1,t〉ev(x!t2ζ ∨ x?t2ζ)
p4(P ) P ¹ (ν̃w)P ′ implies P ′ |= ¬∃x,∃ζ.((x!tζ ∨ x?tζ) ∧ ¬∃y.∃t1, t2.(〈yt1,t2〉true ∨ 〈εt1,t2〉true))

Table 1: Properties of Processes

ok1(Γ) WF (Γ)
ok2(Γ) WF (Γ) and Γ |= ¬ev(∃x.∃t1.∃ζ1, ζ2 : {ζ1 6= ζ2}.(x!tζ1 |x!t1ζ2))
ok3(Γ) WF (Γ) and Γ |= ¬ev(∃x.∃t1, t2.∃ζ.〈xt1,t〉ev(x!t2ζ ∨ x?t2ζ))

ok4(Γ)
WF (Γ) and
Γ |= ¬ev(∃t′.∃x.∃ζ.(t′ 4 t ∧ (x!t

′
ζ ∨ x?t′ζ)

∧ ¬∃y.∃t1, t2.(〈yt1,t2〉true ∨ (〈t1〉true ∧ t1 ≺ t′)))).

Table 2: Consistency Conditions

after the action annotated with t. For example, the process (νx) (x!t1 |x!t2 |x?t3 . x?t) satisfies this
property. p4(P ) means that P is not deadlocked on any actions annotated with t in the sense that
whenever P is trying to perform an action annotated with t, P can be reduced further.

Table 2 shows the consistency condition for each type system. ok2(Γ) means that no race occurs
on output actions annotated with t during reduction of the abstract process Γ. ok3(Γ) means that,
after Γ has been reduced on an action involving a channel x and the event t, the reduced process type
no longer performs an input or output action on the same channel. ok4(Γ) means that whenever Γ is
reduced to a process type trying to perform an action annotated with an event t1 less than or equal to
t, Γ can be further reduced on some channel or on an event t2 less than t1. Here, we assume that ≺ is
some well-founded relation on events, and t1 4 t2 means t1 ≺ t2 or t1 = t2. We added new formulas
t1 4 t2, t1 ≺ t2, and 〈t〉A to express properties of process types; their semantics is defined by:

[[t1 ≺ t2]]ty =
{

Type if t1 ≺ t2

∅ otherwise

[[t1 4 t2]]ty =
{

Type if t1 4 t2

∅ otherwise

[[〈t〉A]]ty = {Γ | Γ t−→ Γ′ ∧ Γ′ ∈ [[A]]ty}
Soundness of the first three type systems follows immediately from Corollary 4.2.19.

Theorem 5.1: Let ok be ok i (i ∈ {1, 2, 3}). If Γ . P and ok(Γ), then pi(Q) holds for every Q such
that P −→∗¹ Q.

Proof: • Case for i = 1: Suppose that Γ . P , ok(Γ), and P −→∗¹ Q. Let A be:

¬ev(∃x.∃t1, t2.∃ζ1, ζ2 : {ζ1 6= ζ2}.(x!t1ζ1 |x?t2ζ2)).

To show p1(Q), it is sufficient to show that Q ¹ (ν̃w) (νũ) Q′ implies (ν̃w) Q′ |= A. Since ok1(Γ)
implies Γ |= A and A is a negative formula, Corollary 4.2.19 implies the sufficient condition.

• Case for i = 2: Since ok2 is an invariant condition, ok2 is a proper consistency predicate.
Suppose that Γ . P , ok(Γ), and P −→∗¹ Q. Let A be:

¬ev(¬∃x.∃t1.∃ζ1, ζ2 : {ζ1 6= ζ2}.(x!tζ1 |x!t1ζ2)).

22



To show p2(Q), it is sufficient to show that Q ¹ (ν̃w) (νũ) Q′ implies (ν̃w) Q′ |= A. Since ok2(Γ)
implies Γ |= A and A is a negative formula, Corollary 4.2.19 implies the sufficient condition.

• Case for i = 3: Similar to the case for i = 2.
2

In the theorem above, ≤ can be any proper subtyping relation. Choosing an appropriate subtyping
relation for each type system would simplify type-checking or type-reconstruction. For example, we
can identify t.Γ with Γ by the rule t.Γ ∼= Γ, except for the case i = 4. For a naive arity-mismatch
check [16, 50], we can ignore the order of communications by introducing rules like x?t[τ ]. Γ ∼= x?t[τ ] |Γ.

For the type system for deadlock-freedom (ok = ok4), we need to choose a particular subtyping
relation. Let ≤1 be the least proper subtyping relation and ≤2 be the least subtyping relation closed
under the rules in Figure 3 with Sub-Divide. Then, deadlock-freedom holds for both relations:

Theorem 5.2: Let ok be ok4 and ≤ be ≤i (i ∈ {1, 2}). If Γ . P and ok(Γ), then p4(Q) holds for
every Q such that P −→∗¹ Q.

We cannot use Corollary 4.2.19 to prove the theorem above, because p4(P ) is described using a non-
negative formula. Using more basic theorems shown in Section 4, however, we can easily prove the
above theorem. By Theorem 4.1.2, it suffices to show that Γ . P and ok4(Γ) imply p4(P ), by using
Theorems 4.1.3–4.1.5: See Appendix A.2 for a proof.

The following examples indicate that our framework not only has many of the existing type systems
as instances but also can express more expressive type systems than them (see also Section 6).

Example 5.3: The process x?[y]. x? |x![w]. x! is well typed in the first (i = 1) type system. So,
unlike in earlier type systems for arity-mismatch check [16, 50], the same channel can be used for
communicating values of different types.5

Example 5.4: The second type system guarantees that the process

(νl, x) (l!t0 | ∗l?t1 . x!t. l!t3 |x?t4)

is race-free on the channel x. So, unlike the linear type system [30] for the π-calculus, our type system
can guarantee lack of race conditions even on channels that are used more than once.6

Example 5.5: The fourth type system (for deadlock-freedom) rejects the process

P = (νx) (νy) (x?t. y!t1 | y?t2 . x!t3).

The type of the sub-process x?t. y!t1 | y?t2 . x!t3 is x?t. y!t1 | y?t2 . x!t3 . So, in order for P to be well-
typed, the following constraints must be satisfied:

ok4(x?t. t1 | t2.x!t3)
ok4(t.y!t1 | y?t2 . t3)

The former constraint requires that t2 ≺ t (because the input from x succeeds only after the event t2

succeeds), while the latter requires that t ≺ t2, hence a contradiction.
5Yoshida’s type system [52] also allows such use of channels.
6Flanagan and Abadi’s type system [10] also gives such a guarantee. Since their target calculus has locks as primitives,

the problem is a little simpler.

23



Remark 5.6: A type environment in a usual type system corresponds to the equivalence class of a
process type with respect to the relation ∼= derived from an appropriate subtyping relation. (Recall
that Γ1

∼= Γ2 means Γ1 ≤ Γ2 ∧ Γ2 ≤ Γ1.) For example, the type environment

x : [[ ]/O]/(O|I), z : [ ]/(O|I.I)

given in Section 1 corresponds to the equivalence class of a process type

x!t[(y)y!t] |x?t[(y)y!t] | z!t | z?t. z?t,

with respect to ∼= that satisfy the rules x!t[τ ].Γ ∼= x!t
′
[τ ]. Γ, x?t[τ ]. Γ ∼= x?t′ [τ ]. Γ, t.Γ ∼= Γ, and

(Γ↓S |Γ↑S) ∼= Γ. The last rule removes information about the order of communications between
different channels. A type environment of the linear π-calculus [30] is obtained by further removing
information about channel usage, by adding the rules x!t[τ ].Γ ∼= x!t[τ ] |Γ, x?t[τ ]. Γ ∼= x?t[τ ] |Γ, and
Γ |Γ ∼= ∗Γ. A type environment of the input-only/output-only channel type system [40] is obtained
by further adding the rule ∗Γ ∼= Γ.

6 Further Applications: Analysis of Race and Deadlock of Concur-
rent Objects

The type systems for race- and deadlock-freedom, presented in the last section, are indeed powerful
enough to guarantee some useful properties about concurrent objects. In essence, a concurrent object
is regarded as a set of processes that provides a collection of services (e.g., methods) [26, 32, 42], just
as a sequential object is a set of functions. Clients refer to an object through a record of channels
that represent locations of those services. Hence, by giving an appropriate type to the record, we can
enforce a certain protocol that clients should respect. Since our type system can capture, in particular,
temporal dependency on the invoked services, it is possible to guarantee race-freedom of accesses to
methods, studied by Abadi, Flanagan and Freund [10, 12], and deadlock-freedom for objects with
non-uniform service availability, studied by Puntigam [43]. Note that, so far, these properties have
been discussed only for languages with primitive notion of objects. This section demonstrates how
our type system can guarantee these properties.

We first describe how to enforce race-free accesses to methods. For example, the following process
waits for a request on newob, and upon receiving a request, creates an object with a lock l and a
method m to print out the string “Hello, ” appended to a given string, and exports its interface [l,m]
through the reply channel r.

∗newob? [r]. (νl, m) (
l!t
′ | ∗m?t′ [s, r′]. print!t

′
[“Hello, ”]. print!t

′
[s]. r′!t′

| r![l, m])

Since the method m should not be invoked concurrently,7 clients should acquire and release the lock
l before and after the invocation of m, respectively. Indeed by using ok2, it is guaranteed that there
are no simultaneous outputs to m:

The exported interface [l, m] (through which clients access to the object) can be given a type:

(l, m) ? l?t′ .m!t[(s :String , r)(r!t
′
[()l!t

′
])],

7We do not want an output like “Hello, Hello, ”.
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where ?Γ abbreviates µα.(0&(Γ |α)), meaning that the tuple can be used according to Γ by arbitrarily
many processes. (Here, we assume that the subtyping relation ≤ satisfies t.Γ ∼= Γ and that String is
some unary tuple type; the notation (s :String , r)Γ stands for (s, r)(String〈s〉 |Γ).) The process type
l?t′ . m!t[(s :String , r)(r!t

′
[()l!t

′
])] means that (1) the lock must be acquired (by an input from l) before

the method is invoked (by an output to m); (2) the method argument must be a pair of string s and
a reply channel r; and (3) the lock must be released (by an output to l) but only after the reply from
the object is sent to r. Note that the tuple type (s :String , r)(r!t

′
[()l!t

′
]) refers to the lock l as a free

variable, making it possible to express temporal dependency between l, which is not passed to the
method body, and the reply channel r.

Then, a client
(νr1) (l?t′ .m!t[“Atsushi”, r1]. r1?t′ . l!t

′
)

| (νr2) (l?t′ .m!t[“Naoki”, r2]. r2?t′ . l!t
′
)

is well typed, but neither
(νr3) (m!t[“Atsushi”, r3]. r3?t′ . P )

nor
(νr4) (l?t′ .m!t[“Naoki”, r4]. (r4?t′ | l!t′))

is. The above type of the interface roughly corresponds to the object type [m : ς(l)String → Unit ·
{l} · +] of Abadi and Flanagan’s type system [10], which means that the method m can be invoked
only after the lock on the object is acquired. Unfortunately, our type system is less expressive than
theirs in some respects. As the example shows, channels representing a lock l and a method m guarded
by the lock must be created at once; Otherwise, our type system will lose dependency among those
channels. See Section 8 for a possible remedy against the problem.

Similarly, we can express non-uniform service availability in our type system. For example, this is
a process that creates a one-place buffer:

∗newbuf ? [r]. (νput, get, b) (
b! | ∗b?. put?[x]. get?[r′]. (r′![x] | b!)
| r![put, get])

Now, two methods put and get are provided but they are available only alternately. By using ok4,
we can guarantee that invocations of the methods put and get never get deadlocked. The interface
[put, get] can be given a type:

(put, get)∞.µα.(0&(put!t[τ ] |∞.get!t[(r)r!t[τ ]].∞.α)),

which says that an output to put must come in parallel to or before an output to get. (Here, ∞.Γ
abbreviates µα.(Γ&t1.α& · · ·&tn.α) where {t1, . . . , tn} is the set of events occurring in the program.
It means that it is allowed to wait for arbitrary events before using the value according to Γ.) Then,
both

put!t[v] | (νr) get!t[r]. r?[x]. · · ·
and

put!t[v]. (νr) get!t[r]. r?[x]. · · ·
are well-typed (and hence never get deadlocked on put! and get!) while (νr′) get!t[r′]. r′?[x]. put!t[v]. · · ·
is not.
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7 Type Checking/Reconstruction

By using Theorem 4.1.3, we can also formalize a common part of type-check/reconstruction algorithms:
By reading the typing rules in a bottom-up manner, we can develop an algorithm that inputs a process
expression and outputs a process type with a set of subtype constraints and consistency conditions on
the type. The pair of a process type and a set of constraints is principal in the sense that a process
is typeable if and only if the set of constraints output by the algorithm is satisfiable. Indeed, the
algorithm presented here is essentially the same as the first half of an existing type reconstruction
algorithm [31].

To complete a type-check/reconstruction algorithm, it will be only required to develop an algorithm
to solve constraints on process types. Since the definitions of a subtype relation and a consistency
condition vary, such algorithms have to be developed for each instance. Some of them, which have
prototype implementations, can be found in the literature [24, 31].

In this section, we mainly discuss the common part: the definition of principal typings and an
algorithm to compute them.

7.1 Principal Typings

We first define the notion of principal typings in our type system. A principal typing is defined as
a pair of a process type including process type variables and a set of constraints on the process type
variables; all the possible process types, under which the process expression is well typed, are obtained
from the process type in the pair, by replacing process type variables in the constraint so that the
constraint is satisfied.

To define principal typings, we introduce a countably infinite set of process type variables, ranged
over by ρ, and extend the definition of process types with the process type variables and the expressions
Γ↓{x1,...,xn} and Γ↑{x1,...,xn}.

Definition 7.1.1 [extended process type]: The set of process types is extended as follows.

Γ ::= · · · | ρ | Γ↓{x1,...,xn} | Γ↑{x1,...,xn}

The metavariable C denotes a set of constraints of the form Γ1 ≤ Γ2, FV(Γ) ∩ {x̃} = ∅ or ok(Γ).

Notation 7.1.2: We write θ for a substitution of (non-extended) process types and tuple types for
process type variables and tuple type variables, respectively. We write FTV(Γ) and FTV(C) for the
sets of (process and tuple) type variables appearing free in Γ and C, respectively.

Then, principal typings are defined as follows.

Definition 7.1.3 [principal typing]: A pair (Γ, C) of an extended process type and a set of con-
straints is a principal typing of a process P if it satisfies the following conditions:

1. If θ is chosen so that dom(θ) ⊇ FTV(Γ) ∪ FTV(C) and θC is satisfied, then θΓ . P .

2. If Γ′ . P , then there exists a substitution θ such that θC and Γ′ ≤ θΓ hold.
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PT (P ) = (Γ, C) :

PT (0) = (∅, ∅)

PT (P1 |P2) =
let (Γ1, C1) = PT (P1)

(Γ2, C2) = PT (P2)
in (Γ1 |Γ2, C1 ∪ C2)

PT (∗P0) =
let (Γ0, C0) = PT (P0)
in (∗Γ0, C0)

PT (P1 + · · ·+ Pn) =
let (Γ1, C1) = PT (P1)

...
(Γn, Cn) = PT (Pn)

in (Γ1 + · · ·+ Γn, C1 ∪ · · · ∪ Cn)

PT (x!t[z̃]. P0) =
let (Γ0, C0) = PT (P0)
in (x!t[α(n)]. (ρ |α(n)〈z̃〉), C0 ∪ {ρ ≤ Γ0})
(where α and ρ are fresh)

PT (x?t[ỹ]. P0) =
let (Γ0, C0) = PT (P0)
in (x?t[α(n)]. ρ, C0 ∪ {(ρ |α(n)〈ỹ〉) ≤ Γ0,FV(ρ) ∩ {ỹ} = ∅})
(where α and ρ are fresh)

PT ((νx̃) P0) =
let (Γ0, C0) = PT (P0)
in (Γ0↑{x̃}, C0 ∪ {ok(Γ0↓{x̃}),FV(Γ0↑{x̃}) ∩ {x̃} = ∅})

Figure 7: Algorithm PT
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7.2 Algorithm to Compute Principal Typings

Thanks to Theorem 4.1.3, it is easy to derive syntax-directed typing rules, by combining T-Sub with
T-Out and T-In from the original ones. Then, by reading the syntax-directed typing rules in a
bottom-up manner, we can obtain a principal typing algorithm, which takes a process expression as
an input and outputs its principal typing. The algorithm PT is shown in Figure 7.

Theorem 7.2.1: If PT (P ) = (Γ, C), then (Γ, C) is a principal typing of P .

Proof: Structural induction on P . 2

8 Discussions

Although a variety of type systems can be obtained as its instances, our generic type system is of course
not general enough to obtain all kinds of type systems. There are two major sources of limitations
of our type system: One is the way in which processes are abstracted, and the other is the way the
consistency condition ok on types is formalized.

Limitations caused by abstraction Because information on channel creation is lost in process
types (recall the rule (T-New)), we cannot obtain type systems to guarantee properties like “at most
n channels are created.” We can overcome that limitation to some extent, by introducing a process
type newk.Γ, which means that the process behaves like Γ after creating k channels.

Limitations caused by the formalization of ok To obtain common properties useful for proving
type soundness (in Section 4), we required that the consistency condition ok must be an invariant
condition (recall Definition 3.4.3). This requirement is, however, sometimes too strong. For example,
suppose that we want to guarantee a property “Before a channel x is used for output, y must be used
for input.” (This kind of requirement arises, for example, in ensuring safe locking [11].) Note that
this property is not an invariant condition: Once y is used for input, x can be used immediately. One
way to overcome this limitation would be to annotate each channel creation (νx̃) with the history of
reductions, and parameterize ok with the history.

Another limitation comes from the side condition ok(Γ↓{x̃}) of the rule (T-New): Because of the
operation ·↓{x̃}, only the causality between simultaneously created channels can be directly controlled.
Because of this restriction, unlike Abadi and Flanagan’s type system for concurrent objects, we cannot
deal with the case where an object and its lock are separately created.

One way to remove the restrictions mentioned above would be to add type annotation of the form
(νx̃ : Γ)P to the channel creation primitive. Here, Γ specifies how newly created channels x̃ should be
used in combination with other channels. For example, (νx : ? l?t1 []. x!t2 [τ ]. l!t3 [] | ∗x?t4 [τ ])P means
that a new channel x is created and that whenever x is used for output, the lock l is acquired beforehand
and l is released afterwards. This extension, however, requires a substantial amount of change in the
type system and the proof of subject reduction. First, we need to replace the typing rule for channel
creation with something like:

Γ1 |Γ2 . P WF (Γ1↓{x̃}) FV(Γ1↑{x̃} |Γ2) ∩ {x̃} = ∅
Γ1↑{x̃} |Γ2 . (νx̃ : Γ1) P

(T-New’)
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The above rule allows Γ1 to specify causality between new channels x̃ and other channels. Since
Γ1 may change during reductions, we also need to fix the reduction semantics so that the subject
reduction property holds. For example, rule (R-New) should be replaced by the following rule:

P
x
t1,t2
i−→ Q xi ∈ {x̃} ∆ ≤ ∆′ for all ∆′ such that Γ

x
t1,t2
i−→ ∆′

(νx̃ : Γ)P
εt1,t2−→ (νx̃ :∆) Q

(We show only the case for xi ∈ {x̃}; The case for xi 6∈ {x̃} is uglier.) It is left for future work to
formalize these extensions elegantly.

Symmetric treatment of input and output processes As remarked in Section 3.5, the rules (T-
In) and (T-Out) are asymmetric in the sense that information about the continuation of a receiver
process is transfered to a sender process but not vice versa. Sometimes it is useful to propagate
information in the reverse direction. For example, consider the following process:

(νsync) (x?. sync? | sync!. x!)

The two sub-processes synchronize on channel sync, so that x is first used for input and then used for
output. In order to obtain such information, we need to put into the type of process sync? information
that x is used for output after the synchronization (so that the process x?. sync? has a type of the
form x?. sync?[τ ]. x!). That is achieved by represent input process types and output process types in
the form x?t[τI ; τO]. Γ and x!t[τI ; τO]. Γ, where τI describes information about the continuation of an
input process (which was already present in the type system in Section 3) and τO describes information
about the continuation of an output process. The new typing rules for output and input are:

Γ1 |Γ3 . P

x!t[(ỹ)Γ2; ()Γ3]. (Γ1 | [z̃/ỹ]Γ2) . x!t[z̃]. P
(T-Out-Sym)

Γ1 |Γ2 . P FV(Γ1) ∩ {ỹ} = ∅
x?t[(ỹ)Γ2; ()Γ3]. (Γ1 |Γ3) . x?t[ỹ]. P

(T-In-Sym)

The two sub-processes in the above example is then typed as follows:

x?. sync?[τ1; τ2]. x! . x?. sync?

sync![τ1; τ2] . sync!. x!

for τ1 = ( )0 and τ2 = ( )x!.

Other extensions There are many other useful extensions. Combining our type system with poly-
morphism, existential types, etc. would be useful. We expect that polymorphism can be introduced
in a similar manner to Pierce and Sangiorgi’s polymorphic π-calculus [41].

Besides type-soundness proofs and type inference issues studied in this paper, it would be inter-
esting to formalize other aspects of type systems through our generic type system. Typed process
equivalence would be especially important, because it is hard to study even for specific type sys-
tems [30, 40, 41].

Another interesting extension is generalization of the target language. If we can replace the π-
calculus with a more abstract process calculus like Milner’s action calculi [37], type systems for other
process calculi can also be discussed uniformly.
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9 Related Work

General framework of type systems Previous proposals of a general framework [20, 33, 34] are
(i) so abstract (e.g., [20, 33]) that only a limited amount of work can be shared for developing concrete
type systems, and/or (ii) not general (e.g., [33, 34]) enough to account for recent advanced type
systems [10, 27, 31]. Honda’s work [20] aims to develop a general theory of type systems for various
process calculi, while our work in the present paper focuses on a specific process calculus (the π-
calculus) and aims to develop a general theory of various type systems for the π-calculus. Being viewed
as a theory of type systems for the π-calculus, Honda’s framework [20] seems to be more abstract and
restrictive than ours. For example, his framework only deals with what he call additive systems, where
the composability of processes are determined solely by channel-wise compatibility: So, it cannot deal
with properties like deadlock-freedom, for which inter-channel dependency is important. Honda [21]
also developed a type theory for the π-calculus from the viewpoint of denotational semantics (as
opposed to our study of the generic type system from an operational point of view); It is left for future
work to study how these different approaches are related to each other. In König’s framework of type
systems [33], type environments do not change during reduction of a process. So, it cannot deal with
dynamically changing properties like linearity [30]. Moreover, the target calculus is less expressive than
the π-calculus: It cannot express dynamic creation of channels. Conchon and Pottier [4] proposes a
framework of type systems for the join-calculus [14]. The main focus of their work is a general study
of type inference for the join-calculus in the presence of ML-style polymorphism. Their type system
only guarantees a basic type soundness property that there is no arity mismatch error.

Other type systems viewing types as processes As mentioned in Section 1, the idea of
expressing types as abstract processes has been inspired by our previous type systems for the π-
calculus [28, 31, 46]. The development of the generic type system has been motivated by the observa-
tion that the underlying ideas and proofs of those type systems are very similar so that most of them
can be shared. Besides the genericity, a technical novelty of our generic type system compared with
our previous type systems is that we can express the order of communications on different channels
directly using CCS-like processes (while in previous our type systems, we used a smaller process cal-
culus as outlined in Section 1). Thanks to this extension, as observed in Section 6, our generic type
system can also be used to analyze properties of concurrent objects.

Inspired by our work, Rehof et al. [3] recently proposed a variant of our type system. In their
type system, types are represented as a fragment of CCS [35] which, unlike in our type system,
includes the hiding (or channel creation) operator. It is not difficult to extend our types with the
hiding operator as in their type system. While the main focus of their type system is on checking
whether senders and receivers on each channel agrees on a communication protocol (like in which
order senders and receivers use communicated channels), the focus of our type system is on checking
channel-wise behavior of processes (like whether some process suffers from a race or deadlock condition
on a particular channel). This difference resulted in slightly different formalization of the type systems.
In particular, they [3] chooses an open simulation relation as a specific subtyping relation and shows
how to use a model checker to check the subtyping relation.

Some previous type systems also use process-like structures to express types. Yoshida’s type
system [52] (which guarantees a certain deadlock-freedom property) and its successors [23, 53] uses
graphs to express the order of communications. Her type system is, however, specialized for a par-
ticular property, and the condition corresponding to our consistency condition seems too strong, even
for guaranteeing deadlock-freedom. For example, there is no graph type corresponding to the type
environment x?t. x?t |x!t |x!t of our type system.
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Nielson and Nielson [38] also use CCS-like process terms to express the behavior of CML programs.
Because their analysis approximates a set of channels by using an abstract channel called a region,
it is not suitable for analyses of deadlock-freedom (see [27] for the reason), race detection, linearity
analysis, etc., where the identity of a channel is important.

Process-like terms have been used as types also in type systems for deadlock-freedom [43] and
related properties [44] of concurrent objects. As briefly outlined in Section 6, our type system can
guarantee such properties without having concurrent objects as primitives.

Gordon and Jeffrey [17, 18] proposed a type system for checking correspondence assertions. Two
primitives begin(x̃) (for asserting the begin of a protocol) and end(x̃) (for asserting the end of a
protocol) are introduced into the π-calculus and their type system checks that every execution of
end(x̃) is preceded by one begin(x̃). To check that property, they introduced channel types of
the form Ch(y : T )[{x̃1}, . . . , {x̃1}], which expresses information that a receiver on that channel may
perform the end actions end(x̃1), . . . , end(x̃n). Their type system can be almost subsumed by our
generic type system: By extending the syntax of types with begin(x̃) and end(x̃), we can express the
channel type Ch(y :T )[{x̃1}, . . . , {x̃1}] as:

(x)(∗x?[(y)(y : T | end(x̃1) | · · · | end(x̃n))] | ∗x![(y)(y : T | end(x̃1) | · · · | end(x̃n))]).

(Alternatively, if a begin or end assertion mentions only a single name, the assertion can be encoded
into an ordinary output.) However, in order to automatically obtain soundness of the type system from
the soundness of our generic type system, we need to extend rules for channel creation as discussed in
Section 8.

Abstract interpretation As mentioned in Section 1, our generic type system can be viewed as
a kind of abstract interpretation framework [5], in the sense that properties of programs are verified
by reasoning about abstract versions of those programs. From this viewpoint, our contribution is a
novel formalization of a specific subclass of abstract interpretation for the π-calculus (for which no
satisfactory general abstract interpretation framework has been developed to the authors’ knowledge)
as a type system. Another novelty seems to be that while conventional abstract interpretation often
uses a denotational semantics to claim the soundness of an analysis, our type system uses an operational
semantics, which seems to be more convenient for analyses of concurrent processes.

There are some studies of abstract interpretation for the π-calculus [9, 51], but they are quite
different from our generic type system. While their abstract interpretation maps a process to one
abstract process and analyzes its behavior, our generic type system maps a process to multiple process
types (introduced for each (νx̃) P ) and analyzes their behavior, so that the analysis is performed in a
compositional manner.

Non-standard type systems for sequential languages Unlike standard type systems for func-
tional languages, our type system keeps track of not only the shape of each value but also information
about how and in which order each value (a communication channel in our case) is accessed. Non-
standard type systems for analyzing such properties have been recently studied to guarantee safe usage
of resources such as memory and files [6, 7, 13, 15, 25, 29]. Among them, our type systems for resource
usage analysis [25, 29] have been inspired by the generic type system in the present paper.

10 Conclusion

We have proposed a general type system for concurrent processes, where types are expressed as abstract
processes. We have shown that a variety of non-trivial type systems can be obtained as its instances,
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and that their correctness can be proved in a uniform manner.
Future work includes study of a more general version of the type soundness theorem in Section 4.2,

and extensions of our generic type system discussed in Section 8, to give a complete account of the
existing type systems for the π-calculus. Applications of our type system to programming languages
and verification systems are also future work. The generic type system would be useful both (1)
as a theoretical framework to design a type system for analyzing specific properties of programs
(e.g., deadlock and race conditions), and (2) as a basis for constructing a general-purpose program
verification tool with which properties to be verified can be specified as a formula of the process
logic introduced in Section 4.2. Since the generic type system itself is not suitable for complete type
inference (because of the non-determinism of the choice of Γ1 and Γ2 in rule (T-In), etc.), we need to
either restrict the type system or allow a programmer to explicitly declare type information for the
latter goal. We also need to study a model checking algorithm, which, given a type and a formula of
the process logic, checks whether the type satisfies the formula.
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Appendix

A Proofs of Theorems

A.1 Proof of Subject Reduction Theorem (Theorem 4.1.1)

Lemma A.1.1: (Γ↑S1
)↑S2

= (Γ↑S2
)↑S1

= Γ↑S1∪S2
.

Proof: By induction on the structure of Γ. 2

Lemma A.1.2 [inversion]: Suppose Γ . P .

1. If P = P1 |P2, then there exist Γ1 and Γ2 such that Γi . Pi for i = 1, 2 and Γ ≤ Γ1 |Γ2.

2. If P = P1 + · · · + Pn, then there exist Γ1, . . . , Γn such that Γi . Pi for i = 1, . . . , n and Γ ≤
Γ1 + · · ·+ Γn.

3. If P = x!t[z̃]. P0, then there exist Γ1 and Γ2 such that Γ1 . P0 and Γ ≤ x!t[(ỹ)Γ2]. (Γ1 | [z̃/ỹ]Γ2).

4. If P = x?t[ỹ]. P0, then there exist Γ1 and Γ2 such that Γ1 |Γ2 . P0 and Γ ≤ x?t[(ỹ)Γ2].Γ1 with
FV(Γ1) ∩ {ỹ} = ∅.

5. If P = (νx̃) P0, then there exists Γ0 such that Γ0 . P0 and Γ ≤ Γ0↑{x̃} with ok(Γ↓{x̃}) and
FV(Γ0↑{x̃}) ∩ {x̃} = ∅.

6. If P = ∗P0, then there exists Γ0 such that Γ0 . P0 and Γ ≤ ∗Γ0.

Proof: Immediate from the fact that a type derivation of Γ . P must end with an application of the
rule corresponding to the form of P , followed by zero or more applications of the rule T-Sub. 2

Lemma A.1.3: If Γ L−→ Γ′, then Γ↑{x̃} L′−→ Γ′↑{x̃} where L′ is defined by:

L′ =
{

εt1,t2 if L = yt1,t2 and y ∈ {x̃}
L otherwise

Proof: By induction on the derivation of Γ L−→ Γ′ with a case analysis on the last rule used. We
show only the main base case below; The other cases are easy.
Case TER-Com: Γ = · · ·+ y!t1 [τ1].Γ1 + · · · | · · ·+ y?t2 [τ2].Γ2 + · · ·

Γ′ = Γ1 |Γ2 L = yt1,t2 τ1 ≤ τ2

We have two subcases according to whether y ∈ {x̃} or not. We will show the subcase where y = xi.
Since Γ↑{x̃} = · · ·+ t1.Γ1↑{x̃} + · · · | · · ·+ t2.Γ2↑{x̃} + · · ·, by rule TER-Com2,

Γ↑{x̃} εt1,t2−→ Γ1↑{x̃} |Γ2↑{x̃}
finishing the subcase. The other subcase is easy. 2

Lemma A.1.4: If WF (Γ↓S) and WF (Γ↑S), then WF (Γ).
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Proof: Suppose WF (Γ) does not hold. Then, there exist x, τ1, τ2, t1, t2, Γ1, Γ2, and Γ3 such that

Γ −→∗ · · ·+ x!t1 [τ1]. Γ1 + · · · | · · ·+ x?t2 [τ2].Γ2 + · · · |Γ3

and τ1 � τ2. By using Lemma A.1.3 repeatedly, either

Γ↑S −→∗ · · ·+ x!t1 [τ1]. (Γ1↑S) + · · · | · · ·+ x?t2 [τ2]. (Γ2↑S) + · · · |Γ3↑S

or
Γ↓S −→∗ · · ·+ x!t1 [τ1]. (Γ1↓S) + · · · | · · ·+ x?t2 [τ2]. (Γ2↓S) + · · · |Γ3↓S ,

contradicting the assumptions WF (Γ↓S) and WF (Γ↑S). 2

Lemma A.1.5 [substitution]: If Γ . P , then [ỹ/x̃]Γ . [ỹ/x̃]P .

Proof: By straightforward induction on the derivation of Γ . P . 2

Lemma A.1.6: If Γ . P and P ¹ Q, then Γ . Q.

Proof: By structural induction on the derivation of P ¹ Q with a case analysis of the last rule used.
We show a few interesting cases below; The other cases are easy.
Case: P = (νx̃) P1 |P2 Q = (νx̃) (P1 |P2) if x̃ are not free in P2

By Lemma A.1.2, there exist Γ1, Γ′1, and Γ2 such that Γi . Pi for i ∈ {1, 2} and Γ ≤ Γ′1 |Γ2 and
Γ′1 ≤ Γ1↑{x̃} with ok(Γ1↓{x̃}). By the rule T-Par, Γ1 |Γ2 . P1 |P2. Without loss of generality, we can
assume x̃ are not free in Γ2 so that Γ2↑{x̃} = Γ2 and Null(Γ2↓{x̃}). Then, (Γ1 |Γ2)↑{x̃} = Γ1↑{x̃} |Γ2

and, by the third condition in Definition 3.4.3, ok((Γ1 |Γ2)↓{x̃}). Thus,

Γ1↑{x̃} |Γ2 . (νx̃) (P1 |P2)

by the rule T-New. Finally, it is easy to show Γ ≤ Γ1↑{x̃} |Γ2, and so, by the rule T-Sub, Γ . Q.

Case: P = ∗P0 Q = ∗P0 |P0

By Lemma A.1.2, we have Γ0 . P0 and Γ ≤ ∗Γ0. Then, by the rule T-Par, Γ0 | ∗Γ0 . P0 | ∗P0. Since
∗Γ0 ≤ Γ0 | ∗Γ0, by using the rule T-Sub, Γ . Q. 2

Proof of Theorem 4.1.1: By induction on the derivation of P
l−→ Q with a case analysis on the

last rule used.
Case R-Com: P = · · ·+ x!t[z̃]. P0 + · · · | · · ·+ x?t′ [ỹ]. Q0 + · · ·

Q = P0 | [z̃/ỹ]Q0 l = xt,t′

By Lemma A.1.2 and the subtyping rules, there exist Γ1, Γ2, Γ3, and Γ4 such that

Γ ≤ · · ·+ x!t[(w̃)Γ2]. (Γ1 | [z̃/w̃]Γ2) + · · · | · · ·+ x?t′ [(ỹ)Γ4]. Γ3 + · · ·
Γ1 . P0 Γ3 |Γ4 . Q0 FV(Γ3) ∩ {ỹ} = ∅.

Then, since WF (Γ), it must be the case that (w̃)Γ2 ≤ (ỹ)Γ4, that is, Γ2 ≤ [w̃/ỹ]Γ4. We can show

Γ xt,t′−→ Γ1 | [ỹ/w̃](Γ3 |Γ4)
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by the following calculation:

Γ xt,t′−→ Γ1 | [z̃/w̃]Γ2 |Γ3

≤ Γ1 | [z̃/w̃][w̃/ỹ]Γ4 |Γ4

= Γ1 | [z̃/ỹ]Γ4 |Γ3

= Γ1 | [z̃/ỹ](Γ4 |Γ3) (FV(Γ3) ∩ {ỹ} = ∅)

By Lemma A.1.5, [z̃/ỹ](Γ3 |Γ4) . [z̃/ỹ]Q0. Finally, by the rule T-Par, Γ1 | [z̃/ỹ](Γ3 |Γ4) . P0 | [z̃/ỹ]Q0,
finishing the case.

Case R-Par: P = P0 |R P0
l−→ Q0 Q = Q0 |R

By Lemma A.1.2, there exist Γ1 and Γ2 such that

Γ ≤ Γ1 |Γ2 Γ1 . P0 Γ2 . R

To use the induction hypothesis, we show WF (Γ1) by contradiction. Suppose WF (Γ1) does not
hold. Then, WF (Γ1 |Γ2) does not hold, either; It means WF (Γ) does not hold. Thus, WF (Γ1).

By the induction hypothesis, there exists Γ′1 such that Γ1
l−→ Γ′1 and Γ′1 . Q0. By the rules

TER-Skip, TER-Par, and TER-Sub, Γ l−→ Γ′1 |Γ2. By the rule T-Par, Γ′1 |Γ2 . Q0 |R, finishing
the case.
Case R-New: P = (νx̃) P0 P0

l′−→ Q0 Q = (νx̃) Q0 l = l′↑{x̃}
We show the subcase where l′ = xt,t′

i for some i, thus l = εt,t
′
; The other cases (l′ = εt,t

′
or l′ = yt,t′

with y 6∈ {x̃}) are similar. By Lemma A.1.2, there exists Γ0 such that

Γ0 . P0 Γ ≤ Γ0↑{x̃} ok(Γ0↓{x̃}) FV(Γ0↑{x̃}) ∩ {x̃} = ∅.

Since WF (Γ0↓{x̃}) and WF (Γ0↑{x̃}) from the assumptions, we have WF (Γ0) by Lemma A.1.4. By the

induction hypothesis, there exists Γ′0 such that Γ0
xt,t′

i−→ Γ′0 and Γ′0 . Q0. By Lemma A.1.3, Γ0↑{x̃} εt,t′−→

Γ′0↑{x̃} and Γ0↓{x̃}
xt,t′

i−→ Γ′0↓{x̃}. Then, ok(Γ′0↓{x̃}). It is easy to show Γ L−→ Γ′ implies FV(Γ) ⊇ FV(Γ′),
thus FV(Γ′0↑{x̃}) ∩ {x̃} = ∅. Finally, by the rule T-New, Γ′0↑{x̃} . (νx̃) Q0, finishing the case.

Case R-SP: P ¹ P ′ P ′ l−→ Q′ Q′ ¹ Q′

Immediate from Lemma A.1.6 and the induction hypothesis. 2

A.2 Proof of Theorem 5.2

We first show properties of ≤1 and ≤2.

Lemma A.2.7: Let ≤ be ≤i (i ∈ {1, 2}). Then, the following conditions hold:

• Γ |= x!tζ, then Γ ∼= · · ·+ x!t[τ ]. ∆1 + · · · |∆2 for some τ , ∆1, and ∆2.

• Γ |= x?tζ, then Γ ∼= · · ·+ x?t[τ ]. ∆1 + · · · |∆2 for some τ , ∆1, and ∆2.

• Γ |= 〈t〉true, then Γ ∼= · · ·+ t.∆1 + · · · |∆2 for some ∆1 and ∆2.

• Γ |= x!tζ |x?tζ, then Γ ∼= · · ·+ x!t[τ1]. ∆1 + · · · | · · ·+ x?t[τ2]. ∆2 + · · · |∆3. for some τ1, τ2, ∆1,
∆2 and ∆3.
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Proof: By the definition of |=, Γ |= x!tζ if and only if Γ ≤ · · · + x?t[τ ]. ∆1 + · · · |∆2 for some ∆1

and ∆2. Therefore, the first property follows, for both ≤1 and ≤2, by straightforward induction on
derivation of the subtyping relation. Proofs of the other properties are similar. 2

We check the necessary condition for Theorem 4.1.2 below.

Lemma A.2.8: Let ≤ be ≤i (i ∈ {1, 2}), and let ok be ok4. If Γ . P and ok(Γ), then p4(P ) holds.

Proof: The proof proceeds by well-founded induction on t. Suppose Γ.P , ok(Γ), and P ¹ (ν̃w1..k) Q
with Q |= x!tζ∨x?tζ for some x, ζ. It suffices to show that Q |= ∃x.∃t1, t2.(〈xt1,t2〉true∨〈εt1,t2〉true),
that is, Q −→ R for some R. We show only the case for Q |= x!tζ: The case for Q |= x?tζ is similar.
By Lemma A.1.6 and Theorem 4.1.3, we have

∆ .N Q
∆ |= x!tζ
Γ ≤ ∆↑{w̃1,...,w̃k}

Moreover, since ok(Γ), there exists a set S such that x ∈ S and ok(∆↓S). (Let S be {w̃i} if y ∈ {w̃i},
and FV(∆)\{w̃1, . . . , w̃k} otherwise.) So, by the definition of ok4, there exist y, t2, t3 such that ∆↓S |=
〈yt2,t3〉true or ∆↓S |= 〈t2〉true∧ t2 ≺ t. In the former case, ∆ |= y!t2ζ | y?t3ζ. By Theorem 4.1.5 and

Lemma A.2.7, we have Q
yt2,t3−→ R for some R as required. In the latter case, by Theorem 4.1.5 and

Lemma A.2.7, we have Q′ |= y!t2ζ ∨ y?t2ζ and Q ¹ (ν̃u1..l) Q′ for some y, ũ1, . . . , ũl. By the induction
hypothesis, we have Q −→ R for some R, as required. 2

Proof of Theorem 5.2: This follows immediately from Lemma A.2.8 and Theorem 4.1.2. 2
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