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Abstract and argument passing. For example, a gradual type system

usually assumedynamic to be compatible with any type so
that a statically typed expression to be used wlgteamnic
{Is expected and vice versa. Moreover, when types have struc-
tures (as in function types), the compatibility relationaly
allows structural comparison: for example, a function type
saydynamic — int, is compatible withint — int [25],
which is useful in higher-order programs.
The other, more technical challenge is to establish some
j safety property even for partially typed programs. In féct,
is possible to ensure that run-time errors are always due to
| a dynamically typed part in a program. Roughly speaking,
the main idea is to insert run-time checks between the “bor-
der” between the statically and dynamically typed worlds to
prevent statically typed code from going wrong. A key idea
here is that the insertion can be guided by the use of the
compatibility relation.
1. Introduction In this paper, we develop a gradua_l type sysFem for class-
) . . based object-oriented languages with generics. Although
Statically and dynamically typed languages have their own ihere are similar attempts at mixing static and dynamic typ-
benefits. On the one hand, statically typed Iangqages enjoying in object-oriented languages [3, 5, 18, 26, 35], (to our
type safety properties; on the other hand, dynamicallydype | owiedge) very few take generics into account. One notable
languages are said to be suitable for rapid prototypingreThe - g ception is dynamic types for@.0 [4], but the integration
is a5|gn|f|c§nt amount of work (e.g., [1, 3 5,7,9,11,14,15, dynamic and static typing is not as smooth as one might
25-27] to cite some) to integrate both kinds of languages t0 gypact. For example, it requires tedious coding to convert
have the best of k_)oth worlds. Siek :_;md Taha havg 00|r_1ed the, collection whose element type is statically known, say, to
term “gradual typing” [25] for a particular style of linguis be integers to a collection of dynamically typed values. We
support of the seamless integration of static and dynamic design a flexible compatibility relation, which allows, fex-
typing in a single language. A typical gradual type system ample List<Integer> to be used abist<dynamic> and
introduces to a statically typed language a special typerfof  ice versa. Since the type system has inheritance-based sub
called dynamic) to specify dynamically typed parts in & ning it is not a trivial task to give a reasonable compati-
program and allows a program to be partially typed, or even yjjiry relation. We also introduce the notion bbunded dy-
fully dynamically typed. _ _ namic types, which have characteristics of both dynamic and
One of the main challenges in the design of a gradual gayic types, to mediate bounded polymorphism and dynamic
type system is to give a flexible type compatibility relation typing. Based on these ideas, we formalize #&.an exten-
which is an extension of subtyping and used for assignmentsgjgn, of Featherweight GJ (FGJ) [16] with bounded dynamic
types and prove the desired safety property, which states
that statically typed parts in a program cannot go wrong.
In particular, it implies the standard type safety for a pro-
gram that does not contain any dynamic types. The seman-
tics of FGJ"—the surface language in which programs are
written—is given by a translation to an intermediate lan-
guage FG®, in which run-time checks are explicit. The

Gradual typing is a framework to combine static and dy-
namic typing in a single programming language. In this pa-
per, we develop a gradual type system for class-based ebjec
oriented languages with generics. We introduce a special
type to denote dynamically typed parts of a program; un-
like dynamic types introduced to?@.0, however, our type
system allows for more seamless integration of dynamically
and statically typed code.

We formalize a gradual type system for Featherweight G
with a semantics given by a translation that inserts explici
run-time checks. The type system guarantees that statical
typed parts of a program do not go wrong, even if it includes
dynamically typed parts. We also describe a basic implemen-
tation scheme for Java and report preliminary performance
evaluation.

[Copyright notice will appear here once "preprint’ opti@réemoved.]
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translation is not only expediency for the formal proof but 2.1 Typedyn as Type Arguments
also a guide to implementation. One natural consequence of the introductioayef as a type

Our main contributions can be summarized as follows: s thatdyn can be used as a type argument to a generic class.
For example, a programmer can use a varialllef type
Cell<dyn>. This type is similar toCel1<0Object> in the
e The introduction of bounded dynamic types; sense that one can set anything to it.

* Formalization of the language with generics and dynamic ¢e11<qyn> c1 =

¢ A flexible compatibility relation for parametric types;

.oy

types; and cl.set(new Polygon(...));
e Proof of safety properties, which show that statically ¢1-set(new Integer(1));

typed parts in a program never go wrong. Unlike Cel1l<0bject>, however, the type of field is dyn,

: : which represents dynamically typed code and accepts any
We are currently developing a compiler for gradually typed method invocation and field access

Java. We also describe our basic implementation scheme.
This work at an earlier stage has been reported at thedyn fld = c1.x.anyField;
STOP’09 workshop [19], where we have only sketched the dyn ret = cl.x.anyMethod(...);
combination of generics and dynamic typing and its formal- \hich are assumed to retudgn. Also, dyn can be assigned
ization. In this paper, we have revised the formal definition g any variable.
of both surface and intermediate languages significantlly an
proved safety properties. boolean b = cl.x.contains(1,1); .

The rest of the paper is organized as follows. Section 2 // The type of RHS is dyn
gives an overview of gradual typing for a class-based lan- Of course, it must be checked at run time whether these
guage with generics. Then, Sections 3 and 4 give the formal-fields and methods really exists and whether an assignment
ization of our proposal and prove desired properties. Sec-is valid.
tion 5 describes our implementation scheme for Java and re-  In the previous work on gradual typing for a language
ports very preliminary benchmark results. After Section 6 with subtyping, the subtyping relation is replaced with the
discusses related work, Section 7 gives concluding remarks compatibility relation [25, 26], which, for example, allew

statically typed expressions to be passed to whgnds ex-

2. Gradual Typing for Generics pected and vice versa. The compatibility relation should be

Following the previous approaches to gradual typing [25, rich enpugh to support flexible integration of stgticall;dan
26], we introduce a special type (callégn in this paper) dynamically typed code and, for type systems with strut¢tura

that represents dynamically typed portions in a program to subtyping, its definition requires careful examination.

a class-based language with generics. A variable can be . We introduce a rich compatibility relation for paramet-

declared to have the dynamic type; then, any expressionsrIC types. In particular, we allow an expression ofign-

. . . free type, saytell<Rectangle>, to be assigned to a vari-
can be assigned to it and the variable can be used as anple >\;\5)hose }%,epe in(\a/glv:nagyf as a type grgument say

expression of any type. In this section, we first describe Cell<dyn>. For example, the following code is accepted by
how dyn interacts with generics by means of examples and the type system:

then what kind of dynamic checks are performed to prevent
statically typed parts from going wrong.
We use the following simple generic class as a running

Cell<dyn> ci
= new Cell<Rectangle>(new Rectangle(...));

example: Note thatc1 will point to an object that can store only
class Cell<X> { Rectangles, rather than anything (as indicated &yn).
X x: Cell(X x){ this.x=x: } So, actually, the invocation afet should check at run time
void set(X ){ this.x=x: } whether the actual argument is a valid one.
} cl.set( new Rectangle(...) ); // succeeds
Cell is a class of one-element containers, where the ele-c1.set( new Polygon(...) ); // fails

ment type is parameterized &s The element is accessed
through the fieldx and modified through methagket. We o . .
will also use classeShape and its subclasse&ectangle Its glvenhas an a.rgumelnt 'Z thgt:] it dentotes tEe set of
andPolygon. (NeitherRectangle nor Polygon extends ypes wheredyn is replaced with any type. For ex-

the other.) Moreover, clasghape has method with the sig- @MPle, a variable of typeCell<dyn> may point to
nature objectsnew Cell<Shape>(), new Cell<Rectangle>(),

new Cell<Integer>(), and so on. In this sense, type
Cell<dyn> is closer to the wildcard typ€ell<?> than
which returns whether a given point @t, y) is inside the Cell<Object>, but, unlikeCe11<?>, potentially unsafe op-
shape. erations such as invocation &t are (statically) allowed.

The intuition behind a parametric type to whidyn

boolean contains(double x, double y);
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Our compatibility relation allows the opposite direction . .
of flow, too—that is, an expression whose type invokies (TDe checks if the run-time type of the
as a type argument can be assigned to a variabledgha value ofe is compatible withr, and
free type as in the following code: then returns the value.
get (e, ) checks if the value oé has fieldf,

and then reduces to the field value.

e.m[T|C<X>] (e) checks if the types of argumerss

Cell<Rectangle> c2 = cl;
Cell<Polygon> c3 = cli;

Just as an assignment of an expression of @pe to a are correct (using the static type in-
concrete type, the run-time system will check whether these formationT, C<X>), and then invoke
are valid assignments: in this case, only the first assighmen methodn on receivek.

will succeed.

invoke(e,m,e) checks if the value of receives
has methodh and the types of argu-
mentse are correct, and then invoke
the method on the receiver.

In summary, our compatibility relation allowgyn in a
type expression to be replaced with a concrete type and vice
versa. As we will see in the next section, however, its formal
definition is more subtle than might have appeared when we
take inheritance-based, nominal subtyping into accoun. D
to nominal subtyping, we take an approach different from the
previous work.

Table 1. Constructs for run-time checks.

2.2 Run-time Checks of c1 is an instance ofell<Rectangle> and not that

In order to ensure that statically typed code (or, more pre- Of Cell<Integer>. So, this cast requires run-time type
cisely, code that would be well typed in the standard type argumentinformation. There are other differences, whieh w
system) will not go wrong, errors due to dynamically typed discuss later, as well. )
code have to be captured at the “border” between the two A member access odyn will be translated toget or
worlds. For this purpose, we introduce an intermediate lan- 12voke, which checks the existence of the member at run-
guage, which has explicit constructs for run-time chedies; t time
semantics of the surface language, which we describe abovege11<qyn> c1;
will be given in terms of the translation to the intermediate c1.x.radius;
language. ~ get(cl.x, radius);

Although there is no direct semantics for the surface lan- c1.x.contains(1, 1);
guage, a program in the surface language can be mostly ~» invoke(cl.x, contains, 1, 1);
directly understandable because the translation onlytmse ] )
run-time checks and preserves the structure of a program.When ci.x has methodcontains, invoke above also
Moreover, run-time checks are inserted only where dynamic checks whether it can take_ two integers. .

As we have already discussed, the invocationset

types are involved. .So’ as far as stf’;\tlcally typed codg IS con 4 type Cell<dyn> will have to check whether the run-
cerned, the translation is the identity map, without iriegrt time type of the argument is appropriate for the run-
any run-time checks. Then, in order to show that statically tjme type argument to the receiver's class, even though
typed code never goes wrong, it suffices to show that all run- the existence of methodet is statically guaranteed.
time failures are due to those explicit checks. For such cases, we use method invocation of the form
We will give an overview of constructs for run-time ey.m[Ty,...,T,|C<X>] (e1,...,e,). For example, we
checks and the translation below. Table 1 shows constructshave the following translation.
for run-time checks and their intuitive meanings. In what
follows, we writee ~~ ¢’ to mean that a surface language
expression (or statemerd)s translated te’.
First, when an expression of a type that involdgsa is
passed to where a type withalitn is expected, a cat) is

cl.set( new Polygon(...) );
~» cl.set[X|Cell<X>] ( new Polygon(...) );

The annotations andCel1<X> record a parameter type and
a receiver’s static typbefore type parameters are instanti-

inserted: ated and are used to check the argument. It works as follows:

Cell<Rectangle> c2; Cell<Polygon> c3; Whenc1 evaluates to a valussw Cell<T>(...) for some

c2 = ci; typeT, the actual receiver typ@e11<T> is matched against
3w ci = (Cell<Rectangle>)cl; Cell<X> andX is bound toT. Then, the actual argument’s

c3 = ci;

type (herePolygon) is checked againdt, which is obtained
by replacingX with T in the recorded parameter type. So,
We use different parenthes€9 to denote casts because this method invocation succeeds whetis value is an ob-
the semantics is slightly different from Java’s. Note that ject ofCell<Polygon> (0r Ce11<T> whereT is a supertype
the first cast above has to check that the run-time value of Polygon).

~» ¢3 = (Cell<Polygon>)c1l;

3 2011/4/9



2.3 Ensuring “statically typed parts cannot go wrong”

Foo<Y®>... for the former andclass Foo<Y*®>... for

. i i O
One of our goals of the gradual type system is to ensure the latter. IfFoo is defined asclass Foo<YY>..., then

that “statically typed parts in a program never go wrong”,

no run-time check is inserted but the problematic expres-

in particular, class definitions that pass the standard typeSiOn above is rejected fit compile time. Otherwis&adb is
checker should not go wrong. Another desirable property of défineéd aslass Foo<y?>.. ., then the invocation cdet

the system is modularity of type checking, that is, determin
ing whether the given part of the program is statically typed
or not should be done by looking at no more than a single
class definition and type information that it depends on. We
also aim at implementation by erasure translatiort [8tu-

ally, modular checking and erasure translation make ik+ric
ier to ensure the safety of “statically typed code”.

First of all, even if a class definition contains no occur-
rence ofdyn, it should not be considered statically typed
because subexpressions may be given ype So, a sensi-
ble definition of a statically typed class definition is some-
thing like “a class definition is statically typed if thererie
occurrence oflyn and every subexpression is giverdgn-
free’ type.” In fact, as we will see later, in our translati@n
method invocation requires no run-time check if the reaeive
and actual argument types aredth-free. Then, a class def-
inition that passes the standard type checking will traasla
to itself, without run-time checks.

However, the problem is more subtle than it might have

will check whether the actual argument types are valid for
the formal (by using .m [T|C<X>] (?)).

Although, in principle, a programmer can choose the
kind for each type variable declaration in a single class
definition, we do not expect that a programmer wants to do
it. A practical design would be that a compiler option will
decide the kind of all the type variables in a compiled file
at once. In the beginning of development, the programmer
may compile most generic classes with kigd and then
switches some classes {p gradually as the development
progresses—such a switch would enforce their client code
to remove the use of dynamic types. In the rest of the paper,
we omit kinds of type variables when they do not make
significant difference.

2.4 Bounded Dynamic Types

Another problem occurs when a type variable is given an up-
per bound. To illustrate the problem, consider the follayvin
class:

appeared, due to the presence of type variables. In generalgiass shapeCell<x* extends Shape> {

type variables should not be considerégh-free simply
because type variables can be instantiated @th In fact,

X x; ShapeCell(X x){ this.x=x; }
void set(X x){ this.x=x; }

the following classes, which are typed under the standard poolean contains(double px, double py){

type system of generics

class StrCell extends Cell<String> {
void set(String x){ ... x.length() ...
¥
class Foo<Y> {
void bar(Cell<Y> c, Y x) {
c.set(x);

}

}
}

will raise a run-time error when combined with the following
code:

new Foo<dyn>() .bar(new StrCell(...), new Object());

The last expression passeStarCell and anObject to
Foo<dyn>.bar (), which expects &ell<dyn> and dyn,
and this is allowed due to the extended compatibility re-
lation we have already mentioned. Foo<Y>.bar(), an
objectx is passed taCell<Y>.set (). However, in this
case, the receiver is @trCell andStrCell.set () will
be called with an argumentw Object (), which does not
havelength()!

To avoid this problem, we separate type variables into two
kinds: one can only be replaced wittyn-free types, and

return this.x.contains(px, py);
}
}

ClassShapeCell, which is similar to clasgell above,
specifiesShape asX’s upper bound. Note tha&hapeCell
does not contaidyn anywhere and the whole class defini-
tion will be well typed in the standard type system of gener-
ics.

Now consider typ&hapeCell<dyn>. The question here
is what we can set ta. One choice would be to allow any
object to be set ta, as we did foICe11<dyn>:

ShapeCell<dyn> sc = ...;
sc.set( new Object() );

However, this choice would not be compatible with the im-
plementation by erasure, which translates the type of field
to be Shape, the upper bound of. In a language without
erasure semantics, for example if, @is choice would not
conflict with the implementation, but, as long as homoge-
neous translation [24] is used, we need to treat type variabl
X with kind ¢ asdyn. This leads to a major performance
disadvantage since operations on expressions ofityyeed

to be augmented with run-time checks that require member-

the other can be replaced with dynamic types. These kindsghjp tests: for example in the case above, the invocation of

are indicated in the class definition, for examptéass

10our compilation scheme actually requires support for inmettype argu-
ments. However, method signatures are subject to erasure.

contains On this.x need to be replaced with an expen-
sive run-time check bynvoke, which checks the presence
of methodcontains and (if exists) whether the types of for-
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mal and actual arguments match. Thus, our choice here is toobjectnew Cell<Shape>(...),the latter code fragmentis

keep compatibility with the implementation by erasure and

to avoid performance penalty as much as possible: in other

words, we reject the code above statically.

We introducebounded dynamic types, written dyn<T>
(whereT stands for a parametric type). A type parameter
with an upper bound can be instantiated by a bounded
dynamic typedyn<T’> when T’ is a subtype off. Thus,
ShapeCell<dyn<Shape>> is a well-formed type, whereas
ShapeCell<dyn<Object>> is not.

We define a bounded dynamic tyggn<T> to be com-
patible only with subtypes df. So, the following code will
be ill typed and rejected by the type checker.

ShapeCell<dyn<Shape>> sc
sc.set( new Object() );
// Object is not compatible with dyn<Shape>!

“ey

A bounded dynamic type has both static and dynamic typing
natures. While it still allows potentially unsafe operaso

just fine.

However, we should not use this compatibility relation
for casts. For example, consider the following (surface lan
guage) code:

Cell<dyn> c1 = new Cell<dyn>(new
Cell<Rectangle> c2 = cl; //
//
c2.x.methodOnlyInRectangle(); //
//

Polygon(...));
accepted thanks
to contravariance
accepted since
c2.x is Rectangle

On the second line, a run-time check
(Cell<Rectangle>)cl is performed. Since the run-
time type ofc1 is Cell<dyn>, if () used the compatibility
relation, the cast would succeed, resulting in the unexgect
method-not-found error! (Notice that the invocation of
methodOnlyInRectangle should involve no checks
because the receiver’s static type does not cormtyir)
Thus, we use another relatiencalledrun-time compat-

to be performed, it enforces static typing as far as membersipjjity for run-time checks. This relation is a subrelation of

defined in the bound are concerned. So, the first two lines
in the following code are still accepted (and checked at run
time) but not the thirdand fourth.

sc.x.anyField;

sc.x.anyMethod(...);

sc.x.contains(); // two arguments are expected!
Shape s = sc.x.contains(3, 4); // returns boolean!

In a real language, we do not expect programmers to
write those upper bounds explicitly. Rather, whéyn is

< and disallows contravariance: for examplel1<dyn> <
Cell<Rectangle> does not hold. However, it still allows
covariance (such aSell<Rectangle> < Cell<dyn>),
so it is more permissive than subtyping. (It is not com-
pletely safe—that is why we still need argument checks by
eo.m[Ty,..., T, 1C<X>] (e, ..., en).)

Having these discussions in mind, we formalize the core
of the surface and intermediate languages in the following
sections.

used as a type argument, the compiler can recover its up-

per bound automatically by assigning the upper bounds of
the corresponding type parameters in the generic class def
inition.® For other uses ofiyn, they can be regarded as
dyn<0Object>; in fact, we usedyn as an abbreviation of
dyn<0bject>, throughout the paper.

2.5 Two Compatibility Relations

As we have already mentioned, the type system of the sur-
face language uses the compatibility relation, denoted by

<, to check argument passing and assignments. This relatranslation from FGY™

tion has both co- and contra-variant flavors whiam is

considered a top type: for example, bail1<Shape> <

Cell<dyn> andCell<dyn> < Cell<Shape> hold and so
both

Cell<Shape> cl1 = ...; Cell<dyn> c2 = cl;

and

Cell<dyn> ci Cell<Shape> c2 = ci;

.oy

are accepted (statically). The reason to allow contramaga
(the latter kind of compatibility) is simply becausestime-
times runs safely. For example, whenl happens to be an

2|t could be allowed in the presence of overloading.

3For F-bounded type variables, such automatic recoveryfisudt. We
would have to have programmers write upper bounds explicitl

3. Featherweight GJ with Dynamic Types

In this section, we formalize the surface language¥6Gan
extension of FGJ with dynamic types to model a type system
of gradually typed generics. For simplicity, we omit some
features found in FGJ: F-bounded polymorphism, polymor-
phic methods, and typecasts, which would be easy to add.
We focus on the type system in this section and leave the
definition of the intermediate language called £&and

to FGJ2. For those who are famil-

iar with FGJ, we ust gray boxes to show differences from
FGJ.

3.1 Syntax and Lookup Functions

The abstract syntax of F&3 classes, constructors and
method declarations, and expressions are defined as follows

Definition 1 (Syntax of FG¥™).

Kb o= 4]0

S,T,U,V == X |N| dyn<N>

N,P,Q = C<T>

e == x|newN(@) |e.f |e.m(®)

L = classC<X"«N> « N{TTF; X M}
K = C(T f){super(f); this.f=f;}
M = Tm(Tx){ returne; }
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The metavariables, B, C, D andE range over class names;
W, X, Y and Z range over type variable®, P andQ range
over class typesdfn<N> is not a class type}, T, U andV — .
range over types; and: range over kinds of type variables; ~ 7ype(m, N) =T — T looks up the type of methadin
f andg range over field names;ranges over method names; classi or its super type.
x ranges over variableg} and e range over expressions; ~ nomethod(m, N) _h0|d5 when_there is no methad
L ranges over class declaratiois;anges over constructor in classN or its super type.
declarations; andt ranges over method declarations. We
assume that the set of variables includes the special Variab Table 2. Definition of FGJ™: Auxiliary functions and
this. predicates.

We write f as shorthand for a possibly empty sequence
fi,fs,...,f, (and similarly forC, X, N, T, %, &, etc.) and
write M as shorthand foM;...M,, (with no commas). The

length of a sequence is written #(£). We write f € £ a class type, it returns the given type itself. Whignund

whenf_equals tof; wherel S s #(f)’ and writef ¢ £ is used with a dynamic type, it returns the bound of the
otherwise. We also abbreviate various forms of Sequencesyy namic type. We have a functiohind to look up kinds
of pairs in the obvious way, writingT' £” as shorthand '

" . il = - of type variables. We use a predicalgfree to state that a
szr_T,} f1,...,Tn £," Where #(T) ~ #(f“)’ and 3|m|Ia,r'Iy type is dynamic-free, i.e., it contains no dynamic type.
T £;” for the sequence of declaration®,“f;---T,f,;",

“this.f=f;” for “this.f;=f;;---this.f,=f,;", and 3.2 Subtyping and Compatibility

PR T o ” .
X" <" for “ X, dqoll\h > t SN ,1[\1" -tWe V\]/cme the empty . Now we define subtyping and compatibility relations. As we
sequence ae and denote concatenation of SEqUENCES USING, 5,6 mentioned, there are two compatibility relationstwri

a comma. Sequences are assumed to contain no duplicatg,, - for ryn-time compatibility andS for static compati-
names. We abbreviate the keywargltends to the symbol bility). We write A - S <: T to means is a subtype of

< T under bound environmenk. Similarly for A - S X T
andA F S < T. We abbreviate a sequence of judgments
AFS < Ty,...,AF8, < T,t0A S < T (and
similarly for < and<).

fields(N) =T £ collects fields in clasd and its
super type.

triples of a type variable, its kind and its bound, where type
variables are pairwise distinttWhen bound is used with

dyn<N> is a type of dynamically typed expressions. Since
it is not a class typelyn<N> can neither be used to instanti-
ate an object (byew expressions) nor be used as a bound of
a type variable. We always write the boukdh the formal
language whe is notObject, but the real programming ~ Definition 2 (FGJ¥" subtyping and compatibility) The
language should allow bounds to be omitted from the source Subtyping and compatibility judgments ~ S <: T and
code. As we discussed in the previous section, it is easy toA F S < TandA + 8§ < T are defined by the rules in
recover the bounds for most cases. Similarly, it is reasienab Figure 2.

to treatC without the arguments &xdyn, . . . ,dyn>. The subtype relatior: is mostly the same as that of FGJ.

A program in FG3™ is a pair (CT, ) of a class table,  The first two rules mean that it is reflexive and transitive;
which is a finite mapping from class nameg class decla-  {he third rule that a type variable is a subtype of its bound:
rationsL, and a closed expression corresponding to the body ihe fourth rule is about inheritance-based subtyping—any
of themain method. We assume thafl” satisfies some san-  giance of a clause gives subtyping. The last rule says a
ity conditions: (1)C'7'(C) = class C<X < N>< ... {...} bounded dynamic typéyn<N> is a subtype of its boun.
for everyC € dom(C'T); (2) Object ¢ dom(C'T); (3) for In fact, dyn<N> andN denote the same set of instances—
every class name (excepibject) appearing anywhere in  instances off and its subtypes andyn<N> allows more
CT, we havec € dom(C'T); and (4) there are no cycles  gperations (which are potentially unsafe, though) to be per
in the transitive closure of (as a relation between class ormed thany. So,dyn<N> <: N indeed agrees with the
names). In what follows, we fix a class table. substitution principle [22].

As in FGJ, we use functiongelds andmiype to look up The compatibility relations are defined with the help of
field definitions and method types in a given class table. We 5, auxiliary relation<. Intuitively, S < T means thaf
also use a predicateomethod to state non-existence of a 5 gptained by replacing some class typesSimith dy-
method. We omit their straightforward definitions (see ap- amic types (with an appropriate bound). For example,
pendix or lgarashi, Pierce, and Wadler [16] for the defini- Rectangle < dyn<Object> andCell<Rectangle> <
ti_ons pfﬁelds andmtype); their functionalities are summa- Cell<dyn<Object>> hold (under any bound environment).
rized in Table 2. So, < represents a form of covariance. Then, the compati-

Some other auxiliary functions are defined in Figure 1. bility relations are defined as compositions-efand <:i—

We use a functiorbound to compute the upper bound of & he former ag<:; <) (-; - is a composition of two relations)
type in a bound environmerk, which is a finite sequence of

430, A can be considered a finite mapping.
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Bound environment
A(X) = (k,N) A(X) = (k,N)
———————  bounda(N) =N  bounda(dyn<N>) =N —_—
bounda(X) =N kinda(X) = &
Dynamic-free types
kinda (X) = ¢ dynfree A (T)
dynfree o (X) dynfree A (C<T>)

Figure 1. Definition of FG3"™: Auxiliary functions and predicates.

Subtyping
AFS<U AFU< T
AFT<T A F X <t bounda(X)
AFS<T
class C<X" al> < N{...}
— — A F dyn<N> <: N
AFC<T> < [T/X]N
Compatibility
AFS=<U AFU<T AFS<: U AFU<T
AFT<T
AFS<T AFSXT
AFS<T AFT<:S AFS=<N AFU<S AFUXT
A F C<S> < C<T> A F T < dyn<N> AFS<T

Figure 2. Definition of FGJ'™: Subtyping and compatibility.

and the latter a<~'; <i; <), where<~! is the inverse of ~ Definition 3 (FGJ¥" type well-formedness)The type well-
~< and represents a form of contravariance. As a result, two formedness judgmen - T ok, read as “in bound environ-
types are statically compatible if replacing dynamic types mentA, typeT is well formed,” is defined by the rules in
with class types yields two types in the subtyping relation.  Figure 3.

Forexample, The last rule means that a bounded dynamic type is well
A Cell<dyn> < Cell<Rectangle> formed if its upper bound is well formed. The third rule
means that a class type is well formed if well formed type
can be derived sinc@ell<dyn> <! Cell<Rectangle>. arguments that satisfy the corresponding type parameters’
Also, upper bounds. Note that we ugerather than<: or <. First,
<! cannot be used because we want to use dynamic types
A | Cell<dyn<Shape>> < Cell<dyn> as type arguments. For examplel1<dyn> is well formed
becausedyn < 0Object. < should not be used, either,
since Cell<dyn<Shape>> <! Cell<Shape> because we want to reject a type liReapeCell<dyn>.
and Cell<Shape> =< Cell<dyn>. (Note that (Note thatdyn < Shape.) The third rule also requires that
Cell<dyn<Shape>> <: Cell<dyn>doesnot hold.) type arguments must be dynamic-free if the kind of the
dyn<Object> can be considered either a top type or corresponding type variable {s
a bottom type, i.,e.A = T < dyn<Object> and A F Now we are ready to define typing. We uBeas a type

dyn<Object> < T are satisfied for any, and the relation  environment, which is a finite mapping from variables to
< is not transitive because otherwidet- S < T would be types, writteri: C.
implied for anys,T (as mentioned in [25, 26]iyn<N> can

also be considered as a top/bottom type for subtypais of ~ Definition 4 (FGJ™ typing). The type judgments\; T k¢

e: T, read as “in environmernk andl’, expressior has type
3.3 Type Well-formedness and Typing T,”andM OK IN C<X<N>, read as “methott is well-formed
in classC<X < N>" andL 0K, read as “clask is well-formed”

We, then, define well-formed types and typing. are defined as in Figure 4
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class C<X <N> < N {...} AFTok
Vk; € R.( k; = O implies dynfree 5 (T;) )
Xedom(A) VT €T.(AFT; < [T1/X1,. .., Tic1 /X1 |N; ) A+ N ok
A+ X ok A C<T> ok A k= dyn<N> ok

A F Object ok

Figure 3. Definition of FGJ': Type well-formedness.

Expression typing
AbgNok  fields(N)=Tf% AT g e:U AFUST
A;T Fg x: (%) (Te-Var) (Te-NEw)
A;T' Fg new N(e):N

AT Fgeg:To A;T Fg ep: dyn<N> f¢f
fields(bounda(Ty)) =T £ fields(N) =T £
(TG-FIELD1) (Ta-FIELD2)
A;TFgeg.fi: Ty A;T g ep.f:dyn<Object>

AT Fg eg:To AT Fge:V miype(m, bounda(To)) =S — S AFVSS
A;T'Fg ep.m(@): S

(Ta-INnvkl)

A;T Fg eg: dyn<N> A;T Fge:V nomethod (m, N)
A;T Fg ep.m(8) :dyn<Object>

(Ta-INVK2)

Method typing

miype(m, N) =U — UimpliesT=Uand AFT XU

overridea (m, N, T — T)

A=X"<: T AFT,T ok A;X:T,this:C<X> kg ep: S
AFSST class C<X"al> <« N{...} overridea (m, N, T — T)
Tm(TX){ returnep; } OKINC<XaN>

(Ta-METHOD)

Class typing

VN;

N(XE < Ny, X0 < Ny FNjok)  X° <t NEN,Tok
fields(N) =T

€
Ug  MOKINC<X<N> K= C(Ug, Tf){super(g); this.f=f;}
class C<X" <N> < N {T f; K M}OK

(Ta-Crass)

Figure 4. Definition of FGJ"™: Typing.

Most of the rules are straightforward adaptation of those the overriding and overridden methods and the return type
in FGJ [16], except that the relatio is substituted fok<:. of the overriding method must be run-time compatible with
TG-FIELD2 and TG-INVK 2 are additional rules, used when that of the overridden method. We cannot Séere: if <
the receiver type is a bounded dynamic type. Note that thesewere used, it would be possible to override a method that
rules are applied only when it is not known whether the returnsT by one that returngyn<Object> in a subclass,
receiver has a field or method to be accessed (the premisesind then to override it by another that retutnfr any S.

f ¢ £in TG-FIELD2 andnomethod (m, N) in TG-INVK2). As a result, invoking a method, whose static return type is
This givesdyn<N> a characteristic of ordinary class types.  might actually invoke the third method that retussvhich

The predicateoverride, used in method typing, is to  can be very different frord, due to late binding!
check if a method in classN can be overridden by a method
of typeT — T. Parameter types must be the same between
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We write g (CT,e) : T to mean the program is well e = x|newN(d) |e.f|e.m(@)
formed, i.e, if all the classes i7" are well formed ane is | get(e,f) | e.m[TIC<X>](3)
well typed under the empty environments. ’

We have not completed to develop a type checking algo- | invoke(e,m,®) | (NDe

rithm. In fact, it is not even clear that the compatibility re | Error[£]
lation < is decidable for the same reason as variance-based v,w := new N(¥)
subtyping [20]. £ ::= NoSuchField | NoSuchMethod

| IllegalArgument | BadCast

Conservative Typing over FGJ. Even at this point, we
can show an interesting property that typing in EGJs

a conservative extension of that in FGJ. Namely, as far as
a class table written in the FGJ syntax is concerned, it is

We avoid repeating the definitions of the following func-
tions, predicates, and relations since they are definedlgxac
the same way as in F&3.

well typed under the FGJ rules if and only if it is well typed Functions | bound
under the FGY" rules. The following lemma is a key to the kind
conservative extension property (Theorem 6). fields
miype
Lemma 5. Predicates dynfree
o If A S < Tanddynfreen(T), thens = T. nomethod
o If A+ S X Tanddynfree(T), thenA 8 <: T. override
o If A8 < Tanddynfree,(S), thenA =S X T. Relations | Subtyping<:
o If A+ 8 < Tanddynfreea(S) and dynfree »(T), then Compatibility <, <
AFS<T. Judgments Type well-formedness

Some more auxiliary functions are listed in Figure 5.
(8 <= T)ae inserts a cast when source typés not run-
time compatible withS. This reduces unnecessary casts.
Theorem 6 (FGJ¥™ Typing is Conservative over FGJ Typ-  tyargs(N, C) is used in the reduction rules described later to
ing). If & = O for every class <X ali> aN{...}inCT get type arguments from run-time types. We also use a func-

and none oflyn<P> appears ifCT, ), then-gg; (CT), &) : tion mbody (m, N), which returns a pai. e of a sequence of
T «= g (CT,e) : T. formal parameters and a method body expressionhésm.

Its straightforward definition is omitted.
We show the main typing rules of F& in Figure 6.

We writeFgc; (CT, e) : T if the program, which does not
containdyn<N>, is well formed under the FGJ rules.

An important point to note is that we use only the run-time
dyn « D P . P . . y
4. From FGJ™ to FGJ compatibility< and no< appearsin the typing rules because
In this section, we first define a formal model F&Jof a use of< compiles to a cast ), which usesx for its run-

the intermediate language, into which source programs aretime check. R-INvk 1 is the rule for a method invocation
translated. FG® has operational semantics, as well as a without run-time checks. The receiver type mustdye-
type system. After stating theorems about type safety of free. TR-INVK 2 is the rule for a method invocation with run-
FG\f(D, we present formal translation from F&9to FGﬂD time argument checking:<T> can be considered an initial
and state theorems that translation preserves typing. We ha (i-e., compile-time) static type of receivep; N < C<T>
weak and strong versions of type safety: the weak versionis required since the receiver type may change as reduction
means that a well typed program can raise errors only atproceeds. R-INVK 3 is the rule for a method invocation that
run-time checks and the strong version means that a wellchecks whether the methadexists at run time. The receiver
typed program without containing run-time checks never and arguments can be arbitrary typeable expressions and the
goes wrong in the usual sense. type of the invocation igyn<0Object>. TR-CAST is the rule
for casts; and R-ERRORIs the rule for errors.

We omit typing rules for object constructions, field ac-

4.1 The Target Language FG$> cesses, methods and classes, since they are similar to those

The syntax of FG® extends that of FG¥, by including in FGJY™, We writetr (CT'e) : T to mean the FGP pro-
special forms for run-time checks and run-time errors. We gram(C’T, e) |s_well formed. o
show only the grammar for expressions, values (used to \We give main reduction rules in Figure 7. The evalua-

define the semantics), and errors; the others are the same. tionorder s, unlike FGJ, fixed to be left-to-right and dayl-
value to deal with run-time errors more precisely. b 1

Definition 7 (Syntax of FGgD). and R-Nvk 1 are quite standard. They checks the existence
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Cast insertion Type arguments
(S =T)re = © (ifAFT=S) — _ eFN<P tyargs(P, C) =T
2T @sve (otherwise) tyargs(C<T>, C) =T —
tyargs(N,C) =T

Figure 5. Definition of FGS2: Auxiliary functions.

A;TFreo: Ty A;FI—Ré:V bOUTLdA(TQ):P AFP XN
dynfree 5 (N) mtype(m, N) =S — S AFVXS
A;TFR eg.m(@):S

(Tr-INVKL)

A;T FR eg:To AT Fre:V bounda(To) =N AN < [T/X]C<X>
mtype(m, C<X>) =U—U  AFV <X [T/X]U

E—— — (TRrR-INVK2)
A;T Fr ep.m[UlC<X>] (&) : [T/X]U
AT FR oeg:To AT Fre:V AT Fre:S
(TrR-INVK3) (Tr-CAST)
A;T' kg invoke(ep, m, €) : dyn<Object> A;T'Fr (T)e:T
A;T' kR Error[£]: T (Tr-ERROR)
Figure 6. Definition of FGS?: Typing.
lds(N) =T £ lds(N) =T £
fields(N) (R-FIELD1) fietds(N) (R-FIELD2)
new N(¥) .f;, — v; get(new N(V), £;) — v;
o-NXT mbody(m, N) =X.eg
(R-CasT) (R-INVK1)
(T)new N(¥) — new N(V) new N(¥) .m(W) — [W/X, new N(V) /this]e
mbody(m, N) = X.eq W=newP(...) o - P X [tyargs(N, C)/X|U
(R-INVK2)

new N(¥) .m[U|C<X>] (W) — [W/X, new N(¥) /this]eg

mbody(m, N) = X.e mtype(m, N) =U —U  wW=newP(...) o-PXT

(R-INVK3)
invoke (new N(¥) , m, W) — [W/X, new N(¥) /this]eg

Figure 7. Definition of FGS?: Reductions.

of a field/method in the receiver type but the check should  We also have reduction rules for errors shown in Figure 8.
never fail for well-typed expressions as we will see later. R Each rule has premises negating those in the corresponding
FIELD2, R-INVK 2, R-INVK 3 and R-Q@sT are for run-time reduction rule. Note that only run-time checks have error-
checks, which can raise a run-time error. In R¢k 2, the raising reduction. We also need rules that propagate raised
type arguments in method parameter types are filled accord-errors upwards; but we omit them.
ing to the run-time class of the receiver value, and checked FGJ? is (weakly) type-safe in the sense that a well-
against the run-time class of the actual arguments. In R-typed program, if terminates, yield a value or raise an error
INVK3, we need to look up the method argument types by Moreover, if a program does not contain dynamic types, then
mtype to perform run-time checks for actual arguments. The it is strongly type safe.
rule R-CAST means that a cast succeeds when the subject
type is run-time compatible with the target type.

Theorem 8(FGJ@ weak type safety)If Fr (CT,e): Tand

e —* e’ wheree’ is a normal form, thewr’ is either
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o-NAT
(T)new N(¥) — Error[BadCast]

fields(N) =T £ fef
get(new N(V), ) — Error [NoSuchField]

(E-CasT)

(E-FIELD)

nomethod (m, N)

(E-INVK)
invoke(new N(V) ,m, W) — Error [NoSuchMethod]

mbody(m, N) = X.eq o - P; A [tyargs(N, C)/X]U;

W=newP(...)
new N(¥) .m[U|C<X>] (W) — Error[IllegalArgument]

(E-INVK-ARG1)

mbody(m, N) = X.eq mitype(m, N) =T — U W=newP(...) oP; AU,

(E-INVK-ARG2)
invoke (new N(¥) , m, w) — Error[IllegalArgument]

Figure 8. Definition of FGS?: Error-raising reductions.

1. avaluer with e;e g v:Nande - N X T,
2. an erroError[£].

Theorem 11 (Strong translation) If & ¢ for every
class C<X"aN> <N {...} in CT and none ofdyn<P>
appears in(CT,e) andF¢ (CT,e): T, then(CT,e) ~
(CT’,e') andtr (CT’,€’): T for some (CT’,e’) and
(CT’, e’) does not contain run-time checks.

Theorem 9(FG;@ strong type safety)If g (CT,e): T
where(CT, e) does not contain run-time checks and—*
e’ wheree’ is a normal form, there’ is a valuev with

e;e g v:Nande - N X T. Combining Theorem 8 and Theorem 10, we can see that a

member access which translates to an ordinary member ac-

These theorems are proved in a standard manner of com . ; i .
cess without run-time checks will not fail. In other words, a

bining subject reduction and progress [34]. The statements

and proofs of both properties are, in fact, very similar to
those for FGJ. One non-trivial property required is transi-
tivity of <.

4.2 Translation from FGJ¥™ to FGJ<D

A judgment of translation from FGJ to FGJ? is of the
formA;T F e ~ ¢': T, read “FGI™ expressiore of typeT
under environment andA translates to FG expression
¢’ The translation is directed by typing in F&3. We show
only the rules for method invocations in Figure 9.

TRNS-INVK1 is for ordinary invocations; casts are in-
serted for testing run-time compatibility of argumentsv If
aredyn-free, then actually no casts will be inserted, thanks to
Lemma55. RNS-INVK 2 is for invocations whose arguments
must be checked at run time. Note that the receiver §ype
in these two rules can b&n<N> when there is an appro-
priate methodh in N because the existencemfs statically
guaranteed. RNsS-INVK 3 is for invocations whose receiver
type isdyn<N> andN has no appropriate methad

Although we omit its definition, we writdCT,e) ~~
(CT’,e') to mean that the FGJ program(CT, e) is trans-
lated to the FG¥ program(CT’,e’). Then, the translation
preserves well-typedness, i.e., a well-typed ¥&grogram
translates to a well-typed F& program.

Theorem 10 (Weak translation) If F¢ (CT,e): T, then
(CT,e) (CT',e’) and g (CT’,e’): T for some
(CT’, €.

o

11

statically typed portion (method invocations whose reeeiv
and argument types adgn-free) will never fail. That is the
type safety of FGJ™.

5. Implementation

In this section, we report the basic implementation scheme
for Java. Our plan is to add a new compilation phase to
transform the code tree to have the run-time checks inserted
as the same way as the other existing compilation phases
such as the type erasing transformation. The transformatio
follows the rules in Section 4 and the run-time checks can
be implemented using existing reflective features of Java.
Since the current JVM has no run-time information of type
arguments of generics, we need a mechanism to look up full
run-time type information. We follow the technique of type
passing [30-32] for this.

5.1 Run-time Checks

The run-time checks (T)e, get(e, ) and
invoke(e,m, €) can be implemented by reflection APIs
such asjava.lang.Class, java.lang.reflect.Field
and java.lang.reflect.Method. We implement a
classCla to represent type descriptors and a static method
Cla.$ () to getthe run-time type information obj includ-

ing type arguments. The return value@fa.$(...) is a
type descriptod (an instance of clasila described in more
details later), which has fieldl of a java.lang.Class
instance, fieldp of an array of type descriptors of type
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AT Heg~e):To
dynfree o (N)

ATFe~e:V
mtype(m, N) =S — S

bounda(Tp) =N
AFVESS

(TrNs-INVK1)

AT Feg.m(@) ~ e).m({S<V)ae'):S

AT Feg~e):To
~dynfree o (C<T>)

A;THe~e:V

miype(m, C<X>) =T — U

bounda (To) = [T/X]C<X>
AV [T/XU

(TrNsS-INVK2)

AT Fep.m(@) ~ e).m[UIC<X>] (([T/X]U < V)a®") : [T/X|U

A;T - eg ~» ef): dyn<N>

A;TFe~e:v

nomethod (m, N)

(TRNS-INVK3)

A;T F eg.m(8) ~ invoke(e(, m, &) :dyn<Object>

Figure 9. Translation from FGJ™ to FGJO.

arguments, and of an array of a superclass chain, where
d.h[0] isditself andd.h[d.h.length-1] iSObject.

The cast(T) e, which corresponds to RA3T, can be
implemented as the following methedst (), which casts
obj to classklass.

Object cast(Cla klass, Object obj) {
if ((obj instanceof Parametric &&
isRuntimeCompatible(Cla.$(obj), klass)) ||
klass.cl.isInstance(obj)) {
return obj;
} else throw new ClassCastException();

}

If the type of obj has type arguments, then
isRuntimeCompatible() method checks if the type

of obj and the target type of the cast satisfy the relation
<. Otherwise, the cast acts as a normal one, which uses

the subtype relation<:. The argument type checking for
e.m[T|C<X>](e) in R-INVK2 can also be done by this

method. Although not proved, we conjecture that the

explicit transitivity rule for< is actually redundant. Without

transitivity, it is easy to check run-time compatibility.
Since(T) is inserted by the translation and typesn

e.m[T|C<X>] (&) are specified by the translation, the target

The evaluation ofinvoke (e, m, @), which corresponds
to R-INVK 3, can be implemented as the methagroke ()
below. Supposelet is a class for parameter types of a
method, which has field of java.lang.reflect.Method
and fieldparams of method type descriptors. Also suppose
mtypes () is a method to look up method signatures by a
method name.

Object invoke(Object r, String m, Object[] args) {
Met[] mets = mtypes(r, m);
M: for (int i=0, l=mets.length; i < 1; i++) {
if (mets[i].args.length != args.length)
continue M;
for (int j=args.length-1; 0 <= j; j--) {
try {
mets[i] .params[j].cast(args([j]);
} catch (ClassCastException e) {
continue M;
}
}

return mets([i].m.invoke(r, args);

throw new NoSuchMethodException() ;
}

invoke looks up methods named, and call the first

type of a cast can be determined mostly at compile time, method whose parameter types match the argument types.

except the type arguments foihave to be filled at run time.

The evaluation oget (e, £), which corresponds to R-
FIELD?2, is quite easy. We haibject . getClass () to get
an instance ofjava.lang.Class, which hasgetField ()
method. getField() looks up a field by a field name
and throws NoSuchField exception when no field is
found. The return value ofetField() is an instance of
java.lang.reflect.Field, which hasget() method,
which retrieves the field value from the receiver.

Object get(Object r, String f) {
Field f1d = r.getClass().getField(f);
return fld.get(r);

}

12

cast () is used to match parameters and arguments. If the
casts succeed, thefava.lang.Method. invoke API per-
forms real invocation of the method. Otherwise, it throws
NoSuchMethodException. Note that the target type of the
cast must be determined at run time because we have no in-
formation of the receiver type at compile time.

5.2

As we have already seen, we need information on type ar-
guments at run time. It requires additional memory usage
and time costs, but relatively high performance technigue i
proposed by Viroli et al. [30—-32]. We quickly review this
technique.

Information on Type Arguments at Run Time

5We are not concerning method overloading here for simplicit
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The basic idea of this technique is to pass type informa- but we can say it is not so expensive according to the re-
tion as a field of an object by transforming the code. For ex- sult. We can say the same thing about the run-time check
ample, the following code describes how the transformation in the expressiore.m[T|C<X>] () since it only needs a
goes. cast for each argument. The run-time check in the expres-
sionget (e, f) is relatively expensive because it uses a fea-
ture of java.lang.reflect.Field. The run-time checkin
the expressionnvoke (e, m, €) is quite expensive but the
cost seems somewhat inevitable cost since it must resolve a

Cell<Shape> c
= new Cell<Shape>(new Rectangle(...));
// Cell<Shape> ¢

// = new Cell<Shape>( . .

// new Cla(Cell.class, method signature and check run-time types of the arguments.
// new Clall{ In Table 4, we have tested casts with more complex target
// new Cla(Shape.class) }), types. We used a dynamic type argument for the target type.
// new Rectangle(...)); The dynamic type argument has a bound, which is a class

. o ) type possibly including another dynamic type argument. We
The first line is the_ongmal code, a_nd _the comment is the count the nested dynamic type argument as depth and the
translated code. The instancetak, whichis a type descrip- - reqyit for each target type of the depth is listed in the rows.
tor class, is passed as a first argument of the constructor. Of

course, the definition of clagg11 is also transformed to re- Depth(s)\ # of iterations 100 10000 1000000
ceive a type descriptor at the constructor, and to implement 0.000 0.004  0.105
an interface, which provides access to the type descriptor. 0.000 0007 0171
The transformation described above is not optimized at 0001 0009 0235
all: a new type descriptor is generated every time the con- - - -
structor is called. So, a mechanism to reduce the number of 0.001 0.008 0.268
generations of type descriptors to once for a distinct type, 0.001 0.009  0.301
using double hashing, is reported in [30-32].

gl wW|IN| -

Table 4. Execution time of casts (sec.)

5.3 Preliminary Benchmark Evaluation
Since we have no working compiler yet, we only give bench-  We can conclude that the operation for checking the run-
marks for each run-time check with minimal hand-translated time compatibility< is not too expensive in comparison with
code using those checks separately. These may help to sef€ other run-time checks.
if our implementation idea is reasonable and how dynamic
types slow down execution of the program. Execution of 6- Related Work
dynamically typed code is quite expensive especially for There is much work on mixing dynamic and static types (see,
method invocations on a receiver of dynamic type, but we for example, Siek and Taha [25, 26] for a more extensive sur-
believe that the cost is not unacceptable. vey). Here, we compare our work mainly with related work

Benchmarks for each run-time check is shown in Table 3. on object-oriented programming languages and parametric
For each run-time check, we used test code including a sin-polymorphism.
gle expression with a run-time check and the same expres- We first review proposals to apply static type checking to
sion without it. Each test code iterates 100/10000/1000000dynamically typed languages. Bracha and Griswold [7] have

times and overall time consumptions are listed. proposedrongtalk, which is a typechecker for a downward
compatible variant of Smalltalk, a dynamically typed class
# of iterations 100 10000 1000000 based object-oriented programming language. The type sys-
(T)e 0.006 0.019 0.125 tem of Strongtalk is structural and supports subtyping and
e 0.004 0.008 0.087 generics but does not accept partially typed programs-Thie
get (e, ) 0003 0043 0356 mann [28] has proposed a type system for (a subset of)
o f 0.001 0.003 0.056 JavaScript, which is a prototype-based object-oriented la

guage, to avoid some kind of run-time errors by static type

e.n[TIC<X>](e) | 0.000 0.003 0.072 checking. Furr, An, Foster, and Hicks [12] have developed

?'m(é) _ 0.000 0.002  0.080 Diamondback Ruby, an extension of Ruby with a static type
invoke(e, m, ) | 0.007 0.093 3.430 system. Their type system, which seems useful to find bugs,
e.m(e) 0.000 0.003  0.069 however, does not offer static type safety.

Anderson and Drossopoulou [3] have proposed a type
Table 3. Execution time of each run-time check (sec.) system for (a subset of) JavaScript for the evolution from
JavaScript to Java. Although it is nominal and concerned

For the expressiodT) e, we used a static type for the about script-to-program evolution, their type system does
target type of the cast. The cast looks into type argumentsnot have subtyping, inheritance, or polymorphism; more-
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over, this work is not concerned about safety of partially subtyping with both co- and contra-variant parametric $ype
typed programs in the middle of the evolution. though only statically resolved members can be accessed on
Lagorio and Zucca [21] have developed Just, an extensiona receiver of a wildcard type and it is not allowed to specify
of Java with unknown types. Although there is some overlap a wildcard type as a type argument innaw expression.
in the expected uses of this system and gradual typing, theRaw types are proposed by Bracha, Odersky, Stoutamire,
main purpose of unknown types is to omit type declarations; and Wadler [6] to deal with compatibility between legacy
possibly unsafe use of unknown types is rejected by the typemonomorphic Java code and new polymorphic Java code. A
system. They use reflection to implement member access orgeneric clas§<X> can be used as a raw typegwithout type
unknown types. arguments, and assigning a valuecafT> to a variable of
Gray, Findler, and Flatt [13] have implemented an exten- C, or even creating an instance ©¥ia new expression are
sion of Java with dynamic types and contract checking [10] allowed. This behavior is similar to F&3's if we consider
for interoperability with Scheme. They mainly focus on the C to be an abbreviation of<dyn, ..., dyn>. However,
design and implementation issues and give no discussion orwith raw types, even statically typed code can go wrong.
the interaction with generics. Their technique to implemen
reflective calls can be used for our setting. 7. Conclusions
As we have already mentioned, Siek and Taha have stud-

ied gradual typing for Abadi-Cardelli’s object calculu$]2 We haveddesign_ed z_a”!anlguage, whi|<|:h co(;nbine_s dynarnic
However, the language is object-based (as opposed to classYPeS and generics. The language a ows gynamic types_ to
be used as type arguments of a generic class and realizes

ic pol hismi ied. Anoth
based) and parametric polymorphismis not studied. Anot ersmooth interfacing between dynamically and staticallyetyp

pointis that the implementation of run-time checks for slas de thanks 1o the flexibl tibility relation. We h
based languages seems easier than that for object-baseft‘fl0 € thanks to the flexible compatibility refation. ¥ve have
troduced bounded dynamic types to deal with the case

languages, since, in class-based languages, every value ig}h : ter with bound
tagged with its run-time type information and the check w _Ie_:]ez? ype para_tmfe erwl|_ 3” Upper. (_)unl ) del of
can be performed in one step (unlike higher-order contract € language IS formaliized as a minimal core model o

checking, which checks inputs to and outputs from functions Java including the feature of generics. As in Pther gradual
separately). type systems, we have proved safety properties, which en-

Sage [14], a functional language based on hybrid type sure that statically typed parts in a program never go wrong.

checking [11], supports both parametric polymorphism and we have_als_o revjewed the sketch of implementation
dynamic types. Matthews and Ahmed [23] and, more re- SCheme’ which is an idea to d.ev.elop a gradually typgd Java
cently, Ahmed, Findler, Siek, and Wadler [2] give theoret- com_pll_er by extending an existing Java compiler without
ical accounts for the combination of impredicative polymor modifying JVM.

phism with dynamic typing. In all of these works, a dynamic  Fytyre Work. Our run-time compatibility does not al-
type is compatible (in our terminology) with universal tgpe g argument passing, for example, froell<dyn> to
whereas there is no counterpart of universal types in our set Cell<Rectangle>. It might be too early to abort the exe-
ting. None of them has addressaatinded polymorphism. cution at this point since the value in tise11 may not be
Wrigstad, Nardelli, Lebresn@stlund and Vitek [5, 35]  ysed atall. We think we can relax the restriction by defeyrin
have developed a language called Thorn, which integratesthe check until the field is accessed. Then, we need a blame
static and dynamic types in a different way. They have in- assignment system [2, 33] for precise error reports.
troduced the notion ofike types, which interface between When a library bytecode of a generic class compiled by
statically and dynamically typed code. A variableldfke the standard Java compiler is used with a client bytecode
Cis treated as typ€ at compile time but any value can flow  compiled by our compiler, the client is not allowed to use
into the variable at run time (subject to run-time checks). dynamic type arguments to the generic class since type vari-
This is different fromdyn<C>, which allows any operations  apjes in the generic class are declared without HndVe
statically but only subtypes afcan flow into. think that converting the library bytecode at load time kelp
Bierman, Meijer and Torgersen[4] added dynamic types ig relax this restriction.
to C*. They also translate a program of the surface language e also plan to investigate the interactions of dynamic

into intermediate code, which has explicit run-time checks types with other features such as overloading to make the
In their setting, dynamic types can be arguments of generic|gnguage more realistic.

class, but their subtype relation is only invariant withpest
to type parameters, so, for example, it is not possible te pas
Cell<Rectangle>t0 Cell<dyn>. Acknowledgments )
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A. Definitions

Field lookup 3
class C<X"aN> « N{SF; ... }  fields([T/X]N)=TUg
fields(C<T>) =TUg, [T/X|SE

fields(Object) = o

Method type lookup

class C<X" all> < N{...; M class C<X" all> < N{..; M}
Um(U X){ returne; } €M m¢M mtype(m, [T/XIN) =T — U
mtype(m, C<T>) = [T/X]|(U — U) mtype(m, C<T>) =T — U
class C<X"<N> a N{...; M} m¢M  nomethod(m, [T/X]N)

nomethod(m, Object) nomethod (@, G<T5)

Figure 10. Definition of FGJ"™: Auxiliary functions and predicates.

Method body lookup

class <X alf> a N {. .., M class C<X" all> a N {. .., M
Um(U X){ returne; } €M m¢M mbody(m, [T/X|N) =X.e
mbody (m, C<T>) =%.[T/X]e mbody(m, C<T>) =X.e

Figure 11. Definition of FGS?: Auxiliary functions and predicates.
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AFUXT

Expression typing
AFNok  fields(N)=Tf% AT R e U
A;T Fgr x:T(x) (TR-VAR) (TrR-NEW)
A;I'Frnew N(e) : N
A;T FR eg: Ty
(TrR-FIELD2)

AT Fgep:T lds(bounda(To)) =T*
;DR oeg: To fields(bounda(To)) (TR-FIELD1)

AT FReg.£5:T; A;T g get(ep, £) :dyn<Object>

A;TFreo: Ty A;FI—Ré:V bOUTLdA(TQ):P AFP XN
dynfree 5 (N) miype(m, N) =S — § AFVXS

A;P |_R eo.m(é):S

(Tr-INVKL)

AT Fre:V bounda(To) =N AN < [T/X]C<X>

A;T R eg: Ty
mitype(m, C<X>) =T —U  AFVX[T/X]U
— — — (TR-INVK2)
A;T' R ep.m[U]C<X>] (&) : [T/X]U
AT FR eg:To AT Fre:V AT Fre:S
(TrR-INVK3) (Tr-CAST)
A;T'Fr (T)e: T

A; T Fr invoke(ep, m, €) : dyn<Object>

A;T' R Error[£] : T (Tr-ERROR)

Method typing
AFT,Tok A;X:T,this: C<X> R eg: S

A=X <: ¥
overridea (m, N, T — T)

AFSXT class C<X"al> a N{...}
Tm(TX){ returnep; } OKINC<X<N>

(TR-METHOD)

Class typing
KT < Njog BN ok) X° < NN, Tok

WN; € NL(XJ' <t Ny, ...
K= C(Ug, Tf){super(g); this.f=f;}
& P & (TR-CLASS)

€
fields(N) =Ug  MOK IN C<X<N>
class C<X" aN> <N {TT; K M} OK

Figure 12. Definition of FGJ2: Typing.

17 2011/4/9



eg — €|
—————————— (RC-FIELD])
eg.f — e).f

eg — €|

(RC-INVK-RECV1)
ep.m(8) — e(.m(e)

eg — €|

(RC-FIELD2)

get(ep, £) — get(ef, £)

e — &

(RC-INVK-ARG1)

vo.m(¥, e, €) — vp.n(¥, €, €)

ep — €|

eo.m[U|C<X>] (&) — ¢

e — e

(RC-INVK-RECV2)

.m[U]Cc<X>] (&)

vo.m[U|C<X>] (¥, e, €) — Vg

e — €|

(RC-INVK-ARG2)

.m[U|C<X>] (¥, &, ©)

(RC-INVK-RECV3)

invoke(ep, m, €) — invoke(e(,, m, &)

e — e

(RC-INVK-ARG3)

invoke(vg,m, Vv, e, €) — invoke(vg, m, V, e, €)

e — &

new N(¥, e, €©) — new N(¥, &', ©)

(RC-NEW-ARG)

eg — e

(Tdeo — (TDe

(RC-CasT)

Figure 13. Definition of FGJ2: Reductions (congruence).

eg — Error[£]

(EC-FIELD1)
eg.f — Error[£]

eg — Error[£]

(EC-INVK-RECV1)
eg.m(e) — Error[£]

eg — Error[£]

ep.m[U|C<X>] (€) — Error[£&]

(EC-INVK-RECV2)

eg — Error[£]

(EC-INVK-RECV3)
invoke(ep, m, €) — Error[£]

e — Error[£&]

new N(v, e, €) — Error[£]

(EC-NEW-ARG)

eg — Error[£]

(EC-FIELD2)

get(ep, £) — Error[£]

e — Error[£]

(EC-INVK-ARG1)
vo.m(V, e, € — Error[£]

e — Error[£&]

P — (EC-INVK-ARG2)
vo.m[U|C<X>] (¥, e, €) — Error[£&]

e — Error[£]

(EC-INVK-ARG3)
invoke(vy,m, Vv, e, €) — Error[£]

eg — Error[£]

(T)ey — Error[£&]

(EC-CasT)

Figure 14. Definition of FGJ2: Error-propagating reductions.
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Expression translation
A;T F x ~» x:T(x) (TRNS-VAR)

AFNok  fields(N)=Tf A;Tre~e:U AFUST
A;T F new N(8) ~ new N((T = U)ae): N

(TRNS-NEW)

AT Feg~e):To fields(bounda(To)) =T £
A,FF eo.fi ~ e6.fi:Ti

(TrNs-FIELD1)

AT F eg ~ e): dyn<N> féf fields(N) =T £
A;T Feg.f ~ get(e(, £):dyn<Object>

(TrNs-FIELD2)

AT Feg~e):To ATFe~e:V bounda(To) =N
dynfree 5 (N) mitype(m, N) =S — 8 AFVSS
AT Fep.m(@) ~ e).m((S<=V)ae'):8

(TrNs-INVK1)

AT Heg~e):To ATHe~¢e:V bounda(To) = [T/X]C<X>
—dynfree o (C<T>) mtype(m, C<X>) =T — U AFVS[T/XU
AT+ ep.m(@) ~ ef,.m[U|C<X>] (([T/X]U < V)a€) : [T/X]U

(TrNs-INVK2)

AT F eg ~ e): dyn<N> A;TFewe:V nomethod (m, N)

(TrNS-INVK3)
A;T F eg.m(e) ~ invoke(e(, m, @) :dyn<Object>

Method translation
A=X"<: T A T,T ok A;X:T,this: C<X>F eg ~ e): S
AFSST class C<X al> <« N{...} overridea (m, N, T — T)
Tm(Tx){ returnep; } ~» Tm(TX){ return (T < S)ae); I INC<XaN>

Class translation

Ri—1

VN € WX <t Ny, XP < Ny FNjok) X < WEN,Tok
fields(\)=Tg M ~ M INC<Xal> K= C(Ug, Tf){super(g); this.f=f;}
class C<X"al> « N{TF; K M} ~ classC<X <N> « N{TF; K M}

Figure 15. Translation from FGY™ to FGJ?.
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B. Proof of Properties
B.1 Compatibility
We use the following mappindepth from a type to an integer for proofs.

def

depth A (Object) = 0

depth o (C<T>) £ depthA([T/XN) +1 (whereclass C<X" <> < N{...})
depth A (X) £ depth (bounda (X)) + 1

depth A (dyn<N>) = depth,(N) + 1

Lemma 12. depth A (C<T>) = depth 5 (C<S>) for any A, C<T> andC<S>.
Proof. By induction on the definition ofepth 5 (C<T>).

CaseC<T> = Object (C<S> = Object). depth(C<T>) = depth o (C<S>) = 0.
Caseclass C<X"<N>< N {...}. By the induction hypothesis, we havéepth,([T/X]N) = depth,([S/X|N). Then,
depth o (C<T>) = depth 5 (C<S>) = depth A ([T/X]N) + 1.

O
Lemma 13. If A+ 8 < TandS # T, thendepth A (T) < deptha(S).
Proof. By induction on the derivationoh - S <. T.
AFS<U AFU<T o . . .
Case .If S = UorT = U, then the conclusion is immediate from the induction hypsth

AFS<T
Otherwise § # U andT # U), by the induction hypothesiglepth A (U) < depth(S) and deptha(T) < depth A (U).
Thendepth A (T) < depth A (U) < depthA(S).
CaseA F X <! bounda(X) (whereS = X, T = bounda(X)). By definition of depth, deptha(S) = depth(X)
depth a (bounda (X)) + 1 > deptha (bounda (X)) = depth (T).
<X al> e _ - -
CasedaZSfCiTj N<: FT;\IK{]N U (wheres = c<S>, T = [T/X|N). By definition of depth, depth(S) = depth A (C<T>) =
deptha ([T/XN) + 1 > depth A ([T/X|N) = depth A (T).
CaseA I dyn<N> <. N (whereS = dyn<N>, T = N). By definition of depth, depth A (S) = depth A (dyn<N>) = depth A (N) +
1 > depth A (N) = depth o (T).

(|
Lemma 14. If A+ S < T, thendepth o (T) < depth A (S).
Proof. Immediate from Lemma 13. O
Lemma 15. If A+ T <@ X, thenT = X.
Proof. By induction on the derivation A F T <: X with a case analysis on the last rule used.
CaseA F X <! X (T =X). Immediate.
CaseA -T <:AUF - _AXF v X. By the induction hypothesis, we have= X. Then, by the induction hypothesis, we have
T=U=X. =
(|

Lemma 16. If A - T < dyn<N>, thenT = dyn<N>.

Proof. By induction on the derivation cA - T <! dyn<N> with a case analysis on the last rule used.

CaseA F dyn<N> <! dyn<N> (T = dyn<N>). Immediate.
AFT<U A FTU < dyn<nN>

AT <! dyn<N>
we haveT = U = dyn<N>.

Case . By the induction hypothesis, we hawe= dyn<N>. Then, by the induction hypothesis,
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Lemma 17. If A F C<T> <. C<8S>, thenT = S.

Proof. By induction on the derivation o& - C<T> <! C<S>.

CaseA | C<T> <@ C<T> (C<S> = C<T>). Immediate.
AFCT>< U AFU< C<S> )
Case — — . By Lemma 15 and Lemma 16, we have= N. By the fact that the relatioa: does
A C<T> <! C<S>

not loop, we havél = ¢<U>. Then the conclusion is immediate from the induction hypsif.

Lemma 18. If A F dyn<N> <: dyn<P>, thenN = P.

Proof. By induction on the derivation oA F dyn<N> <! dyn<P>.

CaseA F dyn<N> <: dyn<N> (dyn<P> = dyn<N>). Immediate.
A F dyn<N> < U AFTU < dyn<P>

At dyn<N> <. dyn<P>
the induction hypothesis.

Case

. By Lemma 16, we have = dyn<P>. Then the conclusion is immediate from

Lemma 19. If A F dyn<C<T>> <: C<S>, thenT = S.

Proof. We show that ifA - N <! C<S> and A + dyn<C<T>> <. N, thenT = S, by induction on the derivation of
A F dyn<C<T>> <X N.

A b dyn<C<T>> < U AFU< N
A F dyn<C<T>> < N

haveP = C<T> by Lemma 16 and the conclusion is immediate from the indadtigpothesis. It = P, then we have

A P <! C<S>. Then the conclusion is immediate from the induction hypsi.

CaseA F dyn<C<T>> <. C<T> (N = C<T>). Immediate from Lemma 17.

Case . By Lemma 15, we hav® = P or U = dyn<P>. If U = dyn<P>, then we

Lemma 20. If A F dyn<N> <: T andT # dyn<N>, thenA N <. T.

Proof. By induction on the derivation oA F dyn<N> < T.

A b dyn<N> <. U AFU<T . . .
Case ya - . By the induction hypothesis, we have\ + N < U. Then,
At dyn<N> <! T
AFN< U AFU<
AFN<T

CaseA I dyn<N> <. N (T = N). Immediate.

T .
finishes the case.

Lemma 21. If A - T < C<S>, thenT = C<T>.

Proof. By induction on the derivation o& + T < C<S>.

CaseA | C<S> < C<S> (T = C<S>). Immediate.

AFT<U AFU<C<S> _ _ _ _ o :
Case AT T <0G . By the induction hypothesis, we have= C<U>. Then, the conclusion is immediate from

the induction hypothesis.
. AFT<S
A F C<T> < <S>

Cas (T = C<T>, N = C<S>). Immediate.
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Lemma 22. If A+ T < N, thendepth A (T) = depth(N).
Proof. Supposeél = C<S>. By Lemma 21, we havgé = C<T>. Then, by Lemma 12, we havkpth o (T) = depth 5 (N). O
Lemma 23. If A+ S < T, thenA + [S/X|T < [T/X|T for anyT.

Proof. By the induction on the structure ©f

CaseT = X. Immediate fromA F S; < T; whenX = X;, or fromA + X < X otherwise.
AFS<T
A+ [S/X|U < [T/X|U
CaseT = C<U>. A - C<[S/X]U> < C<[T/X]U>.

AFS<T IH
A dyn<[S/X]N> <: [S/X|N AR [S/XN < [T/X|N
CaseT = dyn<N>. A+ dyn<[S/X]N> < dyn<[T/X]N>

O

Lemma24. If A S <UandA - U <. TandU # T,thenA - 8 <. VandA + vV < T for someV such that
deptha (V) < deptha (U).

Proof. By induction on the derivation ok - U <. T.

AFU< U AFU < T L . . .

Case Alk To T ! .If U = U; or T = Uy, then the conclusion is immediate from the induction hypsit
Otherwise U # U; andT # Uy), by the induction hypothesig) - S <! U, andA - U, < Uy, A - Uy < Vand
AV < T for someUs, V such thatdepth o (Uz2) < deptha(U) and deptha (V) < depth(U1). Then, by Lemma 14,
depth A (V) < deptha (U2) < depth A (U).

CaseA I X <! bounda(X) (whereU = X, T = bounda(X)). Clearly,S = X by a rule matchea F S < X. Lettingv = T and
Lemma 13 finishes the case.
class C<X"<alN> « N{...} _ _ AFS=<T

Case — —— whereU = C<U>, T = [U/X|N). B — —

AF C<U> < [U/X]N ( [0/%]10)- By A F C<S> < C<U>
_ _ _ — class C<X"al> a N{...} . .
A+ [S/X]N < [U/X]N. By Lemma 12, we havéepth 5 ([S/X|N) = depth o ([U/X]N). — — finishes
[S/%n < [U/X)N. By eptha ([8/TN) = depth (O/N). =T o
the case witly = [S/X]N, wheredepth A (V) = depth A ([S/X]N) = depth A ([U/X]N) < depth A (C<U>) = depth o (U).
CaseA F dyn<N> <: N (whereU = dyn<N>, T = N). If S = U, then the conclusion is immediate from the induction hypsif.

: AFS<V AFV=<N
Otherwise, we have . Then, by Lemma 22 and Lemma 13, we hdvgth (V) = depth (N) =

A F 8 < dyn<N>
depth o (T) < deptha (U).

(wheres = €<S>) and Lemma 23,

Lemma25. If AFS<UandA FU<: T,thenAF S <. VvandA F V < T for somevV.

Proof. If U # T, then the conclusion is immediate from Lemma 24. Otherviieeconclusion is immediate from letting= S.
O

Lemma26. If ArS<XUandAFUXT,thenA+-SXT.

Proof. Immediate from Lemma 25 and transitivity af and <. O
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B.2 Conservative Typing of FGJ"™
B.2.1 Proofof Lemma 5
Proof.

(<) AEFS=<T dynfree,(T)
By induction on the derivation oA - S < T with a case analysis on the last rule used.
CaseA T < T (wheres = T). Immediate frons = T.

AFS=<U AFU<T

Case Al s<T . By the induction hypothesis, we hale= T and dynfree » (U). Then the conclusion is
immediate from the induction hypothesis.
AFS<T — - o : : . :
Case — — (8 = C<8>, T = C<T>). The conclusion is immediate from the induction hypothesi
Al C<S> < C<T>

AFS<U AFU<T
(%) By the first statement of this lemma, we have- T. Then, we havé\ - 8 < T.
($-1) AFU<S AFU<IV AFV<T
By the first statement of this lemma, we have- S. Then, we have\ - S X T.
(<-2) Immediate from the second and the third statement ofehisna.

B.2.2 Proof of Theorem 6

Proof. Sincedyn<P> does not appear ifCT, e), bound andoverride in FGJ'™ are equivalent to those in FGJ, and premises
of TG-FIELD2 and TG-INVK 2 will never satisfied, and by Lemma 5GINEwW, TG-FIELD1, TG-INVK1 and T6G-METHOD
are equivalent to corresponding rules in FGJ. So, typingsraf FGJ™ are equivalent to FGJ's. O

B3 FGJO type safety

We useA;, X" <: W, A, - [T/X] ok to state thakind , g 5, (Xi) = O impliesdynfree \ 55 A, (T:) for anyi.
Lemma 27. Suppose\, X° <: N+ N ok andA I U ok.

1LIFAFS < T thenA,X < NFS< T

2. fAFS<T,thenA,X' < NFS<T.

3. IfAF S ok, thenA, X <: N s ok.
4. 1f A;T Fg e:T,thenA, X' <! N;T g e:T.

Proof.

1. By induction on the derivation ak - S <! T with a case analysis on the last rule used.
CaseA 8 <: S (T = S). Immediate fromA X' <: N+ S <! s.
AFS< U AFU<T

Case . Immediate from the induction hypothesis.
AFS<T

CaseA F X < bounda(X) (S =X, T= bounda(X)). Immediate from\, X° < N+ X <@ bound
class C<Y" P> < N {...
AFC<T> < [T/YIN

bound 5 57 5(X).
class C<Y " «P> <« N{...}

¥ (S = C<T>, T = [T/Y|N). Immediate from ————— — -
< NEC<T> < [T/YN

Case

AX
CaseA I dyn<N> <: N (S = dyn<N>, T = N). Immediate fromA, X’ <: N F dyn<N> <: .
2. By induction on the derivation @k - S < T with a case analysis on the last rule used.
CaseA F s < S (T = 8). Immediate fromA, X’ <: N+ S < S.

AFS=<TU AFU<T

Case . Immediate from the induction hypothesis.
AFS<T
AFT<V = - _ . . .
Case — — (8 = C<U>, T = C<V>). Immediate from the induction hypothesis.
A F C<U> < C<V>
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AFS< U AFU<N . . . .
Case (T = dyn<N>). Immediate from the induction hypothesis.
A F S < dyn<N>
3. By induction on the derivation @k - S ok with a case analysis on the last rule used.

CaseA I Object ok (S = Object). Immediate fromA, X* <: N I Object ok.
X € dom(4) (S = X). Immediate fromX < d_(zm(A_,X < N>.
AF X ok AX < WHXok
class C<Y" «P> a« N{...} A Tok
Vk; € R.( k; = Oimpliesdynfree(T;) )
seVTi ET(AFT; X [Tl/zl, cos Tim1 /Y1 )P )
A F C<T> ok
class C<Y" <P> <« N{...} AT < NFTok
Vi € E.( ki = Qimpliesdynfree \ g -5(T:) )
VT, €eT(AX < NFT; % [T1/Y1,...,Tio1/Yi1]P; )
A, X' <: NF Cc<T> ok '

Case

Ca

(8 = C<T>). Immediate from the induction hypothesis and

A+ N ok _ . . .
Case——— (S = dyn<N>). Immediate from the induction hypothesis.
A F dyn<N> ok

4. By induction on the derivation ak; I" -y e: T with a case analysis on the last rule used.
Case R-VAR.
e=x T=I(x)
Immediate from the rule R-VAR.
Case R-FIELD1.
e:eo.fi A;F"ReolTQ
fields(bounda(To)) =Tf T=T;
By the induction hypothesis, we have
A,XL < N,F Fr eo:To
Then, applying the rule B-FIELD 1 finishes the case.
Case R-FIELD2.
e=get(ep,f) A;I'Frep:Tp T =dyn<Object>
By the induction hypothesis, we have
A,XL < N; I'Freg:To
Then, applying the rule A-FIELD 2 finishes the case.
Case R-INVK1.
e=¢qg.m(e) A;I'Fgrep:To
A;T'Fre:V bounda(To) =P AFPXN
dynfree(N)  miype(m, N) =S - T AFVXS
By the induction hypothesis, we have
A,XL < N,F Fr eo:To
A,XL < N,F Fr e:V
By the first and second statement of this lemma, we have
AX <NFVXS AX < NFPXN
Then, applying the rule & INvK 1 finishes the case.
Case R-INVK2.
ezeo.m[U|C<Y>] (6) A,F I_R eoiTQ
A;T'Fre:V bounda(To) =N AFN X [T/Y]C<Y>
mtype(m, C<Y>) =U —U AFVX[T/Y[U T=[T/Y|U
By the induction hypothesis, we have
A,XL < N; I'Freg:To
AX < N;I'btpe:V
By the first and second statement of this lemma, we have
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AX < NEN X [T/T]c<T>
AX < NEVX[T/Y]U
Then, applying the rule -INVK 2 finishes the case.

Case R-INVK3.
e = invoke(eg,m,€) A;T'Fgreg:To
A;TFre:V T=dyn<Object>
By the induction hypothesis, we have
A,XL < N,F Fr eo:To
AX < N;T'bFgpe:V
Then, applying the rule A-INvK 3 finishes the case.

Case R-NEw.
e =newN(e) AFNoOkK

fields(N)=Tf A;T'Fre:V
AFVXT T=N
By the induction hypothesis, we have
AX < N;T'bge:V
By the first and second statement of this lemma, we have
AX < NHFVXT
By the third statement of this lemma, we have
AX < NFNok
Then, applying the rule A-NEw finishes the case.
Case R-CAsST.
e=(T)ey A;I'Freg:V
By the induction hypothesis, we have
AX < N;I'bFgeg:V
Then, applying the rule B-CAsT finishes the case.
Case R-ERROR
e = Error[£]
Immediate from the rule R-ERROR

O
Lemma 28. If Ay, X <: W, A, FS < Twheres # X; and none oF appears im\;, thenA, [0/ A, + [T/X]s < [0/T.

Proof. By induction on the derivation aﬁl,f < N, AyFS< T

CaseA,X <: N,A, S <: S (T = S). Immediate fron{U/X]s = [U/X|T.
eAl,XZ < NAFS<U ALY < NAFU<T
Al,ir < N,AQ FS<T
which is a contradiction. By the induction hypothesis, weeéha
Av, [0/R1A b [0/T8 <t [0/TU Ay, [0/8A, b [0/T0 <: [0/3]T

Av,[0/RAs F [0/T8 < [0/ Ay, [5/R)A; - [B/X0 <t [§/R)T
’ Ay, [U/X]A; + [U/X]8 <0 [U/X]T
CaseAl,XZ <N, A FX < boundAl T F.A, (X) (8 =X, T = bound

b_oundAl_xr< 7.4, (X) = bounda, A, (X)

[U/X]bounda,,a, (X) = bound x| /g4, (X)

[U/X]s =X [U/X]T = bound, g/xa,(X)

Then,Aq, [U/X]Aq = [U/X]X < [U/X]bound x| 554, (X) finishes the case.
class C<Y"<P> <« N{...}
ALK < N, Ag b C<T> < [T/Y)N

[U/X]N = N.

Cas . We haveU # X; because ifi = X;, thenS = X; by Lemma 15,

Then finishes the case.

A, ¥ < T.a, (X)) By the assumption, we have

Case

(S = C<T>, T = [T/Y|N). By TR-CLASS, none ofX appears ilN and we have

25 2011/4/9



Then class C<V"<P> a N {...} finishes the case
" Ay [0/X] A F C<[TU/XT> < [[U/X]T/YN '
CaseA;, X' <: N, A, F dyn<N> <: N (S = dyn<N>, T = N).

Immediate fromA, [X/N]A, F dyn<[U/X]N> <! [U/X]N.

O

Lemma 29. If A}, X" <: N,As - S < TandA; F U < [U/X|N whereA; + U ok and none oK appears imMA;, then
Ay, [U/X]As - [U/X]S X [U/X]T.

Proof. If S # X;, then the conclusion is immediate from Lemma 28. Otherwbgenduction on the derivation 01&1,27 <
N, Ay S < T.

CaseA, X' <: N,A, FX; < X; (T =S =X;). We have[l/X|X; = U; and the conclusion is immediate frafx , [T/X]A, +
U; X U;. )
seAle < NAFX < U ALY < NA U

. The conclusion is immediate from the induction hypothasis

Ca ——
ALX < NASEX; < T
Lemma 26.
CaseA, X' < N, Ay b X < boundy gga,(Xi) (T = bound, g _.5a, (X)) We have[U/X]s = U; and
bound (X;) = N; = T. Then, we have\;  U; X [U/X]N; by the assumption and the conclusion is immedi-

AL X <N,Ag
ate from Lemma 27.

O

Lemma 30. If A}, X' <: N, Ay F S < TandA; F T < [U/X|N whereA; + U ok and none oK appears inA;, then
Ay, [U/X]As - [U/X]S < [U/X]T.

Proof. By induction on the derivation afxl,f <N, Ay FS<T.

CaseA, X' <: N,A, S < S (T =8). Immediate.
eAl,f <N AsFS<U ALY < NAFU<T
Al,f < N,AQ FS<T
ALY < N,AyFS<T
Al,f <IN, Ay F C<S> < C<T>
ALY < NAFS< U  ALX < NAFU<N
ALY < W, As kS < dyn<N>

Lemma 28 and the induction hypothesis. Otherwise, we have
[U/X]s=U; U=N,
By Lemma 29 and the induction hypothesis, we have
AL [U/X]A U <V
Ay, [U/X]Az F [U/X]N; < [U/X]N
Al,W/X]AQFUl <V Al,W/X]AQ FVv< [ﬁ/X]N
for somev. Then, Ay, [U/X]Ag - U; < dyn<[U/X]N> ,
Al, [[_J/X]Ag FV=< W/X]Ni Al, [ﬁ/X]AQ = W/X]Nz < [[_J/X]N
Ay, [U/X]As =V < [U/XN
finishes the case.

. Immediate from the induction hypothesis.

Cas

Case (S = C<S>, T = C<T>). Immediate from the induction hypothesis.

(T = dyn<N>). If 8 # X;, then the conclusion is immediate from

Case

O

Lemma 31. If A1, X" < N,A, - 8 ¥ TandA; F T < [U/X|N whereA; + U ok and none oK appears inA;, then
Ay, [U/X]As = [U/X]S X [U/X]T.
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Proof. We have _
ALY <N AFS<U ALX < NAFU<T
for someu. Then the conclusion is immediate from Lemma 29, Lemma 3Qtamsitivity of <. O

Lemma 32. UnderCT 0K 1IN FGJ?, if dynfree 5 s 5.4, (T) andA;, X" < N, A, + [0/X] ok whereA; + T ok and none
of X appears im\y, thendynfreex, /za,([U/X]T).

Proof. By induction on the derivation afynfree \ g5 A, (T)-

kindA17iT<: ﬁ,AQ (Y) = <>
dynfreeAljrf: A, (Y) o

Since A; = U ok, we havedynfreen, 5/5a,(U:) Where[U/X|T = U;. Otherwise, the conclusion is immediate since

[U/X|T=T.
dynfree g gya, (T)

dynfree n w2q.a, (C<T>)

Case

(T =Y).IfY =X, forsomei, thenwe havéind \ 3. 5 o,(X) = O anddynfree \ 5 A, Ui)-

Case (T = C<T>). The conclusion is immediate from the induction hypothesi

O

Lemma 33. UnderCT OK IN FGJO, if Al,f <. N,A; F T okandA; U X [U/X]N whereA; + U ok and none ok
appears im\; andA;, X" <: N, A, - [U/X] ok, thenAy, [U/X]A, - [U/X]T ok.

Proof. By induction on the derivation oﬂ&l,f <! N, A F T ok with a case analysis on the last rule used.

CaseA;, X' <: N, A, F Object ok (T = Object). Immediate fron{U/X]0bject = Object.
K€ dom(A1, X" <t N, Ay)
Ay, X < W, Ay - X 0k
Otherwise, immediate frofv/X]X = X.
class C<Y" <P> a N{...} ALY < N, A, Tok
Vi, €ER( K =90 impliesdynfreeAljré .As (T:))
7T €T ALK < N, Ao b T % [T1/Ye,. o Tiot /Y1 [Py )
A1 X < N, Ay F C<T> ok
A1, [U/X]Ag - [U/X]T ok
By Lemma 31, we have
Ay, [U/X]As = [U/X]T; % [U/X][T1/Y1,- -5 Tio1/Yi 1 ]P;
SinceYy' <! Py,...,Y;';' < P, F P; ok by the rule R-CLASS, P does not include an¥ as a free variable.
Thus, [U/X][T1/Y1,. -, Ti—1/Yi—1|P; = [[U/X]T1/Y1,...,[U/X]Ti—1/Y;—1]P;. Supposes; = ¢ for somei. We have
dynfree | 25 a,(Ti)- Then, by Lemma 32, we havlBynfree 5, /34, ([U/X]T), and finally,
class C<Y" «aP> a N{...} Ay, [0/X]A,+ [0/X]T ok
Vi, €ER( ki =0 impliesdynfreeAh[ﬁ/g]Az(W/X]Ti) )
V[U/X]T; € [U/X]T.( Ay, [U/X]Ap - [U/X]T; X [[U/X]Ty/Yy,.. ., [U/X]Tiz1/Yio1 [Pi )
Ay, [U/X]As - C<[U/X|T> ok

Cas (T = X). If X = X;, then we have\,, [U/X]A; F U; ok by the assumption and Lemma 27.

Ca (T = C<T>). By the induction hypothesis, we have

finishes the case.

AL X < N,A, - Nok
Al,f <! N, Ag F dyn<N> ok
A1, [U/X]As = [U/X]N ok

Ay, [U/X]Ag = [U/X]N ok
Ay, [U/X]Ay - dyn<[U/X]N> ok

Case (T = dyn<N>). By the induction hypothesis, we have

Then, finishes the case.

O

Lemma 34. If A;,X° <: N,A, - T ok andA; - T < [U/X]N whereA; + U ok and none oK appears inAj, then
A1, [U/X]Az = bound 5, 531, ([U/XIT) % [0/X](bound 5| 7 .2, (T))-
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Proof. If T # X, then the conclusion is immediate frobound,, gma,([U/X]T) = [U/X](bound, =y A,(T)). Oth-
erwise, if T = X andX € dom(A;) U dom(A.), then the conclusion is immediate frobound,, g/xa,([U/XIT) =
[0/X](bound | g7 . A, (T))- Finally, if T = X;, then we have

bound x, 5/5, ([U/X]T) = bound s, 5/z)a, (Vi)
[U/ﬂ(boundAljz< f.a,(T) = [U/X]N;
If u, = Y, then we haveyY € dom(A;) by the assumptionA; + U ok. By the assumption
A1Fﬁ<:§ A1F§<[ﬁ/mﬁ
Ay FT X [U/XN
we have
bound z, @/z)a,(Ui) = bounda, (Y) =S;
A bES; <8, A ES; <[U/XN;
Ay FS; R [U/X]N;
bOU/ndAl_’[ﬁ/i]AQ (Ul) =N
AFEN< N A1FEN=<N
A; F N < dyn<N>
A1 F N X dyn<N>
By the assumptiod\; + U X [U/X]N and Lemma 26, we have
Ay FN X [U/X]N;
Then, Lemma 27 finishes the proofUlf = N, then we have
boundAh[ﬁ/g]Az(Ui) :Ui_ -
Then the assumptiof\; - U < [U/X]N and Lemma 27 finishes the proof. O

(wheres; must be a nonvariable type by the definition-gfandA; - Y <! bounda, (Y),

Then,

and Lemma 27 finishes the proofUf = dyn<N>, then we have

, we have

Lemma 35. If A+ 8 < T, thenA + bounda(S) <: bounda(T).

Proof. By induction on the derivation oA - S <: T with case analysis on the last rule used.

CaseA T < T (S =T). Immediate frombounda (S) = bounda(T)
AFS< U AFUT . . . .
Case . Immediate from the induction hypothesis.
AFS<T
CaseA F X < bounda(X) (S =X, T = bounda(X). Immediate frombounda (S) = bounda(T) = bounda (X)
class C<X <N> < N{...} _ _ )
Case = — S = C<T>, T = [T/X]N). Immediate frombounda (S) = S andbounda (T) = T.
Ao < T ¢ /%) ound (5) ounda (T)

CaseA F dyn<N> <: N (S = dyn<N>, T = N). Immediate frombounda (S) = bounda(T) =N

Lemma 36. If A+ 8 < T, thenA F bounda(S) X bounda(T).

Proof. By induction on the derivation o F S < T with case analysis on the last rule used.

CaseA T < T (S=T). Immediate frombounda (S) = bounda(T)
AFS<U AFUT . . . .
Case . Immediate from the induction hypothesis and Lemma 26.
AFS<T
. AFS<T
A F C<S> < C<T>
AFS< U AFU<N . . .
Case (T = dyn<N>). By Lemma 35 and the induction hypothesis, we have
A F S < dyn<N>
A F bounda(S) < bounda(U)
A F bounda (U) < bounda(T)
Then, Lemma 26 finishes the case.

Cas

(8 = C<S>, T = C<T>). Immediate frombounda (S) = bounda(T)

O
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Lemma 37. If A+ S X T, thenA F bounda(S) X bounda(T).
Proof. Immediate from Lemma 35, and Lemma 26. O

Lemma 38. If A - s < T andfields(bounda(T)) =T £, thenfields(bounda(S)) = S g andA + S; = T; andg, = £, for
all i < #(f).

Proof. By induction on the derivation ah F S <: T with case analysis on the last rule used.

CaseA I s < S (T = S). Immediate frombounda (S) = bounda (T).

AFS< U AFU<T
Case <A — = . Immediate from the induction hypothesis and the trangjtof <.

CaseA F X < bounda(X) (S =X, T = bounda(X)). Immediate frombounda (S) = bounda(T) = bounda (X).

lass C<X <> < N {... _ _ o
Case’ aZSF C<Tj = FT/K{]N U (S = C<T>, T = [T/X]N). By the definition offields, we havefields(C<T>) =U £, [T/X|Sg
whereU £ = fields([T/X]N).

CaseA F dyn<N> <! N (S = dyn<N>, T = N). Immediate frombounda (S) = bounda(T) = N.

O

Lemma 39. If A 8 < T andfields(bounda(T)) =T £, thenfields(bounda(S)) = S g andA + S; < T; andg, = £, for all
i < H#(T).
Proof. By induction on the derivation oA F S < T with case analysis on the last rule used.

CaseA |+ S < 8 (T = S). Immediate frombounda (S) = bound (T).
AFS=<U AFU<T

Case . Immediate from the induction hypothesis and the trarigitiof <.
AFS<T
AFS<T — - __
Case — — (8 = C<8>, T = C<T>). By the definition offields, we have
A F C<S> < C<T>
class C<X"<aN> <« N{VE; ...}

fields(C<S>) =Ug, [S/X|VE
fields(C<T>) =TUg, [T/XVE
Then,A + [S/X]V < [T/X]V by Lemma 23 finishes the case.

AFS<U AFU<N . Lo .
Case (T = N). Since we havéounda (dyn<N>) = bounda (N), the conclusion is immediate from
AF S < dyn<N>

and the induction hypothesis.

O

Lemma 40. If A+ 8 X T andfields(bounda(T)) =T £, thenfields(bounda(S)) = SgandA + S; < T, andg, = £, for all
i < #(%).
Proof. We have

AFS< U AFUT
for someU. Then the conclusion is immediate from Lemma 38 and Lemma 39. O

Lemma 41. If A + C<T> ok for someclass C<X" <> <N {. ..} underCT 0k IN FGJ, thenA + T < [T/X]N.

class C<X"al> a N{...} A FTok
Vk; € R.( k; = Qimpliesdynfree (T;) )
VT; € T( AFT; X [Tl/Xl,. .. ,Ti_l/Xi_l]Ni )

Proof. Since — , we have
A C<T> ok
A F Ti =< [Tl/Xl, e ,Tifl/xifl]Ni
SinceX; <! Ni,...,X;—1 < N;—1 F N; ok by the rule R-CLASS, X; (j > i) does not appear iN; and we have
AFTX[T/XN. O
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Lemma 42. If A - P ok andmiype(m, P) = U — U underCT OK IN FGJ?, then for anyN such thatA - N <. P and
A+ N ok, we haventype(m, N) = U — U’ for someU’ such thatA - U’ X U.

Proof. By induction on the derivation A F N <: P with case analysis on the last rule used.

CaseA N <. N (P = N). Immediate frommtype(m, N) = mtype(m, P).
AFN< Q AFQ< P

Case - . Immediate from the induction hypothesis.
AFEN< P

class C<X <> < Q{...} _ _
Case — — N = C<T>, P = [T/X|Q). We have
AFC<T> < [T/X]Q ( /%9
class C<X"«N> « Q{... M}
If ¥ do not include a declaration af, then mtype(m, N) = miype(m, P) by the definition ofmtype finishes the case.
Otherwise, we have

mtype (m, [T/X]Q) = [T/X](T" — )

[T/X]Up =U
By TR-CLASS, TR-METHOD and Lemma 41, it must be the case that
U, m(0 %){ return ...; } €N

X' < WHU, < Uy AFT<X[T/AN
By Lemma 28 and Lemma 27, we have
A [T/X]U,) XU
Sincemtype (m, N) = [T/X](T" — U}), by the definition ofmtype, letting’ = [T/X]Uj, finishes the case.

O

Lemma 43. If A + P ok andmtype(m, P) = U — U underCT OK IN FGJ?, then for anyN such thatA - N < P and
A+ N ok, we haventype(m, N) =T — U’ for someU andU’ such thatA T < TandA + U’ < U.

Proof. By induction on the derivation oA F N < P with case analysis on the last rule used.

CaseA N < N (P = N). Immediate frommtype(m, N) = mtype(m, P).
AFN=<Q AFQ=<P

Case . Immediate from the induction hypothesis.
AFN<P
Case AFS<T (N = €<S>). Supposentype(m, C<X>) = V — V. By the definition ofmtype, we have
= . = — V. ’
A | C<8> < C<T> PP ypei, y b

mtype(m, C<S>) = [S/X|(V—V) =T — U
mtype(m, C<T>) = [T/X](V—-V)=U—1U
Then the conclusion is immediate from Lemma 23.

O

Lemma 44. If A + P ok andmtype(m, P) = U — U underCT 0K IN FGJ?, then for anyN such thatA - N X P and
A F N ok, we havemtype(m, N) =T — U’ for somel’ andU’ such thatA - T < TandA + U/ < U.

Proof. Immediate from Lemma 42, Lemma 43 and transitivity<of O

Lemma 45. Suppose\ - N ok andA + N <: [T/X|C<X> andmtype(m, C<X>) = T — U andmitype(m, N) = T — U’ under
CT ok 18 FGJP . If [T/X]U; = U;, thenU/, = U;.

Proof. Supposentype(m, C<T>) = V — V. By Lemma 42, we have
= =
V=10
Then, by the assumption, we have= [T/X]U; = V; = U.. O
Lemma 46. SupposeA - N ok andA + N < [T/X|c<X> and mtype(m, C<X>) = U — U andmiype(m, N) = T — U’ under
CT ok I8 FGI2. If [T/X|u; = U;, thenU, = U;.
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Proof. We have
AFN< C<S> Al C<S> < C<T>
for somes. SinceT do not contairk; by the rule R-CLASS, we have
[5/X]U; = U;
Then, the conclusion is immediate from Lemma 45. O

Lemma 47. If mtype(m, C<X>) = U — U andmtype(m, N) =T — U andtyargs(N, C) = §, then[S/X[T =T
Proof. By induction on the derivation afyargs(N, C) = S with a case analysis on the last rule used.
Casetyargs(C<S>, C) =S (N = C<S>). Immediate from the definition ofitype.
AL <;yzrgs(§?zggi(%’ ©) = §. By the induction hypothesis, we have

mtype(m, P) =0 — V" [§/XT=T"
Then, by Lemma 42, we hai@ =T,

Case

O

Lemma 48. Under C'T OK IN FGJE(D, if Al,iz < N,Ag;T' br e:TandA; - U X [U/X]N whereA; + U ok and
none ofX appears iMA; andA;, X" <: N, Ay - [U/X] ok, thenAy, [U/X]Aq; [U/X]T Fr [U/X]e: S for somes such that
Ay, [U/X]As -8 X [U/X]T.

Proof. By induction on the derivation afxl,f <! N, Aq; T kg e: T with a case analysis on the last rule used.

Case R-VAR.
e=x T=I(x)
By Lemma 31, we have
Ay, [U/X]A; - [0/X]T X [U/X]T
Then,s = [U/X|T = ([U/X]T")(x) finishes the case.
Case R-FIELD1. =
e=¢eg.1; Al,XL < N,AQ;FFRG()ST()
fields(bound 5 g5 a,(To)) =Tf T=T;
By the induction hypothesis, we have
Al, [ﬁ/X]AQ, [ﬁ/X]F FR [ﬁ/i]eo : S() Al, W/X]AQ - SQ = [ﬁ/X]T()
for someSy. By Lemma 34, Lemma 37 and Lemma 26, we have
Ay, [U/X]Az F bound /514, ([0/X]To) % [U/X](bound \ | 5 § o, (To))
A1, [U/X] Az F bound n | 574, (S0) ¥ bounda, g/za,([0/X]To)
A1, [U/X]Az b= bound 5, /314, (S0) % [U/X](bound 5, 57 § &, (T0))
By Lemma 40 fields (bound o, 5/xa,(S0)) = S g and we have; = g; andAy, [U/X]Az F S; % [U/X]T; for j < #(£).
By the rule TR-FIELD1, we haveA;, [U/X|Aq; [U/X|T Fr [U/X|eo. £;:S;. LettingS = S; finishes the case.
Case R-FIELD2. B
e=get(ep,f) A, X < N,Ay;T'Frep:Tyg T=dyn<Object>
By the induction hypothesis, we have
Al, [[_J/X]Ag, [[_J/X]F I_R [[_J/X]eo : TIO Al, W/X]Ag = T/O < [[_J/X]TQ
for someT,. Then, by R-FIELD2, S = dyn<0bject> finishes the case.
Case R-INVK1. o
ezeo.m(é) Al,XL < N,AQ;F I_R eo:To
ALX < N, AyTFre:V bound \ 7. A,(To) =Q AFQ X [T/Y]C<Y>
dynfree \ v ﬁ7A2(C<T>) mtype(m, C<T>) =V — T A, X < N, Ay FVXT
By the induction hypothesis, we have
Al, [[_J/X]Ag, [[_J/X]F I_R [[_J/X]eo . SQ Al, W/X]Ag = SO < [[_J/X]TQ
for someSy. By Lemma 34, Lemma 37 and Lemma 26, we have
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Ay, [U/X]Az F bound /514, ([0/X]To) % [U/X](bound | 5. 5 ,(To))
A1, [U/X]Az = bound 5, 5/x)a,(S0) % bound s, 5/x)a, ([U/X]To)
Al, [ﬁ/X]AQ H bOU"dAl,[ﬁ/i]Ag (S()) < [I_J/X](boundAljr<: WA (TO))
LetN = C<T>. By Lemma 31 and Lemma 26, we have
Al, [[_J/X]AQ H [I_I/X](boundAhir< WA (To)) < [[_J/X]N
Ay, [[_I/X]Ag F boundAly[[—,/i]A2 (SO) =< [[_I/X]N
Sincedynfree 5 37y A, (N), We have
dynfree o, 5/, ([0/XIN)
LetP = bound,, /34, (S0). By Lemma5, we have
Al, [ﬁ/X]AQ FP < [[_J/ﬂN
Then, by Lemma 42, we have
mtype(m, P) = [0/XV — T A, [0/X]As kT X [U/X]T
By Lemma 31 and Lemma 26, we have
Ay, [0/X] A F [0/ % [0/XV A1, [0/X]As S X [0/X7
Then, by the rule R-INVK 1,
Ay, [U/X]As; [U/X]T g [U/X|eg.m(e) : T
finishes the case.
Case R-INVK2. -
e:eo.m[V/|C<?>] (©) Al,ib < N,AQ;F '_R eo:To
ALK < N, Ay;TFre:V bound , s _. ﬁ,AQ(TO) =N
ALX < N, Ag b N X [T/Y]c<Y>  miype(m, C<¥>) =V — U
ALY < N ARV [TV T=[T/YU
By the induction hypothesis, we have
Al, [[_J/X]Ag, [[_J/X]F '_R [[_J/X]eo : SQ Al, W/X]Ag = SO < [[_J/X]TQ
for someSy. By Lemma 34, Lemma 37 and Lemma 26, we have
A1, [U/X]Az b bound 5, /314, ([U/X]To) X [U/X](bound 5| g7 5 a,(To))
A1, [U/X]Ag = bound 5, 5/x)a,(S0) % bound . 5/x)a, ([U/X]To)
Al, [ﬁ/X]AQ H bOU"dAl,[ﬁ/i]Ag (S()) < [I_J/X](boundAljr<: WA (TO))
By Lemma 31 and Lemma 26, we have
Ay, [U/X]As = [U/XIN X [U/X][T/Y|C<Y> Ay, [U/X]A2 F P X [U/X][T/Y]|C<Y>
Ay, [U/X]As - [0/XV % [0/ [T/YIV Ay, [U/X]A2 -5 X [U/X)[T/V
whereP = bound x| /7 a,(S0)- Then, by the rule R-INVK 2,
Ay, [0/X]Ag; [U/XT Fr [U/X]eo.m[V 1C<¥>] () : S
wheres = [U/X][T/Y|U = [U/X]T finishes the case.
Case R-INVK3. -
e = invoke(ep, m,8) A,X < N,Ao;TFrep:To
A, X' < N,Ap;T Fre:V T=dyn<Object>
By the induction hypothesis, we have
Ay, [U/%]Ao; [0/X]T g [0/K]e: T Ay, [U/T Az - T % [0/X]7
for someT}, andV . Then, by R-INVk 3, S = dyn<Object> finishes the case.
Case R-NEw. 7
e=newN(E) A,X < N,AyFNok
ﬁelds(N) =TF Ahib < N, Ag; I'kr e:V
Al,ib < N,AQ"V‘KT T=N
By Lemma 33, we have
Al, [ﬁ/X]AQ F [[_J/ﬂN ok
By the induction hypothesis, we have
Ay, [U/%]A0; [0/X]T g [0/K]e: T Ay, [0/T Az - T % [0/X]7
By Lemma 31 and Lemma 26, we have
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Ay, [0/X] Ay F [O/XV % [0/XT Ay, [0/X]Ag T X [U/X]T
Then, by TR-NEW, S = [U/X]N finishes the case.
Case R-CAsT. -
e=(T)ey A, X < N,Ap;TFgep:V
By the induction hypothesis, we have
Al, [ﬁ/X]AQ, [ﬁ/mr FR Ch \'d Al, [ﬁ/X]AQ v X [ﬁ/X]V
for someV’. Then, by TR-CAsT, S = [U/X]T finishes the case.
Case R-ERROR
e = Error[£]
Immediate from the rule ®-ERRORDby lettings = [U/X]T.
(|

Lemma 49. UnderCT 0K IN FGJ?  if A;T,%:T g e:TandA;T g d:S whereA  § X T, thenA; T kg [d/x]e:s for
somes such thatA - S X T.

Proof. By induction on the derivation of\;T",X: T Fr e: T with a case analysis on the last rule used.

Case R-VAR.
e =X
If x € dom(T"), the conclusion is immediate, sin&/z]e = x andS = T. On the other hand, if = x; andT = T;, then
letting S = 8; finishes the case.
Case R-FIELD1. _
e:eo.fi A;F,EZTFReolTQ
fields(bounda(To)) =Sf T=S§;
By the induction hypothesis, we have
A; r l_R [a/i]eo : T6
for someT;, such thatA - T, % To. By Lemma 40 fields(bounda (Ty)) = U g such thatA F U; < s; andg; = £; for all
j < #(S). Then, by the rule R-FIELD1, we have
A; r l_R [a/i]eo . fi : Ui
and lettings = U; finishes the case.
Case R-FIELDZ2. _
e=get(ep, f;) AT, X:Tkgrep:To
T = dyn<Object>
By the induction hypothesis, we have
A; r l_R [a/i]eo : T6
for someT, such thatA + T{, < Ty. Then, by the rule R-FIELD2, we have
A;T g get([d/X]eq, £;) : dyn<Object>
and lettingS = dyn<0Object> finishes the case.

Case R-INVK1. _
ezeo.m(é) A;F,EZTI_R GQZTO

AT X:THRe:V bounda(To) =Q AFQXN
dynfreex(N)  miype(m, N) =T -T AFVXT
By the induction hypothesis, we have
AT Fg [d/R|eo: Ty A;T by [d/x]e: T
for someT), andV’ such thatA + T), X T, andA + V' < V. By Lemma 37 and Lemma 26, we have
bounda(T)) =P AFPXQ AFPXN AFV XT
Then, by the rule R-INVK 1, we have
AT g ([d/%]ep) .m([d/x[e): T
finishes the case.

Case R-INVK2. _
e =-¢p.m[UIC<X>] (&) A;I'X:Thkg ep:To

AT, x:Thre:V bounda(To) =N AFN X [S/X]C<X>
mtype(m, C<X>) =U —-U AFVX[S/X[U T=I[S/X|U
By the induction hypothesis, we have
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A;T bR [d/xleo: Ty A;D by [d/xe:T

for someT), andV’ such thatA + T), X T, andA + 7' < V. By Lemma 37 and Lemma 26, we have
bounda(T)) =P AFP X [S/X|c<X> AV X [S/X|U

Then, by the rule R-INVK 2, we have
AT Fgr ([d/Z]eq) -m[UlCc<X>] ([d/F]e) : [S/X]U

and lettingS = T = [S/X]U finishes the case.

Case R-INVK3. _

e = invoke(ep, m,e) A;I'X:Thkgrep:To
A;T,x:TFgre:V T =dyn<Object>

By the induction hypothesis, we have
AT Fg [d/x|eo: Ty A;T by [d/x]e:T

for someT), andV’ such thatA - T, X To andA -V < V. Then, by the rule ®R-INvk 3, we have
A;T' g invoke([d/X]eo, m, [d/X]e) : dyn<Object>

and lettingS = dyn<0bject> finishes the case.

Case R-NEw.
e =newN(e) AFNoOkK

fields(N) =Sf A;I',X:Thtre:U
AFUXS T=N
By the induction hypothesis, we have
A;T kg [@/x6:T
for someU such thatA - T’ < T. By Lemma 26, we have
AFT %3
Then, by the rule R-NEw, we have
A;T g new N([d/Z]e) : N
and lettings = N finishes the case.
Case R-CAST.
e=(TDey A;IX:Thgeq:To
By the induction hypothesis, we have
A; r l_R [a/i]eo : TIO
for someTj, such thatA - T(, X Ty. Then, by the rule R-CAsT, we have
A;T Fr (TD ([d/X|eg) : T
and lettingS = T finishes the case.
Case R-ERROR
e = Error[£]
Immediate from the rule ®-ERRORDby lettingS = T.

O

Lemma 50. If mtype(m, N) = U — U andmbody(m, N) = %.eo whereA + N ok underCT 0K IN FGJ?, then there exist
someP andV such thatA - N < P andA F P ok andA +V X UandA;%:U, this:P R eg: V.

Proof. By induction on the derivation ofibody (m, N) = X.eq using Lemma 31 and Lemma 48.

class C<X"«aN> <« Q4{...; M}
Tom(S X){ returne; Y €M
mbody(m, C<T>) = X.[T/X]e
eo = [T/X]e N=C<T>.
Letl’ = %:S, this: C<X>andA’ = X" <! N. By TR-CLAss and TR-METHOD, we haveA/; T g e:Sp andA’ - Sy % To
for someSy. By A F N ok, we have
AFTok A’'F[T/X] ok
By Lemma 41, we have
AFTX[T/XN
By Lemma 27, Lemma 31 and Lemma 48,
A+ [T/X]So % [T/X]To A;X:[T/X]S, this:C<T> g [T/X]e:S|

Case
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class C<X"al> a Q{...; M}

_ Sm(S % t ; M
whereA + s X [T/X]So. By, n(S 0f returne; } € , we have

mtype(m, C<T>) = [T/X](S — 9)
U=[T/X|s U=[T/X|To

By Lemma 26V = s;, andP = C<T> finishes the case.
class C<X"al> « Q{...; M}
m¢M mbody(m, [T/X]Q) =X.e
mbody(m, C<T>) =X.e '
eg=e N=C<T>
Immediate from the induction hypothesis and the fact that C<T> < [T/X]Q.

Case

Theorem 51. UnderCT 0K IN FGJ®, if A;T kg e:Tande — &', thenA - T/ X TandA;T -y e : T/ for someT’.

Proof. By induction one — e’ with a case analysis on the reduction rule used.

Case R-FLD1.
e=newN(V).f; € =v; fields(N)=Tf%f
By TR-FIELD1 and TR-NEW, we have
A:TFrnew N(@):N A;TFrv:U ARUXT
In particular,T’ = U;, which satisfies
AFU, XT; AT Frv;:U;
finishes the case.
Case R-FLD2.
e=get(newN(V),f;) e =v; fields(N)=Tf¢%
By TrR-FIELD2 and TR-NEW, we have
A;TFrnew N :N A;TFr v:U T =dyn<Object>
In particular,T’ = U;, which satisfies
A FU; X dyn<Object> A;T' kg v;:U;
finishes the case.
Case R-NvK1.
e =new N(¥) .m(W) mbody(m,N) =X.e9 €' =[W/X, new N(¥)/this]ey
By TR-INVK 1 and TR-NEw, we have
A;TFRr new N(¥) : N dynfree,(P) AFNXP miype(m,P) =T —T
A:TFrw:V AFVXU AFNoOk
By Lemma 5 and Lemma 42, we have
AFN< P miype(m,P)=U—U AFUXKT
By Lemma 50, we have
AFNXP AFPok AFVXU A:;x:U,this:PFgreq:V
for someP andV. Then, by Lemma 49A; T b [W/X,new N(¥) /this]eq: T’ for someT’ such thatA - T/ X vV and
A+ T X TbyLemma 26.
Case R-NVK?2. L
e =new N(¥) .m[U|C<X>]1 (W) mbody(m, N) =X.eg
W=newP(...) et P X |[tyargs(N,C)/X|U e = [W/%, new N(¥)/this]eq
By TR-INVK 2 and TR-NEw, we have
A;T Frnew N(¥):N AFN X [T/X]C<X> miype(m, C<X>) =T — U
A;THRW:P AFPX[T/XU AFNok T=[T/XU
By Lemma 44, we have
mtype(m, N) =T — U AT <[T/XT A+U X [T/XU
for someU’ andu’. By Lemma 50 and Lemma 26, we have
AFNXP AFPok AFVXU AFRVXI[T/XU
A;%:T,this:PFg eg:V
for someP andv. By Lemma 47, we have
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[tyargs(N, C)/X[T=T AFP T
Then, by Lemma 49A;T" g [W/X,new N(¥) /this]eo: T for someT’ such thatA - T" X VandA - T' X T by
Lemma 26.
Case R-NVK3.
e = invoke(new N(¥) ,m, W) mbody(m, N) =X.eq
W=newP(...) eFPXT
mitype(m, N) =T — U e’ = [W/X,new N(¥) /this]eg
By TR-INVK 3 and TR-NEw, we have
A;T'FrnewN(e):N AFNok T=dyn<Object>
By, Lemma 50,
AFNXP AFPOk AFVXU AFVok
A:x:U,this:PFg eg:V
for someP andv. Then, by Lemma 49, we have
AFT XV A;T Fg [W/X,new N(V) /this]eg: T/
for someT’ such thatA - T/ X dyn<Object>.
Case R-@sT.
e=(TD)newN(¥) oFN=XT e =newN({)
By TR-CAST and TR-NEw, we have
A;TFR (TD)new N(¥): T A;T'Frnew N(¥):N
Then,T’ = N finishes the case.
Case RC-FLD1.
e=¢.f & =¢e(.T ey — ¢
By TR-FIELD1, we have
AT kR eg:To  fields(bounda(To)) =TEf T=T;
By the induction hypothesis, we have
AT bR e): T
for someT|, such thatA - T, X To. By Lemma 40 fields(bounda(T)) = S g and, forj < #(£), we haveg, = £; and
A+ 8; X T;. Therefore, by the rule R-FIELD 1, we have
A;F"R ef).f:Si
Then, lettingl’ = S; finishes the case.
Case RC-FLD2.
e=get(ep, ) e =get(e), ) ey — ¢
By TR-FIELD2, we have
A;T Frep:Tp T=dyn<Object>
By the induction hypothesis, we have
AT bR ef: T
for someT{, such thatA i T{, X T,. Therefore, by the rule A-FIELD2, we have
A;T i get(ef), £) :dyn<Object>
Then, lettingl’ = dyn<0bject> finishes the case.
Case RC-lvk-RECVL.
e=-¢p.m(&) e =e(.m@ ey— ¢
By TR-INVK 1, we have
AT R eg:To A;TFrE:V bounda(To) =Q AFQXN
dynfree x(N)  miype(m, N) =T —-T AFVXT
By the induction hypothesis, we have
AT bR ef: T
for someTj, such thatA - T{, X T. By Lemma 37, Lemma 26, we have
bounda(Ty) =P AFP XN
Then, by the rule R-INVK 1, we have
AT R ej.m(@):T
Case RC-NVvK-ARGL.
e=¢o.m(V, ¢;,8) e =¢p.m(V, e,,8) e — e}
By TR-INVK 1, we have
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AT FRreg:To A;THFRV, e, :V bounda(To) =Q AFQXN
dynfreex(N)  miype(m, N) =T —>T AFVXT
By the induction hypothesis, we have
AT bR el: V)
for someV’ such that + V; X V; andV’; = V; for j # i. By Lemma 26, we have
ARV KT
Therefore, by the rule R-INVK 1, we have
AT R eo.m(¥, e}, 8):T
Then, lettingl’ = T finishes the case.
Case RC-NVK-RECV2. o
e =-¢eo.m[U|C<X>] (&) & =ef.m[UIC<X>] (&)
egp — €|
By TR-INVK 2, we have
AT FR eg:Tog bounda(To) =N A RN X [T/X]C<X>
mtype(m, C<X>) =U —U A;TFre:V AFVX[T/X|U T=[T/X|U
By the induction hypothesis, we have
AT Fgre): T
for someT( such thatA + T{, X To. By Lemma 37 and Lemma 26, we have
bounda(Ty) =P AFPXN
AP X [T/X|C<X>
Therefore, by the rule A-INVK 2, we have
AT Fg ef.m[TlC<X>] (8) : [T/X]U
Then, lettingI” = [T/X]U finishes the case.
Case RC-NVK-ARG2. o
e =¢eo.m[UIC<X>]1 (¥, e;,8) e =¢ep.nlUICXK>] (¥, e}, @)
e, — €,
By TR-INVK 2, we have
AT R eg: Ty bounda(To) =N AFN X [T/X|C<X>
mitype(m, C<X>) =T —-U A;TFRr ¥, e;, e:V
AFVXI[T/XU T=[T/X]U
By the induction hypothesis, we have
AT bR el:V,
for someV’ such thatA -V, < V; andv; = v; for j # i. By Lemma 26, we have
AT < [T/X]T
Therefore, by the rule A-INVK 2, we have
A;T Fgr eo.m[T1C<X>] (¥, €, @) : [T/X]U
Then, lettingI” = [T/X]U finishes the case.
Case RC-NVK-RECV3.
e — invoke(ep,m,e) e = invoke(e{), m,e)
eg — €|
By TR-INVK 3, we have
A;T R eg:To A;TFre:U T=dyn<Object>
By the induction hypothesis, we have
AT bR e): T
for someTj,. Therefore, by the rule R-INvK 3, we have
A;T Fg invoke(ef, m, €) : dyn<Object>
Then, lettingI’ = dyn<0bject> finishes the case.

Case RC-NvK-ARGS.
e = invoke(eg,m,V, e;, €) e = invoke(ep,m, vV, e;, €)
e, — €,
By TR-INVK 3, we have
AT R eg:To A;TFRYV, e;,€:U T=dyn<Object>
By the induction hypothesis, we have
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AT bR el: U
for someU;. Therefore, by the rule A-INVK 3, we have
A; T FR invoke(ep, m, v, e;, €) :dyn<Object>
Then, lettingI’ = dyn<0bject> finishes the case.
Case RC-MW-ARG.
e=newN(V, e;,8) e =newlN(¥,e},8) e — e
By TR-NEw, we have
AFNok fields(N)=Tf%
AT RV, e,e:0U AFUXT T=N
By the induction hypothesis, we have
AT kg el:U
for someU’ such thatA - U} < U; andu}; = U; for j # i. By Lemma 26, we have
AFT KT
Therefore, by the rule R-NEw, we have
A;T kg new N(V, e}, @) :N
Then, lettingI’” = N finishes the case.
Case RC-@sT.
e=(TDey e =(TDe) ey — €}
By TR-CAST, we have
A;T'Fgreg:S
By the induction hypothesis, we have
AT bR ef: 8
for somes’. Therefore, by the rule R-CAST, we have
AT FR (TDe): T
Then, lettingl” = T finishes the case.
Case E-*, EC-*.
e’ = Error[£]
By TR-ERROR we have
A;T Fg Error[£]: T
and lettingT = T’ finishes the case.

Theorem 52. Suppose: is a well-typed expression. is either

. afield accessy . f,

. afield access with run-time chegkt (eq, £),

. a method invocation, .m(e),

. a method invocation with argument chegkm [U| C<X>] (&)

. a method invocation with run-time chetkvoke (eg, m, €), Or
6. acast{S) eg,

abh wN P

then there exist som& such thae — ¢’.

Proof. By induction on the derivation oh; I" ¢ e: T with a case analysis on the last rule used.

Case R-FIELD1.
e=¢eq.f; A;T'Frep:To
fields(bounda(To)) =Tf T=T;
If eg is not a value, then by the induction hypothesis, we have
eg — €|
for somee(, and applying RC-FELD1 or EC-RELD1 finishes the case. Otherwise,eff = new N(¥), then applying
R-FiELD1 finishes the case.
Case R-FIELD2.
e=get(ep,f) A;I'Frep:Tyg T =dyn<Object>
If eq is not a value, then by the induction hypothesis, we have
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eg — €
for somee(, and applying RC-FELD2 or EC-RELD2 finishes the case. Otherwisegf = new N(¥), then we have
fields(N) =T £
Then, applying R-FELD2 (whenf € £) or E-RELD (whenf ¢ £) finishes the case.
Case R-INVK1. _
e=¢ep.m(@ A;TFrep:To A;TFre:V bounda(To) =Q AFQ=XN
dynfree(N)  miype(m, N) =S - T AFVXS
If eg is not a value, then by the induction hypothesis, we have
eg — €|
for somee(, and applying RCivk -ReECV1 or EC-INVK-RECV1 finishes the case. & is not a value, then by the induction
hypothesis, we have
e, — €}
for somee) and applying RCHivk-ARG1 or EC-INVK-ARGL finishes the case. Otherwise,df = new Q(¥) and
€ =new P(...), then by definition ofntype andmbody and the rule R-CLASS, we have
mbody(m, N) =X.e|
and applying R-hvK 1 finishes the case.
Case R-INVK2.
ezeo.m[U|C<Y>] (6) A,F I_R eoiTQ
AT Fre:V bounda(To) =N AFN X [T/Y]C<Y>
mitype(m, CKY>) =T —>U AFVX[T/Y[U T=[T/YU
If eg is not a value, then by the induction hypothesis, we have
eg — €|
for somee(, and applying RCivk -RECV2 or EC-INVK-RECV2 finishes the case. & is not a value, then by the induction
hypothesis, we have
e, — €,
for somee’ and applying RCHMivk-ARG2 or EC-INVK-ARG2 finishes the case. Otherwise,df = new N(¥) and
€ =new P(...), then by definition ofntype andmbody and the rule R-CLASS, we have
mbody(m, N) = X. e
and applying R-4NvK 2 (whene = P X [tyargs(N, C)/Y|U) or E-INVK-ARG1 (Whene P % [tyargs(N, C)/Y]U) finishes
the case.
Case R-INVK3.
e = invoke(ep, m,e) A;I'Fgrep:Ty
A;TFre:V T=dyn<Object>
If eg is not a value, then by the induction hypothesis, we have
eg — €|
for somee(, and applying RCivk -ReECV3 or EC-INVK-RECV3 finishes the case. & is not a value, then by the induction
hypothesis, we have
e, — €,
for somee) and applying RCHMivk-ARG3 or EC-INVK-ARG3 finishes the case. Otherwise,df = new N(¥) and
@ =new P(...), then we have eithetomethod(m, N) or mtype(m, N) = U — U. In former case, applying ENVK finishes
the case. In latter case, by definitionrafype andmbody and the rule R-CLASS, we have
mbody(m, N) = X. e
and applying R-NvK 3 (whene - P X T) or E-INVK-ARG2 (whene - P 4 TU) finishes the case.
Case R-CAsST.
e:((T))eO A;I‘I—ReO:V
If eq is not a value, then by the induction hypothesis, we have
eg — €|
for somee, and applying RC-@sT or EC-CasT finishes the case. Otherwisegif = new N(¥), then applying R-@sT
(whene - N < T) or E-CAST (Whene - N A T).

O

B.3.1 Proof of Theorem 8
Proof. Immediate from Theorem 51 and Theorem 52 O
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B.3.2 Proof of Theorem 9

Proof. Immediate from subject reduction and progress propertiestae fact that there is no rule reducing a non-run-time-
check expression to an errror. O

B.4 Translation
Lemmab53. A;T'Fge:T iff de/. A;T'Fe~ e:T.

Proof. (=) By induction on the derivation ah; I" k¢ e: T with a case analysis on the last rule used.

Case TG-VAR.
e=x T=T(x)
By the rule TRNS-VAR, we have
A;TEx o~ x:T(x)
and lettinge’ = x finishes the case.
Case TG-FIELD1.
e:eo.fi A;FD—GeO:TO
fields(bounda(To)) =Tf T=T;
By the induction hypothesis, we have
AT Feg~e):To
for somee,. Then, by the rule RNs-FIELD 1, we have
A,F - e().fi ~ elo.fiSTi
and lettinge’ = e, . £; finishes the case.
Case T-FIELD2.
e=¢p.fT A;T Fgep:dyn<N>
fields(bounda(dyn<N>)) =Tf f¢f
T = dyn<Object>
By the induction hypothesis, we have
AT F eg ~ e} : dyn<N>
for somee(,. Then, by the rule RNs-FIELD2, we have
AT eg.f ~ get(e, £):dyn<Object>
and lettinge’ = get (e, £) finishes the case.
Case TG-INVK1.
e=¢p.m(@) A;I'lgeq:To
AT kg @V bounda(To) =N = [T/X]C<X>
mtype(m, N) =S - T AFVSS
By the induction hypothesis, we have
AT Feg~e):To
A;THe~e:V
for somee(, ande’. By the definition ofmtype, we have
mtype(m, C<X>) =T — U
5= [/%0 1= [/X
for someU andU. If dynfree A (N), then by the rule RNs-INVK 1, we have
AT Feg.m(@) ~e).m(&):T
and lettinge’ = e{,.m(g’) finishes the case. Otherwise, by the ruknNB-INVK 2, we have
ATk eg.m(e) ~ ep.m[U|C<X>] ({[T/X]U < V)a®) : [T/X|U
and lettinge’ = eo.m[U|C<X>] (([T/X]U <= V)a®) finishes the case.
Case TG-INVK2.
e=¢p.m(8) A;Il'Fg ep:dyn<N>
nomethod (m, bounda (dyn<N>))
A;TFge:V T=dyn<Object>
By the induction hypothesis, we have
AT Feg~e):To
A;TFe~e:V
Then, by the rule RNS-INVK 3, we have
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A;TF eg.m(8) ~ invoke(e(, m, &) :dyn<Object>
and lettinge’ = invoke (e(,, m, €) finishes the case.
Case To-NEw.
e=newlN(e) AFNOkK
fields(N) =Tf A;Thge:T
AFUST T=N
By the induction hypothesis, we have
A;THe~e:T
Then, by the rule RNS-NEw, we have
A;T - new N(8) ~ new N((T < U)a&') : N
and lettinge’ = new N((T <= U)a¥) finishes the case.

(<) By induction on the derivation a\; " - e ~+ ¢’: T with a case analysis on the last rule used.

Case RNS-VAR.
e=x e =x T=T(x)
The, conclusion is immediate from the rule-NVAR.
Case RNS-FIELD1.
e:eo.fi e’:e’o.fi T:Ti
AT Feg~e):To fields(bounda(Ty)) =T £
By the induction hypothesis, we have
AT g ep:To
Then, the conclusion is immediate from the rule-FIELD 1.
Case RNS-FIELD2.
e=¢y.f e =get(e|,f) T=dyn<Object>
A;T - eg ~ e):dyn<N> fields(bounda(dyn<N>)) =Tf f¢f
By the induction hypothesis, we have
A; T Fg eg:dyn<N>
Then, the conclusion is immediate from the rule-FIELD2.
Case RNS-INVK1.
e=¢p.m(8) e =e(.m((S<V)pe")
ATFeyg~e):Tg Aj'Fe~we:V
bounda(To) =N miype(m,N) =S —-S AFVS
By the induction hypothesis, we have
A;Thgeq:Tg AT hHge:V
Then, the conclusion is immediate from the rule-TNvk 1.
Case RNS-INVK2.
e=-¢ep.m(@ e =e}.m[UICK>]({[T/X|U«=V)a€) T=[T/XU
ATkeyg~e):Tg A T'Fe~e:V
bounda(To) = [T/X]C<X> miype(m, C<X>) =T — U
ARV [T/XU
By the induction hypothesis, we have
A:TFgep:Tg AT Fge:V
By the definition ofmtype, we have
mtype(m, bounda(To)) = miype(m, C<T>) =S — §
5 = [I/%0_s = /Xy
Then, the conclusion is immediate from the rule-TNvk 1.
Case RNS-INVK 3.
e=-¢egp.m(e) e’ = invoke(e),m,€) T=dyn<Object>
AT Feg~ef:dyn<N> A;T'Fe~e:V
nomethod (m, bound A (dyn<N>))
By the induction hypothesis, we have
A;T Fg eg:dyn<> A;T kg e:V
Then, the conclusion is immediate from the rule-TNvk 2.
Case RNS-NEw.
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e=newl(e) e =newN({(T<TU)pe) T=N
AFNok fields(N)=Tf%
ATFe~e: U AFUST
By the induction hypothesis, we have
A;TFge:T
Then, the conclusion is immediate from the rule-New.

(I
Lemma 54. If CT 0K IN FGJ'™®, thenCT ~» CT' andCT’ € FGJ for someCT".
Proof. Let CT(C) = class C<X" <N> < N{T ¥; K M}. By CT OK IN FGJ"®, we have
VN; € N(X5Y < Np,.. X0 < NG N oK)
X" < NFN,Tok fields(N)=TUg MOKINC<X<N>
K= C(Ug, Tf){super(g); this.f=f;}
Then, for eacht; € M, we have
Mj= Vn(Vx){ returneg; } A=X <: N
AFV,Vok A;x:V,this:C<X> kg eg:S
AFS <V overridea(m, N, V— V)
By Lemma 53, we have
A;%:V,this: C<X> - ep ~ e(: S
Then, by the rule RNS-METHOD, we have
M; = Vm(VX){ return (V< S)aey; }
Mj ~ M) IN C<X<N>
Finally, by the rule RNs-CLASS, we have B
class C<X <> <« N{Tf; K M} ~ classC<X <N> « N{Tf; K M}
and lettingC'T’(C) = class C<X" <> < N{T £; K M } finishes the proof. O

Lemma55. If A;T g e: T underCT 0K IN FGI™ andCT ~ CT’, thenA;T + e ~~ ¢’: T for somee’ andA;T' g e’ : T
underCT".

Proof. By Lemma 53, we have som such thatA;T" - e ~» ¢’: T. By induction on the derivation oA;T" - e ~~ ¢’: T with
a case analysis on the last rule used.

Case RNS-VAR.
e=x & =x T=TI(x)
The conclusion is immediate from the rul®-VAR.
Case RNS-FIELD1.
e=¢p.f & =¢).f T=T,
AT Feg~e):To fields(bounda(Ty)) =T £
By the induction hypothesis, we ha¥e I" -y e(: Tg. Then the conclusion is immediate from the rule-FIELD1.
Case RNS-FIELD2.
e=¢o.f e =get(e|,f) T=dyn<Object>
A;T'Feg~ e):dyn<N> £ ¢ f fields(N)=Tf%f
By the induction hypothesis, we have I' Fy e(,: dyn<N>. Then the conclusion is immediate from the rue-FIELD2.
Case RNs-INVK1.
e=-¢ep.m(8) e =e).m((S<V)ae)
ATheyg~e):Tg A T'Fe~e:V bounda(To) =N
dynfree x(N)  miype(m, N) =S - T AFV<S
By the induction hypothesis, we havg;I' i e: Tp and A;T" i & :V. By the rule TR-CAST, we haveA;T" kg
(8 = V)@ :V for someV such that -7 < S. Then, applying the rule A-INvk 1 finishes the case.
Case RNS-INVK2.
e=¢ep.m(e) e =e{.mUICKK>]{[T/XJU«<=V)a &) T=[T/XU
A;THeg~e):Tg A;TFe~e:V bounda(To) = [T/X]C<X>
~dynfree A (C<T>)  mitype(m, C<X>) =T —-U ARV [T/X]U
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By the induction hypothesis, we havg;I" i e: Tp and A;T" i & : V. By the rule TR-CAST, we haveA;T" kg
([T/X]T < V)o@ : ¥ for someV such thatA - 7 < [T/X]T. Then, applying the rule A-INvk 2 finishes the case.
Case RNS-INVKS3.
e=-¢ep.m(8) e’ = invoke(e,m,e) T=dyn<Object>
A;T Fep ~ e):dyn<N> A;T'Fe~e:V nomethod(m, N)
By the induction hypothesis, we ha¥e I" - e : dyn<N>andA; T g & : V. Then, applying the rule R-INvK 3 finishes
the case.
Case RNS-NEw. o
e=newlN(@) e =newN({T«<TUae’) T=N
AFNok fields(N)=Tf A;l'te~e:U AFUST
By the induction hypothesis, we have I -y & : T. By the rule TR-CAST, we haveA; T by (T < TU)ae': T for somel’
such thatA F T’ < T. Then, applying the rule B=NEw finishes the case.

O

B.4.1 Proof of Theorem 10

Proof. By and Lemma 54, we have a translated prog(éati”, e’). By Lemma 55, we have; e k- ¢’: T and all expressions
in C'T" are well typed, i.e.(CT’, ') is a well-formed program. O

B.4.2 Proof of Theorem 11

Proof. By Theorem 10, we have well-typed progrd@i7’, e’). By the translation rules and Lemma 5, there is no run-time
checkin(CT’,e"). O
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