
Gradual Typing for Generics

Lintaro Ina

Graduate School of Informatics, Kyoto University

ina@kuis.kyoto-u.ac.jp

Atsushi Igarashi

Graduate School of Informatics, Kyoto University

igarashi@kuis.kyoto-u.ac.jp

Abstract
Gradual typing is a framework to combine static and dy-
namic typing in a single programming language. In this pa-
per, we develop a gradual type system for class-based object-
oriented languages with generics. We introduce a special
type to denote dynamically typed parts of a program; un-
like dynamic types introduced to C♯ 4.0, however, our type
system allows for more seamless integration of dynamically
and statically typed code.

We formalize a gradual type system for Featherweight GJ
with a semantics given by a translation that inserts explicit
run-time checks. The type system guarantees that statically
typed parts of a program do not go wrong, even if it includes
dynamically typed parts. We also describe a basic implemen-
tation scheme for Java and report preliminary performance
evaluation.

1. Introduction
Statically and dynamically typed languages have their own
benefits. On the one hand, statically typed languages enjoy
type safety properties; on the other hand, dynamically typed
languages are said to be suitable for rapid prototyping. There
is a significant amount of work (e.g., [1, 3, 5, 7, 9, 11, 14, 15,
25–27] to cite some) to integrate both kinds of languages to
have the best of both worlds. Siek and Taha have coined the
term “gradual typing” [25] for a particular style of linguistic
support of the seamless integration of static and dynamic
typing in a single language. A typical gradual type system
introduces to a statically typed language a special type (often
called dynamic) to specify dynamically typed parts in a
program and allows a program to be partially typed, or even
fully dynamically typed.

One of the main challenges in the design of a gradual
type system is to give a flexible type compatibility relation,
which is an extension of subtyping and used for assignments

[Copyright notice will appear here once ’preprint’ option is removed.]

and argument passing. For example, a gradual type system
usually assumesdynamic to be compatible with any type so
that a statically typed expression to be used wheredynamic

is expected and vice versa. Moreover, when types have struc-
tures (as in function types), the compatibility relation usually
allows structural comparison: for example, a function type,
saydynamic → int, is compatible withint → int [25],
which is useful in higher-order programs.

The other, more technical challenge is to establish some
safety property even for partially typed programs. In fact,it
is possible to ensure that run-time errors are always due to
a dynamically typed part in a program. Roughly speaking,
the main idea is to insert run-time checks between the “bor-
der” between the statically and dynamically typed worlds to
prevent statically typed code from going wrong. A key idea
here is that the insertion can be guided by the use of the
compatibility relation.

In this paper, we develop a gradual type system for class-
based object-oriented languages with generics. Although
there are similar attempts at mixing static and dynamic typ-
ing in object-oriented languages [3, 5, 18, 26, 35], (to our
knowledge) very few take generics into account. One notable
exception is dynamic types for C♯ 4.0 [4], but the integration
of dynamic and static typing is not as smooth as one might
expect. For example, it requires tedious coding to convert
a collection whose element type is statically known, say, to
be integers to a collection of dynamically typed values. We
design a flexible compatibility relation, which allows, forex-
ample,List<Integer> to be used asList<dynamic> and
vice versa. Since the type system has inheritance-based sub-
typing, it is not a trivial task to give a reasonable compati-
bility relation. We also introduce the notion ofbounded dy-
namic types, which have characteristics of both dynamic and
static types, to mediate bounded polymorphism and dynamic
typing. Based on these ideas, we formalize FGJdyn, an exten-
sion of Featherweight GJ (FGJ) [16] with bounded dynamic
types and prove the desired safety property, which states
that statically typed parts in a program cannot go wrong.
In particular, it implies the standard type safety for a pro-
gram that does not contain any dynamic types. The seman-
tics of FGJdyn—the surface language in which programs are
written—is given by a translation to an intermediate lan-
guage FGJ$%, in which run-time checks are explicit. The

1 2011/4/9

translation is not only expediency for the formal proof but
also a guide to implementation.

Our main contributions can be summarized as follows:

• A flexible compatibility relation for parametric types;

• The introduction of bounded dynamic types;

• Formalization of the language with generics and dynamic
types; and

• Proof of safety properties, which show that statically
typed parts in a program never go wrong.

We are currently developing a compiler for gradually typed
Java. We also describe our basic implementation scheme.
This work at an earlier stage has been reported at the
STOP’09 workshop [19], where we have only sketched the
combination of generics and dynamic typing and its formal-
ization. In this paper, we have revised the formal definition
of both surface and intermediate languages significantly and
proved safety properties.

The rest of the paper is organized as follows. Section 2
gives an overview of gradual typing for a class-based lan-
guage with generics. Then, Sections 3 and 4 give the formal-
ization of our proposal and prove desired properties. Sec-
tion 5 describes our implementation scheme for Java and re-
ports very preliminary benchmark results. After Section 6
discusses related work, Section 7 gives concluding remarks.

2. Gradual Typing for Generics
Following the previous approaches to gradual typing [25,
26], we introduce a special type (calleddyn in this paper)
that represents dynamically typed portions in a program to
a class-based language with generics. A variable can be
declared to have the dynamic type; then, any expressions
can be assigned to it and the variable can be used as an
expression of any type. In this section, we first describe
how dyn interacts with generics by means of examples and
then what kind of dynamic checks are performed to prevent
statically typed parts from going wrong.

We use the following simple generic class as a running
example:

class Cell<X> {

X x; Cell(X x){ this.x=x; }

void set(X x){ this.x=x; }

}

Cell is a class of one-element containers, where the ele-
ment type is parameterized asX. The element is accessed
through the fieldx and modified through methodset. We
will also use classesShape and its subclassesRectangle
and Polygon. (NeitherRectangle nor Polygon extends
the other.) Moreover, classShape has method with the sig-
nature

boolean contains(double x, double y);

which returns whether a given point at(x, y) is inside the
shape.

2.1 Typedyn as Type Arguments

One natural consequence of the introduction ofdyn as a type
is thatdyn can be used as a type argument to a generic class.
For example, a programmer can use a variablec1 of type
Cell<dyn>. This type is similar toCell<Object> in the
sense that one can set anything to it.

Cell<dyn> c1 = ...;

c1.set(new Polygon(...));

c1.set(new Integer(1));

Unlike Cell<Object>, however, the type of fieldx is dyn,
which represents dynamically typed code and accepts any
method invocation and field access

dyn fld = c1.x.anyField;

dyn ret = c1.x.anyMethod(...);

which are assumed to returndyn. Also,dyn can be assigned
to any variable.

boolean b = c1.x.contains(1,1);

// The type of RHS is dyn

Of course, it must be checked at run time whether these
fields and methods really exists and whether an assignment
is valid.

In the previous work on gradual typing for a language
with subtyping, the subtyping relation is replaced with the
compatibility relation [25, 26], which, for example, allows
statically typed expressions to be passed to wheredyn is ex-
pected and vice versa. The compatibility relation should be
rich enough to support flexible integration of statically and
dynamically typed code and, for type systems with structural
subtyping, its definition requires careful examination.

We introduce a rich compatibility relation for paramet-
ric types. In particular, we allow an expression of adyn-
free type, sayCell<Rectangle>, to be assigned to a vari-
able whose type involvesdyn as a type argument, say
Cell<dyn>. For example, the following code is accepted by
the type system:

Cell<dyn> c1

= new Cell<Rectangle>(new Rectangle(...));

Note thatc1 will point to an object that can store only
Rectangles, rather than anything (as indicated bydyn).
So, actually, the invocation ofset should check at run time
whether the actual argument is a valid one.

c1.set(new Rectangle(...)); // succeeds

c1.set(new Polygon(...)); // fails

The intuition behind a parametric type to whichdyn
is given as an argument is that it denotes the set of
types wheredyn is replaced with any type. For ex-
ample, a variable of typeCell<dyn> may point to
objectsnew Cell<Shape>(), new Cell<Rectangle>(),
new Cell<Integer>(), and so on. In this sense, type
Cell<dyn> is closer to the wildcard typeCell<?> than
Cell<Object>, but, unlikeCell<?>, potentially unsafe op-
erations such as invocation ofset are (statically) allowed.

2 2011/4/9

Our compatibility relation allows the opposite direction
of flow, too—that is, an expression whose type involvesdyn
as a type argument can be assigned to a variable of adyn-
free type as in the following code:

Cell<Rectangle> c2 = c1;

Cell<Polygon> c3 = c1;

Just as an assignment of an expression of typedyn to a
concrete type, the run-time system will check whether these
are valid assignments: in this case, only the first assignment
will succeed.

In summary, our compatibility relation allowsdyn in a
type expression to be replaced with a concrete type and vice
versa. As we will see in the next section, however, its formal
definition is more subtle than might have appeared when we
take inheritance-based, nominal subtyping into account. Due
to nominal subtyping, we take an approach different from the
previous work.

2.2 Run-time Checks

In order to ensure that statically typed code (or, more pre-
cisely, code that would be well typed in the standard type
system) will not go wrong, errors due to dynamically typed
code have to be captured at the “border” between the two
worlds. For this purpose, we introduce an intermediate lan-
guage, which has explicit constructs for run-time checks; the
semantics of the surface language, which we describe above,
will be given in terms of the translation to the intermediate
language.

Although there is no direct semantics for the surface lan-
guage, a program in the surface language can be mostly
directly understandable because the translation only inserts
run-time checks and preserves the structure of a program.
Moreover, run-time checks are inserted only where dynamic
types are involved. So, as far as statically typed code is con-
cerned, the translation is the identity map, without inserting
any run-time checks. Then, in order to show that statically
typed code never goes wrong, it suffices to show that all run-
time failures are due to those explicit checks.

We will give an overview of constructs for run-time
checks and the translation below. Table 1 shows constructs
for run-time checks and their intuitive meanings. In what
follows, we writee e′ to mean that a surface language
expression (or statement)e is translated toe′.

First, when an expression of a type that involvesdyn is
passed to where a type withoutdyn is expected, a cast$% is
inserted:

Cell<Rectangle> c2; Cell<Polygon> c3;

c2 = c1;

 c2 = $Cell<Rectangle>% c1;

c3 = c1;

 c3 = $Cell<Polygon>% c1;

We use different parentheses$% to denote casts because
the semantics is slightly different from Java’s. Note that
the first cast above has to check that the run-time value

$T% e checks if the run-time type of the
value ofe is compatible withT, and
then returns the value.

get(e,f) checks if the value ofe has fieldf,
and then reduces to the field value.

e.m[T|C<X>](e) checks if the types of argumentse
are correct (using the static type in-
formationT, C<X>), and then invoke
methodm on receivere.

invoke(e,m, e) checks if the value of receivere
has methodm and the types of argu-
mentse are correct, and then invoke
the method on the receiver.

Table 1. Constructs for run-time checks.

of c1 is an instance ofCell<Rectangle> and not that
of Cell<Integer>. So, this cast requires run-time type
argument information. There are other differences, which we
discuss later, as well.

A member access ondyn will be translated toget or
invoke, which checks the existence of the member at run-
time.

Cell<dyn> c1;

c1.x.radius;

 get(c1.x, radius);

c1.x.contains(1, 1);

 invoke(c1.x, contains, 1, 1);

When c1.x has methodcontains, invoke above also
checks whether it can take two integers.

As we have already discussed, the invocation ofset
on typeCell<dyn> will have to check whether the run-
time type of the argument is appropriate for the run-
time type argument to the receiver’s class, even though
the existence of methodset is statically guaranteed.
For such cases, we use method invocation of the form
e0.m[T1, . . . , Tn|C<X>](e1, . . . , en). For example, we
have the following translation.

c1.set(new Polygon(...));

 c1.set[X|Cell<X>](new Polygon(...));

The annotationsX andCell<X> record a parameter type and
a receiver’s static typebefore type parameters are instanti-
ated and are used to check the argument. It works as follows:
Whenc1 evaluates to a valuenew Cell<T>(...) for some
typeT, the actual receiver typeCell<T> is matched against
Cell<X> andX is bound toT. Then, the actual argument’s
type (herePolygon) is checked againstT, which is obtained
by replacingX with T in the recorded parameter type. So,
this method invocation succeeds whenc1’s value is an ob-
ject ofCell<Polygon> (or Cell<T> whereT is a supertype
of Polygon).

3 2011/4/9

2.3 Ensuring “statically typed parts cannot go wrong”

One of our goals of the gradual type system is to ensure
that “statically typed parts in a program never go wrong”,
in particular, class definitions that pass the standard type
checker should not go wrong. Another desirable property of
the system is modularity of type checking, that is, determin-
ing whether the given part of the program is statically typed
or not should be done by looking at no more than a single
class definition and type information that it depends on. We
also aim at implementation by erasure translation [8].1 Actu-
ally, modular checking and erasure translation make it trick-
ier to ensure the safety of “statically typed code”.

First of all, even if a class definition contains no occur-
rence ofdyn, it should not be considered statically typed
because subexpressions may be given typedyn. So, a sensi-
ble definition of a statically typed class definition is some-
thing like “a class definition is statically typed if there isno
occurrence ofdyn and every subexpression is given a ‘dyn-
free’ type.” In fact, as we will see later, in our translation, a
method invocation requires no run-time check if the receiver
and actual argument types are alldyn-free. Then, a class def-
inition that passes the standard type checking will translates
to itself, without run-time checks.

However, the problem is more subtle than it might have
appeared, due to the presence of type variables. In general,
type variables should not be considereddyn-free simply
because type variables can be instantiated withdyn. In fact,
the following classes, which are typed under the standard
type system of generics

class StrCell extends Cell<String> {

void set(String x){ ... x.length() ... }

}

class Foo<Y> {

void bar(Cell<Y> c, Y x) {

c.set(x);

}

}

will raise a run-time error when combined with the following
code:

new Foo<dyn>().bar(new StrCell(...), new Object());

The last expression passes aStrCell and anObject to
Foo<dyn>.bar(), which expects aCell<dyn> and dyn,
and this is allowed due to the extended compatibility re-
lation we have already mentioned. InFoo<Y>.bar(), an
object x is passed toCell<Y>.set(). However, in this
case, the receiver is aStrCell andStrCell.set() will
be called with an argumentnew Object(), which does not
havelength()!

To avoid this problem, we separate type variables into two
kinds: one can only be replaced withdyn-free types, and
the other can be replaced with dynamic types. These kinds
are indicated in the class definition, for example,class

1 Our compilation scheme actually requires support for run-time type argu-
ments. However, method signatures are subject to erasure.

Foo<Y♦>... for the former andclass Foo<Y�>... for
the latter. If Foo is defined asclass Foo<Y♦>..., then
no run-time check is inserted but the problematic expres-
sion above is rejected at compile time. Otherwise, ifFoo is
defined asclass Foo<Y�>..., then the invocation ofset
will check whether the actual argument types are valid for
the formal (by usinge.m[T|C<X>](e)).

Although, in principle, a programmer can choose the
kind for each type variable declaration in a single class
definition, we do not expect that a programmer wants to do
it. A practical design would be that a compiler option will
decide the kind of all the type variables in a compiled file
at once. In the beginning of development, the programmer
may compile most generic classes with kind�, and then
switches some classes to♦ gradually as the development
progresses—such a switch would enforce their client code
to remove the use of dynamic types. In the rest of the paper,
we omit kinds of type variables when they do not make
significant difference.

2.4 Bounded Dynamic Types

Another problem occurs when a type variable is given an up-
per bound. To illustrate the problem, consider the following
class:

class ShapeCell<X� extends Shape> {

X x; ShapeCell(X x){ this.x=x; }

void set(X x){ this.x=x; }

boolean contains(double px, double py){

return this.x.contains(px, py);

}

}

ClassShapeCell, which is similar to classCell above,
specifiesShape asX’s upper bound. Note thatShapeCell
does not containdyn anywhere and the whole class defini-
tion will be well typed in the standard type system of gener-
ics.

Now consider typeShapeCell<dyn>. The question here
is what we can set tox. One choice would be to allow any
object to be set tox, as we did forCell<dyn>:

ShapeCell<dyn> sc = ...;

sc.set(new Object());

However, this choice would not be compatible with the im-
plementation by erasure, which translates the type of fieldx

to beShape, the upper bound ofX. In a language without
erasure semantics, for example in C♯, this choice would not
conflict with the implementation, but, as long as homoge-
neous translation [24] is used, we need to treat type variable
X with kind � as dyn. This leads to a major performance
disadvantage since operations on expressions of typeX need
to be augmented with run-time checks that require member-
ship tests: for example in the case above, the invocation of
contains on this.x need to be replaced with an expen-
sive run-time check byinvoke, which checks the presence
of methodcontains and (if exists) whether the types of for-

4 2011/4/9

mal and actual arguments match. Thus, our choice here is to
keep compatibility with the implementation by erasure and
to avoid performance penalty as much as possible: in other
words, we reject the code above statically.

We introducebounded dynamic types, written dyn<T>

(whereT stands for a parametric type). A type parameter
with an upper boundT can be instantiated by a bounded
dynamic typedyn<T′> when T′ is a subtype ofT. Thus,
ShapeCell<dyn<Shape>> is a well-formed type, whereas
ShapeCell<dyn<Object>> is not.

We define a bounded dynamic typedyn<T> to be com-
patible only with subtypes ofT. So, the following code will
be ill typed and rejected by the type checker.

ShapeCell<dyn<Shape>> sc = ...;

sc.set(new Object());

// Object is not compatible with dyn<Shape>!

A bounded dynamic type has both static and dynamic typing
natures. While it still allows potentially unsafe operations
to be performed, it enforces static typing as far as members
defined in the bound are concerned. So, the first two lines
in the following code are still accepted (and checked at run
time) but not the third2 and fourth.

sc.x.anyField;

sc.x.anyMethod(...);

sc.x.contains(); // two arguments are expected!

Shape s = sc.x.contains(3, 4); // returns boolean!

In a real language, we do not expect programmers to
write those upper bounds explicitly. Rather, whendyn is
used as a type argument, the compiler can recover its up-
per bound automatically by assigning the upper bounds of
the corresponding type parameters in the generic class def-
inition.3 For other uses ofdyn, they can be regarded as
dyn<Object>; in fact, we usedyn as an abbreviation of
dyn<Object>, throughout the paper.

2.5 Two Compatibility Relations

As we have already mentioned, the type system of the sur-
face language uses the compatibility relation, denoted by
., to check argument passing and assignments. This rela-
tion has both co- and contra-variant flavors whendyn is
considered a top type: for example, bothCell<Shape> .
Cell<dyn> andCell<dyn> . Cell<Shape> hold and so
both

Cell<Shape> c1 = ...; Cell<dyn> c2 = c1;

and

Cell<dyn> c1 = ...; Cell<Shape> c2 = c1;

are accepted (statically). The reason to allow contravariance
(the latter kind of compatibility) is simply because itsome-
times runs safely. For example, whenc1 happens to be an

2 It could be allowed in the presence of overloading.
3 For F-bounded type variables, such automatic recovery is difficult. We
would have to have programmers write upper bounds explicitly.

objectnew Cell<Shape>(...), the latter code fragment is
just fine.

However, we should not use this compatibility relation
for casts. For example, consider the following (surface lan-
guage) code:

Cell<dyn> c1 = new Cell<dyn>(new Polygon(...));

Cell<Rectangle> c2 = c1; // accepted thanks

// to contravariance

c2.x.methodOnlyInRectangle(); // accepted since

// c2.x is Rectangle

On the second line, a run-time check
$Cell<Rectangle>% c1 is performed. Since the run-
time type ofc1 is Cell<dyn>, if $% used the compatibility
relation, the cast would succeed, resulting in the unexpected
method-not-found error! (Notice that the invocation of
methodOnlyInRectangle should involve no checks
because the receiver’s static type does not containdyn.)

Thus, we use another relation:≺ calledrun-time compat-
ibility for run-time checks. This relation is a subrelation of
. and disallows contravariance: for example,Cell<dyn> :≺
Cell<Rectangle> does not hold. However, it still allows
covariance (such asCell<Rectangle> :≺ Cell<dyn>),
so it is more permissive than subtyping. (It is not com-
pletely safe—that is why we still need argument checks by
e0.m[T1, . . . , Tn|C<X>](e1, . . . , en).)

Having these discussions in mind, we formalize the core
of the surface and intermediate languages in the following
sections.

3. Featherweight GJ with Dynamic Types
In this section, we formalize the surface language FGJdyn, an
extension of FGJ with dynamic types to model a type system
of gradually typed generics. For simplicity, we omit some
features found in FGJ: F-bounded polymorphism, polymor-
phic methods, and typecasts, which would be easy to add.
We focus on the type system in this section and leave the
definition of the intermediate language called FGJ$% and
translation from FGJdyn to FGJ$%. For those who are famil-
iar with FGJ, we usegray boxes to show differences from
FGJ.

3.1 Syntax and Lookup Functions

The abstract syntax of FGJdyn classes, constructors and
method declarations, and expressions are defined as follows:

Definition 1 (Syntax of FGJdyn).
κ, ι ::= � | ♦
S, T, U, V ::= X | N | dyn<N>

N, P, Q ::= C<T>

e ::= x | new N(e) | e.f | e.m(e)

L ::= class C<X
κ

⊳ N> ⊳ N {T f; K M}

K ::= C(T f){super(f); this.f=f;}

M ::= T m(T x){ return e; }

5 2011/4/9

The metavariablesA, B,C, D andE range over class names;
W, X, Y andZ range over type variables;N, P andQ range
over class types (dyn<N> is not a class type);S, T, U andV
range over types;κ andι range over kinds of type variables;
f andg range over field names;m ranges over method names;
x ranges over variables;d and e range over expressions;
L ranges over class declarations;K ranges over constructor
declarations; andM ranges over method declarations. We
assume that the set of variables includes the special variable
this.

We write f as shorthand for a possibly empty sequence
f1,f2,. . .,fn (and similarly forC, X, N, T, x, e, etc.) and
write M as shorthand forM1. . .Mn (with no commas). The
length of a sequencef is written #(f). We write f ∈ f

whenf equals tofi where1 ≤ i ≤ #(f), and writef /∈ f

otherwise. We also abbreviate various forms of sequences
of pairs in the obvious way, writing “T f” as shorthand
for “T1 f1,. . .,Tn fn” where#(T) = #(f), and similarly
“T f;” for the sequence of declarations “T1 f1;· · · Tnfn;”,
“this.f=f;” for “ this.f1=f1;· · · this.fn=fn;”, and
“X

κ
⊳ N” for “ Xκ1

1 ⊳ N1,. . .,Xκn

n ⊳ Nn” . We write the empty
sequence as• and denote concatenation of sequences using
a comma. Sequences are assumed to contain no duplicate
names. We abbreviate the keywordextends to the symbol
⊳.

dyn<N> is a type of dynamically typed expressions. Since
it is not a class type,dyn<N> can neither be used to instanti-
ate an object (bynew expressions) nor be used as a bound of
a type variable. We always write the boundN in the formal
language whenN is notObject, but the real programming
language should allow bounds to be omitted from the source
code. As we discussed in the previous section, it is easy to
recover the bounds for most cases. Similarly, it is reasonable
to treatC without the arguments asC<dyn,...,dyn>.

A program in FGJdyn is a pair(CT, e) of a class table,
which is a finite mapping from class namesC to class decla-
rationsL, and a closed expression corresponding to the body
of themain method. We assume thatCT satisfies some san-
ity conditions: (1)CT (C) = class C<X ⊳ N> ⊳ ... {...}

for everyC ∈ dom(CT); (2) Object /∈ dom(CT); (3) for
every class nameC (exceptObject) appearing anywhere in
CT , we haveC ∈ dom(CT); and (4) there are no cycles
in the transitive closure of⊳ (as a relation between class
names). In what follows, we fix a class table.

As in FGJ, we use functionsfields andmtype to look up
field definitions and method types in a given class table. We
also use a predicatenomethod to state non-existence of a
method. We omit their straightforward definitions (see ap-
pendix or Igarashi, Pierce, and Wadler [16] for the defini-
tions offields andmtype); their functionalities are summa-
rized in Table 2.

Some other auxiliary functions are defined in Figure 1.
We use a functionbound to compute the upper bound of a
type in a bound environment∆, which is a finite sequence of

fields(N) = T f collects fields in classN and its
super type.

mtype(m, N) = T → T looks up the type of methodm in
classN or its super type.

nomethod(m, N) holds when there is no methodm
in classN or its super type.

Table 2. Definition of FGJdyn: Auxiliary functions and
predicates.

triples of a type variable, its kind and its bound, where type
variables are pairwise distinct.4 When bound is used with
a class type, it returns the given type itself. Whenbound

is used with a dynamic type, it returns the bound of the
dynamic type. We have a functionkind to look up kinds
of type variables. We use a predicatedynfree to state that a
type is dynamic-free, i.e., it contains no dynamic type.

3.2 Subtyping and Compatibility

Now we define subtyping and compatibility relations. As we
have mentioned, there are two compatibility relations (writ-
ten :≺ for run-time compatibility and. for static compati-
bility). We write ∆ ⊢ S <: T to meanS is a subtype of
T under bound environment∆. Similarly for ∆ ⊢ S :≺ T

and∆ ⊢ S . T. We abbreviate a sequence of judgments
∆ ⊢ S1 <: T1, . . . , ∆ ⊢ Sn <: Tn to ∆ ⊢ S <: T (and
similarly for :≺ and.).

Definition 2 (FGJdyn subtyping and compatibility). The
subtyping and compatibility judgments∆ ⊢ S <: T and
∆ ⊢ S :≺ T and∆ ⊢ S . T are defined by the rules in
Figure 2.

The subtype relation<: is mostly the same as that of FGJ.
The first two rules mean that it is reflexive and transitive;
the third rule that a type variable is a subtype of its bound;
the fourth rule is about inheritance-based subtyping—any in-
stance of a⊳ clause gives subtyping. The last rule says a
bounded dynamic typedyn<N> is a subtype of its boundN.
In fact, dyn<N> andN denote the same set of instances—
instances ofN and its subtypes anddyn<N> allows more
operations (which are potentially unsafe, though) to be per-
formed thanN. So, dyn<N> <: N indeed agrees with the
substitution principle [22].

The compatibility relations are defined with the help of
an auxiliary relation≺. Intuitively, S ≺ T means thatT
is obtained by replacing some class types inS with dy-
namic types (with an appropriate bound). For example,
Rectangle ≺ dyn<Object> and Cell<Rectangle> ≺
Cell<dyn<Object>> hold (under any bound environment).
So,≺ represents a form of covariance. Then, the compati-
bility relations are defined as compositions of≺ and<:—
the former as(<:;≺) (·; · is a composition of two relations)

4 So,∆ can be considered a finite mapping.

6 2011/4/9

Bound environment

∆(X) = (κ, N)

bound∆(X) = N
bound∆(N) = N bound∆(dyn<N>) = N

∆(X) = (κ, N)

kind∆(X) = κ

Dynamic-free types

kind∆(X) = ♦

dynfree∆(X)

dynfree∆(T)

dynfree∆(C<T>)

Figure 1. Definition of FGJdyn: Auxiliary functions and predicates.

Subtyping

∆ ⊢ T <: T
∆ ⊢ S <: U ∆ ⊢ U <: T

∆ ⊢ S <: T
∆ ⊢ X <: bound∆(X)

class C<X
κ

⊳ N> ⊳ N {...}

∆ ⊢ C<T> <: [T/X]N
∆ ⊢ dyn<N> <: N

Compatibility

∆ ⊢ T ≺ T
∆ ⊢ S ≺ U ∆ ⊢ U ≺ T

∆ ⊢ S ≺ T

∆ ⊢ S ≺ T

∆ ⊢ C<S> ≺ C<T>

∆ ⊢ T <: S ∆ ⊢ S ≺ N

∆ ⊢ T ≺ dyn<N>

∆ ⊢ S <: U ∆ ⊢ U ≺ T

∆ ⊢ S :≺ T

∆ ⊢ U ≺ S ∆ ⊢ U :≺ T

∆ ⊢ S . T

Figure 2. Definition of FGJdyn: Subtyping and compatibility.

and the latter as(≺−1; <:;≺), where≺−1 is the inverse of
≺ and represents a form of contravariance. As a result, two
types are statically compatible if replacing dynamic types
with class types yields two types in the subtyping relation.

For example,

∆ ⊢ Cell<dyn> . Cell<Rectangle>

can be derived sinceCell<dyn> ≺−1 Cell<Rectangle>.
Also,

∆ ⊢ Cell<dyn<Shape>> . Cell<dyn>

since Cell<dyn<Shape>> ≺−1 Cell<Shape>

and Cell<Shape> ≺ Cell<dyn>. (Note that
Cell<dyn<Shape>> <: Cell<dyn> doesnot hold.)

dyn<Object> can be considered either a top type or
a bottom type, i.e.,∆ ⊢ T . dyn<Object> and ∆ ⊢
dyn<Object> . T are satisfied for anyT, and the relation
. is not transitive because otherwise∆ ⊢ S . T would be
implied for anyS,T (as mentioned in [25, 26]).dyn<N> can
also be considered as a top/bottom type for subtypes ofN.

3.3 Type Well-formedness and Typing

We, then, define well-formed types and typing.

Definition 3 (FGJdyn type well-formedness). The type well-
formedness judgment∆ ⊢ T ok, read as “in bound environ-
ment∆, typeT is well formed,” is defined by the rules in
Figure 3.

The last rule means that a bounded dynamic type is well
formed if its upper bound is well formed. The third rule
means that a class type is well formed if well formed type
arguments that satisfy the corresponding type parameters’
upper bounds. Note that we use:≺ rather than<: or.. First,
<: cannot be used because we want to use dynamic types
as type arguments. For example,Cell<dyn> is well formed
becausedyn :≺ Object. . should not be used, either,
because we want to reject a type likeShapeCell<dyn>.
(Note thatdyn . Shape.) The third rule also requires that
type arguments must be dynamic-free if the kind of the
corresponding type variable is♦.

Now we are ready to define typing. We useΓ as a type
environment, which is a finite mapping from variables to
types, writtenx : C.

Definition 4 (FGJdyn typing). The type judgments∆; Γ ⊢G

e :T, read as “in environment∆ andΓ, expressione has type
T,” andM OK IN C<X ⊳ N>, read as “methodM is well-formed
in classC<X ⊳ N>” andL OK, read as “classL is well-formed”
are defined as in Figure 4.

7 2011/4/9

∆ ⊢ Object ok
X ∈ dom(∆)

∆ ⊢ X ok

class C<X
κ

⊳ N> ⊳ N {...} ∆ ⊢ T ok

∀κi ∈ κ.(κi = ♦ implies dynfree∆(Ti))

∀Ti ∈ T.(∆ ⊢ Ti :≺ [T1/X1, . . . , Ti−1/Xi−1]Ni)

∆ ⊢ C<T> ok

∆ ⊢ N ok

∆ ⊢ dyn<N> ok

Figure 3. Definition of FGJdyn: Type well-formedness.

Expression typing

∆; Γ ⊢G x : Γ(x) (Tg-Var)
∆ ⊢G N ok fields(N) = T f ∆; Γ ⊢G e : U ∆ ⊢ U . T

∆; Γ ⊢G new N(e) : N
(Tg-New)

∆; Γ ⊢G e0 : T0

fields(bound∆(T0)) = T f

∆; Γ ⊢G e0.fi : Ti

(Tg-Field1)

∆; Γ ⊢G e0 : dyn<N> f /∈ f

fields(N) = T f

∆; Γ ⊢G e0.f : dyn<Object>
(Tg-Field2)

∆; Γ ⊢G e0 : T0 ∆; Γ ⊢G e : V mtype(m, bound∆(T0)) = S → S ∆ ⊢ V . S

∆; Γ ⊢G e0.m(e) : S
(Tg-Invk1)

∆; Γ ⊢G e0 : dyn<N> ∆; Γ ⊢G e : V nomethod(m, N)

∆; Γ ⊢G e0.m(e) : dyn<Object>
(Tg-Invk2)

Method typing

mtype(m, N) = U → U implies T = U and ∆ ⊢ T :≺ U

override∆(m, N, T → T)

∆ = X
κ

<: N ∆ ⊢ T, T ok ∆; x : T, this : C<X> ⊢G e0 :S

∆ ⊢ S . T class C<X
κ

⊳ N> ⊳ N {...} override∆(m, N, T → T)

T m(T x){ return e0; } OK IN C<X ⊳ N>
(Tg-Method)

Class typing

∀Ni ∈ N.(Xκ1

1 <: N1, . . . , X
κi−1

i−1 <: Ni−1 ⊢ Ni ok) X
κ

<: N ⊢ N, T ok

fields(N) = U g M OK IN C<X ⊳ N> K = C(U g, T f){super(g); this.f=f;}

class C<X
κ

⊳ N> ⊳ N {T f; K M} OK
(Tg-Class)

Figure 4. Definition of FGJdyn: Typing.

Most of the rules are straightforward adaptation of those
in FGJ [16], except that the relation. is substituted for<:.
TG-FIELD2 and TG-INVK 2 are additional rules, used when
the receiver type is a bounded dynamic type. Note that these
rules are applied only when it is not known whether the
receiver has a field or method to be accessed (the premises
f 6∈ f in TG-FIELD2 andnomethod(m, N) in TG-INVK 2).
This givesdyn<N> a characteristic of ordinary class types.

The predicateoverride , used in method typing, is to
check if a methodm in classN can be overridden by a method
of typeT → T. Parameter types must be the same between

the overriding and overridden methods and the return type
of the overriding method must be run-time compatible with
that of the overridden method. We cannot use. here: if.
were used, it would be possible to override a method that
returnsT by one that returnsdyn<Object> in a subclass,
and then to override it by another that returnsS for any S.
As a result, invoking a method, whose static return type isT,
might actually invoke the third method that returnsS, which
can be very different fromT, due to late binding!

8 2011/4/9

We write ⊢G (CT, e) : T to mean the program is well
formed, i.e, if all the classes inCT are well formed ande is
well typed under the empty environments.

We have not completed to develop a type checking algo-
rithm. In fact, it is not even clear that the compatibility re-
lation. is decidable for the same reason as variance-based
subtyping [20].

Conservative Typing over FGJ. Even at this point, we
can show an interesting property that typing in FGJdyn is
a conservative extension of that in FGJ. Namely, as far as
a class table written in the FGJ syntax is concerned, it is
well typed under the FGJ rules if and only if it is well typed
under the FGJdyn rules. The following lemma is a key to the
conservative extension property (Theorem 6).

Lemma 5.

• If ∆ ⊢ S ≺ T anddynfree∆(T), thenS = T.
• If ∆ ⊢ S :≺ T anddynfree∆(T), then∆ ⊢ S <: T.
• If ∆ ⊢ S . T anddynfree∆(S), then∆ ⊢ S :≺ T.
• If ∆ ⊢ S . T anddynfree∆(S) anddynfree∆(T), then

∆ ⊢ S <: T.

We write⊢FGJ (CT, e) : T if the program, which does not
containdyn<N>, is well formed under the FGJ rules.

Theorem 6 (FGJdyn Typing is Conservative over FGJ Typ-
ing). If κ = ♦ for every class C<X

κ
⊳ N> ⊳ N {...} in CT

and none ofdyn<P> appears in(CT, e), then⊢FGJ (CT, e) :
T ⇐⇒ ⊢G (CT, e) : T.

4. From FGJdyn to FGJ$%

In this section, we first define a formal model FGJ$% of
the intermediate language, into which source programs are
translated. FGJ$% has operational semantics, as well as a
type system. After stating theorems about type safety of
FGJ$%, we present formal translation from FGJdyn to FGJ$%

and state theorems that translation preserves typing. We have
weak and strong versions of type safety: the weak version
means that a well typed program can raise errors only at
run-time checks and the strong version means that a well
typed program without containing run-time checks never
goes wrong in the usual sense.

4.1 The Target Language FGJ$%

The syntax of FGJ$% extends that of FGJdyn, by including
special forms for run-time checks and run-time errors. We
show only the grammar for expressions, values (used to
define the semantics), and errors; the others are the same.

Definition 7 (Syntax of FGJ$%).

e ::= x | new N(e) | e.f | e.m(e)

| get(e,f) | e.m[T|C<X>](e)

| invoke(e,m, e) | $N% e

| Error[E]

v, w ::= new N(v)

E ::= NoSuchField | NoSuchMethod

| IllegalArgument | BadCast

We avoid repeating the definitions of the following func-
tions, predicates, and relations since they are defined exactly
the same way as in FGJdyn.

Functions bound

kind

fields

mtype

Predicates dynfree

nomethod

override

Relations Subtyping<:
Compatibility≺, :≺

Judgments Type well-formedness

Some more auxiliary functions are listed in Figure 5.
〈S ⇐ T〉∆e inserts a cast when source typeT is not run-
time compatible withS. This reduces unnecessary casts.
tyargs(N, C) is used in the reduction rules described later to
get type arguments from run-time types. We also use a func-
tion mbody(m, N), which returns a pairx.e of a sequence of
formal parameters and a method body expression, ifN hasm.
Its straightforward definition is omitted.

We show the main typing rules of FGJ$% in Figure 6.
An important point to note is that we use only the run-time
compatibility :≺ and no. appears in the typing rules because
a use of. compiles to a cast$% , which uses:≺ for its run-
time check. TR-INVK 1 is the rule for a method invocation
without run-time checks. The receiver type must bedyn-
free. TR-INVK 2 is the rule for a method invocation with run-
time argument checking.C<T> can be considered an initial
(i.e., compile-time) static type of receivere0; N :≺ C<T>

is required since the receiver type may change as reduction
proceeds. TR-INVK 3 is the rule for a method invocation that
checks whether the methodm exists at run time. The receiver
and arguments can be arbitrary typeable expressions and the
type of the invocation isdyn<Object>. TR-CAST is the rule
for casts; and TR-ERROR is the rule for errors.

We omit typing rules for object constructions, field ac-
cesses, methods and classes, since they are similar to those
in FGJdyn. We write⊢R (CT, e) : T to mean the FGJ$% pro-
gram(CT, e) is well formed.

We give main reduction rules in Figure 7. The evalua-
tion order is, unlike FGJ, fixed to be left-to-right and call-by-
value to deal with run-time errors more precisely. R-FIELD1
and R-INVK 1 are quite standard. They checks the existence

9 2011/4/9

Cast insertion

〈S ⇐ T〉∆e
def

=

{

e (if ∆ ⊢ T :≺ S)

$S% e (otherwise)

Type arguments

tyargs(C<T>, C) = T
• ⊢ N <: P tyargs(P, C) = T

tyargs(N, C) = T

Figure 5. Definition of FGJ$%: Auxiliary functions.

∆; Γ ⊢R e0 : T0 ∆; Γ ⊢R e : V bound∆(T0) = P ∆ ⊢ P :≺ N

dynfree∆(N) mtype(m, N) = S → S ∆ ⊢ V :≺ S

∆; Γ ⊢R e0.m(e) : S
(Tr-Invk1)

∆; Γ ⊢R e0 : T0 ∆; Γ ⊢R e :V bound∆(T0) = N ∆ ⊢ N :≺ [T/X]C<X>

mtype(m, C<X>) = U → U ∆ ⊢ V :≺ [T/X]U

∆; Γ ⊢R e0.m[U|C<X>](e) : [T/X]U
(Tr-Invk2)

∆; Γ ⊢R e0 : T0 ∆; Γ ⊢R e : V

∆; Γ ⊢R invoke(e0, m, e) : dyn<Object>
(Tr-Invk3)

∆; Γ ⊢R e : S

∆; Γ ⊢R $T% e : T
(Tr-Cast)

∆; Γ ⊢R Error[E] :T (Tr-Error)

Figure 6. Definition of FGJ$%: Typing.

fields(N) = T f

new N(v).fi −→ vi

(R-Field1)
fields(N) = T f

get(new N(v), fi) −→ vi

(R-Field2)

• ⊢ N :≺ T

$T% new N(v) −→ new N(v)
(R-Cast)

mbody(m, N) = x.e0

new N(v).m(w) −→ [w/x, new N(v)/this]e0

(R-Invk1)

mbody(m, N) = x.e0 w = new P(...) • ⊢ P :≺ [tyargs(N, C)/X]U

new N(v).m[U|C<X>](w) −→ [w/x, new N(v)/this]e0

(R-Invk2)

mbody(m, N) = x.e0 mtype(m, N) = U → U w = new P(...) • ⊢ P :≺ U

invoke(new N(v), m, w) −→ [w/x, new N(v)/this]e0

(R-Invk3)

Figure 7. Definition of FGJ$%: Reductions.

of a field/method in the receiver type but the check should
never fail for well-typed expressions as we will see later. R-
FIELD2, R-INVK 2, R-INVK 3 and R-CAST are for run-time
checks, which can raise a run-time error. In R-INVK 2, the
type arguments in method parameter types are filled accord-
ing to the run-time class of the receiver value, and checked
against the run-time class of the actual arguments. In R-
INVK 3, we need to look up the method argument types by
mtype to perform run-time checks for actual arguments. The
rule R-CAST means that a cast succeeds when the subject
type is run-time compatible with the target type.

We also have reduction rules for errors shown in Figure 8.
Each rule has premises negating those in the corresponding
reduction rule. Note that only run-time checks have error-
raising reduction. We also need rules that propagate raised
errors upwards; but we omit them.

FGJ$% is (weakly) type-safe in the sense that a well-
typed program, if terminates, yield a value or raise an error.
Moreover, if a program does not contain dynamic types, then
it is strongly type safe.

Theorem 8(FGJ$% weak type safety). If ⊢R (CT, e) : T and
e −→∗ e′ wheree′ is a normal form, thene′ is either

10 2011/4/9

• ⊢ N 6 :≺ T

$T% new N(v) −→ Error[BadCast]
(E-Cast)

fields(N) = T f f 6∈ f

get(new N(v), f) −→ Error[NoSuchField]
(E-Field)

nomethod(m, N)

invoke(new N(v), m, w) −→ Error[NoSuchMethod]
(E-Invk)

mbody(m, N) = x.e0 w = new P(...) • ⊢ Pi 6 :≺ [tyargs(N, C)/X]Ui

new N(v).m[U|C<X>](w) −→ Error[IllegalArgument]
(E-Invk-Arg1)

mbody(m, N) = x.e0 mtype(m, N) = U → U w = new P(...) • ⊢ Pi 6 :≺ Ui

invoke(new N(v), m, w) −→ Error[IllegalArgument]
(E-Invk-Arg2)

Figure 8. Definition of FGJ$%: Error-raising reductions.

1. a valuev with •; • ⊢R v : N and• ⊢ N :≺ T,
2. an errorError[E].

Theorem 9 (FGJ$% strong type safety). If ⊢R (CT, e) : T
where(CT, e) does not contain run-time checks ande −→∗

e′ wheree′ is a normal form, thene′ is a valuev with
•; • ⊢R v : N and• ⊢ N :≺ T.

These theorems are proved in a standard manner of com-
bining subject reduction and progress [34]. The statements
and proofs of both properties are, in fact, very similar to
those for FGJ. One non-trivial property required is transi-
tivity of :≺.

4.2 Translation from FGJdyn to FGJ$%

A judgment of translation from FGJdyn to FGJ$% is of the
form ∆; Γ ⊢ e e′ : T, read “FGJdyn expressione of typeT
under environmentsΓ and∆ translates to FGJ$% expression
e′.” The translation is directed by typing in FGJdyn. We show
only the rules for method invocations in Figure 9.

TRNS-INVK 1 is for ordinary invocations; casts are in-
serted for testing run-time compatibility of arguments. IfV

aredyn-free, then actually no casts will be inserted, thanks to
Lemma 5. TRNS-INVK 2 is for invocations whose arguments
must be checked at run time. Note that the receiver typeT0

in these two rules can bedyn<N> when there is an appro-
priate methodm in N because the existence ofm is statically
guaranteed. TRNS-INVK 3 is for invocations whose receiver
type isdyn<N> andN has no appropriate methodm.

Although we omit its definition, we write(CT, e)
(CT ′, e′) to mean that the FGJdyn program(CT, e) is trans-
lated to the FGJ$% program(CT ′, e′). Then, the translation
preserves well-typedness, i.e., a well-typed FGJdyn program
translates to a well-typed FGJ$% program.

Theorem 10 (Weak translation). If ⊢G (CT, e) : T, then
(CT, e) (CT ′, e′) and ⊢R (CT ′, e′) : T for some
(CT ′, e′).

Theorem 11 (Strong translation). If κ = ♦ for every
class C<X

κ
⊳ N> ⊳ N {...} in CT and none ofdyn<P>

appears in(CT, e) and ⊢G (CT, e) : T, then (CT, e)
(CT ′, e′) and ⊢R (CT ′, e′) : T for some (CT ′, e′) and
(CT ′, e′) does not contain run-time checks.

Combining Theorem 8 and Theorem 10, we can see that a
member access which translates to an ordinary member ac-
cess without run-time checks will not fail. In other words, a
statically typed portion (method invocations whose receiver
and argument types aredyn-free) will never fail. That is the
type safety of FGJdyn.

5. Implementation
In this section, we report the basic implementation scheme
for Java. Our plan is to add a new compilation phase to
transform the code tree to have the run-time checks inserted
as the same way as the other existing compilation phases
such as the type erasing transformation. The transformation
follows the rules in Section 4 and the run-time checks can
be implemented using existing reflective features of Java.
Since the current JVM has no run-time information of type
arguments of generics, we need a mechanism to look up full
run-time type information. We follow the technique of type
passing [30–32] for this.

5.1 Run-time Checks

The run-time checks $T% e, get(e,f) and
invoke(e,m, e) can be implemented by reflection APIs
such asjava.lang.Class, java.lang.reflect.Field
and java.lang.reflect.Method. We implement a
classCla to represent type descriptors and a static method
Cla.$() to get the run-time type information ofobj includ-
ing type arguments. The return value ofCla.$(...) is a
type descriptord (an instance of classCla described in more
details later), which has fieldcl of a java.lang.Class

instance, fieldp of an array of type descriptors of type

11 2011/4/9

∆; Γ ⊢ e0 e′0 : T0 ∆; Γ ⊢ e e′ :V bound∆(T0) = N

dynfree∆(N) mtype(m, N) = S → S ∆ ⊢ V . S

∆; Γ ⊢ e0.m(e) e′0.m(〈S ⇐ V〉∆e
′) : S

(Trns-Invk1)

∆; Γ ⊢ e0 e′0 : T0 ∆; Γ ⊢ e e′ : V bound∆(T0) = [T/X]C<X>

¬dynfree∆(C<T>) mtype(m, C<X>) = U → U ∆ ⊢ V . [T/X]U

∆; Γ ⊢ e0.m(e) e′0.m[U|C<X>](〈[T/X]U ⇐ V〉∆e
′) : [T/X]U

(Trns-Invk2)

∆; Γ ⊢ e0 e′0 : dyn<N> ∆; Γ ⊢ e e′ : V nomethod(m, N)

∆; Γ ⊢ e0.m(e) invoke(e′0, m, e
′) : dyn<Object>

(Trns-Invk3)

Figure 9. Translation from FGJdyn to FGJ$%.

arguments, andh of an array of a superclass chain, where
d.h[0] is d itself andd.h[d.h.length-1] is Object.

The cast$T% e, which corresponds to R-CAST, can be
implemented as the following methodcast(), which casts
obj to classklass.

Object cast(Cla klass, Object obj) {

if ((obj instanceof Parametric &&

isRuntimeCompatible(Cla.$(obj), klass)) ||

klass.cl.isInstance(obj)) {

return obj;

} else throw new ClassCastException();

}

If the type of obj has type arguments, then
isRuntimeCompatible() method checks if the type
of obj and the target type of the cast satisfy the relation
:≺. Otherwise, the cast acts as a normal one, which uses
the subtype relation<:. The argument type checking for
e.m[T|C<X>](e) in R-INVK 2 can also be done by this
method. Although not proved, we conjecture that the
explicit transitivity rule for≺ is actually redundant. Without
transitivity, it is easy to check run-time compatibility.

Since$T% is inserted by the translation and typesT in
e.m[T|C<X>](e) are specified by the translation, the target
type of a cast can be determined mostly at compile time,
except the type arguments forX have to be filled at run time.

The evaluation ofget(e,f), which corresponds to R-
FIELD2, is quite easy. We haveObject.getClass() to get
an instance ofjava.lang.Class, which hasgetField()
method.getField() looks up a field by a field name
and throws NoSuchField exception when no field is
found. The return value ofgetField() is an instance of
java.lang.reflect.Field, which hasget() method,
which retrieves the field value from the receiver.

Object get(Object r, String f) {

Field fld = r.getClass().getField(f);

return fld.get(r);

}

The evaluation ofinvoke(e,m, e), which corresponds
to R-INVK 3, can be implemented as the methodinvoke()

below. SupposeMet is a class for parameter types of a
method, which has fieldm of java.lang.reflect.Method
and fieldparams of method type descriptors. Also suppose
mtypes() is a method to look up method signatures by a
method name.

Object invoke(Object r, String m, Object[] args) {

Met[] mets = mtypes(r, m);

M: for (int i=0, l=mets.length; i < l; i++) {

if (mets[i].args.length != args.length)

continue M;

for (int j=args.length-1; 0 <= j; j--) {

try {

mets[i].params[j].cast(args[j]);

} catch (ClassCastException e) {

continue M;

}

}

return mets[i].m.invoke(r, args);

}

throw new NoSuchMethodException();

}

invoke looks up methods namedm, and call the first
method5 whose parameter types match the argument types.
cast() is used to match parameters and arguments. If the
casts succeed, thenjava.lang.Method.invoke API per-
forms real invocation of the method. Otherwise, it throws
NoSuchMethodException. Note that the target type of the
cast must be determined at run time because we have no in-
formation of the receiver type at compile time.

5.2 Information on Type Arguments at Run Time

As we have already seen, we need information on type ar-
guments at run time. It requires additional memory usage
and time costs, but relatively high performance technique is
proposed by Viroli et al. [30–32]. We quickly review this
technique.

5 We are not concerning method overloading here for simplicity.

12 2011/4/9

The basic idea of this technique is to pass type informa-
tion as a field of an object by transforming the code. For ex-
ample, the following code describes how the transformation
goes.

Cell<Shape> c

= new Cell<Shape>(new Rectangle(...));

// Cell<Shape> c

// = new Cell<Shape>(

// new Cla(Cell.class,

// new Cla[]{

// new Cla(Shape.class) }),

// new Rectangle(...));

The first line is the original code, and the comment is the
translated code. The instance ofCla, which is a type descrip-
tor class, is passed as a first argument of the constructor. Of
course, the definition of classCell is also transformed to re-
ceive a type descriptor at the constructor, and to implement
an interface, which provides access to the type descriptor.

The transformation described above is not optimized at
all: a new type descriptor is generated every time the con-
structor is called. So, a mechanism to reduce the number of
generations of type descriptors to once for a distinct type,
using double hashing, is reported in [30–32].

5.3 Preliminary Benchmark Evaluation

Since we have no working compiler yet, we only give bench-
marks for each run-time check with minimal hand-translated
code using those checks separately. These may help to see
if our implementation idea is reasonable and how dynamic
types slow down execution of the program. Execution of
dynamically typed code is quite expensive especially for
method invocations on a receiver of dynamic type, but we
believe that the cost is not unacceptable.

Benchmarks for each run-time check is shown in Table 3.
For each run-time check, we used test code including a sin-
gle expression with a run-time check and the same expres-
sion without it. Each test code iterates 100/10000/1000000
times and overall time consumptions are listed.

of iterations 100 10000 1000000
$T% e 0.006 0.019 0.125
e 0.004 0.008 0.087
get(e,f) 0.003 0.043 0.356
e.f 0.001 0.003 0.056
e.m[T|C<X>](e) 0.000 0.003 0.072
e.m(e) 0.000 0.002 0.080
invoke(e,m, e) 0.007 0.093 3.430
e.m(e) 0.000 0.003 0.069

Table 3. Execution time of each run-time check (sec.)

For the expression$T% e, we used a static type for the
target type of the cast. The cast looks into type arguments

but we can say it is not so expensive according to the re-
sult. We can say the same thing about the run-time check
in the expressione.m[T|C<X>](e) since it only needs a
cast for each argument. The run-time check in the expres-
sionget(e,f) is relatively expensive because it uses a fea-
ture ofjava.lang.reflect.Field.The run-time check in
the expressioninvoke(e,m, e) is quite expensive but the
cost seems somewhat inevitable cost since it must resolve a
method signature and check run-time types of the arguments.

In Table 4, we have tested casts with more complex target
types. We used a dynamic type argument for the target type.
The dynamic type argument has a bound, which is a class
type possibly including another dynamic type argument. We
count the nested dynamic type argument as depth and the
result for each target type of the depth is listed in the rows.

Depth(s)\ # of iterations 100 10000 1000000
1 0.000 0.004 0.105
2 0.000 0.007 0.171
3 0.001 0.009 0.235
4 0.001 0.008 0.268
5 0.001 0.009 0.301

Table 4. Execution time of casts (sec.)

We can conclude that the operation for checking the run-
time compatibility :≺ is not too expensive in comparison with
the other run-time checks.

6. Related Work
There is much work on mixing dynamic and static types (see,
for example, Siek and Taha [25, 26] for a more extensive sur-
vey). Here, we compare our work mainly with related work
on object-oriented programming languages and parametric
polymorphism.

We first review proposals to apply static type checking to
dynamically typed languages. Bracha and Griswold [7] have
proposedStrongtalk, which is a typechecker for a downward
compatible variant of Smalltalk, a dynamically typed class-
based object-oriented programming language. The type sys-
tem of Strongtalk is structural and supports subtyping and
generics but does not accept partially typed programs. Thie-
mann [28] has proposed a type system for (a subset of)
JavaScript, which is a prototype-based object-oriented lan-
guage, to avoid some kind of run-time errors by static type
checking. Furr, An, Foster, and Hicks [12] have developed
Diamondback Ruby, an extension of Ruby with a static type
system. Their type system, which seems useful to find bugs,
however, does not offer static type safety.

Anderson and Drossopoulou [3] have proposed a type
system for (a subset of) JavaScript for the evolution from
JavaScript to Java. Although it is nominal and concerned
about script-to-program evolution, their type system does
not have subtyping, inheritance, or polymorphism; more-

13 2011/4/9

over, this work is not concerned about safety of partially
typed programs in the middle of the evolution.

Lagorio and Zucca [21] have developed Just, an extension
of Java with unknown types. Although there is some overlap
in the expected uses of this system and gradual typing, the
main purpose of unknown types is to omit type declarations;
possibly unsafe use of unknown types is rejected by the type
system. They use reflection to implement member access on
unknown types.

Gray, Findler, and Flatt [13] have implemented an exten-
sion of Java with dynamic types and contract checking [10]
for interoperability with Scheme. They mainly focus on the
design and implementation issues and give no discussion on
the interaction with generics. Their technique to implement
reflective calls can be used for our setting.

As we have already mentioned, Siek and Taha have stud-
ied gradual typing for Abadi-Cardelli’s object calculus [26].
However, the language is object-based (as opposed to class-
based) and parametric polymorphism is not studied. Another
point is that the implementation of run-time checks for class-
based languages seems easier than that for object-based
languages, since, in class-based languages, every value is
tagged with its run-time type information and the check
can be performed in one step (unlike higher-order contract
checking, which checks inputs to and outputs from functions
separately).

Sage [14], a functional language based on hybrid type
checking [11], supports both parametric polymorphism and
dynamic types. Matthews and Ahmed [23] and, more re-
cently, Ahmed, Findler, Siek, and Wadler [2] give theoret-
ical accounts for the combination of impredicative polymor-
phism with dynamic typing. In all of these works, a dynamic
type is compatible (in our terminology) with universal types
whereas there is no counterpart of universal types in our set-
ting. None of them has addressedbounded polymorphism.

Wrigstad, Nardelli, Lebresne,̈Ostlund and Vitek [5, 35]
have developed a language called Thorn, which integrates
static and dynamic types in a different way. They have in-
troduced the notion oflike types, which interface between
statically and dynamically typed code. A variable oflike

C is treated as typeC at compile time but any value can flow
into the variable at run time (subject to run-time checks).
This is different fromdyn<C>, which allows any operations
statically but only subtypes ofC can flow into.

Bierman, Meijer and Torgersen[4] added dynamic types
to C♯. They also translate a program of the surface language
into intermediate code, which has explicit run-time checks.
In their setting, dynamic types can be arguments of generic
class, but their subtype relation is only invariant with respect
to type parameters, so, for example, it is not possible to pass
Cell<Rectangle> to Cell<dyn>.

There are some related features already exist in Java.
Wildcards studied by Igarashi and Viroli [17] and Torgersen,
Ernst, Hansen, Ahé, Bracha and Gafter [29] enable a flexible

subtyping with both co- and contra-variant parametric types,
though only statically resolved members can be accessed on
a receiver of a wildcard type and it is not allowed to specify
a wildcard type as a type argument in anew expression.
Raw types are proposed by Bracha, Odersky, Stoutamire,
and Wadler [6] to deal with compatibility between legacy
monomorphic Java code and new polymorphic Java code. A
generic classC<X> can be used as a raw typeC, without type
arguments, and assigning a value ofC<T> to a variable of
C, or even creating an instance ofC via new expression are
allowed. This behavior is similar to FGJdyn’s if we consider
C to be an abbreviation ofC<dyn, ..., dyn>. However,
with raw types, even statically typed code can go wrong.

7. Conclusions
We have designed a language, which combines dynamic
types and generics. The language allows dynamic types to
be used as type arguments of a generic class and realizes
smooth interfacing between dynamically and statically typed
code thanks to the flexible compatibility relation. We have
introduced bounded dynamic types to deal with the case
where a type parameter with an upper bound.

The language is formalized as a minimal core model of
Java including the feature of generics. As in other gradual
type systems, we have proved safety properties, which en-
sure that statically typed parts in a program never go wrong.

We have also reviewed the sketch of implementation
scheme, which is an idea to develop a gradually typed Java
compiler by extending an existing Java compiler without
modifying JVM.

Future Work. Our run-time compatibility does not al-
low argument passing, for example, fromCell<dyn> to
Cell<Rectangle>. It might be too early to abort the exe-
cution at this point since the value in theCell may not be
used at all. We think we can relax the restriction by deferring
the check until the field is accessed. Then, we need a blame
assignment system [2, 33] for precise error reports.

When a library bytecode of a generic class compiled by
the standard Java compiler is used with a client bytecode
compiled by our compiler, the client is not allowed to use
dynamic type arguments to the generic class since type vari-
ables in the generic class are declared without kind�. We
think that converting the library bytecode at load time helps
to relax this restriction.

We also plan to investigate the interactions of dynamic
types with other features such as overloading to make the
language more realistic.

Acknowledgments
Ina is a Research Fellow of the Japan Society of the Promo-
tion of Science. This work was supported in part by Grant-
in-Aid for Young Scientists (A) No. 21680002 and by Grant-
in-Aid for JSPS Fellows No. 10J06019.

14 2011/4/9

References
[1] Abadi, M., Cardelli, L., Pierce, B., Plotkin, G.: Dynamic typ-

ing in a statically typed language. ACM Trans. Progr. Lang.
Syst. 13(2), 237–268 (1991)

[2] Ahmed, A., Findler, R.B., Siek, J.G., Wadler, P.: Blame for all.
In: Proc. of ACM POPL. Austin, TX (Jan 2011)

[3] Anderson, C., Drossopoulou, S.: BabyJ - from object based to
class based programming via types. In: Proc. of WOOD’03.
ENTCS, vol. 82 (2003)

[4] Bierman, G., Meijer, E., Torgersen, M.: Adding dynamic types
to C♯. In: Proc. of ECOOP. Springer LNCS, vol. 6183, pp. 76–
100. Maridbor, Slovenia (Jun 2010)

[5] Bloom, B., Field, J., Nystrom, N.,̈Ostlund, J., Richards, G.,
Strniša, R., Vitek, J., Wrigstad, T.: Thorn — robust, concur-
rent, extensible scripting on the JVM. In: Proc. of ACM OOP-
SLA (2009)

[6] Bracha, G., Odersky, M., Stoutamire, D., Wadler, P.: Making
the future safe for the past: Adding Genericity to the Java
Programming Language. In: Proc. of ACM OOPSLA. pp.
183–200 (October 1998)

[7] Bracha, G., Griswold, D.: Strongtalk: Typechecking Smalltalk
in a production environment. In: Proc. of OOPSLA’93. pp.
215–230 (1993)

[8] Bracha, G., Odersky, M., Stoutamire, D., Wadler, P.: Making
the future safe for the past: Adding genericity to the Java
programming language. In: Proc. of ACM OOPSLA’98. pp.
183–200 (1998)

[9] Cartwright, R., Fagan, M.: Soft typing. In: Proc. of ACM
PLDI. pp. 278–292 (1991)

[10] Findler, R.B., Felleisen, M.: Contracts for higher-order func-
tions. In: Proc. of ACM ICFP’02. pp. 48–59 (2002)

[11] Flanagan, C.: Hybrid type checking. In: Proc. of ACM POPL.
pp. 245–256. Charleston, SC (Jan 2006)

[12] Furr, M., An, J., Foster, J.S., Hicks, M.: Static type inference
for Ruby. In: Proc. of ACM Symposium on Applied Comput-
ing (SAC’09). pp. 1859–1866 (Mar 2009)

[13] Gray, K.E., Findler, R.B., Flatt, M.: Fine-grained interoper-
ability through mirrors and contracts. In: Proc. of ACM OOP-
SLA’05. pp. 231–245 (2005)

[14] Gronski, J., Freund, S.N., Flanagan, C.: Sage: Unified hybrid
checking for first-class types, general refinement types, and
dynamic. In: Proc. of the Scheme and Functional Program-
ming Workshop (Sep 2006)

[15] Henglein, F.: Dynamic typing. In: Proc. of ESOP. Springer
LNCS, vol. 582, pp. 233–253. Rennes, France (Feb 1992)

[16] Igarashi, A., Pierce, B.C., Wadler, P.: FeatherweightJava: A
minimal core calculus for Java and GJ. ACM Trans. Progr.
Lang. Syst. 23(3), 396–450 (May 2001)

[17] Igarashi, A., Viroli, M.: Variant parametric types: A flexi-
ble subtyping scheme for generics. ACM Trans. Progr. Lang.
Syst. 28(5), 795–847 (Sep 2006)

[18] Ina, L., Igarashi, A.: Gradual typing for Featherweight Java.
Computer Software 26(2), 18–40 (April 2009), in Japanese

[19] Ina, L., Igarashi, A.: Towards gradual typing for generics. In:
Proc. of STOP. Genova, Italy (Jul 2009), available also in the
ACM Digital Library.

[20] Kennedy, A.J., Pierce, B.C.: On decidability of nominal sub-
typing with variance. In: Proc. of FOOL/WOOD Workshop.
Nice, France (Jan 2007)

[21] Lagorio, G., Zucca, E.: Just: safe unknown types in Java-
like languages. Journal of Object Technology 6(2), 69–98
(February 2007)

[22] Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping.
ACM Trans. Progr. Lang. Syst. 16(6), 1811–1841 (Nov 1994)

[23] Matthews, J., Ahmed, A.: Parametric polymorphism throught
run-time sealing, or, thorems for low, low prices! In: Proc.of
ESOP’08. Springer LNCS, vol. 4960, pp. 16–31 (2008)

[24] Odersky, M., Wadler, P.: Pizza into Java: Translating theory
into practice. In: Proc. of ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. pp. 146–159
(Jan 1997)

[25] Siek, J.G., Taha, W.: Gradual typing for functional languages.
In: Proc. of the Scheme and Functional Programming Work-
shop (September 2006)

[26] Siek, J.G., Taha, W.: Gradual typing for objects. In: Proc. of
ECOOP’07. Springer LNCS, vol. 4509, pp. 2–27 (2007)

[27] Thatte, S.: Quasi-static typing. In: Proc. of ACM POPL.pp.
367–381 (Jan 1990)

[28] Thiemann, P.: Towards a type system for analyzing JavaScript
programs. In: Proc. of ESOP’09. Springer LNCS, vol. 3444,
pp. 408–422 (2005)

[29] Torgersen, M., Ernst, E., Hansen, C.P., von der Ahé, P.,
Bracha, G., Gafter, N.: Adding wildcards to the Java pro-
gramming language. Journal of Object Technology 3(11) (Dec
2004), special issue: OOPS track at SAC 2004, pp. 97–116

[30] Viroli, M.: A type-passing approach for the implementation
of parametric methods in Java. The Computer Journal 46(3)
(2003)

[31] Viroli, M.: Effective and efficient compilation of run-time
generics in Java. In: Proc. of WOOD 2004 (2004)

[32] Viroli, M., Natali, A.: Parametric polymorphism in Java: An
approach to translation based on reflective features. In: Proc.
of ACM OOPSLA (October 2000)

[33] Wadler, P., Findler, R.B.: Well-typed programs can’t be
blamed. In: Proc. of ESOP. Springer LNCS, vol. 5502, pp.
1–16. Springer Verlag, York, UK (Mar 2009)

[34] Wright, A.K., Felleisen, M.: A syntactic approach to type
soundness. Information and Computation 115(1), 38–94 (Nov
1994)

[35] Wrigstad, T., Nardelli, F.Z., Lebresne, S.,Östlund, J., Vitek,
J.: Integrating typed and untyped code in a scripting language.
In: Proc. of ACM POPL (2010)

15 2011/4/9

A. Definitions

Field lookup

fields(Object) = •
class C<X

κ
⊳ N> ⊳ N {S f; ... } fields([T/X]N) = U g

fields(C<T>) = U g, [T/X]S f

Method type lookup

class C<X
κ

⊳ N> ⊳ N {. . .; M}

U m(U x){ return e; } ∈ M

mtype(m, C<T>) = [T/X](U → U)

class C<X
κ

⊳ N> ⊳ N {. . .; M}

m /∈ M mtype(m, [T/X]N) = U → U

mtype(m, C<T>) = U → U

nomethod(m, Object)
class C<X

κ
⊳ N> ⊳ N {. . .; M} m /∈ M nomethod(m, [T/X]N)

nomethod(m, C<T>)

Figure 10. Definition of FGJdyn: Auxiliary functions and predicates.

Method body lookup

class C<X
κ

⊳ N> ⊳ N {. . .; M}

U m(U x){ return e; } ∈ M

mbody(m, C<T>) = x.[T/X]e

class C<X
κ

⊳ N> ⊳ N {. . .; M}

m /∈ M mbody(m, [T/X]N) = x.e

mbody(m, C<T>) = x.e

Figure 11. Definition of FGJ$%: Auxiliary functions and predicates.

16 2011/4/9

Expression typing

∆; Γ ⊢R x : Γ(x) (Tr-Var)
∆ ⊢ N ok fields(N) = T f ∆; Γ ⊢R e : U ∆ ⊢ U :≺ T

∆; Γ ⊢R new N(e) : N
(Tr-New)

∆; Γ ⊢R e0 : T0 fields(bound∆(T0)) = T f

∆; Γ ⊢R e0.fi : Ti

(Tr-Field1)
∆; Γ ⊢R e0 : T0

∆; Γ ⊢R get(e0, f) : dyn<Object>
(Tr-Field2)

∆; Γ ⊢R e0 : T0 ∆; Γ ⊢R e : V bound∆(T0) = P ∆ ⊢ P :≺ N

dynfree∆(N) mtype(m, N) = S → S ∆ ⊢ V :≺ S

∆; Γ ⊢R e0.m(e) : S
(Tr-Invk1)

∆; Γ ⊢R e0 : T0 ∆; Γ ⊢R e :V bound∆(T0) = N ∆ ⊢ N :≺ [T/X]C<X>

mtype(m, C<X>) = U → U ∆ ⊢ V :≺ [T/X]U

∆; Γ ⊢R e0.m[U|C<X>](e) : [T/X]U
(Tr-Invk2)

∆; Γ ⊢R e0 : T0 ∆; Γ ⊢R e : V

∆; Γ ⊢R invoke(e0, m, e) : dyn<Object>
(Tr-Invk3)

∆; Γ ⊢R e : S

∆; Γ ⊢R $T% e : T
(Tr-Cast)

∆; Γ ⊢R Error[E] :T (Tr-Error)

Method typing

∆ = X
κ

<: N ∆ ⊢ T, T ok ∆; x : T, this : C<X> ⊢R e0 : S

∆ ⊢ S :≺ T class C<X
κ

⊳ N> ⊳ N {...} override∆(m, N, T → T)

T m(T x){ return e0; } OK IN C<X ⊳ N>
(Tr-Method)

Class typing

∀Ni ∈ N.(Xκ1

1 <: N1, . . . , X
κi−1

i−1 <: Ni−1 ⊢ Ni ok) X
κ

<: N ⊢ N, T ok

fields(N) = U g M OK IN C<X ⊳ N> K = C(U g, T f){super(g); this.f=f;}

class C<X
κ

⊳ N> ⊳ N {T f; K M} OK
(Tr-Class)

Figure 12. Definition of FGJ$%: Typing.

17 2011/4/9

e0 −→ e′0

e0.f −→ e′0.f
(RC-Field1)

e0 −→ e′0

get(e0, f) −→ get(e′0, f)
(RC-Field2)

e0 −→ e′0

e0.m(e) −→ e′0.m(e)
(RC-Invk-Recv1)

e −→ e′

v0.m(v, e, e) −→ v0.m(v, e′, e)
(RC-Invk-Arg1)

e0 −→ e′0

e0.m[U|C<X>](e) −→ e′0.m[U|C<X>](e)
(RC-Invk-Recv2)

e −→ e′

v0.m[U|C<X>](v, e, e) −→ v0.m[U|C<X>](v, e′, e)
(RC-Invk-Arg2)

e0 −→ e′0

invoke(e0, m, e) −→ invoke(e′0, m, e)
(RC-Invk-Recv3)

e −→ e′

invoke(v0, m, v, e, e) −→ invoke(v0, m, v, e′, e)
(RC-Invk-Arg3)

e −→ e′

new N(v, e, e) −→ new N(v, e′, e)
(RC-New-Arg)

e0 −→ e′0

$T% e0 −→ $T% e′0
(RC-Cast)

Figure 13. Definition of FGJ$%: Reductions (congruence).

e0 −→ Error[E]

e0.f −→ Error[E]
(EC-Field1)

e0 −→ Error[E]

get(e0, f) −→ Error[E]
(EC-Field2)

e0 −→ Error[E]

e0.m(e) −→ Error[E]
(EC-Invk-Recv1)

e −→ Error[E]

v0.m(v, e, e) −→ Error[E]
(EC-Invk-Arg1)

e0 −→ Error[E]

e0.m[U|C<X>](e) −→ Error[E]
(EC-Invk-Recv2)

e −→ Error[E]

v0.m[U|C<X>](v, e, e) −→ Error[E]
(EC-Invk-Arg2)

e0 −→ Error[E]

invoke(e0, m, e) −→ Error[E]
(EC-Invk-Recv3)

e −→ Error[E]

invoke(v0, m, v, e, e) −→ Error[E]
(EC-Invk-Arg3)

e −→ Error[E]

new N(v, e, e) −→ Error[E]
(EC-New-Arg)

e0 −→ Error[E]

$T% e0 −→ Error[E]
(EC-Cast)

Figure 14. Definition of FGJ$%: Error-propagating reductions.

18 2011/4/9

Expression translation

∆; Γ ⊢ x x : Γ(x) (Trns-Var)

∆ ⊢ N ok fields(N) = T f ∆; Γ ⊢ e e′ : U ∆ ⊢ U . T

∆; Γ ⊢ new N(e) new N(〈T ⇐ U〉∆e
′) : N

(Trns-New)

∆; Γ ⊢ e0 e′0 : T0 fields(bound∆(T0)) = T f

∆; Γ ⊢ e0.fi e′0.fi : Ti

(Trns-Field1)

∆; Γ ⊢ e0 e′0 : dyn<N> f /∈ f fields(N) = T f

∆; Γ ⊢ e0.f get(e′0, f) : dyn<Object>
(Trns-Field2)

∆; Γ ⊢ e0 e′0 : T0 ∆; Γ ⊢ e e′ :V bound∆(T0) = N

dynfree∆(N) mtype(m, N) = S → S ∆ ⊢ V . S

∆; Γ ⊢ e0.m(e) e′0.m(〈S ⇐ V〉∆e
′) : S

(Trns-Invk1)

∆; Γ ⊢ e0 e′0 : T0 ∆; Γ ⊢ e e′ : V bound∆(T0) = [T/X]C<X>

¬dynfree∆(C<T>) mtype(m, C<X>) = U → U ∆ ⊢ V . [T/X]U

∆; Γ ⊢ e0.m(e) e′0.m[U|C<X>](〈[T/X]U ⇐ V〉∆e
′) : [T/X]U

(Trns-Invk2)

∆; Γ ⊢ e0 e′0 : dyn<N> ∆; Γ ⊢ e e′ : V nomethod(m, N)

∆; Γ ⊢ e0.m(e) invoke(e′0, m, e
′) : dyn<Object>

(Trns-Invk3)

Method translation

∆ = X
κ

<: N ∆ ⊢ T, T ok ∆; x : T, this : C<X> ⊢ e0 e′0 : S

∆ ⊢ S . T class C<X
κ

⊳ N> ⊳ N {...} override∆(m, N, T → T)

T m(T x){ return e0; } T m(T x){ return 〈T ⇐ S〉∆e′0; } IN C<X ⊳ N>

Class translation

∀Ni ∈ N.(Xκ1

1 <: N1, . . . , X
κi−1

i−1 <: Ni−1 ⊢ Ni ok) X
κ

<: N ⊢ N, T ok

fields(N) = U g M M
′

IN C<X ⊳ N> K = C(U g, T f){super(g); this.f=f;}

class C<X
κ

⊳ N> ⊳ N {T f; K M} class C<X
κ

⊳ N> ⊳ N {T f; K M
′

}

Figure 15. Translation from FGJdyn to FGJ$%.

19 2011/4/9

B. Proof of Properties
B.1 Compatibility

We use the following mappingdepth from a type to an integer for proofs.
depth∆(Object)

def
= 0

depth∆(C<T>)
def
= depth∆([T/X]N) + 1 (whereclass C<X

κ
⊳ N> ⊳ N {...})

depth∆(X)
def
= depth∆(bound∆(X)) + 1

depth∆(dyn<N>)
def
= depth∆(N) + 1

Lemma 12. depth∆(C<T>) = depth∆(C<S>) for any∆, C<T> andC<S>.

Proof. By induction on the definition ofdepth∆(C<T>).

CaseC<T> = Object (C<S> = Object). depth∆(C<T>) = depth∆(C<S>) = 0.

Caseclass C<Xκ
⊳ N> ⊳ N {...}. By the induction hypothesis, we havedepth∆([T/X]N) = depth∆([S/X]N). Then,

depth∆(C<T>) = depth∆(C<S>) = depth∆([T/X]N) + 1.

Lemma 13. If ∆ ⊢ S <: T andS 6= T, thendepth∆(T) < depth∆(S).

Proof. By induction on the derivation of∆ ⊢ S <: T.

Case
∆ ⊢ S <: U ∆ ⊢ U <: T

∆ ⊢ S <: T
. If S = U or T = U, then the conclusion is immediate from the induction hypothesis.

Otherwise (S 6= U andT 6= U), by the induction hypothesis,depth∆(U) < depth∆(S) anddepth∆(T) < depth∆(U).
Thendepth∆(T) < depth∆(U) < depth∆(S).

Case∆ ⊢ X <: bound∆(X) (where S = X, T = bound∆(X)). By definition of depth , depth∆(S) = depth∆(X) =
depth∆(bound∆(X)) + 1 > depth∆(bound∆(X)) = depth∆(T).

Case
class C<X

κ
⊳ N> ⊳ N {...}

∆ ⊢ C<T> <: [T/X]N
(whereS = C<S>, T = [T/X]N). By definition ofdepth, depth∆(S) = depth∆(C<T>) =

depth∆([T/X]N) + 1 > depth∆([T/X]N) = depth∆(T).
Case∆ ⊢ dyn<N> <: N (whereS = dyn<N>, T = N). By definition ofdepth, depth∆(S) = depth∆(dyn<N>) = depth∆(N) +

1 > depth∆(N) = depth∆(T).

Lemma 14. If ∆ ⊢ S <: T, thendepth∆(T) ≤ depth∆(S).

Proof. Immediate from Lemma 13.

Lemma 15. If ∆ ⊢ T <: X, thenT = X.

Proof. By induction on the derivation of∆ ⊢ T <: X with a case analysis on the last rule used.

Case∆ ⊢ X <: X (T = X). Immediate.

Case
∆ ⊢ T <: U ∆ ⊢ U <: X

∆ ⊢ T <: X
. By the induction hypothesis, we haveU = X. Then, by the induction hypothesis, we have

T = U = X.

Lemma 16. If ∆ ⊢ T <: dyn<N>, thenT = dyn<N>.

Proof. By induction on the derivation of∆ ⊢ T <: dyn<N> with a case analysis on the last rule used.

Case∆ ⊢ dyn<N> <: dyn<N> (T = dyn<N>). Immediate.

Case
∆ ⊢ T <: U ∆ ⊢ U <: dyn<N>

∆ ⊢ T <: dyn<N>
. By the induction hypothesis, we haveU = dyn<N>. Then, by the induction hypothesis,

we haveT = U = dyn<N>.

20 2011/4/9

Lemma 17. If ∆ ⊢ C<T> <: C<S>, thenT = S.

Proof. By induction on the derivation of∆ ⊢ C<T> <: C<S>.

Case∆ ⊢ C<T> <: C<T> (C<S> = C<T>). Immediate.

Case
∆ ⊢ C<T> <: U ∆ ⊢ U <: C<S>

∆ ⊢ C<T> <: C<S>
. By Lemma 15 and Lemma 16, we haveU = N. By the fact that the relation<: does

not loop, we haveN = C<U>. Then the conclusion is immediate from the induction hypothesis.

Lemma 18. If ∆ ⊢ dyn<N> <: dyn<P>, thenN = P.

Proof. By induction on the derivation of∆ ⊢ dyn<N> <: dyn<P>.

Case∆ ⊢ dyn<N> <: dyn<N> (dyn<P> = dyn<N>). Immediate.

Case
∆ ⊢ dyn<N> <: U ∆ ⊢ U <: dyn<P>

∆ ⊢ dyn<N> <: dyn<P>
. By Lemma 16, we haveU = dyn<P>. Then the conclusion is immediate from

the induction hypothesis.

Lemma 19. If ∆ ⊢ dyn<C<T>> <: C<S>, thenT = S.

Proof. We show that if∆ ⊢ N <: C<S> and ∆ ⊢ dyn<C<T>> <: N, then T = S, by induction on the derivation of
∆ ⊢ dyn<C<T>> <: N.

Case
∆ ⊢ dyn<C<T>> <: U ∆ ⊢ U <: N

∆ ⊢ dyn<C<T>> <: N
. By Lemma 15, we haveU = P or U = dyn<P>. If U = dyn<P>, then we

haveP = C<T> by Lemma 16 and the conclusion is immediate from the induction hypothesis. IfU = P, then we have
∆ ⊢ P <: C<S>. Then the conclusion is immediate from the induction hypothesis.

Case∆ ⊢ dyn<C<T>> <: C<T> (N = C<T>). Immediate from Lemma 17.

Lemma 20. If ∆ ⊢ dyn<N> <: T andT 6= dyn<N>, then∆ ⊢ N <: T.

Proof. By induction on the derivation of∆ ⊢ dyn<N> <: T.

Case
∆ ⊢ dyn<N> <: U ∆ ⊢ U <: T

∆ ⊢ dyn<N> <: T
. By the induction hypothesis, we have∆ ⊢ N <: U. Then,

∆ ⊢ N <: U ∆ ⊢ U <: T

∆ ⊢ N <: T
finishes the case.

Case∆ ⊢ dyn<N> <: N (T = N). Immediate.

Lemma 21. If ∆ ⊢ T ≺ C<S>, thenT = C<T>.

Proof. By induction on the derivation of∆ ⊢ T ≺ C<S>.

Case∆ ⊢ C<S> ≺ C<S> (T = C<S>). Immediate.

Case
∆ ⊢ T ≺ U ∆ ⊢ U ≺ C<S>

∆ ⊢ T ≺ C<S>
. By the induction hypothesis, we haveU = C<U>. Then, the conclusion is immediate from

the induction hypothesis.

Case
∆ ⊢ T ≺ S

∆ ⊢ C<T> ≺ C<S>
(T = C<T>, N = C<S>). Immediate.

21 2011/4/9

Lemma 22. If ∆ ⊢ T ≺ N, thendepth∆(T) = depth∆(N).

Proof. SupposeN = C<S>. By Lemma 21, we haveT = C<T>. Then, by Lemma 12, we havedepth∆(T) = depth∆(N).

Lemma 23. If ∆ ⊢ S ≺ T, then∆ ⊢ [S/X]T ≺ [T/X]T for anyT.

Proof. By the induction on the structure ofT.

CaseT = X. Immediate from∆ ⊢ Si ≺ Ti whenX = Xi, or from∆ ⊢ X ≺ X otherwise.

CaseT = C<U>.

∆ ⊢ S ≺ T

∆ ⊢ [S/X]U ≺ [T/X]U
IH

∆ ⊢ C<[S/X]U> ≺ C<[T/X]U>.

CaseT = dyn<N>.

∆ ⊢ dyn<[S/X]N> <: [S/X]N

∆ ⊢ S ≺ T

∆ ⊢ [S/X]N ≺ [T/X]N
IH

∆ ⊢ dyn<[S/X]N> ≺ dyn<[T/X]N> .

Lemma 24. If ∆ ⊢ S ≺ U and ∆ ⊢ U <: T andU 6= T, then∆ ⊢ S <: V and ∆ ⊢ V ≺ T for someV such that
depth∆(V) < depth∆(U).

Proof. By induction on the derivation of∆ ⊢ U <: T.

Case
∆ ⊢ U <: U1 ∆ ⊢ U1 <: T

∆ ⊢ U <: T
. If U = U1 or T = U1, then the conclusion is immediate from the induction hypothesis.

Otherwise (U 6= U1 andT 6= U1), by the induction hypothesis,∆ ⊢ S <: U2 and∆ ⊢ U2 ≺ U1, ∆ ⊢ U2 <: V and
∆ ⊢ V ≺ T for someU2, V such thatdepth∆(U2) < depth∆(U) anddepth∆(V) < depth∆(U1). Then, by Lemma 14,
depth∆(V) ≤ depth∆(U2) < depth∆(U).

Case∆ ⊢ X <: bound∆(X) (whereU = X, T = bound∆(X)). Clearly,S = X by a rule matches∆ ⊢ S ≺ X. LettingV = T and
Lemma 13 finishes the case.

Case
class C<X

κ
⊳ N> ⊳ N {...}

∆ ⊢ C<U> <: [U/X]N
(whereU = C<U>, T = [U/X]N). By

∆ ⊢ S ≺ U

∆ ⊢ C<S> ≺ C<U>
(whereS = C<S>) and Lemma 23,

∆ ⊢ [S/X]N ≺ [U/X]N. By Lemma 12, we havedepth∆([S/X]N) = depth∆([U/X]N).
class C<X

κ
⊳ N> ⊳ N {...}

∆ ⊢ C<S> <: [S/X]N
finishes

the case withV = [S/X]N, wheredepth∆(V) = depth∆([S/X]N) = depth∆([U/X]N) < depth∆(C<U>) = depth∆(U).
Case∆ ⊢ dyn<N> <: N (whereU = dyn<N>, T = N). If S = U, then the conclusion is immediate from the induction hypothesis.

Otherwise, we have
∆ ⊢ S <: V ∆ ⊢ V ≺ N

∆ ⊢ S ≺ dyn<N>
. Then, by Lemma 22 and Lemma 13, we havedepth∆(V) = depth∆(N) =

depth∆(T) < depth∆(U).

Lemma 25. If ∆ ⊢ S ≺ U and∆ ⊢ U <: T, then∆ ⊢ S <: V and∆ ⊢ V ≺ T for someV.

Proof. If U 6= T, then the conclusion is immediate from Lemma 24. Otherwise,the conclusion is immediate from lettingV = S.

Lemma 26. If ∆ ⊢ S :≺ U and∆ ⊢ U :≺ T, then∆ ⊢ S :≺ T.

Proof. Immediate from Lemma 25 and transitivity of<: and≺.

22 2011/4/9

B.2 Conservative Typing of FGJdyn

B.2.1 Proof of Lemma 5

Proof.

(≺) ∆ ⊢ S ≺ T dynfree∆(T)
By induction on the derivation of∆ ⊢ S ≺ T with a case analysis on the last rule used.

Case∆ ⊢ T ≺ T (whereS = T). Immediate fromS = T.

Case
∆ ⊢ S ≺ U ∆ ⊢ U ≺ T

∆ ⊢ S ≺ T
. By the induction hypothesis, we haveU = T anddynfree∆(U). Then the conclusion is

immediate from the induction hypothesis.

Case
∆ ⊢ S ≺ T

∆ ⊢ C<S> ≺ C<T>
(S = C<S>, T = C<T>). The conclusion is immediate from the induction hypothesis.

∆ ⊢ S <: U ∆ ⊢ U ≺ T

(:≺) By the first statement of this lemma, we haveU = T. Then, we have∆ ⊢ S <: T.
(.-1) ∆ ⊢ U ≺ S ∆ ⊢ U <: V ∆ ⊢ V ≺ T

By the first statement of this lemma, we haveU = S. Then, we have∆ ⊢ S :≺ T.
(.-2) Immediate from the second and the third statement of thislemma.

B.2.2 Proof of Theorem 6

Proof. Sincedyn<P> does not appear in(CT, e), bound andoverride in FGJdyn are equivalent to those in FGJ, and premises
of TG-FIELD2 and TG-INVK 2 will never satisfied, and by Lemma 5, TG-NEW, TG-FIELD1, TG-INVK 1 and TG-METHOD

are equivalent to corresponding rules in FGJ. So, typing rules of FGJdyn are equivalent to FGJ’s.

B.3 FGJ$% type safety

We use∆1, X
κ

<: N, ∆2 ⊢ [T/X] ok to state thatkind∆1,Xκ<: N,∆2
(Xi) = ♦ impliesdynfree∆1,Xι<: N,∆2

(Ti) for anyi.

Lemma 27. Suppose∆, X
ι
<: N ⊢ N ok and∆ ⊢ U ok.

1. If ∆ ⊢ S <: T, then∆, X
ι
<: N ⊢ S <: T.

2. If ∆ ⊢ S ≺ T, then∆, X
ι
<: N ⊢ S ≺ T.

3. If ∆ ⊢ S ok, then∆, X
ι
<: N ⊢ S ok.

4. If ∆; Γ ⊢R e : T, then∆, X
ι
<: N; Γ ⊢R e : T.

Proof.

1. By induction on the derivation of∆ ⊢ S <: T with a case analysis on the last rule used.
Case∆ ⊢ S <: S (T = S). Immediate from∆, X

ι
<: N ⊢ S <: S.

Case
∆ ⊢ S <: U ∆ ⊢ U <: T

∆ ⊢ S <: T
. Immediate from the induction hypothesis.

Case∆ ⊢ X <: bound∆(X) (S = X, T = bound∆(X)). Immediate from∆, X
ι
<: N ⊢ X <: bound∆,Xι<: N

(X).

Case
class C<Y

κ
⊳ P> ⊳ N {...}

∆ ⊢ C<T> <: [T/Y]N
(S = C<T>, T = [T/Y]N). Immediate from

class C<Y
κ

⊳ P> ⊳ N {...}

∆, X
ι
<: N ⊢ C<T> <: [T/Y]N

.

Case∆ ⊢ dyn<N> <: N (S = dyn<N>, T = N). Immediate from∆, X
ι
<: N ⊢ dyn<N> <: N.

2. By induction on the derivation of∆ ⊢ S ≺ T with a case analysis on the last rule used.
Case∆ ⊢ S ≺ S (T = S). Immediate from∆, X

ι
<: N ⊢ S ≺ S.

Case
∆ ⊢ S ≺ U ∆ ⊢ U ≺ T

∆ ⊢ S ≺ T
. Immediate from the induction hypothesis.

Case
∆ ⊢ U ≺ V

∆ ⊢ C<U> ≺ C<V>
(S = C<U>, T = C<V>). Immediate from the induction hypothesis.

23 2011/4/9

Case
∆ ⊢ S <: U ∆ ⊢ U ≺ N

∆ ⊢ S ≺ dyn<N>
(T = dyn<N>). Immediate from the induction hypothesis.

3. By induction on the derivation of∆ ⊢ S ok with a case analysis on the last rule used.
Case∆ ⊢ Object ok (S = Object). Immediate from∆, X

ι
<: N ⊢ Object ok.

Case
X ∈ dom(∆)

∆ ⊢ X ok
(S = X). Immediate from

X ∈ dom(∆, X
ι
<: N)

∆, X
ι
<: N ⊢ X ok

.

Case

class C<Y
κ

⊳ P> ⊳ N {...} ∆ ⊢ T ok
∀κi ∈ κ.(κi = ♦ impliesdynfree∆(Ti))

∀Ti ∈ T.(∆ ⊢ Ti :≺ [T1/Y1, . . . , Ti−1/Yi−1]Pi)

∆ ⊢ C<T> ok
(S = C<T>). Immediate from the induction hypothesis and

class C<Y
κ

⊳ P> ⊳ N {...} ∆, X
ι
<: N ⊢ T ok

∀κi ∈ κ.(κi = ♦ impliesdynfree∆,Xι<: N(Ti))

∀Ti ∈ T.(∆, X
ι
<: N ⊢ Ti :≺ [T1/Y1, . . . , Ti−1/Yi−1]Pi)

∆, X
ι
<: N ⊢ C<T> ok

.

Case
∆ ⊢ N ok

∆ ⊢ dyn<N> ok
(S = dyn<N>). Immediate from the induction hypothesis.

4. By induction on the derivation of∆; Γ ⊢R e : T with a case analysis on the last rule used.
Case TR-VAR.

e = x T = Γ(x)
Immediate from the rule TR-VAR.

Case TR-FIELD1.
e = e0.fi ∆; Γ ⊢R e0 :T0

fields(bound∆(T0)) = T f T = Ti

By the induction hypothesis, we have
∆, X

ι
<: N; Γ ⊢R e0 : T0

Then, applying the rule TR-FIELD1 finishes the case.
Case TR-FIELD2.

e = get(e0, f) ∆; Γ ⊢R e0 : T0 T = dyn<Object>

By the induction hypothesis, we have
∆, X

ι
<: N; Γ ⊢R e0 : T0

Then, applying the rule TR-FIELD2 finishes the case.
Case TR-INVK 1.

e = e0.m(e) ∆; Γ ⊢R e0 : T0

∆; Γ ⊢R e : V bound∆(T0) = P ∆ ⊢ P :≺ N

dynfree∆(N) mtype(m, N) = S → T ∆ ⊢ V :≺ S
By the induction hypothesis, we have
∆, X

ι
<: N; Γ ⊢R e0 : T0

∆, X
ι
<: N; Γ ⊢R e : V

By the first and second statement of this lemma, we have
∆, X

ι
<: N ⊢ V :≺ S ∆, X

ι
<: N ⊢ P :≺ N

Then, applying the rule TR-INVK 1 finishes the case.
Case TR-INVK 2.

e = e0.m[U|C<Y>](e) ∆; Γ ⊢R e0 : T0

∆; Γ ⊢R e : V bound∆(T0) = N ∆ ⊢ N :≺ [T/Y]C<Y>

mtype(m, C<Y>) = U → U ∆ ⊢ V :≺ [T/Y]U T = [T/Y]U
By the induction hypothesis, we have
∆, X

ι
<: N; Γ ⊢R e0 : T0

∆, X
ι
<: N; Γ ⊢R e : V

By the first and second statement of this lemma, we have

24 2011/4/9

∆, X
ι
<: N ⊢ N :≺ [T/Y]C<Y>

∆, X
ι
<: N ⊢ V :≺ [T/Y]U

Then, applying the rule TR-INVK 2 finishes the case.
Case TR-INVK 3.

e = invoke(e0, m, e) ∆; Γ ⊢R e0 : T0

∆; Γ ⊢R e : V T = dyn<Object>
By the induction hypothesis, we have
∆, X

ι
<: N; Γ ⊢R e0 : T0

∆, X
ι
<: N; Γ ⊢R e : V

Then, applying the rule TR-INVK 3 finishes the case.
Case TR-NEW.

e = new N(e) ∆ ⊢ N ok
fields(N) = T f ∆; Γ ⊢R e : V

∆ ⊢ V :≺ T T = N
By the induction hypothesis, we have
∆, X

ι
<: N; Γ ⊢R e : V

By the first and second statement of this lemma, we have
∆, X

ι
<: N ⊢ V :≺ T

By the third statement of this lemma, we have
∆, X

ι
<: N ⊢ N ok

Then, applying the rule TR-NEW finishes the case.
Case TR-CAST.

e = $T% e0 ∆; Γ ⊢R e0 : V
By the induction hypothesis, we have
∆, X

ι
<: N; Γ ⊢R e0 : V

Then, applying the rule TR-CAST finishes the case.
Case TR-ERROR.

e = Error[E]
Immediate from the rule TR-ERROR.

Lemma 28. If ∆1, X
ι
<: N, ∆2 ⊢ S <: T whereS 6= Xi and none ofX appears in∆1, then∆1, [U/X]∆2 ⊢ [U/X]S <: [U/X]T.

Proof. By induction on the derivation of∆1, X
ι
<: N, ∆2 ⊢ S <: T.

Case∆1, X
ι
<: N, ∆2 ⊢ S <: S (T = S). Immediate from[U/X]S = [U/X]T.

Case
∆1, X

ι
<: N, ∆2 ⊢ S <: U ∆1, X

ι
<: N, ∆2 ⊢ U <: T

∆1, X
ι
<: N, ∆2 ⊢ S <: T

. We haveU 6= Xi because ifU = Xi, thenS = Xi by Lemma 15,

which is a contradiction. By the induction hypothesis, we have
∆1, [U/X]∆2 ⊢ [U/X]S <: [U/X]U ∆1, [U/X]∆2 ⊢ [U/X]U <: [U/X]T

Then,
∆1, [U/X]∆2 ⊢ [U/X]S <: [U/X]U ∆1, [U/X]∆2 ⊢ [U/X]U <: [U/X]T

∆1, [U/X]∆2 ⊢ [U/X]S <: [U/X]T
finishes the case.

Case∆1, X
ι
<: N, ∆2 ⊢ X <: bound∆1,X

ι
<: N,∆2

(X) (S = X, T = bound∆1,X
ι
<: N,∆2

(X)). By the assumption, we have

bound∆1,Xι<: N,∆2
(X) = bound∆1,∆2

(X)

[U/X]bound∆1,∆2
(X) = bound∆1,[U/X]∆2

(X)

[U/X]S = X [U/X]T = bound∆1,[U/X]∆2
(X)

Then,∆1, [U/X]∆2 ⊢ [U/X]X <: [U/X]bound∆1,[U/X]∆2
(X) finishes the case.

Case
class C<Y

κ
⊳ P> ⊳ N {...}

∆1, X
ι
<: N, ∆2 ⊢ C<T> <: [T/Y]N

(S = C<T>, T = [T/Y]N). By TR-CLASS, none ofX appears inN and we have

[U/X]N = N.

25 2011/4/9

Then,
class C<Y

κ
⊳ P> ⊳ N {...}

∆1, [U/X]∆2 ⊢ C<[U/X]T> <: [[U/X]T/Y]N
finishes the case.

Case∆1, X
ι
<: N, ∆2 ⊢ dyn<N> <: N (S = dyn<N>, T = N).

Immediate from∆1, [X/N]∆2 ⊢ dyn<[U/X]N> <: [U/X]N.

Lemma 29. If ∆1, X
ι

<: N, ∆2 ⊢ S <: T and∆1 ⊢ U :≺ [U/X]N where∆1 ⊢ U ok and none ofX appears in∆1, then
∆1, [U/X]∆2 ⊢ [U/X]S :≺ [U/X]T.

Proof. If S 6= Xi, then the conclusion is immediate from Lemma 28. Otherwise,by induction on the derivation of∆1, X
ι

<:
N, ∆2 ⊢ S <: T.

Case∆1, X
ι
<: N, ∆2 ⊢ Xi <: Xi (T = S = Xi). We have[U/X]Xi = Ui and the conclusion is immediate from∆1, [U/X]∆2 ⊢

Ui :≺ Ui.

Case
∆1, X

ι
<: N, ∆2 ⊢ Xi <: U ∆1, X

ι
<: N, ∆2 ⊢ U <: T

∆1, X
ι
<: N, ∆2 ⊢ Xi <: T

. The conclusion is immediate from the induction hypothesisand

Lemma 26.
Case∆1, X

ι
<: N, ∆2 ⊢ Xi <: bound∆1,Xι<: N,∆2

(Xi) (T = bound∆1,Xι<: N,∆2
(Xi)). We have [U/X]S = Ui and

bound∆1,X
ι
<: N,∆2

(Xi) = Ni = T. Then, we have∆1 ⊢ Ui :≺ [U/X]Ni by the assumption and the conclusion is immedi-
ate from Lemma 27.

Lemma 30. If ∆1, X
ι

<: N, ∆2 ⊢ S ≺ T and∆1 ⊢ U :≺ [U/X]N where∆1 ⊢ U ok and none ofX appears in∆1, then
∆1, [U/X]∆2 ⊢ [U/X]S ≺ [U/X]T.

Proof. By induction on the derivation of∆1, X
ι
<: N, ∆2 ⊢ S ≺ T.

Case∆1, X
ι
<: N, ∆2 ⊢ S ≺ S (T = S). Immediate.

Case
∆1, X

ι
<: N, ∆2 ⊢ S ≺ U ∆1, X

ι
<: N, ∆2 ⊢ U ≺ T

∆1, X
ι
<: N, ∆2 ⊢ S ≺ T

. Immediate from the induction hypothesis.

Case
∆1, X

ι
<: N, ∆2 ⊢ S ≺ T

∆1, X
ι
<: N, ∆2 ⊢ C<S> ≺ C<T>

(S = C<S>, T = C<T>). Immediate from the induction hypothesis.

Case
∆1, X

ι
<: N, ∆2 ⊢ S <: U ∆1, X

ι
<: N, ∆2 ⊢ U ≺ N

∆1, X
ι
<: N, ∆2 ⊢ S ≺ dyn<N>

(T = dyn<N>). If S 6= Xi, then the conclusion is immediate from

Lemma 28 and the induction hypothesis. Otherwise, we have
[U/X]S = Ui U = Ni

By Lemma 29 and the induction hypothesis, we have
∆1, [U/X]∆2 ⊢ Ui <: V
∆1, [U/X]∆2 ⊢ V ≺ [U/X]Ni

∆1, [U/X]∆2 ⊢ [U/X]Ni ≺ [U/X]N

for someV. Then,

∆1, [U/X]∆2 ⊢ Ui <: V ∆1, [U/X]∆2 ⊢ V ≺ [U/X]N

∆1, [U/X]∆2 ⊢ Ui ≺ dyn<[U/X]N> ,
∆1, [U/X]∆2 ⊢ V ≺ [U/X]Ni ∆1, [U/X]∆2 ⊢ [U/X]Ni ≺ [U/X]N

∆1, [U/X]∆2 ⊢ V ≺ [U/X]N
finishes the case.

Lemma 31. If ∆1, X
ι

<: N, ∆2 ⊢ S :≺ T and∆1 ⊢ U :≺ [U/X]N where∆1 ⊢ U ok and none ofX appears in∆1, then
∆1, [U/X]∆2 ⊢ [U/X]S :≺ [U/X]T.

26 2011/4/9

Proof. We have
∆1, X

ι
<: N, ∆2 ⊢ S <: U ∆1, X

ι
<: N, ∆2 ⊢ U ≺ T

for someU. Then the conclusion is immediate from Lemma 29, Lemma 30 andtransitivity of≺.

Lemma 32. UnderCT OK IN FGJ$%, if dynfree∆1,Xι<: N,∆2
(T) and∆1, X

ι
<: N, ∆2 ⊢ [U/X] ok where∆1 ⊢ U ok and none

of X appears in∆1, thendynfree∆1,[U/X]∆2
([U/X]T).

Proof. By induction on the derivation ofdynfree∆1,Xι<: N,∆2
(T).

Case
kind∆1,Xι<: N,∆2

(Y) = ♦

dynfree∆1,Xι<: N,∆2
(Y)

(T = Y). If Y = Xi for somei, then we havekind∆1,Xι<: N,∆2
(X) = ♦ anddynfree∆1,Xι<: N,∆2

(Ui).

Since∆1 ⊢ U ok, we havedynfree∆1,[U/X]∆2
(Ui) where [U/X]T = Ui. Otherwise, the conclusion is immediate since

[U/X]T = T.

Case
dynfree∆1,X

ι
<: N,∆2

(T)

dynfree∆1,Xι<: N,∆2
(C<T>)

(T = C<T>). The conclusion is immediate from the induction hypothesis.

Lemma 33. UnderCT OK IN FGJ$%, if ∆1, X
ι

<: N, ∆2 ⊢ T ok and∆1 ⊢ U :≺ [U/X]N where∆1 ⊢ U ok and none ofX
appears in∆1 and∆1, X

ι
<: N, ∆2 ⊢ [U/X] ok, then∆1, [U/X]∆2 ⊢ [U/X]T ok.

Proof. By induction on the derivation of∆1, X
ι
<: N, ∆2 ⊢ T ok with a case analysis on the last rule used.

Case∆1, X
ι
<: N, ∆2 ⊢ Object ok (T = Object). Immediate from[U/X]Object = Object.

Case
X ∈ dom(∆1, X

ι
<: N, ∆2)

∆1, X
ι
<: N, ∆2 ⊢ X ok

(T = X). If X = Xi, then we have∆1, [U/X]∆2 ⊢ Ui ok by the assumption and Lemma 27.

Otherwise, immediate from[U/X]X = X.

Case

class C<Y
κ

⊳ P> ⊳ N {...} ∆1, X
ι
<: N, ∆2 ⊢ T ok

∀κi ∈ κ.(κi = ♦ impliesdynfree∆1,Xι<: N,∆2
(Ti))

∀Ti ∈ T.(∆1, X
ι
<: N, ∆2 ⊢ Ti :≺ [T1/Y1, . . . , Ti−1/Yi−1]Pi)

∆1, X
ι
<: N, ∆2 ⊢ C<T> ok

(T = C<T>). By the induction hypothesis, we have

∆1, [U/X]∆2 ⊢ [U/X]T ok
By Lemma 31, we have
∆1, [U/X]∆2 ⊢ [U/X]Ti :≺ [U/X][T1/Y1, . . . , Ti−1/Yi−1]Pi

SinceYκ1

1 <: P1, . . . , Y
κi−1

i−1 <: Pi−1 ⊢ Pi ok by the rule TR-CLASS, P does not include anyX as a free variable.
Thus, [U/X][T1/Y1, . . . , Ti−1/Yi−1]Pi = [[U/X]T1/Y1, . . . , [U/X]Ti−1/Yi−1]Pi. Supposeκi = ♦ for somei. We have
dynfree∆1,Xι<: N,∆2

(Ti). Then, by Lemma 32, we havedynfree∆1,[U/X]∆2
([U/X]T), and finally,

class C<Y
κ

⊳ P> ⊳ N {...} ∆1, [U/X]∆2 ⊢ [U/X]T ok
∀κi ∈ κ.(κi = ♦ impliesdynfree∆1,[U/X]∆2

([U/X]Ti))

∀[U/X]Ti ∈ [U/X]T.(∆1, [U/X]∆2 ⊢ [U/X]Ti :≺ [[U/X]T1/Y1, . . . , [U/X]Ti−1/Yi−1]Pi)

∆1, [U/X]∆2 ⊢ C<[U/X]T> ok
finishes the case.

Case
∆1, X

ι
<: N, ∆2 ⊢ N ok

∆1, X
ι
<: N, ∆2 ⊢ dyn<N> ok

(T = dyn<N>). By the induction hypothesis, we have

∆1, [U/X]∆2 ⊢ [U/X]N ok

Then,
∆1, [U/X]∆2 ⊢ [U/X]N ok

∆1, [U/X]∆2 ⊢ dyn<[U/X]N> ok
finishes the case.

Lemma 34. If ∆1, X
κ

<: N, ∆2 ⊢ T ok and∆1 ⊢ U :≺ [U/X]N where∆1 ⊢ U ok and none ofX appears in∆1, then
∆1, [U/X]∆2 ⊢ bound∆1,[U/X]∆2

([U/X]T) :≺ [U/X](bound∆1,Xκ<: N,∆2
(T)).

27 2011/4/9

Proof. If T 6= X, then the conclusion is immediate frombound∆1,[U/X]∆2
([U/X]T) = [U/X](bound∆1,Xκ<: N,∆2

(T)). Oth-
erwise, if T = X and X ∈ dom(∆1) ∪ dom(∆2), then the conclusion is immediate frombound∆1,[U/X]∆2

([U/X]T) =

[U/X](bound∆1,Xκ<: N,∆2
(T)). Finally, if T = Xi, then we have

bound∆1,[U/X]∆2
([U/X]T) = bound∆1,[U/X]∆2

(Ui)

[U/X](bound∆1,Xκ<: N,∆2
(T)) = [U/X]Ni

If Ui = Y, then we haveY ∈ dom(∆1) by the assumption∆1 ⊢ U ok. By the assumption
∆1 ⊢ U <: S ∆1 ⊢ S ≺ [U/X]N

∆1 ⊢ U :≺ [U/X]N
(whereSi must be a nonvariable type by the definition of≺) and∆1 ⊢ Y <: bound∆1

(Y),

we have
bound∆1,[U/X]∆2

(Ui) = bound∆1
(Y) = Si

Then,
∆1 ⊢ Si <: Si ∆1 ⊢ Si ≺ [U/X]Ni

∆1 ⊢ Si :≺ [U/X]Ni

and Lemma 27 finishes the proof. IfUi = dyn<N>, then we have

bound∆1,[U/X]∆2
(Ui) = N

By
∆1 ⊢ N <: N ∆1 ⊢ N ≺ N

∆1 ⊢ N ≺ dyn<N>
, we have

∆1 ⊢ N :≺ dyn<N>

By the assumption∆1 ⊢ U :≺ [U/X]N and Lemma 26, we have
∆1 ⊢ N :≺ [U/X]Ni

Then, Lemma 27 finishes the proof. IfUi = N, then we have
bound∆1,[U/X]∆2

(Ui) = Ui

Then the assumption∆1 ⊢ U :≺ [U/X]N and Lemma 27 finishes the proof.

Lemma 35. If ∆ ⊢ S <: T, then∆ ⊢ bound∆(S) <: bound∆(T).

Proof. By induction on the derivation of∆ ⊢ S <: T with case analysis on the last rule used.

Case∆ ⊢ T <: T (S = T). Immediate frombound∆(S) = bound∆(T)

Case
∆ ⊢ S <: U ∆ ⊢ U <: T

∆ ⊢ S <: T
. Immediate from the induction hypothesis.

Case∆ ⊢ X <: bound∆(X) (S = X, T = bound∆(X). Immediate frombound∆(S) = bound∆(T) = bound∆(X)

Case
class C<X

κ
⊳ N> ⊳ N {...}

∆ ⊢ C<T> <: [T/X]N
(S = C<T>, T = [T/X]N). Immediate frombound∆(S) = S andbound∆(T) = T.

Case∆ ⊢ dyn<N> <: N (S = dyn<N>, T = N). Immediate frombound∆(S) = bound∆(T) = N

Lemma 36. If ∆ ⊢ S ≺ T, then∆ ⊢ bound∆(S) :≺ bound∆(T).

Proof. By induction on the derivation of∆ ⊢ S ≺ T with case analysis on the last rule used.

Case∆ ⊢ T ≺ T (S = T). Immediate frombound∆(S) = bound∆(T)

Case
∆ ⊢ S ≺ U ∆ ⊢ U ≺ T

∆ ⊢ S ≺ T
. Immediate from the induction hypothesis and Lemma 26.

Case
∆ ⊢ S ≺ T

∆ ⊢ C<S> ≺ C<T>
(S = C<S>, T = C<T>). Immediate frombound∆(S) = bound∆(T)

Case
∆ ⊢ S <: U ∆ ⊢ U ≺ N

∆ ⊢ S ≺ dyn<N>
(T = dyn<N>). By Lemma 35 and the induction hypothesis, we have

∆ ⊢ bound∆(S) <: bound∆(U)

∆ ⊢ bound∆(U) :≺ bound∆(T)
Then, Lemma 26 finishes the case.

28 2011/4/9

Lemma 37. If ∆ ⊢ S :≺ T, then∆ ⊢ bound∆(S) :≺ bound∆(T).

Proof. Immediate from Lemma 35, and Lemma 26.

Lemma 38. If ∆ ⊢ S <: T andfields(bound∆(T)) = T f, thenfields(bound∆(S)) = S g and∆ ⊢ Si = Ti andgi = fi for
all i ≤ #(f).

Proof. By induction on the derivation of∆ ⊢ S <: T with case analysis on the last rule used.

Case∆ ⊢ S <: S (T = S). Immediate frombound∆(S) = bound∆(T).

Case
∆ ⊢ S <: U ∆ ⊢ U <: T

∆ ⊢ S <: T
. Immediate from the induction hypothesis and the transitivity of <:.

Case∆ ⊢ X <: bound∆(X) (S = X, T = bound∆(X)). Immediate frombound∆(S) = bound∆(T) = bound∆(X).

Case
class C<X

κ
⊳ N> ⊳ N {...}

∆ ⊢ C<T> <: [T/X]N
(S = C<T>, T = [T/X]N). By the definition offields , we havefields(C<T>) = U f, [T/X]S g

whereU f = fields([T/X]N).
Case∆ ⊢ dyn<N> <: N (S = dyn<N>, T = N). Immediate frombound∆(S) = bound∆(T) = N.

Lemma 39. If ∆ ⊢ S ≺ T andfields(bound∆(T)) = T f, thenfields(bound∆(S)) = S g and∆ ⊢ Si ≺ Ti andgi = fi for all
i ≤ #(f).

Proof. By induction on the derivation of∆ ⊢ S ≺ T with case analysis on the last rule used.

Case∆ ⊢ S ≺ S (T = S). Immediate frombound∆(S) = bound∆(T).

Case
∆ ⊢ S ≺ U ∆ ⊢ U ≺ T

∆ ⊢ S ≺ T
. Immediate from the induction hypothesis and the transitivity of ≺.

Case
∆ ⊢ S ≺ T

∆ ⊢ C<S> ≺ C<T>
(S = C<S>, T = C<T>). By the definition offields , we have

class C<X
κ

⊳ N> ⊳ N {V f; ...}

fields(C<S>) = U g, [S/X]V f

fields(C<T>) = U g, [T/X]V f

Then,∆ ⊢ [S/X]V ≺ [T/X]V by Lemma 23 finishes the case.

Case
∆ ⊢ S <: U ∆ ⊢ U ≺ N

∆ ⊢ S ≺ dyn<N>
(T = N). Since we havebound∆(dyn<N>) = bound∆(N), the conclusion is immediate from

and the induction hypothesis.

Lemma 40. If ∆ ⊢ S :≺ T andfields(bound∆(T)) = T f, thenfields(bound∆(S)) = S g and∆ ⊢ Si ≺ Ti andgi = fi for all
i ≤ #(f).

Proof. We have
∆ ⊢ S <: U ∆ ⊢ U ≺ T

for someU. Then the conclusion is immediate from Lemma 38 and Lemma 39.

Lemma 41. If ∆ ⊢ C<T> ok for someclass C<Xκ
⊳ N> ⊳ N {...} underCT OK IN FGJ$%, then∆ ⊢ T :≺ [T/X]N.

Proof. Since

class C<X
κ

⊳ N> ⊳ N {...} ∆ ⊢ T ok
∀κi ∈ κ.(κi = ♦ impliesdynfree∆(Ti))

∀Ti ∈ T.(∆ ⊢ Ti :≺ [T1/X1, . . . , Ti−1/Xi−1]Ni)

∆ ⊢ C<T> ok
, we have

∆ ⊢ Ti :≺ [T1/X1, . . . , Ti−1/Xi−1]Ni

SinceX1 <: N1, . . . , Xi−1 <: Ni−1 ⊢ Ni ok by the rule TR-CLASS, Xj (j ≥ i) does not appear inNi and we have
∆ ⊢ T :≺ [T/X]N.

29 2011/4/9

Lemma 42. If ∆ ⊢ P ok andmtype(m, P) = U → U underCT OK IN FGJ$%, then for anyN such that∆ ⊢ N <: P and
∆ ⊢ N ok, we havemtype(m, N) = U → U′ for someU′ such that∆ ⊢ U′ :≺ U.

Proof. By induction on the derivation of∆ ⊢ N <: P with case analysis on the last rule used.

Case∆ ⊢ N <: N (P = N). Immediate frommtype(m, N) = mtype(m, P).

Case
∆ ⊢ N <: Q ∆ ⊢ Q <: P

∆ ⊢ N <: P
. Immediate from the induction hypothesis.

Case
class C<X

κ
⊳ N> ⊳ Q {...}

∆ ⊢ C<T> <: [T/X]Q
(N = C<T>, P = [T/X]Q). We have

class C<X
κ

⊳ N> ⊳ Q {... M}

If M do not include a declaration ofm, thenmtype(m, N) = mtype(m, P) by the definition ofmtype finishes the case.
Otherwise, we have
mtype(m, [T/X]Q) = [T/X](U

′

→ U0)

[T/X]U0 = U
By TR-CLASS, TR-METHOD and Lemma 41, it must be the case that
U′0 m(U

′

x){ return ...; } ∈ M

X
κ

<: N ⊢ U′0 <: U0 ∆ ⊢ T :≺ [T/X]N
By Lemma 28 and Lemma 27, we have
∆ ⊢ [T/X]U′0 :≺ U

Sincemtype(m, N) = [T/X](U
′

→ U′0), by the definition ofmtype, lettingU′ = [T/X]U′0 finishes the case.

Lemma 43. If ∆ ⊢ P ok andmtype(m, P) = U → U underCT OK IN FGJ$%, then for anyN such that∆ ⊢ N ≺ P and
∆ ⊢ N ok, we havemtype(m, N) = U

′

→ U′ for someU′ andU′ such that∆ ⊢ U
′

≺ U and∆ ⊢ U′ ≺ U.

Proof. By induction on the derivation of∆ ⊢ N ≺ P with case analysis on the last rule used.

Case∆ ⊢ N ≺ N (P = N). Immediate frommtype(m, N) = mtype(m, P).

Case
∆ ⊢ N ≺ Q ∆ ⊢ Q ≺ P

∆ ⊢ N ≺ P
. Immediate from the induction hypothesis.

Case
∆ ⊢ S ≺ T

∆ ⊢ C<S> ≺ C<T>
(N = C<S>). Supposemtype(m, C<X>) = V → V. By the definition ofmtype, we have

mtype(m, C<S>) = [S/X](V → V) = U
′

→ U′

mtype(m, C<T>) = [T/X](V → V) = U → U
Then the conclusion is immediate from Lemma 23.

Lemma 44. If ∆ ⊢ P ok andmtype(m, P) = U → U underCT OK IN FGJ$%, then for anyN such that∆ ⊢ N :≺ P and
∆ ⊢ N ok, we havemtype(m, N) = U

′

→ U′ for someU
′

andU′ such that∆ ⊢ U
′

≺ U and∆ ⊢ U′ :≺ U.

Proof. Immediate from Lemma 42, Lemma 43 and transitivity of≺.

Lemma 45. Suppose∆ ⊢ N ok and∆ ⊢ N <: [T/X]C<X> andmtype(m, C<X>) = U → U andmtype(m, N) = U
′

→ U′ under
CT OK IN FGJ$%. If [T/X]Ui = Ui, thenU′i = Ui.

Proof. Supposemtype(m, C<T>) = V → V. By Lemma 42, we have
V = U

′

Then, by the assumption, we haveUi = [T/X]Ui = Vi = U′i.

Lemma 46. Suppose∆ ⊢ N ok and∆ ⊢ N :≺ [T/X]C<X> andmtype(m, C<X>) = U → U andmtype(m, N) = U
′

→ U′ under
CT OK IN FGJ$%. If [T/X]Ui = Ui, thenU′i = Ui.

30 2011/4/9

Proof. We have
∆ ⊢ N <: C<S> ∆ ⊢ C<S> ≺ C<T>

for someS. SinceT do not containXj by the rule TR-CLASS, we have
[S/X]Ui = Ui

Then, the conclusion is immediate from Lemma 45.

Lemma 47. If mtype(m, C<X>) = U → U andmtype(m, N) = U
′

→ U′ andtyargs(N, C) = S, then[S/X]U = U
′

.

Proof. By induction on the derivation oftyargs(N, C) = S with a case analysis on the last rule used.

Casetyargs(C<S>, C) = S (N = C<S>). Immediate from the definition ofmtype.

Case
• ⊢ N <: P tyargs(P, C) = S

tyargs(N, C) = S
. By the induction hypothesis, we have

mtype(m, P) = U
′′

→ U′′ [S/X]U = U
′′

Then, by Lemma 42, we haveU
′

= U
′′

.

Lemma 48. Under CT OK IN FGJ$%, if ∆1, X
ι

<: N, ∆2; Γ ⊢R e : T and ∆1 ⊢ U :≺ [U/X]N where∆1 ⊢ U ok and
none ofX appears in∆1 and∆1, X

ι
<: N, ∆2 ⊢ [U/X] ok, then∆1, [U/X]∆2; [U/X]Γ ⊢R [U/X]e : S for someS such that

∆1, [U/X]∆2 ⊢ S :≺ [U/X]T.

Proof. By induction on the derivation of∆1, X
ι
<: N, ∆2; Γ ⊢R e : T with a case analysis on the last rule used.

Case TR-VAR.
e = x T = Γ(x)

By Lemma 31, we have
∆1, [U/X]∆2 ⊢ [U/X]T :≺ [U/X]T

Then,S = [U/X]T = ([U/X]Γ)(x) finishes the case.
Case TR-FIELD1.

e = e0.fi ∆1, X
ι
<: N, ∆2; Γ ⊢R e0 : T0

fields(bound∆1,Xι<: N,∆2
(T0)) = T f T = Ti

By the induction hypothesis, we have
∆1, [U/X]∆2; [U/X]Γ ⊢R [U/X]e0 : S0 ∆1, [U/X]∆2 ⊢ S0 :≺ [U/X]T0

for someS0. By Lemma 34, Lemma 37 and Lemma 26, we have
∆1, [U/X]∆2 ⊢ bound∆1,[U/X]∆2

([U/X]T0) :≺ [U/X](bound∆1,Xι<: N,∆2
(T0))

∆1, [U/X]∆2 ⊢ bound∆1,[U/X]∆2
(S0) :≺ bound∆1,[U/X]∆2

([U/X]T0)

∆1, [U/X]∆2 ⊢ bound∆1,[U/X]∆2
(S0) :≺ [U/X](bound∆1,Xι<: N,∆2

(T0))

By Lemma 40,fields(bound∆1,[U/X]∆2
(S0)) = S g and we havefj = gj and∆1, [U/X]∆2 ⊢ Sj :≺ [U/X]Tj for j ≤ #(f).

By the rule TR-FIELD1, we have∆1, [U/X]∆2; [U/X]Γ ⊢R [U/X]e0.fi : Si. LettingS = Si finishes the case.
Case TR-FIELD2.

e = get(e0, f) ∆1, X
ι
<: N, ∆2; Γ ⊢R e0 : T0 T = dyn<Object>

By the induction hypothesis, we have
∆1, [U/X]∆2; [U/X]Γ ⊢R [U/X]e0 : T′0 ∆1, [U/X]∆2 ⊢ T′0 :≺ [U/X]T0

for someT′0. Then, by TR-FIELD2, S = dyn<Object> finishes the case.
Case TR-INVK 1.

e = e0.m(e) ∆1, X
ι
<: N, ∆2; Γ ⊢R e0 : T0

∆1, X
ι
<: N, ∆2; Γ ⊢R e : V bound∆1,Xι<: N,∆2

(T0) = Q ∆ ⊢ Q :≺ [T/Y]C<Y>

dynfree∆1,Xι<: N,∆2
(C<T>) mtype(m, C<T>) = V

′

→ T ∆1, X
ι
<: N, ∆2 ⊢ V :≺ V

′

By the induction hypothesis, we have
∆1, [U/X]∆2; [U/X]Γ ⊢R [U/X]e0 : S0 ∆1, [U/X]∆2 ⊢ S0 :≺ [U/X]T0

∆1, [U/X]∆2; [U/X]Γ ⊢R [U/X]e : S ∆1, [U/X]∆2 ⊢ S :≺ [U/X]V
for someS0. By Lemma 34, Lemma 37 and Lemma 26, we have

31 2011/4/9

∆1, [U/X]∆2 ⊢ bound∆1,[U/X]∆2
([U/X]T0) :≺ [U/X](bound∆1,Xι<: N,∆2

(T0))

∆1, [U/X]∆2 ⊢ bound∆1,[U/X]∆2
(S0) :≺ bound∆1,[U/X]∆2

([U/X]T0)

∆1, [U/X]∆2 ⊢ bound∆1,[U/X]∆2
(S0) :≺ [U/X](bound∆1,Xι<: N,∆2

(T0))

Let N = C<T>. By Lemma 31 and Lemma 26, we have
∆1, [U/X]∆2 ⊢ [U/X](bound∆1,Xι<: N,∆2

(T0)) :≺ [U/X]N

∆1, [U/X]∆2 ⊢ bound∆1,[U/X]∆2
(S0) :≺ [U/X]N

Sincedynfree∆1,Xι<: N,∆2
(N), we have

dynfree∆1,[U/X]∆2
([U/X]N)

Let P = bound∆1,[U/X]∆2
(S0). By Lemma 5, we have

∆1, [U/X]∆2 ⊢ P <: [U/X]N
Then, by Lemma 42, we have
mtype(m, P) = [U/X]V

′

→ T′ ∆1, [U/X]∆2 ⊢ T′ :≺ [U/X]T
By Lemma 31 and Lemma 26, we have
∆1, [U/X]∆2 ⊢ [U/X]V :≺ [U/X]V

′

∆1, [U/X]∆2 ⊢ S :≺ [U/X]V
′

Then, by the rule TR-INVK 1,
∆1, [U/X]∆2; [U/X]Γ ⊢R [U/X]e0.m(e) :T′

finishes the case.
Case TR-INVK 2.

e = e0.m[V
′

|C<Y>](e) ∆1, X
ι
<: N, ∆2; Γ ⊢R e0 : T0

∆1, X
ι
<: N, ∆2; Γ ⊢R e : V bound∆1,Xι<: N,∆2

(T0) = N

∆1, X
ι
<: N, ∆2 ⊢ N :≺ [T/Y]C<Y> mtype(m, C<Y>) = V

′

→ U

∆1, X
ι
<: N, ∆2 ⊢ V :≺ [T/Y]V

′

T = [T/Y]U
By the induction hypothesis, we have
∆1, [U/X]∆2; [U/X]Γ ⊢R [U/X]e0 : S0 ∆1, [U/X]∆2 ⊢ S0 :≺ [U/X]T0

∆1, [U/X]∆2; [U/X]Γ ⊢R [U/X]e : S ∆1, [U/X]∆2 ⊢ S :≺ [U/X]V
for someS0. By Lemma 34, Lemma 37 and Lemma 26, we have
∆1, [U/X]∆2 ⊢ bound∆1,[U/X]∆2

([U/X]T0) :≺ [U/X](bound∆1,Xι<: N,∆2
(T0))

∆1, [U/X]∆2 ⊢ bound∆1,[U/X]∆2
(S0) :≺ bound∆1,[U/X]∆2

([U/X]T0)

∆1, [U/X]∆2 ⊢ bound∆1,[U/X]∆2
(S0) :≺ [U/X](bound∆1,X

ι
<: N,∆2

(T0))
By Lemma 31 and Lemma 26, we have
∆1, [U/X]∆2 ⊢ [U/X]N :≺ [U/X][T/Y]C<Y> ∆1, [U/X]∆2 ⊢ P :≺ [U/X][T/Y]C<Y>

∆1, [U/X]∆2 ⊢ [U/X]V :≺ [U/X][T/Y]V
′

∆1, [U/X]∆2 ⊢ S :≺ [U/X][T/Y]V
′

whereP = bound∆1,[U/X]∆2
(S0). Then, by the rule TR-INVK 2,

∆1, [U/X]∆2; [U/X]Γ ⊢R [U/X]e0.m[V
′

|C<Y>](e) :S

whereS = [U/X][T/Y]U = [U/X]T finishes the case.
Case TR-INVK 3.

e = invoke(e0, m, e) ∆1, X
ι
<: N, ∆2; Γ ⊢R e0 : T0

∆1, X
ι
<: N, ∆2; Γ ⊢R e : V T = dyn<Object>

By the induction hypothesis, we have
∆1, [U/X]∆2; [U/X]Γ ⊢R [U/X]e0 : T′0 ∆1, [U/X]∆2 ⊢ T′0 :≺ [U/X]T0

∆1, [U/X]∆2; [U/X]Γ ⊢R [U/X]e : V
′

∆1, [U/X]∆2 ⊢ V
′ :≺ [U/X]V

for someT′0 andV
′

. Then, by TR-INVK 3, S = dyn<Object> finishes the case.
Case TR-NEW.

e = new N(e) ∆1, X
ι
<: N, ∆2 ⊢ N ok

fields(N) = T f ∆1, X
ι
<: N, ∆2; Γ ⊢R e : V

∆1, X
ι
<: N, ∆2 ⊢ V :≺ T T = N

By Lemma 33, we have
∆1, [U/X]∆2 ⊢ [U/X]N ok

By the induction hypothesis, we have
∆1, [U/X]∆2; [U/X]Γ ⊢R [U/X]e : V

′

∆1, [U/X]∆2 ⊢ V
′ :≺ [U/X]V

By Lemma 31 and Lemma 26, we have

32 2011/4/9

∆1, [U/X]∆2 ⊢ [U/X]V :≺ [U/X]T ∆1, [U/X]∆2 ⊢ V
′ :≺ [U/X]T

Then, by TR-NEW, S = [U/X]N finishes the case.
Case TR-CAST.

e = $T% e0 ∆1, X
ι
<: N, ∆2; Γ ⊢R e0 : V

By the induction hypothesis, we have
∆1, [U/X]∆2; [U/X]Γ ⊢R e0 : V′ ∆1, [U/X]∆2 ⊢ V′ :≺ [U/X]V

for someV′. Then, by TR-CAST, S = [U/X]T finishes the case.
Case TR-ERROR.

e = Error[E]

Immediate from the rule TR-ERRORby lettingS = [U/X]T.

Lemma 49. UnderCT OK IN FGJ$%, if ∆; Γ, x : T ⊢R e : T and∆; Γ ⊢R d : S where∆ ⊢ S :≺ T, then∆; Γ ⊢R [d/x]e : S for
someS such that∆ ⊢ S :≺ T.

Proof. By induction on the derivation of∆; Γ, x : T ⊢R e :T with a case analysis on the last rule used.

Case TR-VAR.
e = x

If x ∈ dom(Γ), the conclusion is immediate, since[d/x]e = x andS = T. On the other hand, ifx = xi andT = Ti, then
lettingS = Si finishes the case.

Case TR-FIELD1.
e = e0.fi ∆; Γ, x : T ⊢R e0 : T0

fields(bound∆(T0)) = S f T = Si

By the induction hypothesis, we have
∆; Γ ⊢R [d/x]e0 : T′0

for someT′0 such that∆ ⊢ T′0 :≺ T0. By Lemma 40,fields(bound∆(T′0)) = U g such that∆ ⊢ Uj :≺ Sj andgj = fj for all
j ≤ #(S). Then, by the rule TR-FIELD1, we have
∆; Γ ⊢R [d/x]e0.fi : Ui

and lettingS = Ui finishes the case.
Case TR-FIELD2.

e = get(e0, fi) ∆; Γ, x :T ⊢R e0 : T0

T = dyn<Object>
By the induction hypothesis, we have
∆; Γ ⊢R [d/x]e0 : T′0

for someT′0 such that∆ ⊢ T′0 :≺ T0. Then, by the rule TR-FIELD2, we have
∆; Γ ⊢R get([d/x]e0, fi) : dyn<Object>

and lettingS = dyn<Object> finishes the case.
Case TR-INVK 1.

e = e0.m(e) ∆; Γ, x : T ⊢R e0 : T0

∆; Γ, x : T ⊢R e : V bound∆(T0) = Q ∆ ⊢ Q :≺ N

dynfree∆(N) mtype(m, N) = T → T ∆ ⊢ V :≺ T
By the induction hypothesis, we have
∆; Γ ⊢R [d/x]e0 : T′0 ∆; Γ ⊢R [d/x]e : V

′

for someT′0 andV
′

such that∆ ⊢ T′0 :≺ T0 and∆ ⊢ V
′ :≺ V. By Lemma 37 and Lemma 26, we have

bound∆(T′0) = P ∆ ⊢ P :≺ Q ∆ ⊢ P :≺ N ∆ ⊢ V
′ :≺ T

Then, by the rule TR-INVK 1, we have
∆; Γ ⊢R ([d/x]e0).m([d/x]e) : T

finishes the case.
Case TR-INVK 2.

e = e0.m[U|C<X>](e) ∆; Γ, x : T ⊢R e0 : T0

∆; Γ, x : T ⊢R e : V bound∆(T0) = N ∆ ⊢ N :≺ [S/X]C<X>

mtype(m, C<X>) = U → U ∆ ⊢ V :≺ [S/X]U T = [S/X]U
By the induction hypothesis, we have

33 2011/4/9

∆; Γ ⊢R [d/x]e0 : T′0 ∆; Γ ⊢R [d/x]e : V
′

for someT′0 andV
′

such that∆ ⊢ T′0 :≺ T0 and∆ ⊢ V
′ :≺ V. By Lemma 37 and Lemma 26, we have

bound∆(T′0) = P ∆ ⊢ P :≺ [S/X]C<X> ∆ ⊢ V
′ :≺ [S/X]U

Then, by the rule TR-INVK 2, we have
∆; Γ ⊢R ([d/x]e0).m[U|C<X>]([d/x]e) : [S/X]U

and lettingS = T = [S/X]U finishes the case.
Case TR-INVK 3.

e = invoke(e0, m, e) ∆; Γ, x : T ⊢R e0 : T0

∆; Γ, x : T ⊢R e : V T = dyn<Object>
By the induction hypothesis, we have
∆; Γ ⊢R [d/x]e0 : T′0 ∆; Γ ⊢R [d/x]e : V

′

for someT′0 andV
′

such that∆ ⊢ T′0 :≺ T0 and∆ ⊢ V
′ :≺ V. Then, by the rule TR-INVK 3, we have

∆; Γ ⊢R invoke([d/x]e0, m, [d/x]e) : dyn<Object>
and lettingS = dyn<Object> finishes the case.

Case TR-NEW.
e = new N(e) ∆ ⊢ N ok
fields(N) = S f ∆; Γ, x :T ⊢R e : U

∆ ⊢ U :≺ S T = N
By the induction hypothesis, we have
∆; Γ ⊢R [d/x]e : U

′

for someU′ such that∆ ⊢ U
′ :≺ U. By Lemma 26, we have

∆ ⊢ U
′ :≺ S

Then, by the rule TR-NEW, we have
∆; Γ ⊢R new N([d/x]e) : N

and lettingS = N finishes the case.
Case TR-CAST.

e = $T% e0 ∆; Γ, x : T ⊢R e0 : T0

By the induction hypothesis, we have
∆; Γ ⊢R [d/x]e0 : T′0

for someT′0 such that∆ ⊢ T′0 :≺ T0. Then, by the rule TR-CAST, we have
∆; Γ ⊢R $T% ([d/x]e0) :T

and lettingS = T finishes the case.
Case TR-ERROR.

e = Error[E]
Immediate from the rule TR-ERRORby lettingS = T.

Lemma 50. If mtype(m, N) = U → U andmbody(m, N) = x.e0 where∆ ⊢ N ok underCT OK IN FGJ$%, then there exist
someP andV such that∆ ⊢ N :≺ P and∆ ⊢ P ok and∆ ⊢ V :≺ U and∆; x : U, this : P ⊢R e0 : V.

Proof. By induction on the derivation ofmbody(m, N) = x.e0 using Lemma 31 and Lemma 48.

Case

class C<X
κ

⊳ N> ⊳ Q {. . .; M}

T0 m(S x){ return e; } ∈ M

mbody(m, C<T>) = x.[T/X]e
.

e0 = [T/X]e N = C<T>.

Let Γ = x : S, this : C<X> and∆′ = X
κ

<: N. By TR-CLASS and TR-METHOD, we have∆′; Γ ⊢R e :S0 and∆′ ⊢ S0 :≺ T0

for someS0. By ∆ ⊢ N ok, we have
∆ ⊢ T ok ∆′ ⊢ [T/X] ok

By Lemma 41, we have
∆ ⊢ T :≺ [T/X]N

By Lemma 27, Lemma 31 and Lemma 48,
∆ ⊢ [T/X]S0 :≺ [T/X]T0 ∆; x : [T/X]S, this : C<T> ⊢R [T/X]e : S′0

34 2011/4/9

where∆ ⊢ S′0 :≺ [T/X]S0. By,

class C<X
κ

⊳ N> ⊳ Q {. . .; M}

S m(S x){ return e; } ∈ M

mtype(m, C<T>) = [T/X](S → S)
, we have

U = [T/X]S U = [T/X]T0

By Lemma 26,V = S′0 andP = C<T> finishes the case.

Case

class C<X
κ

⊳ N> ⊳ Q {. . .; M}

m /∈ M mbody(m, [T/X]Q) = x.e

mbody(m, C<T>) = x.e
.

e0 = e N = C<T>

Immediate from the induction hypothesis and the fact that∆ ⊢ C<T> <: [T/X]Q.

Theorem 51. UnderCT OK IN FGJ$%, if ∆; Γ ⊢R e : T ande −→ e′, then∆ ⊢ T′ :≺ T and∆; Γ ⊢R e′ : T′ for someT′.

Proof. By induction one −→ e′ with a case analysis on the reduction rule used.

Case R-FIELD1.
e = new N(v).fi e′ = vi fields(N) = T f

By TR-FIELD1 and TR-NEW, we have
∆; Γ ⊢R new N(v) : N ∆; Γ ⊢R v : U ∆ ⊢ U :≺ T

In particular,T′ = Ui, which satisfies
∆ ⊢ Ui :≺ Ti ∆; Γ ⊢R vi : Ui

finishes the case.
Case R-FIELD2.

e = get(new N(v), fi) e′ = vi fields(N) = T f

By TR-FIELD2 and TR-NEW, we have
∆; Γ ⊢R new N(v) : N ∆; Γ ⊢R v : U T = dyn<Object>

In particular,T′ = Ui, which satisfies
∆ ⊢ Ui :≺ dyn<Object> ∆; Γ ⊢R vi :Ui

finishes the case.
Case R-INVK 1.

e = new N(v).m(w) mbody(m, N) = x.e0 e′ = [w/x, new N(v)/this]e0

By TR-INVK 1 and TR-NEW, we have
∆; Γ ⊢R new N(v) : N dynfree∆(P) ∆ ⊢ N :≺ P mtype(m, P) = U → T

∆; Γ ⊢R w : V ∆ ⊢ V :≺ U ∆ ⊢ N ok
By Lemma 5 and Lemma 42, we have
∆ ⊢ N <: P mtype(m, P) = U → U ∆ ⊢ U :≺ T

By Lemma 50, we have
∆ ⊢ N :≺ P ∆ ⊢ P ok ∆ ⊢ V :≺ U ∆; x : U, this : P ⊢R e0 : V

for someP andV. Then, by Lemma 49,∆; Γ ⊢R [w/x, new N(v)/this]e0 : T′ for someT′ such that∆ ⊢ T′ :≺ V and
∆ ⊢ T′ :≺ T by Lemma 26.

Case R-INVK 2.
e = new N(v).m[U|C<X>](w) mbody(m, N) = x.e0

w = new P(...) • ⊢ P :≺ [tyargs(N, C)/X]U e′ = [w/x, new N(v)/this]e0

By TR-INVK 2 and TR-NEW, we have
∆; Γ ⊢R new N(v) : N ∆ ⊢ N :≺ [T/X]C<X> mtype(m, C<X>) = U → U

∆; Γ ⊢R w : P ∆ ⊢ P :≺ [T/X]U ∆ ⊢ N ok T = [T/X]U
By Lemma 44, we have
mtype(m, N) = U

′

→ U′ ∆ ⊢ U
′

≺ [T/X]U ∆ ⊢ U′ :≺ [T/X]U

for someU
′

andU′. By Lemma 50 and Lemma 26, we have
∆ ⊢ N :≺ P ∆ ⊢ P ok ∆ ⊢ V :≺ U′ ∆ ⊢ V :≺ [T/X]U

∆; x : U
′

, this :P ⊢R e0 : V
for someP andV. By Lemma 47, we have

35 2011/4/9

[tyargs(N, C)/X]U = U
′

∆ ⊢ P :≺ U
′

Then, by Lemma 49,∆; Γ ⊢R [w/x, new N(v)/this]e0 : T′ for someT′ such that∆ ⊢ T′ :≺ V and∆ ⊢ T′ :≺ T by
Lemma 26.

Case R-INVK 3.
e = invoke(new N(v), m, w) mbody(m, N) = x.e0

w = new P(...) • ⊢ P :≺ U

mtype(m, N) = U → U e′ = [w/x, new N(v)/this]e0

By TR-INVK 3 and TR-NEW, we have
∆; Γ ⊢R new N(e) : N ∆ ⊢ N ok T = dyn<Object>

By, Lemma 50,
∆ ⊢ N :≺ P ∆ ⊢ P ok ∆ ⊢ V :≺ U ∆ ⊢ V ok
∆; x : U, this : P ⊢R e0 : V

for someP andV. Then, by Lemma 49, we have
∆ ⊢ T′ :≺ V ∆; Γ ⊢R [w/x, new N(v)/this]e0 : T′

for someT′ such that∆ ⊢ T′ :≺ dyn<Object>.
Case R-CAST.

e = $T% new N(v) • ⊢ N :≺ T e′ = new N(v)

By TR-CAST and TR-NEW, we have
∆; Γ ⊢R $T% new N(v) : T ∆; Γ ⊢R new N(v) : N

Then,T′ = N finishes the case.
Case RC-FIELD1.

e = e0.f e′ = e′0.f e0 −→ e′0
By TR-FIELD1, we have
∆; Γ ⊢R e0 : T0 fields(bound∆(T0)) = T f T = Ti

By the induction hypothesis, we have
∆; Γ ⊢R e′0 : T′0

for someT′0 such that∆ ⊢ T′0 :≺ T0. By Lemma 40,fields(bound∆(T′0)) = S g and, forj ≤ #(f), we havegi = fi and
∆ ⊢ Si :≺ Ti. Therefore, by the rule TR-FIELD1, we have
∆; Γ ⊢R e′0.f : Si

Then, lettingT′ = Si finishes the case.
Case RC-FIELD2.

e = get(e0, f) e′ = get(e′0, f) e0 −→ e′0
By TR-FIELD2, we have
∆; Γ ⊢R e0 : T0 T = dyn<Object>

By the induction hypothesis, we have
∆; Γ ⊢R e′0 : T′0

for someT′0 such that∆ ⊢ T′0 :≺ T0. Therefore, by the rule TR-FIELD2, we have
∆; Γ ⊢R get(e′0, f) : dyn<Object>

Then, lettingT′ = dyn<Object> finishes the case.
Case RC-INVK -RECV1.

e = e0.m(e) e′ = e′0.m(e) e0 −→ e′0
By TR-INVK 1, we have
∆; Γ ⊢R e0 : T0 ∆; Γ ⊢R e : V bound∆(T0) = Q ∆ ⊢ Q :≺ N

dynfree∆(N) mtype(m, N) = U → T ∆ ⊢ V :≺ U
By the induction hypothesis, we have
∆; Γ ⊢R e′0 : T′0

for someT′0 such that∆ ⊢ T′0 :≺ T0. By Lemma 37, Lemma 26, we have
bound∆(T′0) = P ∆ ⊢ P :≺ N

Then, by the rule TR-INVK 1, we have
∆; Γ ⊢R e′0.m(e) : T

Case RC-INVK -ARG1.
e = e0.m(v, ei, e) e′ = e0.m(v, e′i, e) ei −→ e′i

By TR-INVK 1, we have

36 2011/4/9

∆; Γ ⊢R e0 : T0 ∆; Γ ⊢R v, ei, e :V bound∆(T0) = Q ∆ ⊢ Q :≺ N

dynfree∆(N) mtype(m, N) = U → T ∆ ⊢ V :≺ U
By the induction hypothesis, we have
∆; Γ ⊢R e′i : V

′

i

for someV
′

such that∆ ⊢ V′i :≺ Vi andV′j = Vj for j 6= i. By Lemma 26, we have

∆ ⊢ V
′ :≺ U

Therefore, by the rule TR-INVK 1, we have
∆; Γ ⊢R e0.m(v, e′i, e) : T

Then, lettingT′ = T finishes the case.
Case RC-INVK -RECV2.

e = e0.m[U|C<X>](e) e′ = e′0.m[U|C<X>](e)

e0 −→ e′0
By TR-INVK 2, we have
∆; Γ ⊢R e0 : T0 bound∆(T0) = N ∆ ⊢ N :≺ [T/X]C<X>

mtype(m, C<X>) = U → U ∆; Γ ⊢R e : V ∆ ⊢ V :≺ [T/X]U T = [T/X]U
By the induction hypothesis, we have
∆; Γ ⊢R e′0 : T′0

for someT′0 such that∆ ⊢ T′0 :≺ T0. By Lemma 37 and Lemma 26, we have
bound∆(T′0) = P ∆ ⊢ P :≺ N

∆ ⊢ P :≺ [T/X]C<X>
Therefore, by the rule TR-INVK 2, we have
∆; Γ ⊢R e′0.m[U|C<X>](e) : [T/X]U

Then, lettingT′ = [T/X]U finishes the case.
Case RC-INVK -ARG2.

e = e0.m[U|C<X>](v, ei, e) e′ = e0.m[U|C<X>](v, e′i, e)

ei −→ e′i
By TR-INVK 2, we have
∆; Γ ⊢R e0 : T0 bound∆(T0) = N ∆ ⊢ N :≺ [T/X]C<X>

mtype(m, C<X>) = U → U ∆; Γ ⊢R v, ei, e : V

∆ ⊢ V :≺ [T/X]U T = [T/X]U
By the induction hypothesis, we have
∆; Γ ⊢R e′i : V

′

i

for someV
′

such that∆ ⊢ V′i :≺ Vi andV′j = Vj for j 6= i. By Lemma 26, we have
∆ ⊢ V

′ :≺ [T/X]U
Therefore, by the rule TR-INVK 2, we have
∆; Γ ⊢R e0.m[U|C<X>](v, e′i, e) : [T/X]U

Then, lettingT′ = [T/X]U finishes the case.
Case RC-INVK -RECV3.

e = invoke(e0, m, e) e = invoke(e′0, m, e)

e0 −→ e′0
By TR-INVK 3, we have
∆; Γ ⊢R e0 : T0 ∆; Γ ⊢R e : U T = dyn<Object>

By the induction hypothesis, we have
∆; Γ ⊢R e′0 : T′0

for someT′0. Therefore, by the rule TR-INVK 3, we have
∆; Γ ⊢R invoke(e′0, m, e) : dyn<Object>

Then, lettingT′ = dyn<Object> finishes the case.
Case RC-INVK -ARG3.

e = invoke(e0, m, v, ei, e) e = invoke(e0, m, v, ei, e)

ei −→ e′i
By TR-INVK 3, we have
∆; Γ ⊢R e0 : T0 ∆; Γ ⊢R v, ei, e :U T = dyn<Object>

By the induction hypothesis, we have

37 2011/4/9

∆; Γ ⊢R e′i : U
′

i

for someU′i. Therefore, by the rule TR-INVK 3, we have
∆; Γ ⊢R invoke(e0, m, v, ei, e) : dyn<Object>

Then, lettingT′ = dyn<Object> finishes the case.
Case RC-NEW-ARG.

e = new N(v, ei, e) e′ = new N(v, e′i, e) ei −→ e′i
By TR-NEW, we have
∆ ⊢ N ok fields(N) = T f

∆; Γ ⊢R v, ei, e :U ∆ ⊢ U :≺ T T = N
By the induction hypothesis, we have
∆; Γ ⊢R e′i : U

′

i

for someU′ such that∆ ⊢ U′i :≺ Ui andU′j = Uj for j 6= i. By Lemma 26, we have

∆ ⊢ U
′ :≺ T

Therefore, by the rule TR-NEW, we have
∆; Γ ⊢R new N(v, e′i, e) : N

Then, lettingT′ = N finishes the case.
Case RC-CAST.

e = $T% e0 e′ = $T% e′0 e0 −→ e′0
By TR-CAST, we have
∆; Γ ⊢R e0 : S

By the induction hypothesis, we have
∆; Γ ⊢R e′0 : S′

for someS′. Therefore, by the rule TR-CAST, we have
∆; Γ ⊢R $T% e′0 :T

Then, lettingT′ = T finishes the case.
Case E-*, EC-*.

e′ = Error[E]
By TR-ERROR, we have
∆; Γ ⊢R Error[E]: T′

and lettingT = T′ finishes the case.

Theorem 52. Supposee is a well-typed expression. Ife is either

1. a field accesse0.f,
2. a field access with run-time checkget(e0, f),
3. a method invocatione0.m(e),
4. a method invocation with argument checke0.m[U|C<X>](e)

5. a method invocation with run-time checkinvoke(e0, m, e), or
6. a cast$S% e0,

then there exist somee′ such thate −→ e′.

Proof. By induction on the derivation of∆; Γ ⊢G e :T with a case analysis on the last rule used.

Case TR-FIELD1.
e = e0.fi ∆; Γ ⊢R e0 : T0

fields(bound∆(T0)) = T f T = Ti

If e0 is not a value, then by the induction hypothesis, we have
e0 −→ e′0

for somee′0 and applying RC-FIELD1 or EC-FIELD1 finishes the case. Otherwise, ife′0 = new N(v), then applying
R-FIELD1 finishes the case.

Case TR-FIELD2.
e = get(e0, f) ∆; Γ ⊢R e0 : T0 T = dyn<Object>

If e0 is not a value, then by the induction hypothesis, we have

38 2011/4/9

e0 −→ e′0
for somee′0 and applying RC-FIELD2 or EC-FIELD2 finishes the case. Otherwise, ife′0 = new N(v), then we have
fields(N) = T f

Then, applying R-FIELD2 (whenf ∈ f) or E-FIELD (whenf /∈ f) finishes the case.
Case TR-INVK 1.

e = e0.m(e) ∆; Γ ⊢R e0 : T0 ∆; Γ ⊢R e : V bound∆(T0) = Q ∆ ⊢ Q :≺ N

dynfree∆(N) mtype(m, N) = S → T ∆ ⊢ V :≺ S
If e0 is not a value, then by the induction hypothesis, we have
e0 −→ e′0

for somee′0 and applying RC-INVK -RECV1 or EC-INVK -RECV1 finishes the case. Ifei is not a value, then by the induction
hypothesis, we have
ei −→ e′i

for somee′i and applying RC-INVK -ARG1 or EC-INVK -ARG1 finishes the case. Otherwise, ife0 = new Q(v) and
e = new P(...), then by definition ofmtype andmbody and the rule TR-CLASS, we have
mbody(m, N) = x.e′0

and applying R-INVK 1 finishes the case.
Case TR-INVK 2.

e = e0.m[U|C<Y>](e) ∆; Γ ⊢R e0 : T0

∆; Γ ⊢R e : V bound∆(T0) = N ∆ ⊢ N :≺ [T/Y]C<Y>

mtype(m, C<Y>) = U → U ∆ ⊢ V :≺ [T/Y]U T = [T/Y]U
If e0 is not a value, then by the induction hypothesis, we have
e0 −→ e′0

for somee′0 and applying RC-INVK -RECV2 or EC-INVK -RECV2 finishes the case. Ifei is not a value, then by the induction
hypothesis, we have
ei −→ e′i

for somee′i and applying RC-INVK -ARG2 or EC-INVK -ARG2 finishes the case. Otherwise, ife0 = new N(v) and
e = new P(...), then by definition ofmtype andmbody and the rule TR-CLASS, we have
mbody(m, N) = x.e′0

and applying R-INVK 2 (when• ⊢ P :≺ [tyargs(N, C)/Y]U) or E-INVK -ARG1 (when• ⊢ P 6 :≺ [tyargs(N, C)/Y]U) finishes
the case.

Case TR-INVK 3.
e = invoke(e0, m, e) ∆; Γ ⊢R e0 : T0

∆; Γ ⊢R e : V T = dyn<Object>
If e0 is not a value, then by the induction hypothesis, we have
e0 −→ e′0

for somee′0 and applying RC-INVK -RECV3 or EC-INVK -RECV3 finishes the case. Ifei is not a value, then by the induction
hypothesis, we have
ei −→ e′i

for somee′i and applying RC-INVK -ARG3 or EC-INVK -ARG3 finishes the case. Otherwise, ife0 = new N(v) and
e = new P(...), then we have eithernomethod(m, N) or mtype(m, N) = U → U. In former case, applying E-INVK finishes
the case. In latter case, by definition ofmtype andmbody and the rule TR-CLASS, we have
mbody(m, N) = x.e′0

and applying R-INVK 3 (when• ⊢ P :≺ U) or E-INVK -ARG2 (when• ⊢ P 6 :≺ U) finishes the case.
Case TR-CAST.

e = $T% e0 ∆; Γ ⊢R e0 : V
If e0 is not a value, then by the induction hypothesis, we have
e0 −→ e′0

for somee′0 and applying RC-CAST or EC-CAST finishes the case. Otherwise, ife0 = new N(v), then applying R-CAST

(when• ⊢ N :≺ T) or E-CAST (when• ⊢ N 6 :≺ T).

B.3.1 Proof of Theorem 8

Proof. Immediate from Theorem 51 and Theorem 52

39 2011/4/9

B.3.2 Proof of Theorem 9

Proof. Immediate from subject reduction and progress properties and the fact that there is no rule reducing a non-run-time-
check expression to an errror.

B.4 Translation

Lemma 53. ∆; Γ ⊢G e : T iff ∃e′. ∆; Γ ⊢ e e′ : T.

Proof. (⇒) By induction on the derivation of∆; Γ ⊢G e : T with a case analysis on the last rule used.

Case TG-VAR.
e = x T = Γ(x)

By the rule TRNS-VAR, we have
∆; Γ ⊢ x x : Γ(x)

and lettinge′ = x finishes the case.
Case TG-FIELD1.

e = e0.fi ∆; Γ ⊢G e0 : T0

fields(bound∆(T0)) = T f T = Ti

By the induction hypothesis, we have
∆; Γ ⊢ e0 e′0 : T0

for somee′0. Then, by the rule TRNS-FIELD1, we have
∆; Γ ⊢ e0.fi e′0.fi : Ti

and lettinge′ = e′0.fi finishes the case.
Case TG-FIELD2.

e = e0.f ∆; Γ ⊢G e0 : dyn<N>

fields(bound∆(dyn<N>)) = T f f /∈ f

T = dyn<Object>
By the induction hypothesis, we have
∆; Γ ⊢ e0 e′0 : dyn<N>

for somee′0. Then, by the rule TRNS-FIELD2, we have
∆; Γ ⊢ e0.f get(e′0, f) : dyn<Object>

and lettinge′ = get(e′0, f) finishes the case.
Case TG-INVK 1.

e = e0.m(e) ∆; Γ ⊢G e0 : T0

∆; Γ ⊢G e : V bound∆(T0) = N = [T/X]C<X>

mtype(m, N) = S → T ∆ ⊢ V . S
By the induction hypothesis, we have
∆; Γ ⊢ e0 e′0 : T0

∆; Γ ⊢ e e′ : V
for somee′0 ande′. By the definition ofmtype, we have
mtype(m, C<X>) = U → U

S = [T/X]U T = [T/X]U

for someU andU. If dynfree∆(N), then by the rule TRNS-INVK 1, we have
∆; Γ ⊢ e0.m(e) e′0.m(e

′) : T
and lettinge′ = e′0.m(e

′) finishes the case. Otherwise, by the rule TRNS-INVK 2, we have
∆; Γ ⊢ e0.m(e) e0.m[U|C<X>](〈[T/X]U ⇐ V〉∆e) : [T/X]U

and lettinge′ = e0.m[U|C<X>](〈[T/X]U ⇐ V〉∆e) finishes the case.
Case TG-INVK 2.

e = e0.m(e) ∆; Γ ⊢G e0 : dyn<N>

nomethod(m, bound∆(dyn<N>))

∆; Γ ⊢G e : V T = dyn<Object>
By the induction hypothesis, we have
∆; Γ ⊢ e0 e′0 : T0

∆; Γ ⊢ e e′ : V
Then, by the rule TRNS-INVK 3, we have

40 2011/4/9

∆; Γ ⊢ e0.m(e) invoke(e′0, m, e
′) : dyn<Object>

and lettinge′ = invoke(e′0, m, e
′) finishes the case.

Case TG-NEW.
e = new N(e) ∆ ⊢ N ok
fields(N) = T f ∆; Γ ⊢G e : U

∆ ⊢ U . T T = N
By the induction hypothesis, we have
∆; Γ ⊢ e e′ : U

Then, by the rule TRNS-NEW, we have
∆; Γ ⊢ new N(e) new N(〈T ⇐ U〉∆e

′) : N

and lettinge′ = new N(〈T ⇐ U〉∆e
′) finishes the case.

(⇐) By induction on the derivation of∆; Γ ⊢ e e′ :T with a case analysis on the last rule used.

Case TRNS-VAR.
e = x e′ = x T = Γ(x)

The, conclusion is immediate from the rule TG-VAR.
Case TRNS-FIELD1.

e = e0.fi e′ = e′0.fi T = Ti

∆; Γ ⊢ e0 e′0 : T0 fields(bound∆(T0)) = T f
By the induction hypothesis, we have
∆; Γ ⊢G e0 : T0

Then, the conclusion is immediate from the rule TG-FIELD1.
Case TRNS-FIELD2.

e = e0.f e′ = get(e′0, f) T = dyn<Object>

∆; Γ ⊢ e0 e′0 : dyn<N> fields(bound∆(dyn<N>)) = T f f /∈ f
By the induction hypothesis, we have
∆; Γ ⊢G e0 : dyn<N>

Then, the conclusion is immediate from the rule TG-FIELD2.
Case TRNS-INVK 1.

e = e0.m(e) e′ = e′0.m(〈S ⇐ V〉∆e
′)

∆; Γ ⊢ e0 e′0 : T0 ∆; Γ ⊢ e e′ : V

bound∆(T0) = N mtype(m, N) = S → S ∆ ⊢ V . S
By the induction hypothesis, we have
∆; Γ ⊢G e0 : T0 ∆; Γ ⊢G e : V

Then, the conclusion is immediate from the rule TG-INVK 1.
Case TRNS-INVK 2.

e = e0.m(e) e′ = e′0.m[U|C<X>](〈[T/X]U ⇐ V〉∆e
′) T = [T/X]U

∆; Γ ⊢ e0 e′0 : T0 ∆; Γ ⊢ e e′ : V

bound∆(T0) = [T/X]C<X> mtype(m, C<X>) = U → U

∆ ⊢ V . [T/X]U
By the induction hypothesis, we have
∆; Γ ⊢G e0 : T0 ∆; Γ ⊢G e : V

By the definition ofmtype, we have
mtype(m, bound∆(T0)) = mtype(m, C<T>) = S → S

S = [T/X]U S = [T/X]U
Then, the conclusion is immediate from the rule TG-INVK 1.

Case TRNS-INVK 3.
e = e0.m(e) e′ = invoke(e′0, m, e

′) T = dyn<Object>

∆; Γ ⊢ e0 e′0 : dyn<N> ∆; Γ ⊢ e e′ : V

nomethod(m, bound∆(dyn<N>))
By the induction hypothesis, we have
∆; Γ ⊢G e0 : dyn<N> ∆; Γ ⊢G e : V

Then, the conclusion is immediate from the rule TG-INVK 2.
Case TRNS-NEW.

41 2011/4/9

e = new N(e) e′ = new N(〈T ⇐ U〉∆e
′) T = N

∆ ⊢ N ok fields(N) = T f

∆; Γ ⊢ e e′ : U ∆ ⊢ U . T
By the induction hypothesis, we have
∆; Γ ⊢G e : U

Then, the conclusion is immediate from the rule TG-NEW.

Lemma 54. If CT OK IN FGJdyn, thenCT CT ′ andCT ′ ∈ FGJ$% for someCT ′.

Proof. Let CT (C) = class C<X
κ

⊳ N> ⊳ N {T f; K M}. By CT OK IN FGJdyn, we have
∀Ni ∈ N.(Xκ1

1 <: N1, . . . , X
κi−1

i−1 <: Ni−1 ⊢ Ni ok)

X
κ

<: N ⊢ N, T ok fields(N) = U g M OK IN C<X ⊳ N>

K = C(U g, T f){super(g); this.f=f;}

Then, for eachMj ∈ M, we have
Mj = V m(V x){ return e0; } ∆ = X

κ
<: N

∆ ⊢ V, V ok ∆; x : V, this : C<X> ⊢G e0 : S

∆ ⊢ S . V override∆(m, N, V → V)
By Lemma 53, we have
∆; x : V, this : C<X> ⊢ e0 e′0 : S

Then, by the rule TRNS-METHOD, we have
M′j = V m(V x){ return 〈V ⇐ S〉∆e

′

0; }

Mj M′j IN C<X ⊳ N>
Finally, by the rule TRNS-CLASS, we have
class C<X

κ
⊳ N> ⊳ N {T f; K M} class C<X

κ
⊳ N> ⊳ N {T f; K M

′

}

and lettingCT ′(C) = class C<X
κ

⊳ N> ⊳ N {T f; K M
′

} finishes the proof.

Lemma 55. If ∆; Γ ⊢G e : T underCT OK IN FGJdyn andCT CT ′, then∆; Γ ⊢ e e′ : T for somee′ and∆; Γ ⊢R e′ : T
underCT ′.

Proof. By Lemma 53, we have somee′ such that∆; Γ ⊢ e e′ : T. By induction on the derivation of∆; Γ ⊢ e e′ : T with
a case analysis on the last rule used.

Case TRNS-VAR.
e = x e′ = x T = Γ(x)

The conclusion is immediate from the rule TR-VAR.
Case TRNS-FIELD1.

e = e0.f e′ = e′0.f T = Ti

∆; Γ ⊢ e0 e′0 : T0 fields(bound∆(T0)) = T f

By the induction hypothesis, we have∆; Γ ⊢R e′0 : T0. Then the conclusion is immediate from the rule TR-FIELD1.
Case TRNS-FIELD2.

e = e0.f e′ = get(e′0, f) T = dyn<Object>

∆; Γ ⊢ e0 e′0 : dyn<N> f /∈ f fields(N) = T f

By the induction hypothesis, we have∆; Γ ⊢R e′0 : dyn<N>. Then the conclusion is immediate from the rule TR-FIELD2.
Case TRNS-INVK 1.

e = e0.m(e) e′ = e′0.m(〈S ⇐ V〉∆e
′)

∆; Γ ⊢ e0 e′0 : T0 ∆; Γ ⊢ e e′ : V bound∆(T0) = N

dynfree∆(N) mtype(m, N) = S → T ∆ ⊢ V . S

By the induction hypothesis, we have∆; Γ ⊢R e′0 : T0 and ∆; Γ ⊢R e′ : V. By the rule TR-CAST, we have∆; Γ ⊢R

〈S ⇐ V〉∆e
′ : V

′

for someV
′

such that∆ ⊢ V
′ :≺ S. Then, applying the rule TR-INVK 1 finishes the case.

Case TRNS-INVK 2.
e = e0.m(e) e′ = e′0.m[U|C<X>](〈[T/X]U ⇐ V〉∆ e′) T = [T/X]U

∆; Γ ⊢ e0 e′0 : T0 ∆; Γ ⊢ e e′ : V bound∆(T0) = [T/X]C<X>

¬dynfree∆(C<T>) mtype(m, C<X>) = U → U ∆ ⊢ V . [T/X]U

42 2011/4/9

By the induction hypothesis, we have∆; Γ ⊢R e′0 : T0 and ∆; Γ ⊢R e′ : V. By the rule TR-CAST, we have∆; Γ ⊢R

〈[T/X]U ⇐ V〉∆e
′ : V

′

for someV
′

such that∆ ⊢ V
′ :≺ [T/X]U. Then, applying the rule TR-INVK 2 finishes the case.

Case TRNS-INVK 3.
e = e0.m(e) e′ = invoke(e′0, m, e

′) T = dyn<Object>

∆; Γ ⊢ e0 e′0 : dyn<N> ∆; Γ ⊢ e e′ : V nomethod(m, N)

By the induction hypothesis, we have∆; Γ ⊢R e′0 : dyn<N> and∆; Γ ⊢R e′ : V. Then, applying the rule TR-INVK 3 finishes
the case.

Case TRNS-NEW.
e = new N(e) e′ = new N(〈T ⇐ U〉∆e

′) T = N

∆ ⊢ N ok fields(N) = T f ∆; Γ ⊢ e e′ : U ∆ ⊢ U . T

By the induction hypothesis, we have∆; Γ ⊢R e′ : U. By the rule TR-CAST, we have∆; Γ ⊢R 〈T ⇐ U〉∆e
′ : U

′ for someU′

such that∆ ⊢ U
′ :≺ T. Then, applying the rule TR-NEW finishes the case.

B.4.1 Proof of Theorem 10

Proof. By and Lemma 54, we have a translated program(CT ′, e′). By Lemma 55, we have•; • ⊢R e′ : T and all expressions
in CT ′ are well typed, i.e.,(CT ′, e′) is a well-formed program.

B.4.2 Proof of Theorem 11

Proof. By Theorem 10, we have well-typed program(CT ′, e′). By the translation rules and Lemma 5, there is no run-time
check in(CT ′, e′).

43 2011/4/9

