
Gradual Typing for Generics

Lintaro Ina

Graduate School of Informatics, Kyoto University

ina@kuis.kyoto-u.ac.jp

Atsushi Igarashi

Graduate School of Informatics, Kyoto University

igarashi@kuis.kyoto-u.ac.jp

Abstract

Gradual typing is a framework to combine static and dy-

namic typing in a single programming language. In this pa-

per, we develop a gradual type system for class-based object-

oriented languages with generics. We introduce a special

type to denote dynamically typed parts of a program; un-

like dynamic types introduced to C♯ 4.0, however, our type

system allows for more seamless integration of dynamically

and statically typed code.

We formalize a gradual type system for Featherweight GJ

with a semantics given by a translation that inserts explicit

run-time checks. The type system guarantees that statically

typed parts of a program do not go wrong, even if it includes

dynamically typed parts. We also describe a basic implemen-

tation scheme for Java and report preliminary performance

evaluation.

Categories and Subject Descriptors D.3.1 [Programming

Languages]: Formal Definitions and Theory; D.3.2 [Pro-

gramming Languages]: Language Classifications—object-

oriented languages; D.3.3 [Programming Languages]: Lan-

guage Constructs and Features—classes and objects, poly-

morphism

General Terms Languages, Design, Theory

Keywords Gradual typing, generics, dynamic types

1. Introduction

Statically and dynamically typed languages have their own

benefits. On the one hand, statically typed languages enjoy

type safety properties; on the other hand, dynamically typed

languages are said to be suitable for rapid prototyping. There

is a significant amount of work (e.g., [1, 3, 5, 6, 8, 10, 15, 16,

27–29] to cite some) to integrate both kinds of languages to

have the best of both worlds. Siek and Taha have coined the

term “gradual typing” [27] for a particular style of linguistic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’11, October 22–27, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

support of the seamless integration of static and dynamic

typing in a single language. A typical gradual type system

introduces to a statically typed language a special type (often

called dynamic or dyn) to specify dynamically typed parts

in a program and allows a program to be partially typed, or

even fully dynamically typed.

One of the main challenges in the design of a gradual

type system is to give a flexible type compatibility relation,

which is an extension of subtyping and used for assignments

and argument passing. For example, a gradual type system

usually assumes dyn to be compatible with any type so that

a statically typed expression can be used where dyn is ex-

pected and vice versa. Moreover, when types have structures

(as in function types), the compatibility relation usually al-

lows structural comparison: for example, a function type, say

dyn → int, is compatible with int → int [27], which is

useful in higher-order programs.

Another, more technical challenge is to establish some

safety property even for partially typed programs. In fact, it

is possible to ensure that run-time errors are always due to

a dynamically typed part in a program. Roughly speaking,

the main idea is to insert run-time checks between the “bor-

der” between the statically and dynamically typed worlds to

prevent statically typed code from going wrong. A key idea

here is that the insertion can be guided by the use of the

compatibility relation.

In this paper, we develop a gradual type system for class-

based object-oriented languages with generics. Although

there are similar attempts at mixing static and dynamic typ-

ing in object-oriented languages [3, 5, 20, 28, 38], (to our

knowledge) very few take generics into account. One notable

exception is dynamic types for C♯ 4.0 [4], but the integration

of dynamic and static typing is not as smooth as one might

expect. For example, it requires tedious coding to convert

a collection whose element type is statically known, say, to

be integers to a collection of dynamically typed values. We

design a flexible compatibility relation, which allows, for ex-

ample, List<Integer> to be used as List<dyn> and vice

versa. Since the type system has inheritance-based subtyp-

ing, it is not a trivial task to give a reasonable compatibility

relation. We also introduce the notion of bounded dynamic

types, which have characteristics of both dynamic and static

types, to mediate bounded polymorphism and dynamic typ-

ing. We formalize these ideas as FGJdyn, an extension of

Featherweight GJ (FGJ) [18] with bounded dynamic types

and prove the desired safety property, which states that stati-

cally typed parts in a program cannot go wrong. In particular,

it implies the standard type safety for a program that does not

contain any dynamic types. The semantics of FGJdyn—the

surface language in which programs are written—is given

by a translation to an intermediate language FGJ$%, in which

run-time checks are explicit. The translation is not only ex-

pediency for the formal proof but also a guide to implemen-

tation.

Our main contributions can be summarized as follows:

• A flexible compatibility relation for parametric types;

• The introduction of bounded dynamic types;

• Formalization of the language with generics and dynamic

types; and

• Proof of safety properties, which show that statically

typed parts in a program never go wrong.

We are currently developing a compiler for gradually typed

Java. We also describe our basic implementation scheme.

This work at an earlier stage has been reported at the

STOP’09 workshop [19], where we have only sketched the

combination of generics and dynamic typing and its formal-

ization. In this paper, we have revised the formal definition

of both surface and intermediate languages significantly and

proved safety properties.

The rest of the paper is organized as follows. Section 2

gives an overview of gradual typing for a class-based lan-

guage with generics. Then, Sections 3 and 4 give the formal-

ization of our proposal and prove desired properties. Sec-

tion 5 describes our implementation scheme for Java and re-

ports very preliminary benchmark results. After Section 6

discusses related work, Section 7 gives concluding remarks.

Some of formal definitions and proofs of the theorems are

omitted for brevity; they appear in a full version of this pa-

per, available at http://www.sato.kuis.kyoto-u.ac.

jp/~igarashi/papers/gradual.html.

2. Gradual Typing for Generics

Following the previous approaches to gradual typing [27,

28], we introduce a special type dyn that represents dynam-

ically typed portions in a program to a class-based language

with generics. A variable can be declared to have the dy-

namic type; then, any expression can be assigned to it and

the variable can be used as an expression of any type. In this

section, we first describe how dyn interacts with generics by

means of examples and then what kind of dynamic checks

are performed to prevent statically typed parts from going

wrong.
We use the following simple generic class as a running

example:

class Cell<X> {

X x; Cell(X x){ this.x=x; }

void set(X x){ this.x=x; }

}

Cell is a class of one-element containers, where the ele-
ment type is parameterized as X. The element is accessed
through the field x and modified through method set. We
will also use classes Shape and its subclasses Rectangle
and Polygon. (Neither Rectangle nor Polygon extends
the other.) Moreover, class Shape has a method with the sig-
nature

boolean contains(double x, double y);

which returns whether a given point at (x, y) is inside the

shape.

2.1 Type dyn as Type Arguments

One natural consequence of the introduction of dyn as a type
is that dyn can be used as a type argument to a generic class.
For example, a programmer can use a variable c1 of type
Cell<dyn>. This type is similar to Cell<Object> in the
sense that one can set anything to it.

Cell<dyn> c1 = ...;

c1.set(new Polygon(...));

c1.set(new Integer(1));

Unlike Cell<Object>, however, the type of field x is dyn,
which represents dynamically typed code and accepts any
method invocation and field access, which are assumed to
return dyn.

dyn fld = c1.x.anyField;

dyn ret = c1.x.anyMethod(...);

Also, dyn can be assigned to any variable.

boolean b = c1.x.contains(1,1);

// The type of RHS is dyn

Of course, it must be checked at run time whether these

fields and methods really exists and whether an assignment

is valid.

In the previous work on gradual typing for a language

with subtyping, the subtyping relation is replaced with the

compatibility relation [27, 28], which, for example, allows

statically typed expressions to be passed where dyn is ex-

pected and vice versa. The compatibility relation should be

rich enough to support flexible integration of statically and

dynamically typed code and, for type systems with structural

subtyping, its definition requires careful examination.
We introduce a rich compatibility relation for paramet-

ric types. In particular, we allow an expression of a dyn-
free type, say Cell<Rectangle>, to be assigned to a vari-
able whose type involves dyn as a type argument, say
Cell<dyn>. For example, the following code is accepted by
the type system:

Cell<dyn> c1

= new Cell<Rectangle>(new Rectangle(...));

Note that c1 will point to an object that can store only
Rectangles, rather than anything (as indicated by dyn).

So, actually, the invocation of set should check at run time
whether the actual argument is a valid one.

c1.set(new Rectangle(...)); // succeeds

c1.set(new Polygon(...)); // fails

The intuition behind a parametric type to which dyn

is given as an argument is that it denotes the set of

types where dyn is replaced with any type. For ex-

ample, a variable of type Cell<dyn> may point to

objects new Cell<Shape>(), new Cell<Rectangle>(),

new Cell<Integer>(), and so on. In this sense, type

Cell<dyn> is closer to the wildcard type Cell<?> than

Cell<Object>, but, unlike Cell<?>, potentially unsafe op-

erations such as invocation of set are (statically) allowed.
Our compatibility relation allows the opposite direction

of flow, too—that is, an expression whose type involves dyn
as a type argument can be assigned to a variable of a dyn-
free type as in the following code:

Cell<Rectangle> c2 = c1;

Cell<Polygon> c3 = c1;

Just as in an assignment of an expression of type dyn to a

concrete type, the run-time system will check whether these

are valid assignments: in this case, only the first assignment

will succeed.

In summary, our compatibility relation allows dyn in a

type expression to be replaced with a concrete type and vice

versa. As we will see in the next section, however, its formal

definition is more subtle than might have appeared when we

take inheritance-based, nominal subtyping into account. Due

to nominal subtyping,we take an approach different from the

previous work.

Seamless Integration. Allowing dyn as a type argument
lets us easily evolve a class definition from its non-generic
version into a generic version. For example, at the beginning,
a programmer had a non-generic class List, which has its
head item head and the rest of list tail, and some client
code using it.

class List { dyn head; List tail; }

List list = new List(...);

list.head.doSomething();

Then, the programmer wanted to have a generic version
of List because he added another client code using List
containing Integers and nothing else. So, he modified the
definition of class List.

class List<X> { X head; List<X> tail; }

List<Integer> intlist = new List<Integer>(...);

This modification breaks other client code using List
and he need to fix them all, however, all he have to do is
to replace List with List<dyn>.

List<dyn> list = new List<dyn>(...);

list.head.doSomething();

$T% e checks if the run-time type of the

value of e is compatible with T, and

then returns the value.

get(e,f) checks if the value of e has field f,

and then reduces to the field value.

e.m[T|C<X>](e) checks if the types of arguments e

are correct (using the static type in-

formation T, C<X>), and then invoke

method m on receiver e.

invoke(e,m, e) checks if the value of receiver e

has method m and the types of argu-

ments e are correct, and then invoke

the method on the receiver.

Table 1. Constructs for run-time checks.

If the compiler allows List as an abbreviation of

List<dyn>1, he could have done the modification even

without any other type-name fixes!

Note that we need to allow new List<dyn>(...). This

is quite different from wildcards, since new List<?>(...)

is disallowed.

2.2 Run-time Checks

To ensure that statically typed code (or, more precisely, code

that would be well typed in the standard type system) will

not go wrong, errors due to dynamically typed code have to

be captured at the “border” between the two worlds. For this

purpose, we introduce an intermediate language, which has

explicit constructs for run-time checks; the semantics of the

surface language, which we describe above, will be given in

terms of the translation to the intermediate language.

Although there is no direct semantics for the surface lan-

guage, a program in the surface language can be mostly

directly understandable because the translation only inserts

run-time checks and preserves the structure of a program.

Moreover, run-time checks are inserted only where dynamic

types are involved. So, as far as statically typed code is con-

cerned, the translation is the identity map, inserting no run-

time check. Then, to show that statically typed code never

goes wrong, it suffices to show that all run-time failures are

due to those explicit checks.

We will give an overview of constructs for run-time

checks and the translation below. Table 1 shows constructs

for run-time checks and their intuitive meanings. In what

follows, we write e e′ to mean that a surface language

expression (or statement) e is translated to e′.
First, when an expression of a type that involves dyn is

passed to where a type without dyn is expected, a cast $% is
inserted:

1 List is a raw type of List<X> in the current Java specification, where

it is allowed to assign a value of List<T> to a variable of List. Since

this behavior is similar to List<dyn>, it is quite natural to allow the

abbreviation instead of using raw types. See Section 6 for details.

Cell<dyn> c1; Cell<Rectangle> c2; Cell<Polygon> c3;

c2 = c1;

 c2 = $Cell<Rectangle>% c1;

c3 = c1;

 c3 = $Cell<Polygon>% c1;

We use different parentheses $% to denote casts because

the semantics is slightly different from Java’s. Note that

the first cast above has to check that the run-time value of

c1 is an instance of Cell<Rectangle> and not that of,

say, Cell<Integer>. So, this cast requires run-time type

argument information. There are other differences, which we

discuss later, as well.
A member access on dyn will be translated to special

forms get() or invoke(), which checks the existence of
the member at run-time.

Cell<dyn> c1;

c1.x.radius;

 get(c1.x, radius);

c1.x.contains(1, 1);

 invoke(c1.x, contains, 1, 1);

When c1.x has method contains, invoke above also

checks whether it can take two integers.
As we have already discussed, the invocation of set on

type Cell<dyn> will have to check whether the run-time
type of the argument is appropriate for the run-time type ar-
gument to the receiver’s class, even though the existence of
method set is statically guaranteed. For such cases, we use
method invocation of the form e0.m[T|C<X>](e) (where
an overline denotes a list). For example, we have the follow-
ing translation.

c1.set(new Polygon(...));

 c1.set[X|Cell<X>](new Polygon(...));

The annotations X and Cell<X> record a parameter type and

a receiver’s static type before type parameters are instanti-

ated and are used to check the argument. It works as follows:

When c1 evaluates to a value new Cell<T>(...) for some

type T, the actual receiver type Cell<T> is matched against

Cell<X> and X is bound to T. Then, the actual argument’s

type (here Polygon) is checked against T, which is obtained

by replacing X with T in the recorded parameter type. So,

this method invocation succeeds when c1’s value is an ob-

ject of Cell<Polygon> (or Cell<T>where T is a supertype

of Polygon).

2.3 Ensuring “statically typed parts cannot go wrong”

One of our goals of the gradual type system is to ensure

that “statically typed parts in a program never go wrong”,

in particular, class definitions that pass the standard type

checker should not go wrong. Another desirable property of

the system is modularity of type checking, that is, determin-

ing whether the given part of the program is statically typed

or not should be done by looking at no more than a single

class definition and type information that it depends on. We

also aim at implementation by erasure translation [7].2 Actu-

ally, modular checking and erasure translation make it trick-

ier to ensure the safety of “statically typed code”.

First of all, even if a class definition contains no occur-

rence of dyn, it should not be considered statically typed

because subexpressions may be given type dyn. So, a sensi-

ble definition of a statically typed class definition is some-

thing like “a class definition is statically typed if there is no

occurrence of dyn and every subexpression is given a ‘dyn-

free’ type.” In fact, as we will see later, in our translation, a

method invocation requires no run-time check if the receiver

and actual argument types are all dyn-free. Then, a class def-

inition that passes the standard type checking will translate

to itself, without run-time checks.
However, the problem is more subtle than it might have

appeared, due to the presence of type variables. In general,
type variables should not be considered dyn-free simply
because type variables can be instantiated with dyn. In fact,
the following classes, which are typed under the standard
type system of generics

class StrCell extends Cell<String> {

void set(String x){ ... x.length() ... }

}

class Foo<Y> {

void bar(Cell<Y> c, Y x) {

c.set(x);

}

}

will raise a run-time error when combinedwith the following
code:

new Foo<dyn>().bar(new StrCell(...), new Object());

The last expression passes a StrCell and an Object to

Foo<dyn>.bar(), which expects a Cell<dyn> and dyn,

and this is allowed due to the extended compatibility re-

lation we have already mentioned. In Foo<Y>.bar(), an

object x is passed to Cell<Y>.set(). However, in this

case, the receiver is a StrCell and StrCell.set() will

be called with an argument new Object(), which does not

have length()!

To avoid this problem, we separate type variables into two

kinds: one can only be replaced with dyn-free types, and

the other can be replaced with dynamic types. These kinds

are indicated in the class definition, for example, class

Foo<Y♦>... for the former and class Foo<Y�>... for

the latter. If Foo is defined as class Foo<Y♦>..., then

no run-time check is inserted but the problematic expres-

sion above is rejected at compile time. Otherwise, if Foo is

defined as class Foo<Y�>..., then the invocation of set

will check whether the actual argument types are valid for

the formal (by using e.m[T|C<X>](e)).

Although, in principle, a programmer can choose the

kind for each type variable declaration in a single class

2Our compilation scheme actually requires support for run-time type argu-

ments. However, method signatures are subject to erasure.

definition, we do not expect that a programmer wants to do

it. A practical design would be that a compiler option will

decide the kind of all the type variables in a compiled file

at once. In the beginning of development, the programmer

may compile most generic classes with kind �, and then

switches some classes to ♦ gradually as the development

progresses—such a switch would force their client code to

remove the use of dynamic types. In the rest of the paper,

we omit kinds of type variables when they do not make

significant difference.

There can be another solution to the problem in which the

StrCell is “wrapped” with another object when it is passed

to Cell<dyn>. The wrapper object mimics the interface

of StrCell by delegating member accesses to the original

object and performs run-time checks on every delegation.

In this case, the run-time check blames the misusage of the

StrCell on the invocation of set(). We do not choose this

solution mainly because of a difficulty of implementation

and leave it for future work.

2.4 Bounded Dynamic Types

Another problem occurs when a type variable is given an up-
per bound. To illustrate the problem, consider the following
class:

class ShapeCell<X� extends Shape> {

X x; ShapeCell(X x){ this.x=x; }

void set(X x){ this.x=x; }

boolean contains(double px, double py){

return this.x.contains(px, py);

}

}

Class ShapeCell, which is similar to class Cell above,

specifies Shape as X’s upper bound. Note that ShapeCell

does not contain dyn anywhere and the whole class defini-

tion will be well typed in the standard type system of gener-

ics (by removing �).
Now consider type ShapeCell<dyn>. The question here

is what we can set to x. One choice would be to allow any
object to be set to x, as we did for Cell<dyn>:

ShapeCell<dyn> sc = ...;

sc.set(new Object());

However, this choice would not be compatible with the im-

plementation by erasure, which translates the type of field x

to be Shape, the upper bound of X. In a languagewithout era-

sure semantics, for example in C♯, this choice would not con-

flict with the implementation, but, as long as homogeneous

translation [25] is used, we would need to treat type variable

X with kind � as dyn. This leads to a major performance

disadvantage since operations on expressions of type X need

to be augmented with run-time checks that require member-

ship tests: for example in the case above, the invocation of

contains on this.x need to be replaced with an expen-

sive run-time check by invoke, which checks the presence

of method contains and (if it exists) whether the types of

formal and actual arguments match. Thus, our choice here

is to keep compatibility with implementation by erasure and

to avoid performance penalty as much as possible: in other

words, we reject the code above statically.

We introduce bounded dynamic types, written dyn<T>

(where T stands for a parametric type). A type parameter

with an upper bound T can be instantiated by a bounded

dynamic type dyn<T′> when T′ is a subtype of T. Thus,

ShapeCell<dyn<Shape>> is a well-formed type, whereas

ShapeCell<dyn<Object>> is not.
We define a bounded dynamic type dyn<T> to be com-

patible only with subtypes of T. So, the following code will
be ill typed and rejected by the type checker.

ShapeCell<dyn<Shape>> sc = ...;

sc.set(new Object());

// Object is not compatible with dyn<Shape>!

A bounded dynamic type has both static and dynamic typing
natures. While it still allows potentially unsafe operations
to be performed, it enforces static typing as far as members
defined in the bound are concerned. So, the first two lines
in the following code are still accepted (and checked at run
time) but not the third3 and fourth.

sc.x.anyField;

sc.x.anyMethod(...);

sc.x.contains(); // two arguments are expected!

Shape s = sc.x.contains(3, 4); // returns boolean!

In a real language, we do not expect programmers to

write those upper bounds explicitly. Rather, when dyn is

used as a type argument, the compiler can recover its up-

per bound automatically by assigning the upper bounds of

the corresponding type parameters in the generic class def-

inition.4 For other uses of dyn, they can be regarded as

dyn<Object>; in fact, we use dyn as an abbreviation of

dyn<Object>, throughout the paper.

2.5 Two Compatibility Relations

As we have already mentioned, the type system of the sur-
face language uses the compatibility relation, denoted by
., to check argument passing and assignments. This rela-
tion has both co- and contra-variant flavors when dyn is
considered a top type: for example, both Cell<Shape> .
Cell<dyn> and Cell<dyn> . Cell<Shape> hold and so
both

Cell<Shape> c1 = ...; Cell<dyn> c2 = c1;

and

Cell<dyn> c1 = ...; Cell<Shape> c2 = c1;

are accepted (statically). The reason to allow contravariance

(the latter kind of compatibility) is simply because it some-

times runs safely. For example, when c1 happens to be an

3 It could be allowed in the presence of overloading.
4 For F-bounded type variables, such automatic recovery is difficult. We

would have to have programmers write upper bounds explicitly.

object new Cell<Shape>(...), the latter code fragment is

just fine.
However, we should not use this compatibility relation

for casts. For example, consider the following (surface lan-
guage) code:

Cell<dyn> c1 = new Cell<dyn>(new Polygon(...));

Cell<Rectangle> c2 = c1; // accepted thanks

// to contravariance

c2.x.methodOnlyInRectangle(); // accepted since

// c2.x is Rectangle

On the second line, a run-time check

$Cell<Rectangle>% c1 is performed. Since the run-

time type of c1 is Cell<dyn>, if $% used the compatibility

relation, the cast will succeed, resulting in the unexpected

method-not-found error! (Notice that the invocation of

methodOnlyInRectangle should involve no checks

because the receiver’s static type does not contain dyn.)

Thus, we use another relation :≺ called run-time compat-

ibility for run-time checks. This relation is a subrelation of

. and disallows contravariance: for example, Cell<dyn> :≺

Cell<Rectangle> does not hold. However, it still allows

covariance (such as Cell<Rectangle> :≺ Cell<dyn>),

so it is more permissive than subtyping. (It is not com-

pletely safe—that is why we still need argument checks by

e0.m[T1, . . . , Tn|C<X>](e1, . . . , en).)
Having these discussions in mind, we formalize the core

of the surface and intermediate languages in the following

sections.

3. Featherweight GJ with Dynamic Types

In this section, we formalize the surface language FGJdyn, an

extension of FGJ with dynamic types to model a type system

of gradually typed generics. For simplicity, we omit some

features found in FGJ: polymorphic methods and typecasts,

which would be easy to add. As in FGJ, we also omit method

overloading. We focus on the type system in this section

and leave the definition of the intermediate language called

FGJ$% and translation from FGJdyn to FGJ$% to Section 4.

For those who are familiar with FGJ, we use gray boxes to

show main differences from FGJ.

3.1 Syntax and Lookup Functions

The abstract syntax of FGJdyn classes, constructors and

method declarations, and expressions are defined as follows:

Definition 1 (Syntax of FGJdyn).

κ, ι ::= � | ♦
S, T, U, V ::= X | N | dyn<N>

N, P, Q ::= C<T>

e ::= x | new N(e) | e.f | e.m(e)

L ::= class C<X
κ
⊳ N> ⊳ N {T f; K M}

K ::= C(T f){super(f); this.f=f;}

M ::= T m(T x){ return e; }

The metavariables A, B, C, D and E range over class names;

W, X, Y and Z range over type variables; N, P and Q range

over class types (dyn<N> is not a class type); S, T, U and V

range over types; κ and ι range over kinds of type variables;
f and g range over field names; m ranges overmethod names;

x ranges over variables; d and e range over expressions;

L ranges over class declarations; K ranges over constructor

declarations; and M ranges over method declarations. We

assume that the set of variables includes the special variable

this.

We write f as shorthand for a possibly empty sequence

f1,f2,. . .,fn (and similarly for C, X, N, T, x, e, etc.) and

write M as shorthand for M1. . .Mn (with no commas). The

length of a sequence f is written #(f). We write f ∈ f

when f equals to fi where 1 ≤ i ≤ #(f), and write f /∈ f

otherwise. We also abbreviate various forms of sequences

of pairs, writing “T f” as shorthand for “T1 f1,. . .,Tn fn”

where #(T) = #(f), and similarly “T f;” for the se-

quence of declarations “T1 f1;· · ·Tnfn;”, “this.f=f;”

for “this.f1=f1;· · ·this.fn=fn;”, and “X
κ
⊳ N” for “Xκ1

1

⊳ N1,. . .,X
κn

n ⊳ Nn” . We write the empty sequence as •
and denote concatenation of sequences using a comma. Se-

quences are assumed to contain no duplicate names. We ab-

breviate the keyword extends to the symbol ⊳.
dyn<N> is a type of dynamically typed expressions. Since

it is not a class type, dyn<N> can neither be used to instanti-

ate an object (by new expressions) nor be used as a bound of

a type variable. We always write the bound N in the formal

language.

A program in FGJdyn is a pair (CT, e) of a class table,

which is a finite mapping from class names C to class decla-

rations L, and a closed expression corresponding to the body

of the mainmethod. We assume that CT satisfies some san-

ity conditions: (1)CT (C) = class C<X ⊳ N> ⊳ ... {...}

for every C ∈ dom(CT); (2) Object /∈ dom(CT); (3) for
every class name C (except Object) appearing anywhere in

CT , we have C ∈ dom(CT); and (4) there are no cycles

in the transitive closure of ⊳ (as a relation between class

names). In what follows, we fix a class table.

As in FGJ, we use functions fields and mtype to look

up field definitions and method types in a given class table.

We also use a predicate nomethod to state non-existence

of a method. We omit their straightforward definitions (see

appendix in the full version of this paper or Igarashi, Pierce,

and Wadler [18] for the definitions of fields and mtype);

their functionalities are summarized in Table 2.

Some other auxiliary functions are defined in Figure 1.

We use a function bound to compute the upper bound of a

type in a bound environment∆, which is a finite sequence of

triples of a type variable, its kind and its bound, where type

variables are pairwise distinct.5 When bound is used with

a class type, it returns the given type itself. When bound

is used with a dynamic type, it returns the bound of the

5 So,∆ can be considered a finite mapping.

fields(N) = T f collects fields in class N and its

super type.

mtype(m, N) = T → T looks up the type of method m in

class N or its super type.

nomethod(m, N) holds when there is no method m

in class N or its super type.

Table 2. Definition of FGJdyn: Auxiliary functions and

predicates.

dynamic type. We have a function kind to look up kinds

of type variables. We use a predicate dynfree to state that a

type is dynamic-free, i.e., it contains no dynamic type.

3.2 Subtyping and Compatibility

Now we define subtyping and compatibility relations. As we

have mentioned, there are two compatibility relations (writ-

ten :≺ for run-time compatibility and . for static compati-

bility). We write ∆ ⊢ S <: T to mean S is a subtype of

T under bound environment ∆. Similarly for ∆ ⊢ S :≺ T

and ∆ ⊢ S . T. We abbreviate a sequence of judgments

∆ ⊢ S1 <: T1, . . . ,∆ ⊢ Sn <: Tn to ∆ ⊢ S <: T (and

similarly for :≺ and .).

Definition 2 (FGJdyn subtyping and compatibility). The

subtyping and compatibility judgments ∆ ⊢ S <: T and

∆ ⊢ S :≺ T and ∆ ⊢ S . T are defined by the rules in

Figure 2.

The subtype relation<: is mostly the same as that of FGJ.

The first two rules mean that it is reflexive and transitive;

the third rule that a type variable is a subtype of its bound;

the fourth rule is about inheritance-based subtyping—any in-

stance of a ⊳ clause gives subtyping. The last rule says a

bounded dynamic type dyn<N> is a subtype of its bound N.

In fact, dyn<N> and N denote the same set of instances—

instances of N and its subtypes and dyn<N> allows more

operations (which are potentially unsafe, though) to be per-

formed than N. So, dyn<N> <: N indeed agrees with the

substitution principle [23].

The compatibility relations are defined with the help of

the auxiliary relation ≺. Intuitively, S ≺ T means that T

is obtained by replacing some class types in S with dy-

namic types (with an appropriate bound). For example,

Rectangle ≺ dyn<Object> and Cell<Rectangle> ≺
Cell<dyn<Object>> hold (under any bound environment).

So, ≺ represents a form of covariance. Then, the compati-

bility relations :≺ and . are defined as compositions of ≺
and <:—the former as (<:;≺) (·; · is a composition of two

relations) and the latter as (≺−1;<:;≺), where ≺−1 is the

inverse of ≺ and represents a form of contravariance. As a

result, two types are statically compatible if replacing dy-

namic types with class types yields two types in the subtyp-

ing relation.

For example,

∆ ⊢ Cell<dyn<Object>> . Cell<Rectangle>

can be derived since Cell<dyn<Object>> ≺−1

Cell<Rectangle>. Also,

∆ ⊢ Cell<dyn<Shape>> . Cell<dyn<Object>>

since Cell<dyn<Shape>> ≺−1 Cell<Shape> and

Cell<Shape> ≺ Cell<dyn<Object>>. (Note that

Cell<dyn<Shape>> <: Cell<dyn<Object>> does not

hold.)

dyn<Object> can be considered either a top type or

a bottom type, i.e., ∆ ⊢ T . dyn<Object> and ∆ ⊢
dyn<Object> . T are satisfied for any T, and the relation

. is not transitive because otherwise ∆ ⊢ S . T would be

implied for any S,T (as mentioned in [27, 28]). dyn<N> can

also be considered as a top/bottom type for subtypes of N.

3.3 Type Well-formedness and Typing

We, then, define well-formed types and typing.

Definition 3 (FGJdyn type well-formedness). The type well-

formedness judgment∆ ⊢ T ok, read as “in bound environ-

ment ∆, type T is well formed,” is defined by the rules in

Figure 3.

The last rule means that a bounded dynamic type is

well formed if its upper bound is well formed. The third

rule means that a class type is well formed if it has

well formed type arguments that satisfy the correspond-

ing type parameters’ upper bounds. Note that we use :≺

rather than <: or .. First, <: cannot be used because

we want to use dynamic types as type arguments. For

example, Cell<dyn<Object>> is well formed because

dyn<Object> :≺ Object. . should not be used, either, be-

cause we want to reject a type like ShapeCell<Object>.

(Note that Object . Shape.) The third rule also requires

that type arguments must be dynamic-free if the kind of the

corresponding type variable is ♦.

Now we are ready to define typing. We use Γ as a type

environment, which is a finite mapping from variables to

types, written x : C.

Definition 4 (FGJdyn typing). The type judgments∆;Γ ⊢G

e :T, read as “in environment∆ and Γ, expression e has type
T,” and M OK IN C<X ⊳ N>, read as “method M is well-formed

in class C<X ⊳ N>” and L OK, read as “class L is well-formed”

are defined as in Figure 4.

Most of the rules are straightforward adaptation of those

in FGJ [18], except that the relation . is substituted for <:.
TG-FIELD2 and TG-INVK2 are additional rules, used when

the receiver type is a bounded dynamic type. Note that these

rules are applied only when it is not known whether the

receiver has a field or method to be accessed (the premises

f 6∈ f in TG-FIELD2 and nomethod(m, N) in TG-INVK2).

Bound environment

∆(X) = (κ, N)

bound∆(X) = N
bound∆(N) = N bound∆(dyn<N>) = N

∆(X) = (κ, N)

kind∆(X) = κ

Dynamic-free types

kind∆(X) = ♦

dynfree∆(X)

dynfree∆(T)

dynfree∆(C<T>)

Figure 1. Definition of FGJdyn: Auxiliary functions and predicates.

Subtyping

∆ ⊢ T <: T
∆ ⊢ S <: U ∆ ⊢ U <: T

∆ ⊢ S <: T
∆ ⊢ X <: bound∆(X)

class C<X
κ
⊳ N> ⊳ N {...}

∆ ⊢ C<T> <: [T/X]N
∆ ⊢ dyn<N> <: N

Compatibility

∆ ⊢ T ≺ T
∆ ⊢ S ≺ U ∆ ⊢ U ≺ T

∆ ⊢ S ≺ T

∆ ⊢ S ≺ T

∆ ⊢ C<S> ≺ C<T>

∆ ⊢ T <: S ∆ ⊢ S ≺ N

∆ ⊢ T ≺ dyn<N>

∆ ⊢ S <: U ∆ ⊢ U ≺ T

∆ ⊢ S :≺ T

∆ ⊢ U ≺ S ∆ ⊢ U :≺ T

∆ ⊢ S . T

Figure 2. Definition of FGJdyn: Subtyping and compatibility.

∆ ⊢ Object ok
X ∈ dom(∆)

∆ ⊢ X ok

class C<X
κ
⊳ N> ⊳ N {...} ∆ ⊢ T ok

∀κi ∈ κ.(κi = ♦ implies dynfree∆(Ti))

∆ ⊢ T :≺ [T/X]N

∆ ⊢ C<T> ok

∆ ⊢ N ok

∆ ⊢ dyn<N> ok

Figure 3. Definition of FGJdyn: Type well-formedness.

In other words, TG-FIELD1 or TG-INVK1 can be used for

expressions whose receiver type is dyn<N>, as long as the

member is defined in the class definition of N.

The predicate override , used in method typing, is to

check if a method m in class N can be overridden by a method

of type T → T. Parameter types must be the same between

the overriding and overridden methods6 and the return type

of the overriding method must be run-time compatible with

that of the overridden method. We cannot use . here: if .

were used, it would be possible to override a method that

returns T by one that returns dyn<Object> in a subclass,

and then to override it by another that returns S for any S.

As a result, invoking a method, whose static return type is T,

6This restriction can easily be relaxed by using the relation :≺, but then we

need a careful examination when we add method overloading.

might actually invoke the third method that returns S, which

can be very different from T, due to late binding!

We write ⊢G (CT, e) : T to mean the program is well

formed, i.e, if all the classes in CT are well formed and e is

well typed under the empty environment.

We have not completed developing a type checking algo-

rithm. In fact, it is not even clear that the compatibility re-

lation . is decidable for the same reason as variance-based

subtyping [21].

Conservative Typing over FGJ. Even at this point, we

can show an interesting property that typing in FGJdyn is

a conservative extension of that in FGJ. Namely, as far as

a class table written in the FGJ syntax is concerned, it is

well typed under the FGJ rules if and only if it is well typed

under the FGJdyn rules. The following lemma is a key to the

conservative extension property (Theorem 6).

Expression typing

∆;Γ ⊢G x : Γ(x) (Tg-Var)
∆ ⊢G N ok fields(N) = T f ∆;Γ ⊢G e : U ∆ ⊢ U . T

∆;Γ ⊢G new N(e) : N
(Tg-New)

∆;Γ ⊢G e0 : T0

fields(bound∆(T0)) = T f

∆;Γ ⊢G e0.fi : Ti
(Tg-Field1)

∆;Γ ⊢G e0 : dyn<N> f /∈ f

fields(N) = T f

∆;Γ ⊢G e0.f : dyn<Object>
(Tg-Field2)

∆;Γ ⊢G e0 : T0 ∆;Γ ⊢G e : V mtype(m, bound∆(T0)) = S → S ∆ ⊢ V . S

∆;Γ ⊢G e0.m(e) : S
(Tg-Invk1)

∆;Γ ⊢G e0 : dyn<N> ∆;Γ ⊢G e : V nomethod(m, N)

∆; Γ ⊢G e0.m(e) : dyn<Object>
(Tg-Invk2)

Method typing

mtype(m, N) = U → U implies T = U and ∆ ⊢ T :≺ U

override∆(m, N, T → T)

∆ = X
κ
<: N ∆ ⊢ T, T ok ∆; x : T, this : C<X> ⊢G e0 :S

∆ ⊢ S . T class C<X
κ
⊳ N> ⊳ N {...} override∆(m, N, T → T)

T m(T x){ return e0; } OK IN C<X ⊳ N>
(Tg-Method)

Class typing

X
κ
<: N ⊢ N, T, N ok fields(N) = U g

M OK IN C<X ⊳ N> K = C(U g, T f){super(g); this.f=f;}

class C<X
κ
⊳ N> ⊳ N {T f; K M} OK

(Tg-Class)

Figure 4. Definition of FGJdyn: Typing.

Lemma 5.

• If∆ ⊢ S ≺ T and dynfree∆(T), then S = T.

• If∆ ⊢ S :≺ T and dynfree∆(T), then∆ ⊢ S <: T.
• If∆ ⊢ S . T and dynfree∆(S), then∆ ⊢ S :≺ T.

• If ∆ ⊢ S . T and dynfree∆(S) and dynfree∆(T), then
∆ ⊢ S <: T.

We write ⊢FGJ (CT, e) : T if the program, which does not

contain dyn<N>, is well formed under the FGJ rules.

Theorem 6 (FGJdyn Typing is Conservative over FGJ Typ-

ing). If κ = ♦ for every class C<X
κ
⊳ N> ⊳ N {...} inCT

and none of dyn<P> appears in (CT, e), then ⊢FGJ (CT, e) :
T ⇐⇒ ⊢G (CT, e) : T.

4. From FGJdyn to FGJ$%

In this section, we first define a formal model FGJ$% of

the intermediate language, into which source programs are

translated. FGJ$% has operational semantics, as well as a

type system. After stating theorems about type safety of

FGJ$%, we present formal translation from FGJdyn to FGJ$%

and state theorems that translation preserves typing.We have

weak and strong versions of type safety: the weak version

means that a well typed program can raise errors only at

run-time checks and the strong version means that a well

typed program without containing run-time checks never

goes wrong in the usual sense.

4.1 The Target Language FGJ$%

The syntax of FGJ$% extends that of FGJdyn, by including

special forms for run-time checks and run-time errors. We

show only the grammar for expressions, values (used to

define the semantics), and errors; the others are the same.

Definition 7 (Syntax of FGJ$%).

e ::= x | new N(e) | e.f | e.m(e)

| get(e,f) | e.m[T|C<X>](e)

| invoke(e,m, e) | $N% e

| Error[E]

v, w ::= new N(v)

E ::= NoSuchField | NoSuchMethod

| IllegalArgument | BadCast

We avoid repeating the definitions of the following func-

tions, predicates, and relations since they are defined exactly

the same way as in FGJdyn.

Functions bound

kind

fields

mtype

Predicates dynfree

nomethod

override

Relations Subtyping <:

Compatibility ≺, :≺

Judgments Type well-formedness

Figure 5 introduces an auxiliary function tyargs(N, C),
which is used in the reduction rules described later to get

type arguments from run-time types. We also use a function

mbody(m, N), which returns a pair x.e of a sequence of

formal parameters and a method body expression, if N has

m. Its straightforward definition is omitted.

We show the main typing rules of FGJ$% in Figure 6.

An important point to note is that we use only the run-time

compatibility :≺ and no. appears in the typing rules because

a use of . compiles to a cast $% , which uses :≺ for its run-

time check. TR-INVK1 is the rule for a method invocation

without run-time checks. The receiver type must be dyn-

free. TR-INVK2 is the rule for a method invocation with run-

time argument checking. C<T> can be considered an initial

(i.e., compile-time) static type of receiver e0; the condition

N :≺ C<T> is required since the receiver type may change

as reduction proceeds. TR-INVK3 is the rule for a method

invocation that checks whether the method m exists at run

time. The receiver and arguments can be arbitrary typeable

expressions and the type of the invocation is dyn<Object>.

TR-CAST is the rule for casts; and TR-ERROR is the rule for

errors.

We omit typing rules for object constructions, field ac-

cesses, methods and classes, since they are similar to those

in FGJdyn. We write ⊢R (CT, e) : T to mean the FGJ$% pro-

gram (CT, e) is well formed.

We give main reduction rules in Figure 7. The evalua-

tion order is, unlike FGJ, fixed to be left-to-right and call-by-

value to deal with run-time errors more precisely. R-FIELD1

and R-INVK1 are quite standard. They check the existence

of a field/method in the receiver type but the check should

never fail for well-typed expressions as we will see later.

R-FIELD2, R-INVK2, R-INVK3 and R-CAST are for run-

time checks, which can raise a run-time error. In R-INVK2,

the type arguments in method parameter types are filled in

according to the run-time class of the receiver value, and

checked against the run-time class of the actual arguments.

In R-INVK3, we need to look up the method argument types

by mtype to perform run-time checks for actual arguments.

The rule R-CAST means that a cast succeeds when the sub-

ject type is run-time compatible with the target type.

We also have reduction rules for errors shown in Figure 8.

Each rule has premises negating those in the corresponding

reduction rule. Note that only run-time checks have error-

raising reductions. We also need rules that propagate raised

errors upwards, but we omit them.

FGJ$% is (weakly) type-safe in the sense that a well-typed

program, if it terminates, yields a value or raises an error.

Moreover, if a program does not contain dynamic types, then

it is strongly type safe.

Theorem 8 (FGJ$% weak type safety). If ⊢R (CT, e) : T and
e −→∗ e′ where e′ is a normal form, then e′ is either

1. a value v with •; • ⊢R v : N and • ⊢ N :≺ T, or

2. an error Error[E].

Theorem 9 (FGJ$% strong type safety). If ⊢R (CT, e) : T
where (CT, e) does not contain run-time checks and e −→∗

e′ where e′ is a normal form, then e′ is a value v with

•; • ⊢R v : N and • ⊢ N :≺ T.

These theorems are proved in a standard manner of com-

bining subject reduction and progress [37]. The statements

and proofs of both properties are, in fact, very similar to

those for FGJ. One non-trivial property required is transi-

tivity of :≺.

Theorem 8 should be understood with the typing and

error-raising reduction rules of FGJ$%. First, in Figure 6,

TR-INVK1 says that the receiver type of an ordinary method

invocation is always dyn-free. Then, in Figure 8, Error[E]
is reduced only from run-time checks, not from an ordinary

member access. Considering these and the subject reduction

property together, we can see that no member access on dyn-

free receiver raises an error.

4.2 Translation from FGJdyn to FGJ$%

The judgment of translation from FGJdyn to FGJ$% is of the

form∆;Γ ⊢ e e′ : T, read “FGJdyn expression e of type T

under environments Γ and∆ translates to FGJ$% expression

e′.” The translation is directed by typing in FGJdyn. We show

only the rules for method invocations in Figure 9.

〈S ⇐ T〉∆e inserts a cast when source type T is not

run-time compatible with S. This reduces unnecessary casts.

TRNS-INVK1 is for ordinary invocations; casts are inserted

for testing run-time compatibility of arguments. If V are

dyn-free, then actually no casts will be inserted, thanks to

Lemma 5. TRNS-INVK2 is for invocations whose arguments

tyargs(C<T>, C) = T
• ⊢ N <: P tyargs(P, C) = T

tyargs(N, C) = T

Figure 5. Definition of FGJ$%: Auxiliary function.

∆;Γ ⊢R e0 : T0 ∆;Γ ⊢R e : V bound∆(T0) = P ∆ ⊢ P :≺ N

dynfree∆(N) mtype(m, N) = S → S ∆ ⊢ V :≺ S

∆;Γ ⊢R e0.m(e) : S
(Tr-Invk1)

∆;Γ ⊢R e0 : T0 ∆;Γ ⊢R e :V bound∆(T0) = N ∆ ⊢ N :≺ [T/X]C<X>

mtype(m, C<X>) = U → U ∆ ⊢ V :≺ [T/X]U

∆;Γ ⊢R e0.m[U|C<X>](e) : [T/X]U
(Tr-Invk2)

∆;Γ ⊢R e0 : T0 ∆;Γ ⊢R e : V

∆;Γ ⊢R invoke(e0, m, e) : dyn<Object>
(Tr-Invk3)

∆;Γ ⊢R e : S

∆;Γ ⊢R $T% e : T
(Tr-Cast)

∆;Γ ⊢R Error[E] :T (Tr-Error)

Figure 6. Definition of FGJ$%: Typing.

fields(N) = T f

new N(v).fi −→ vi
(R-Field1)

fields(N) = T f

get(new N(v), fi) −→ vi
(R-Field2)

• ⊢ N :≺ T

$T% new N(v) −→ new N(v)
(R-Cast)

mbody(m, N) = x.e0

new N(v).m(w) −→ [w/x, new N(v)/this]e0
(R-Invk1)

mbody(m, N) = x.e0 w = new P(...) • ⊢ P :≺ [tyargs(N, C)/X]U

new N(v).m[U|C<X>](w) −→ [w/x, new N(v)/this]e0
(R-Invk2)

mbody(m, N) = x.e0 mtype(m, N) = U → U w = new P(...) • ⊢ P :≺ U

invoke(new N(v), m, w) −→ [w/x, new N(v)/this]e0
(R-Invk3)

Figure 7. Definition of FGJ$%: Reductions.

• ⊢ N 6 :≺ T

$T% new N(v) −→ Error[BadCast]
(E-Cast)

fields(N) = T f f 6∈ f

get(new N(v), f) −→ Error[NoSuchField]
(E-Field)

nomethod(m, N)

invoke(new N(v), m, w) −→ Error[NoSuchMethod]
(E-Invk)

w = new P(...) • ⊢ Pi 6 :≺ [tyargs(N, C)/X]Ui

new N(v).m[U|C<X>](w) −→ Error[IllegalArgument]
(E-Invk-Arg1)

mtype(m, N) = U → U w = new P(...) • ⊢ Pi 6 :≺ Ui

invoke(new N(v), m, w) −→ Error[IllegalArgument]
(E-Invk-Arg2)

Figure 8. Definition of FGJ$%: Error-raising reductions.

Cast insertion

〈S ⇐ T〉∆e
def

=

{

e (if ∆ ⊢ T :≺ S)

$S% e (otherwise)

Translation of method invocation

∆;Γ ⊢ e0 e′0 : T0 ∆;Γ ⊢ e e′ :V bound∆(T0) = N

dynfree∆(N) mtype(m, N) = S → S ∆ ⊢ V . S

∆;Γ ⊢ e0.m(e) e′0.m(〈S ⇐ V〉∆e
′) : S

(Trns-Invk1)

∆;Γ ⊢ e0 e′0 : T0 ∆;Γ ⊢ e e′ : V bound∆(T0) = [T/X]C<X>

¬dynfree∆(C<T>) mtype(m, C<X>) = U → U ∆ ⊢ V . [T/X]U

∆;Γ ⊢ e0.m(e) e′0.m[U|C<X>](〈[T/X]U ⇐ V〉∆e
′) : [T/X]U

(Trns-Invk2)

∆;Γ ⊢ e0 e′0 : dyn<N> ∆;Γ ⊢ e e′ : V nomethod(m, N)

∆; Γ ⊢ e0.m(e) invoke(e′0, m, e
′) : dyn<Object>

(Trns-Invk3)

Figure 9. Translation from FGJdyn to FGJ$%.

must be checked at run time. Note that the receiver type T0
in these two rules can be dyn<N> when there is an appro-

priate method m in N because the existence of m is statically

guaranteed. TRNS-INVK3 is for invocations whose receiver

type is dyn<N> and N has no appropriate method m.

Although we omit its definition, we write (CT, e)
(CT ′, e′) to mean that the FGJdyn program (CT, e) is trans-

lated to the FGJ$% program (CT ′, e′). Then, the translation
preserves well-typedness, i.e., a well-typed FGJdyn program

translates to a well-typed FGJ$% program.

Theorem 10 (Weak translation). If ⊢G (CT, e) : T, then
(CT, e) (CT ′, e′) and ⊢R (CT ′, e′) : T for some

(CT ′, e′).

Theorem 11 (Strong translation). If κ = ♦ for every

class C<X
κ
⊳ N> ⊳ N {...} in CT and none of dyn<P>

appears in (CT, e) and ⊢G (CT, e) : T, then (CT, e)
(CT ′, e′) and ⊢R (CT ′, e′) : T for some (CT ′, e′) and

(CT ′, e′) does not contain run-time checks.

Combining Theorem 8 and Theorem 10, we can see that a

member access which translates to an ordinary member ac-

cess without run-time checks will not fail. In other words, a

statically typed portion (method invocations whose receiver

and argument types are dyn-free) will never fail. This is the

type safety of FGJdyn.

5. Implementation

In this section, we report the basic implementation scheme

for Java. Our plan is to add a new compilation phase to

transform a code tree to have the run-time checks inserted

as the same way as the other existing compilation phases

such as the type erasing transformation. The transformation

follows the rules in Section 4 and the run-time checks can

be implemented using existing reflective features of Java.

Since the current JVM has no run-time information of type

arguments of generics, we need a mechanism to look up full

run-time type information. We follow the technique of type

passing [32–34] for this.

5.1 Run-time Checks

The run-time checks $T% e, get(e,f) and

invoke(e,m, e) can be implemented by reflection APIs

such as java.lang.Class, java.lang.reflect.Field

and java.lang.reflect.Method. We implement a

class Cla to represent type descriptors and a static method

Cla.$() to get the run-time type information of obj includ-

ing type arguments. The return value of Cla.$(...) is a

type descriptor d (an instance of class Cla described in more

detail later), which has field cl of a java.lang.Class

instance, field p of an array of type descriptors of type

arguments, and h of an array of a superclass chain, where

d.h[0] is d itself and d.h[d.h.length-1] is Object.
The cast $T% e, which corresponds to R-CAST, can be

implemented as the following method cast(), which casts
obj to class klass.

Object cast(Cla klass, Object obj) {

if ((obj instanceof Parametric &&

isRuntimeCompatible(Cla.$(obj), klass)) ||

klass.cl.isInstance(obj)) {

return obj;

} else throw new ClassCastException();

}

If the type of obj has type arguments, then

isRuntimeCompatible() method checks if the type

of obj and the target type of the cast satisfy the relation
:≺. Otherwise, the cast acts as a normal one, which uses

the subtype relation <:. The argument type checking for

e.m[T|C<X>](e) in R-INVK2 can also be done by this

method. Although not proved, we conjecture that the

explicit transitivity rule for≺ is actually redundant. Without

transitivity, it is easy to check run-time compatibility.

Since $T% is inserted by the translation and types T in

e.m[T|C<X>](e) are specified by the translation, the target

type of a cast can be determined mostly at compile time,

except that the type arguments for X have to be filled at run

time.

The implementation of get(e, f), which corresponds to

R-FIELD2, is quite easy. We have Object.getClass() to

get an instance of java.lang.Class, which has method

getField(), which looks up a field by a field name

and throws NoSuchField exception when no field is

found. The return value of getField() is an instance of

java.lang.reflect.Field, which has method get(),

which retrieves the field value from the receiver.

Object get(Object r, String f) {

Field fld = r.getClass().getField(f);

return fld.get(r);

}

The special form invoke(e,m, e), which corresponds

to R-INVK3, can be implemented as the method invoke()

below. Suppose Met is a class for parameter types of a

method, which has field m of java.lang.reflect.Method

and field params of method type descriptors. Also suppose

mtypes() is a method to look up method signatures by a

method name.

Object invoke(Object r, String m, Object[] args) {

Met[] mets = mtypes(r, m);

M: for (int i=0, l=mets.length; i < l; i++) {

if (mets[i].args.length != args.length)

continue M;

for (int j=args.length-1; 0 <= j; j--) {

try {

mets[i].params[j].cast(args[j]);

} catch (ClassCastException e) {

continue M;

}

}

return mets[i].m.invoke(r, args);

}

throw new NoSuchMethodException();

}

This method looks up methods named m, and calls the

first method7 whose parameter types match the argument

types. cast() is used to match parameters and arguments.

If the casts succeed, then java.lang.Method.invokeAPI

performs real invocation of the method. Otherwise, it throws

NoSuchMethodException. Note that the target type of the

cast must be determined at run time because we have no

information of the receiver type at compile time.

7We are not considering method overloading here for simplicity.

5.2 Information on Type Arguments at Run Time

As we have already seen, we need information on type ar-

guments at run time. It requires additional memory usage

and time costs, but a relatively high performance technique

is proposed by Viroli et al. [32–34]. We quickly review this

technique.

The basic idea of this technique is to pass type informa-

tion as a field of an object by transforming the code. For ex-

ample, the following code describes how the transformation

goes.

Cell<Shape> c

= new Cell<Shape>(new Rectangle(...));

// Cell<Shape> c

// = new Cell<Shape>(

// new Cla(Cell.class,

// new Cla[]{

// new Cla(Shape.class) }),

// new Rectangle(...));

The first line is the original code, and the comment is the

translated code. The instance of Cla, which is a type descrip-

tor class, is passed as a first argument of the constructor. Of

course, the definition of class Cell is also transformed to re-

ceive a type descriptor at the constructor, and to implement

an interface, which provides access to the type descriptor.

The transformation described above is not optimized at

all: a new type descriptor is generated every time the con-

structor is called. So, a mechanism to reduce the number of

generations of type descriptors to one for a distinct type, us-

ing double hashing, is reported in [32–34].

5.3 Preliminary Benchmark Evaluation

Since we have no working compiler yet, we only give bench-

marks for each run-time check with minimal hand-translated

code using those checks separately. These may help to see if

our implementation idea is reasonable and how much dy-

namic types slow down execution of the program. Execution

of dynamically typed code is quite expensive especially for

method invocations on a receiver of dynamic type, but we

believe that the cost is not unacceptable.

Benchmarks for each run-time check is shown in Table 3.

For each run-time check, we used test code including a sin-

gle expression with a run-time check and the same expres-

sion without it. Each test code iterates 100/10000/1000000

times and overall time consumptions are listed.

For the expression $T% e, we used a static type for the

target type of the cast. The cast looks into type arguments

but we can say it is not so expensive according to the result.

We can say the same thing about the run-time check in

the expression e.m[T|C<X>](e) since it only needs a cast

for each argument. The run-time check in the expression

get(e,f) is relatively expensive because it uses a feature

of java.lang.reflect.Field. The run-time check in the

expression invoke(e,m, e) is quite expensive but the cost

of iterations 100 10000 1000000

$T% e 0.006 0.019 0.125

e 0.004 0.008 0.087

get(e,f) 0.003 0.043 0.356

e.f 0.001 0.003 0.056

e.m[T|C<X>](e) 0.000 0.003 0.072

e.m(e) 0.000 0.002 0.080

invoke(e,m, e) 0.007 0.093 3.430

e.m(e) 0.000 0.003 0.069

Table 3. Execution time of each run-time check (sec.)

seems somewhat inevitable since it must resolve a method

signature and check run-time types of the arguments.

In Table 4, we have tested casts with more complex target

types. We used a dynamic type argument for the target type.

The dynamic type argument has a bound, which is a class

type possibly including another dynamic type argument. We

count the nested dynamic type argument as depth and the

result for each target type of the depth is listed in the rows.

Depth(s) \ # of iterations 100 10000 1000000

1 0.000 0.004 0.105

2 0.000 0.007 0.171

3 0.001 0.009 0.235

4 0.001 0.008 0.268

5 0.001 0.009 0.301

Table 4. Execution time of casts (sec.)

We can conclude that the operation for checking the run-

time compatibility :≺ is not too expensive in comparisonwith

the other run-time checks.

6. Related Work

There is much work onmixing dynamic and static types (see,

for example, Siek and Taha [27, 28] for a more extensive sur-

vey). Here, we compare our work mainly with related work

on object-oriented programming languages and parametric

polymorphism.

We first review proposals to apply static type checking to

dynamically typed languages. Bracha and Griswold [6] have

proposed Strongtalk, which is a typechecker for a downward

compatible variant of Smalltalk, a dynamically typed class-

based object-oriented programming language. The type sys-

tem of Strongtalk is structural and supports subtyping and

generics but does not accept partially typed programs. Thie-

mann [30] has proposed a type system for (a subset of)

JavaScript, which is a prototype-based object-oriented lan-

guage, to avoid some kinds of run-time errors by static type

checking. Furr, An, Foster, and Hicks [11] have developed

Diamondback Ruby, an extension of Ruby with a static type

system. Their type system, which seems useful to find bugs,

however, does not offer static type safety.

Anderson and Drossopoulou [3] have proposed a type

system for (a subset of) JavaScript for the evolution from

JavaScript to Java. Although it is nominal and concerned

with script-to-program evolution, their type system does not

have subtyping, inheritance, or polymorphism; moreover,

this work is not concerned about safety of partially typed

programs in the middle of the evolution.

Lagorio and Zucca [22] have developed Just, an extension

of Java with unknown types. Although there is some overlap

in the expected uses of this system and gradual typing, the

main purpose of unknown types is to omit type declarations;

possibly unsafe use of unknown types is rejected by the type

system. They use reflection to implement member access on

unknown types.

Gray, Findler, and Flatt [14] have implemented an exten-

sion of Java with dynamic types and contract checking [9]

for interoperability with Scheme. They mainly focus on the

design and implementation issues and give no discussion on

the interaction with generics. Their technique to implement

reflective calls can be used for our setting.

Gray [12, 13] studied mixing Java as a statically typed

language and JavaScript as a dynamically typed scripting

language. Unlike our language, classes with dynamically

typed methods are allowed to inherit from a class that is

statically typed, and vice versa.

As we have already mentioned, Siek and Taha have stud-

ied gradual typing for Abadi-Cardelli’s object calculus [28].

However, the language is object-based (as opposed to class-

based) and parametric polymorphism is not studied. Another

point is that the implementation of run-time checks for class-

based languages seems easier than that for object-based

languages, since, in class-based languages, every value is

tagged with its run-time type information and the check

can be performed in one step (unlike higher-order contract

checking, which checks inputs to and outputs from functions

separately).

Sage [15], a functional language based on hybrid type

checking [10], supports both parametric polymorphism and

dynamic types. Matthews and Ahmed [24] and, more re-

cently, Ahmed, Findler, Siek, and Wadler [2] give theoret-

ical accounts for the combination of impredicative polymor-

phism with dynamic typing. In all of these works, a dynamic

type is compatible (in our terminology) with universal types

whereas there is no counterpart of universal types in our set-

ting. None of them has addressed bounded polymorphism.

Wrigstad, Nardelli, Lebresne, Östlund and Vitek [5, 38]

have developed a language called Thorn, which integrates

static and dynamic types in a different way. They have in-

troduced the notion of like types, which interface between

statically and dynamically typed code. A variable of like

C is treated as type C at compile time but any value can flow

into the variable at run time (subject to run-time checks).

This is different from dyn<C>, which allows any operations

statically but only subtypes of C can flow into a dyn<C>.

Bierman, Meijer and Torgersen[4] added dynamic types

to C♯. They also translate a program of the surface language

into intermediate code, which has explicit run-time checks.

In their setting, dynamic types can be arguments of generic

classes, but their subtype relation is only invariant with re-

spect to type parameters, so, for example, it is not possible

to pass Cell<Rectangle> to Cell<dyn>.

There is some work on applying the gradual approach to

advanced type systems for object-oriented programming lan-

guages. Wolff, Garcia, Tanter and Aldrich [36] developed a

gradual system for typestate-oriented programming, where

operations on an object are restricted by the internal state

of the object. Potentially safe code which rejected by other

typestate-oriented type systems can be accepted in their sys-

tem thanks to a dynamic type. Sergey and Clarke [26] pro-

posed a gradual system for ownership types, which repre-

sent encapsulation of objects and are used as invariants in

type checking. Their gradual system allows a programmer

to omit ownership annotations without losing encapsulation

properties of annotated code.

There are some related features that already exist in Java.

Wildcards, studied by Igarashi and Viroli [17] and Torg-

ersen, Ernst, Hansen, Ahé, Bracha and Gafter [31], enable

a flexible subtyping with both co- and contra-variant para-

metric types, though only statically resolved members can

be accessed on a receiver of a wildcard type and it is not al-

lowed to specify a wildcard type as a type argument in a new

expression. Raw types are proposed by Bracha, Odersky,

Stoutamire, and Wadler [7] to deal with compatibility be-

tween legacy monomorphic Java code and new polymorphic

Java code. A generic class C<X> can be used as a raw type C,

without type arguments, and assigning a value of C<T> to a

variable of C, or even creating an instance of C via new ex-

pression are allowed. This behavior is similar to FGJdyn’s if

we consider C to be an abbreviation of C<dyn, ..., dyn>.

However, with raw types, even statically typed code can go

wrong.

7. Conclusions

We have designed a language that combines dynamic types

and generics. The language allows dynamic types to be used

as type arguments of a generic class and realizes smooth

interfacing between dynamically and statically typed code

thanks to the flexible compatibility relation. We have intro-

duced bounded dynamic types to deal with the case where a

type parameter has an upper bound.

The language is formalized as a minimal core model of

Java including the feature of generics. As in other gradual

type systems, we have proved safety properties, which en-

sure that statically typed parts in a program never go wrong.

We have also reviewed the sketch of an implementation

scheme, which is an idea to develop a gradually typed Java

compiler by extending an existing Java compiler without

modifying JVM.

Future Work. Our run-time compatibility does not al-

low argument passing, for example, from Cell<dyn> to

Cell<Rectangle>. It might be too early to abort the exe-

cution at this point since the value in the Cell may not be

used at all. We think we can relax the restriction by deferring

the check until the field is accessed. Then, we need a blame

assignment system [2, 35] for precise error reports. Imple-

mentation of the blame tracking system for this design we

think is done by “wrapping” an object with another object.

The wrapping object has the same interface as the original

one, but it performs a run-time check on every member ac-

cess. In a simple setting, a subclass of the class of the original

object suffices for the class of the wrapping object. However,

there are at least two problems in this implementation strat-

egy for Java-like languages. First, we need some mechanism

to “wrap” an ordinary field access. Second, a wrapping class

cannot extend a final class.

When bytecode of a generic library class compiled by the

standard Java compiler is used with client bytecode com-

piled by our compiler, the client is not allowed to use dy-

namic type arguments to the generic class since type vari-

ables in the generic class are declared without kind �. We

think that converting the library bytecode at load time will

help to relax this restriction.

We also plan to investigate the interactions of dynamic

types with other features such as overloading to make the

language more realistic.

Acknowledgments

We thank the anonymous reviewers very much for thought-

ful and thorough reviews. Ina is a Research Fellow of the

Japan Society of the Promotion of Science. This work was

supported in part by Grant-in-Aid for Young Scientists (A)

No. 21680002 and by Grant-in-Aid for JSPS Fellows No.

10J06019.

References

[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic

typing in a statically typed language. ACM Trans. Prog. Lang.

Syst., 13(2):237–268, 1991.

[2] A. Ahmed, R. B. Findler, J. G. Siek, and P. Wadler. Blame for

all. In Proc. of ACM POPL’11, pages 201–214, Austin, TX,

Jan. 2011.

[3] C. Anderson and S. Drossopoulou. BabyJ - from object based

to class based programming via types. In Proc. of WOOD’03,

volume 82 of Elsevier ENTCS, pages 53–81, 2003.

[4] G. Bierman, E. Meijer, and M. Torgersen. Adding dynamic

types to C♯. In Proc. of ECOOP’10, volume 6183 of Springer

LNCS, pages 76–100, Maridbor, Slovenia, June 2010.

[5] B. Bloom, J. Field, N. Nystrom, J. Östlund, G. Richards,

R. Strniša, J. Vitek, and T. Wrigstad. Thorn — robust, con-

current, extensible scripting on the JVM. In Proc. of ACM

OOPSLA’09, pages 117–136, Orlando, FL, Oct. 2009.

[6] G. Bracha and D. Griswold. Strongtalk: Typechecking

Smalltalk in a production environment. In Proc. of ACM

OOPSLA’93, pages 215–230, 1993.

[7] G. Bracha, M. Odersky, D. Stoutamire, and P.Wadler. Making

the future safe for the past: Adding genericity to the Java

programming language. In Proc. of ACM OOPSLA’98, pages

183–200, Vancouver, BC, Oct. 1998.

[8] R. Cartwright and M. Fagan. Soft typing. In Proc. of ACM

PLDI’91, pages 278–292, 1991.

[9] R. B. Findler and M. Felleisen. Contracts for higher-order

functions. In Proc. of ACM ICFP’02, pages 48–59, 2002.

[10] C. Flanagan. Hybrid type checking. In Proc. of ACM

POPL’06, pages 245–256, Charleston, SC, Jan. 2006.

[11] M. Furr, J. An, J. S. Foster, andM. Hicks. Static type inference

for Ruby. In Proc. of ACM Symposium on Applied Computing

(SAC’09), pages 1859–1866, Mar. 2009.

[12] K. E. Gray. Safe cross-language inheritance. In Proc. of

ECOOP’08, volume 5142 of Springer LNCS, pages 52–75,

2008.

[13] K. E. Gray. Interoperability in a scripted world: Putting

inheritance & prototypes together. In Proc. of FOOL’10, Oct.

2010.

[14] K. E. Gray, R. B. Findler, and M. Flatt. Fine-grained inter-

operability through mirrors and contracts. In Proc. of ACM

OOPSLA’05, pages 231–245, 2005.

[15] J. Gronski, K. Knowles, A. Tomb, S. N. Freund, and C. Flana-

gan. Sage: Hybrid checking for flexible specifications. In

Proc. of the Scheme and Functional Programming Workshop,

pages 93–104, Sept. 2006.

[16] F. Henglein. Dynamic typing. In Proc. of ESOP’92, volume

582 of Springer LNCS, pages 233–253, Rennes, France, Feb.

1992.

[17] A. Igarashi and M. Viroli. Variant parametric types: A flexible

subtyping scheme for generics. ACM Trans. Prog. Lang. Syst.,

28(5):795–847, Sept. 2006.

[18] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java:

A minimal core calculus for Java and GJ. ACM Trans. Prog.

Lang. Syst., 23(3):396–450, May 2001.

[19] L. Ina and A. Igarashi. Towards gradual typing for generics.

In Proc. of STOP’09, pages 17–29, Genova, Italy, July 2009.

Available also in the ACM Digital Library.

[20] L. Ina and A. Igarashi. Gradual typing for Featherweight Java.

Computer Software, 26(2):18–40, Apr. 2009. In Japanese.

[21] A. J. Kennedy and B. C. Pierce. On decidability of nominal

subtyping with variance. In Proc. of FOOL/WOOD’07, Nice,

France, Jan. 2007.

[22] G. Lagorio and E. Zucca. Just: safe unknown types in Java-

like languages. Journal of Object Technology, 6(2):69–98,

Feb. 2007.

[23] B. H. Liskov and J. M. Wing. A behavioral notion of subtyp-

ing. ACM Trans. Prog. Lang. Syst., 16(6):1811–1841, Nov.

1994.

[24] J. Matthews and A. Ahmed. Parametric polymorphism

through run-time sealing, or, thorems for low, low prices! In

Proc. of ESOP’08, volume 4960 of Springer LNCS, pages 16–

31, 2008.

[25] M. Odersky and P. Wadler. Pizza into Java: Translating theory

into practice. In Proc. of ACM POPL’97, pages 146–159, Jan.

1997.

[26] I. Sergey and D. Clarke. Towards gradual ownership types. In

Proc. of IWACO’11, Lancaster, UK, July 2011.

[27] J. G. Siek and W. Taha. Gradual typing for functional lan-

guages. In Proc. of the Scheme and Functional Programming

Workshop, pages 81–92, Sept. 2006.

[28] J. G. Siek and W. Taha. Gradual typing for objects. In Proc.

of ECOOP’07, volume 4509 of Springer LNCS, pages 2–27,

2007.

[29] S. Thatte. Quasi-static typing. In Proc. of ACM POPL’90,

pages 367–381, Jan. 1990.

[30] P. Thiemann. Towards a type system for analyzing JavaScript

programs. In Proc. of ESOP’09, volume 3444 of Springer

LNCS, pages 408–422, 2005.

[31] M. Torgersen, E. Ernst, C. P. Hansen, P. von der Ahé,

G. Bracha, and N. Gafter. Adding wildcards to the Java pro-

gramming language. Journal of Object Technology, 3(11):97–

116, Dec. 2004. Special issue: OOPS track at SAC 2004.

[32] M. Viroli. A type-passing approach for the implementation

of parametric methods in Java. The Computer Journal, 46(3):

263–294, 2003.

[33] M. Viroli. Effective and efficient compilation of run-time

generics in Java. In Proc. of WOOD’04, volume 138 of

Elsevier ENTCS, pages 95–116, 2004.

[34] M. Viroli and A. Natali. Parametric polymorphism in Java: An

approach to translation based on reflective features. In Proc.

of ACM OOPSLA’00, pages 146–165, Oct. 2000.

[35] P. Wadler and R. B. Findler. Well-typed programs can’t be

blamed. In Proc. of ESOP’09, volume 5502 of Springer

LNCS, pages 1–16, York, UK, Mar. 2009.

[36] R. Wolff, R. Garcia, É. Tanter, and J. Aldrich. Gradual types-

tate. In Proc. of ECOOP’11, volume 6813 of Springer LNCS,

pages 459–483, Lancaster, UK, July 2011.

[37] A. K. Wright and M. Felleisen. A syntactic approach to

type soundness. Information and Computation, 115(1):38–94,

Nov. 1994.

[38] T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Östlund, and

J. Vitek. Integrating typed and untyped code in a scripting

language. In Proc. of ACM POPL’10, pages 377–388, 2010.

