
Mostly Modular Compilation of Crosscutting
Concerns by Contextual Predicate Dispatch

Shigeru Chiba
Tokyo Institute of Technology, Japan

www.csg.is.titech.ac.jp

Atsushi Igarashi
Kyoto University, Japan

www.sato.kuis.kyoto-u.ac.jp

Salikh Zakirov
Tokyo Institute of Technology, Japan

www.csg.is.titech.ac.jp

Abstract
The modularity of aspect-oriented programming (AOP) has
been a controversial issue. To investigate this issue com-
pared with object-oriented programming (OOP), we propose
a simple language providing AOP mechanisms, which are
enhanced traditional OOP mechanisms. We also present its
formal system and then show that programs in this language
can be only mostly modularly (i.e. separately) typechecked
and compiled.We mention a source of this unmodularity and
discuss whether or not it is appropriate to claim that AOP
breaks modularity compared with OOP.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features — Classes
and objects

General Terms Languages

Keywords Aspect Oriented Programming, Java, AspectJ.

1. Introduction
Aspect-oriented programming (AOP) has been actively stud-
ied for more than a decade. A challenge of AOP is to man-
age crosscutting concerns in a modular fashion. What is a
crosscutting concern? According to Kiczales et al. [25], “In
general, whenever two properties being programmed must
compose differently and yet be coordinated, we say that they
cross-cut each other.” A crosscutting concern consists of
such crosscutting properties. Hence, by definition, it might
seem anti-modular; something not locally complete or self-
contained at all. This might give us an impression that AOP
is a paradigm to “modularize the un-modularizable” [29] but
this phrase sounds contradictory or at least confusing.
Typical AOP languages such as AspectJ [26] increase this

confusion and, what is worse, they have lead some develop-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA/SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0203-6/10/10. . . $10.00

ers to feeling that AOP languages do not really modularize
programs but rather break modularity in a classical sense.
As we show in this paper, AspectJ programs cannot be mod-
ularly (i.e. separately) typechecked or compiled. This fact
would not be inherent to AOP in general but it would be
an intentional design decision for maximizing practical use-
fulness of the language. However, some users claimed that
“Given that AOP has set out to modularize crosscutting con-
cerns (its methodological claim), but by its very nature (its
mechanics) breaks modularity” [42]. To respond such con-
fusion, Kiczales and Mezini proposed a new interpretation
of modularity [27], in which a module interface is context
dependent on a deployment configuration of classes and as-
pects. In fact, a module interface of AspectJ is not deter-
mined in their sense until a list of all woven aspects is given.
The authors of [27] also mentioned “crosscutting concerns
inherently require global knowledge to support reasoning.”
The need of global analysis is, however, a sign of being un-
modular.
To investigate this confusion, we attempt to develop a

simple Java-like AOP language whose programs can be
modularly typechecked and compiled without a global anal-
ysis. This language is named GluonJ. This paper reports
this attempt. This language supports a useful subset of the
AOP functionality of AspectJ. If a program in this language
can be modularly compiled, then it will be revealed that un-
modularity is not inherent to AOP or crosscutting concerns
in general. Even if it cannot, we will see the source of the
unmodularity. Being modularly compilable does not mean
modular reasoning is also possible. However, it will be a
solid basis of discussion. Directly discussing modular rea-
soning is difficult. For example, it is not clear that modular
reasoning is possible in object-oriented programming (OOP)
because of method overriding.
To ease comparison with traditional modular OOP lan-

guages, the AOP mechanisms of our language are simple
enhancement of method overriding and method dispatch of
OOP. They are not based on the popular pointcut-advice
of AspectJ. The pointcut-advice is too different from OOP
mechanisms to be compared side-by-side with respect to
modularity. Our language adopts the idea of predicate dis-

patch [16, 32], which is modified to use external calling con-
texts, such as who is a caller, so that method dispatch can be
used for AOP. This modified mechanism is called contextual
predicate dispatch.
Unfortunately, it turns out that a program written in Glu-

onJ cannot be completely modularly typechecked or com-
piled. GluonJ is only mostly modular and a limited global
analysis is necessary. However, it is not inherent to the basic
idea of the language; accepting the global analysis is our de-
sign decision. We can avoid the global analysis by changing
the language design of GluonJ if we can degrade its prac-
tical usefulness to a certain degree. Furthermore, our com-
pilation technique for minimizing runtime overheads due to
AOP also needs global analysis and transformation at link
time or load time. This paper, however, shows that only lim-
ited global transformation is necessary.
Our contribution is twofold. (1) We propose a language

providing AOP mechanisms, which are not traditional ones
but rather enhanced OOP mechanisms for dealing with
crosscutting concerns. This makes it easy to investigate the
modularity of AOP mechanisms by comparing with well-
known OOP mechanisms. (2) We show programs in that
language are mostly modularly compiled although it is often
criticized that AOP will break modularity. Then we discuss
the modularity of AOP.
In the rest, Section 2 briefly overviews the AOP function-

ality discussed in this paper. Section 3 proposes our language
GluonJ, which provides AOP functionality in the OOP style.
Sections 4 to 6 show the calculus and implementation of
GluonJ. Section 7 mentions related work and Section 8 con-
cludes this paper.

2. Language mechanisms for AOP
This section briefly presents the AOP mechanisms that we
deal with in this paper. Then it shows that AspectJ programs
using those mechanisms are not modularly compiled.

2.1 Destructive extension
A combination of execution pointcut and advice is one of
the most useful mechanisms of AspectJ. It enables destruc-
tivelymodifying an existing method. The source code of that
method does not change due to the obliviousness property of
AOP [17].
Figure 1 shows a simplified example of interpreter writ-

ten with aspects. The Calc class has a main method, which
makes an instance of Parser to parse a program given as a
command-line argument. Then it evaluates the program by
calling the evalmethod. Suppose that this language can com-
pute only an integer value. We can extend this program by
writing an aspect to support floating-point numbers besides
integers. For example, the AddExpr class, which is for the+
nodes of an abstract syntax tree, originally can process only
integer values but it can be extended by the FloatExt aspect
to compute floating-point numbers as well. Its around advice

public class Calc {

public static void main(String[] args) {

ASTree t = new Parser().parse(args[0]);

t.eval();

}

}

class AddExpr extends ASTree {

Value eval() {

return new IntValue(left.eval().intValue()

+ right.eval().intValue());

}

}

public aspect FloatExt {

Value around(AddExpr ae):

execution(Value AddExpr.eval()) && this(ae) {

if (ae.left.isType(Integer.class)

&& ae.right.isType(Integer.class))

return proceed();

else

return new DoubleValue(ae.left.eval().doubleValue()

+ ae.left.eval().doubleValue());

}

}

Figure 1. A simple interpreter in AspectJ.

substitutes for the original eval method in AddExpr. This is
similar to method overriding. proceed() invokes the original
method body of eval.
Note that the aspect destructively modifies the behavior

of the eval method in AddExpr and hence we do not have to
modify the parse method in the Parser class to instantiate a
new version of the AddExpr class when it finds a + expres-
sion.1 The original program (Calc and AddExpr) remains the
same; the behavior reverts to the original if the FloatExt as-
pect is removed.
If the compiler above is implemented without AOP, this

level of customizability is not available by other extension
mechanisms such as inheritance, mixins [7], mixin layers
[40], family polymorphism [15], traits [39], and nested in-
heritance [34]. These mechanisms let an extended version of
a class, namely a subclass, coexist with the original version
of that class. Thus, if programmers want to use the new be-
havior for some instances, they must explicitly declare that
fact, for example, by giving the subclass name when the
instances are created. The other instances remain showing
the old behavior. This is beneficial when reusing parts of a
program, such as classes, since both a new version and its
original version can be used in the same program. For exam-
ple, programmers can implement a JarFile class as a subclass
of ZipFile class and use both in one program. On the other
hand, when programmers want to use only the new behav-
ior, they have to modify all occurrences of object creation
included in the original program to use the new version.

1 No matter whether we use AOP, we must modify the Parser class to parse
a floating-point constant.

AOP does not allow original and new versions of a class
to coexist in a program. It makes only the new version
available in the program. This destructive feature of AOP
is useful when programmers want to reuse a whole pro-
gram and partly customize it to build new software. Reusing
a whole program has practical needs. A good example is
JastAdd [14], which is a compiler construction framework.
Since JastAdd contains a simple AOP mechanism, program-
mers can develop a Java 1.5 compiler by only writing as-
pects for extending a Java 1.4 compiler. They do not have
to modify object-creation expressions in the original pro-
gram of the Java 1.4 compiler. All extensions are separated
into the aspects. We hence easily switch Java 1.4 and 1.5 by
adding/removing the aspects.

2.2 Limited scope
In AspectJ, the within/withincode pointcut enables to apply
an extension into a limited scope. In particular, a combina-
tion of call and withincode pointcuts enables to execute an
advice in the middle of a method body. This partial extension
of a method body is a unique feature of AOP. Note that we
do not have to modify the source code of the method body.
Since it may be considered as breaking the information hid-
ing principle [37] on a method, its benefits have been con-
troversial [42] and several ideas for dealing with this have
been proposed so far [1, 19]. On the other hand, this feature
is necessary to implement a number of crosscutting concerns
represented by a famous logging concern.
Figure 2 presents a simple Logging aspect. Its before ad-

vice is invoked in the middle of the eval method in the
VariableDecl class, namely, just before the recordVariable
method in Env is called from the evalmethod. The call point-
cut selects all occurrences of recordVariable calls and the
withincode selects only the occurrences in the eval method.
Although the Logging aspect is a simple example, the

same idea can be used to implement a variety of cross-
cutting concerns including performance profiling, transac-
tion, synchronization, and security. For example, it is pos-
sible to write around advice for performing mutual exclu-
sion to make the method thread-safe when the recordVari-
able method in Figure 2 is executed.

2.3 Modular compilation
The AspectJ designers do not seem to have prioritized mod-
ular typechecking. For example, a proceed call in an around
advice is not type-safe due to its generic nature. This prob-
lem was solved by StrongAspectJ [18]. Furthermore, an
early AspectJ compiler needs to compile all source files
composing a program together. Although a later compiler
can modularly compile each source file and finally link all
the compiled binary files, programmers still need to manu-
ally give a compiler some source files together. For exam-
ple, if a method calls another method introduced by an as-
pect, that aspect must be compiled together with the caller
method. In Figure 3, the print method in the Printer aspect

public class VariableDecl extends ASTree {

String name;

Value eval() {

Value initValue = right.eval();

env.recordVariable(name, initValue);

return null;

}

}

public aspect Logging {

before():

call(void Env.recordVariable(String,Value))

&& withincode(Value VariableDecl.eval()) {

System.out.println("declare a variable");

}

}

Figure 2. A logging aspect.

public aspect Printer {

public void AddExpr.print() {

System.out.println(this.opName());

}

}

public aspect OperatorName {

public String AddExpr.opName() {

return "+";

}

}

Figure 3. An intertype declaration depending on another

calls the opName method introduced by the OperatorName
aspect. If only the AddExpr class and the Printer aspect are
compiled without the OperatorName aspect, the compiler
will report opName is not found since it cannot see the Op-
eratorName aspect.
The lack of modular typechecking might be not intrinsic

in AOP in general. It might be an intentional design deci-
sion for practical flexibility and fixing this problem might
be possible by adding extra declarations. However, this con-
fuses the discussion on the modularity of AOP. If modular
typechecking were possible, the checkable properties would
be the base of the discussion on the modularity.

3. GluonJ
This section presents our simple AOP language named Glu-
onJ, which provides the AOP functionality mentioned in the
previous section. GluonJ is an extension of Java and intro-
duces a new language construct called reviser into Java.

3.1 Reviser
A reviser is similar to a class but the member declarations of
a reviser are considered as part of the definition of its target
class. They are merged into its target’s. Figure 4 is an exam-
ple of reviser. Like open classes [12], this reviserPrinting di-
rectly appends new members, a tag field and a printmethod,
to its target class AddExpr. A reviser cannot be instantiated

class Printing revises AddExpr {

String tag = "+";

void print() {

System.out.println(left + tag + right);

}

}

Figure 4. A reviser adding new members.

class FloatExt revises AddExpr {

Value eval() {

if (left.isType(Integer.class)

&& right.isType(Integer.class))

return super.eval();

else

return new DoubleValue(left.eval().doubleValue()

+ right.eval().doubleValue());

}

}

Figure 5. A reviser equivalent to the aspect in Figure 1.

like an abstract class of Java, which cannot be instantiated
either. Hence a reviser cannot declare a constructor. Note
that the initial value of tag is given in the declaration; no
explicit constructor can be declared.
If a method name in a reviser is the same as a method in

its target class, then the method implementation in the re-
viser destructively replaces (or overrides) the original im-
plementation in the target class as an around advice with an
execution pointcut does in AspectJ. Figure 5 presents a re-
viser that performs the same modification that the FloatExt
aspect in Figure 1 does. Now a call to eval on an AddExpr
object invokes the implementation described in the FloatExt
class. A call super.eval() included in FloatExt invokes the
original implementation of the eval method in AddExpr.
Unlike a method, a reviser cannot revise a constructor in

its target class since a reviser cannot declare an explicit con-
structor. Eliminating this restriction would not be difficult
but it is one of future possible extensions of the language.
A static method in a reviser may substitute for the corre-

sponding static method implementation declared in its tar-
get class. Suppose that the AddExpr class declares a static
method foo and the reviser FloatEx also declares foo. Then,
a call AddExpr.foo() invokes the implementation of foo in
the reviser FloatEx. Within the body of the foo method in
the reviser, however, a call AddExpr.foo() invokes the im-
plementation byAddExprwhile a call FloatEx.foo() invokes
the implementation by FloatEx.

3.2 A withinmethod
To apply destructive extension in a limited scope, GluonJ
adopts the idea of predicate dispatch. A reviser can declare a
method with a predicate. With predicate dispatch, a method
implementation may have a predicate as a guard. It overrides
another if its predicate is true and implies the other predicate.

class Tracer revises Env {

void recordVariable(String name, Value value)

within VariableDecl.eval() {

System.out.println("declare a variable");

super.recordVariable(name, value);

}

}

Figure 6. A method with a predicate.

In JPred [32], a predicate may be a test of an argument type
or value, or the receiver’s field value.
In GluonJ, only the within predicate is available to pro-

vide the capability of the within/withincode pointcut of As-
pectJ. We below call a method with this predicate a within
method. The within predicate becomes true if a method-
caller’s site is within the location given by the argument.
Like in AspectJ, with a within method, GluonJ enables to
append a method invocation in the middle of the body of an-
other method. Since a predicate referring to external calling
contexts is unique to AOP, we call the method dispatch in
GluonJ contextual predicate dispatch.
Figure 6 shows an example of within method. Note

that the method signature is followed by a within clause,
which specifies a class or a method. The reviser Tracer
adds logging functionality as the Logging aspect in Fig-
ure 2 does. The implementation of recordVariable in this
reviser is invoked only when the method is called from the
eval method in the VariableDecl class. It prints a message
and then invokes the original implementation in Env by su-
per.recordVariable(...). On the other hand, when the method
is called not from the eval method, the original implementa-
tion in Env is invoked since the predicate is false. A compile
error would be reported if a program does not provide a
method implementation without a predicate or with a predi-
cate matching the caller’s site. Note that a reviser can declare
a within method that does not override any method imple-
mentation in its target class.

3.3 Combining revisers
GluonJ allows multiple revisers to revise the same class. The
precedence order among reviser is specified by a requires
clause in a class declaration. Figure 7 shows an example.
This reviser StringExt declares that it has higher precedence
than another reviser FloatExt in Figure 5, which revises
the same target AddExpr. It also declares that StringExt
runs together with FloatExt. A requires clause can include
multiple reviser names separated by comma. The left has
higher precedence. Moreover, a reviser may have a requires
clause including the name of another reviser that revises a
different class.
A requires clause is used to incrementally implement a

new reviser by reusing other revisers. A required reviser,
which has lower precedence, is applied to the target class
before the reviser requiring that. The precedence order is
transitive. In a valid GluonJ program, the precedence order

class StringExt requires FloatExt revises AddExpr {

Value eval() {

if (left.isType(Number.class)

&& right.isType(Number.class))

return super.eval();

else

return new StringValue(left.eval().toString()

+ right.eval().toString());

}

}

Figure 7. A requires clause.

among the revisers revising the same class must be a total
order. If not, a compile error will be reported.
A method implementation declared in a reviser may

override another reviser’s implementation if the reviser has
higher precedence than the other. Their target class has lower
precedence than them. A call on super invokes the overrid-
den implementation in a reviser with lower precedence (or
the target class). This is also true for within methods. On
a method call, a reviser with higher precedence is searched
first to select an implementation matching the calling con-
texts. The target class is searched last. This rule is significant
if two revisers for the same target class have implementa-
tions of the same method but with different predicates such
as within C and within C.foo(). Suppose that a caller site is
the foo method in C. If a reviser with higher precedence has
the implementation with within C, it is selected instead of
the implementation with within C.foo() although the latter
is more specific. The formal semantics of method dispatch
is presented in the next section.

3.4 Using a new member
A reviser can refer to members added by other revisers
specified by its requires clause. In Figure 7, StringExt can
refer to members added by FloatExt (if any). On the other
hand, a class needs a using declaration when it refers to
members added by a reviser. The added members are visible
only within the source file including the using declaration of
that adding reviser. Figure 8 shows an example. The Printer
class can call the print method on an AddExpr object since
the source file includes a using declaration of the reviser
Printing.
This restriction might seem to decrease the obliviousness

property of GluonJ. The reader might think that a source file
must be modified to include a using declaration and hence
reusing a whole program as is would be made difficult.
However, this restriction is not a problem. If an original
program is self-contained, it never accesses newly added
members since it was written before the reviser. Only the
classes written with or after the reviser will access the added
members and thus it is acceptable to enforce programmers to
include a using declaration in the source file of those classes.
On the other hand, a using declaration helps modular type
checking.

using Printing; // a using declaration

class Printer {

static void print(AddExpr e) {

e.print();

}

}

Figure 8. A class using a method added by a reviser.

3.5 Visibility rule
A reviser follows the same visibility rule as normal classes.
It may only access publicmembers, so-called packagemem-
bers in the same package, protected members of the target
class and its super classes, and private members of the re-
viser itself. It may also access protected members of other
revisers sharing the same target class but having lower prece-
dence. Method overriding by a reviser also follows the rule
of the standard Java. It cannot override a private method in
the target class. This rule restricts the extensibility by revis-
ers but we adopt this rule for the information hiding princi-
ple [37]. This rule will also ease the fragile pointcut problem
of AOP [28, 31, 43]. In a good Java program, a non-private
method can be expected to be available until the design of
the program is largely changed due to refactoring.

3.6 Current Limitations
Dynamic pointcuts
Although AspectJ provides dynamic pointcuts such as cflow,
GluonJ does not deal with them. Introducing other predicates
like cflow and improving the AOP capability of GluonJ is a
straightforward extension as our previous workshop paper
[9] showed. However, our goal is modular typechecking and
compilation; the dynamic behavior of dynamic pointcuts ob-
viously complicates type checking, in particular, checking
the exhaustiveness property. This property guarantees that
“no such method is found” errors never happen during run-
time. Unless a method with a dynamic predicate like cflow
always overrides a “default” method, which has no dynamic
predicate, GluonJ could not statically check that this prop-
erty is preserved.
This limitation might look serious but the static pointcuts

discussed in this paper are still a useful subset. For exam-
ple, the AspectJ support for Eclipse AJDT 2.0.2 consists
of 2212 classes and 47 aspects. It includes only 8 occur-
rences of cflow while it includes 60 execution, 92 call, and
97 within/withincode pointcuts. A drawing tool AJHotDraw
0.4 includes no cflow although it includes 18 execution, 30
call, and 36 within/withincode in 290 classes and 31 aspects.

Other AspectJ features
For the same reason of modular typechecking, GluonJ does
not support the pattern matching feature of AspectJ, with
which a pointcut argument may include wild cards and/or
enumerate several join points. For example, in GluonJ, a
withinmethod cannot override multiple methods whose sig-

natures match a pattern. A single reviser cannot revise mul-
tiple classes. Although this pattern matching feature is use-
ful to implement a homogeneous concern, GluonJ does not
support it and hence its main applications are heterogeneous
concerns.
Although AspectJ provides abstract aspects and point-

cuts, GluonJ does not. These enable separating concrete defi-
nitions of pointcuts into sub-aspects and therby they improve
the reusability of aspects. An example of the use is found in
[20]. Introducing this template-like mechanism into GluonJ
for better code reusability is out of scope of this paper.

super and proceed

A call on super in a within method invokes the overridden
implementation, either in a next reviser with lower prece-
dence or in its target class if there are no more revisers. The
search for the target method of the super call uses the re-
viser as the caller site when checking a within predicate. It
does not use the original caller. Suppose that a method foo
in C invokes a within method bar in a reviser R. If bar calls
super.bar(), then the caller site for the search is not foo in
C but bar in R. Thus, the implementation with a predicate
within C.foo() is not selected.
This semantics is different from proceed in AspectJ since

proceed searches aspects under the same contexts as the
original. ExtendingGluonJ to provide a proceed-like mecha-
nism is our future work. GluonJ adopts the semantics above
for keeping super calls simple. Note that a within method
bar may call a different method on super, for example, su-
per.bar2() instead of super.bar(). GluonJ searches for both
super.bar2() and super.bar() under the same calling con-
texts. Another design option is that the caller site is bar in R
for super.bar2() while it is foo in C for super.bar(). GluonJ,
however, does not adopt this design because of its complica-
tion.

Multiple withinmethods
If a reviser declares a method foo with a within predicate,
then it cannot declare another method foo with the same sig-
nature with/without a predicate. This limitation is just for
simplifying the specification and implementation of GluonJ.
To declare more than onewithinmethod for foo, multiple re-
visers for the same class must be declared and each of them
must declare onewithinmethod. As in Java, a reviser can de-
clare multiple methods foo if they have different signatures.

4. Core calculus of GluonJ
In this section, we give a formal calculus called GluonFJ as
an extension of Featherweight Java (FJ) [24]. GluonFJ adds
revisers and within methods to FJ. For simplicity, we do not
model super calls, and fields of revisers; within clauses are
restricted so that only class names can be given as source
code locations.
The purpose of developing a formal calculus is twofold:

(1) to show type soundness of the core language as usual

and (2) to rigorously discuss to what extent type checking
and compilation are modular. Actually, our proof of type
soundness is an easy extension of one for FJ, thanks to the
fact that most of the features of GluonJ are extensions of
those of traditional object-oriented languages. We discuss
in what sense typechecking is (mostly) modular in the next
section. Later in Section 6, we give a formal translation
from GluonFJ to FJ to model compilation and argue that
compilation is also mostly modular.
We first give the syntax, typing rules, and operational

semantics of GluonFJ and then state type soundness. Here,
we show only a main part of definitions and the statements of
theorems here; the full definition of the language and proof
sketches are found in the companion technical report [10].

4.1 Syntax
As mentioned above, GluonFJ has revisers and withinmeth-
ods in addition to most of the features of FJ. Although they
are important in compilation as we see in the next section,
typecasts have been removed from GluonFJ, since they are
orthogonal to the additional features.
The syntax of GluonFJ is given as follows:

CL ::= class C extends C using R { C f; M }
class

| class R revises C using R { M }
reviser

L ::= C | R location
M ::= C m(C x){ return e; } [within L]

method
e ::= x | e.f | e.m(e) | new C(e) | e in L

expression
v, w ::= new C(v) value

Following the convention of FJ, we use an overline to de-
note a sequence and write, for example, x as shorthand for
x1, . . . , xn and C f; for “C1 f1;, . . . , Cn fn;”. The empty
sequence is written •. The metavariables B, C, D, and E range
over class names; R ranges over reviser names; m ranges over
method names; and x and y range over variables, which in-
clude the special variable this. For technical convenience,
we assume that class names and reviser names are disjoint
and the (denumerable) set of reviser names is totally or-
dered. This total order represents the precedence in method
dispatch and so there are no requires clauses in class def-
initions. In what follows, we assume that any sequence of
reviser names R is sorted according to this order (the smaller
the index is, the higher the precedence is).

CL is a class (or reviser) definition, consisting of its name,
a super class name (or the class name that it revises, respec-
tively), reviser names that it uses, fields, and methods. A re-
viser cannot have fields. We omit explicit constructor defini-
tions, which take initial values of all fields and set them to the
corresponding ones. Types of GluonFJ are only class names,
hence C for field, parameter, and return types. A method
definition M can have an optional clause within L, where

L, standing for locations, is a class/reviser name. One class
cannot have more than one method of the same name. The
body of a method is a single return statement, following
FJ. Expressions are mostly the same as FJ except for omitted
typecasts and the new form e in L, which is used to mark
which class e originates from in the operational semantics.
This form is not supposed to appear in class definitions. We
will denote a substitution of expressions e for variables x by
[e/x].
A GluonFJ program is a triple consisting of a class ta-

ble CT , which is a mapping from class names to class
definitions, a reviser table RT , which is also a mapping
from reviser names to reviser definitions, and an expression,
which stands for the body of the main method. We write
dom(CT) (and dom(RT)) for the domain of the table and
write C ext D when CT(C) = class C extends D · · · .
Similarly, we use R rev C and L using R.
Finally, we always assume fixed class tables, which

are assumed to satisfy the following sanity conditions: (1)
CT(C) = class C · · · for every C ∈ dom(CT) and sim-
ilarly for RT; (2) Object /∈ dom(CT) ∪ dom(RT); (3) for
every name L (except Object) appearing anywhere in CT
and RT , we have L ∈ dom(CT) ∪ dom(RT); and (4) there
are no cycles formed by extends clauses.

4.2 Lookup functions
As in FJ, we need functions to look up fields, method sig-
natures and bodies in the class tables. The function fields(C)
returns all the fields of C and its super classes with their types
as C f. We omit its straightforward definition (which in fact
is the same as in FJ). The function fstrev(C, R), whose defini-
tion is omitted, returns the first reviser that revises C, found
in R, or just returns C if there is no such reviser. The func-
tion next(L, R) returns the next class of L to look up and is
defined by:

next(Ri, R) =

⎧⎪⎪⎨
⎪⎪⎩

Rj if j > i, Ri rev C, Rj rev C,
and ¬∃k ∈ (i, j).Rk rev C

C if Ri rev C and
¬∃j > i.Rj rev C

next(C, R) = fstrev(D, R) (if C ext D)

(Here, (i, j) stands for the set {i + 1, . . . , j − 1}). We often
omit the second argument R to these functions when it is
dom(RT).
The functionmtype(m, L, R, L′) returns the signature C→C

of the method found in class L using R. L′ represents the
location of the caller. It is defined by the following rules:

class L {extends, revises} C using R′ { C f; M }
B m(B x){ return e; } [within L′] ∈ M

mtype(m, L, R, L′) = B→B

class L {extends, revises} C using R′ { C f; M }
m [within L′] �∈ M mtype(m, next(L, R), R, L′) = B→B

mtype(m, L, R, L′) = B→B

The first rule represents the case where m is found in L. The
method may be a within method, in which case the location
has to agree with the last argument. The second rule is for the
case where m is not present in L (m [within L′] �∈ M means
that there is neither method named m nor m · · · within L′

in M); then, the signature is equivalent to that from the next
class, represented by next(L, R). As we see in typing rules, R
will be taken from the using clause of the class in which
a method invocation appears so that typechecking of ex-
pressions does not need all revisers, that is, it is modular.
As in FJ, we assume that Object has no methods and so
mtype(m, Object, •, L) is undefined for any L.
Finally, we define the function mbody(m, L, L′) to look

up a method body. It returns the body of the method m in
L called from L′ as the triple, written x.e in L′′, where x
are parameters, e is the method body, and the location L′′

stands for the location where the method is found. The rules
are similar to mtype:

class L {extends, revises} C using R { C f; M }
B m(B x){ return e; } [within L′] ∈ M

mbody(m, L, L′) = x.e in L

class L {extends, revises} C using R { C f; M }
m [within L′] �∈ M

mbody(m, next(L), L′) = x.e in L′′

mbody(m, L, L′) = x.e in L′′

Unlike mtype, however, it (implicitly) uses all revisers (re-
member that next(L) is shorthand for next(L, dom(RT))).

4.3 Type system
The subtype relation is written C <: D, which is the reflexive
and transitive closure of the extends relation.
The type judgment for expressions is of the form L; Γ �

e : C, read “expression e in class/reviser L is given type
C under type environment Γ.” A type environment Γ, also
written x:C, is a finite mapping from variables x to types C.
The typing rules are given below.

L; Γ � x : Γ(x) (T-VAR)

L; Γ � e0 : C0 fields(C0) = C f

L; Γ � e0.fi : Ci
(T-FIELD)

L; Γ � e0 : C0 L; Γ � e : C L using R
mtype(m, fstrev(C0, R), R, L) = D→C C <: D

L; Γ � e0.m(e) : C
(T-INVK)

fields(C) = D f L; Γ � e : C C <: D

L; Γ � new C(e) : C
(T-NEW)

L′; Γ � e : C

L; Γ � e in L′ : C
(T-IN)

Most rules are straightforward adaptations from FJ typ-
ing rules. In the rule T-INVK, method lookup starts from
fstrev(C, R), taking into account revised classes R taken from
the using clause of the current class L, which is also given
to mtype as the caller information. In the rule T-IN, the lo-
cation for e is switched since e originates from a method in
L′.
The type judgment formethods is of the form M OK IN L,

read “method M is well typed in class L.” We show only the
rule for methods in a reviser since the other rule for ones in
a class is similar.

R rev D R; x : C, this : D � e0 : E0 E0 <: C0

for any L, if mtype(m, next(R), dom(RT), L) = D→D0,
then C = D and C0 = D0

C0 m(C x){ return e0; } [within L′] OK IN R
(T-METHODR)

In both rules, the method body e has to be well typed under
the type declarations of the parameters x; the type of this
is the (revised, if the method is declared in a reviser) class
name in which the method is declared. The last conditional
premise checks whether M correctly overrides all the method
(be it normal or within) of the same name in super classes.
Note that dom(RT) is used here. It means that it requires all
revisers to check valid method overriding. Only this condi-
tion prevents completely modular typechecking and thus the
corresponding check is deferred to the final stage of compi-
lation (see the next section).
Finally, the type judgment for classes is written CL OK,

meaning “class CL is well typed.” We show only the rule for
classes here (the other rule for revisers is similar).

M OK IN C

class C extends D using R { C f; M } OK

A class table CT or RT is well typed if all the classes in it
are well typed and we write (CT,RT) OK when both class
tables are well typed.

4.4 Operational semantics
The reduction relation is of the form L � e −→ e′, read
“expression e reduces to expression e′ in one step in L.”
Reduction rules are given below:

fields(C) = C f

L � new C(v).fi −→ vi

(R-FIELD)

L � v in L′ −→ v
(R-RETURN)

mbody(m, fstrev(C), L) = x.e0 in L′

L � new C(v).m(w)
−→ ([w/x, new C(v)/this]e0) in L′

(R-INVK)

All rules are straightforward. When a method is invoked
on an object of C, method lookup starts from fstrev(C), the
first reviser for C. To distinguish the location of the method
body from that of its caller, in L′ is added to it. The rule
R-RETURN represents the return from a method. Unlike FJ,
the semantics is call-by-value because the location where
an expression is reduced is important and passing a non-
value expression from one location to another changes its
meaning. So, the receiver and arguments must be a value,
whose meaning is independent of locations, in R-FIELD and
R-INVK.
We omit congruence rules, which allow a subexpression

to reduce.

4.5 Type soundness
It is not difficult to show that GluonFJ is type sound; it
enjoys subject reduction and progress [46], which can be
proved in the standard manner. (See the companion technical
report [10] for details.) Here, we suppose that (CT,RT) OK
and write L � e1 −→∗ en when L � e1 −→ e2, . . . ,
L � en−1 −→ en.

THEOREM 1 (Subject Reduction). If L; Γ � e : C and
L � e −→ e′, then L; Γ � e′ : D for some D such that
C <: D.

THEOREM 2 (Progress). If L; ∅ � e ∈ C, then either e is a
value, or there exists some e′ such that L � e −→ e′.

THEOREM 3 (Type Soundness). If L; ∅ � e : C and L �
e −→∗ e′ with e′ a normal form, then e′ is either a value v
with L; ∅ � v : D for some D <: C.

PROOF 1. Immediate from Theorems 1 and 2.

5. Discussion
Mostly Modular typechecking
The typechecking of a GluonJ program is mostly modular.
As we rigidly showed in the previous section, every class and
reviser is modularly typecheckable except two rules. First,
the precedence order among the revisers revising the same
class must be a total order. Checking this rule requires all the
revisers used in a program are known. Second, T-METHODR
shown in Section 4.3 (and the corresponding rule for meth-
ods in a class) must be checked. This rule is violated when
a method added by a reviser is incompatibly overridden by a
method in an existing subclass (or another reviser for a sub-
class). Checking this also requires all the revisers are known
at compile time.
The modularly typecheckable part of a program can be

regarded as a module interface, which does not change by
deployment configuration of revisers. On the other hand, the
unmodularity of GluonJ is due to checking T-METHODR
and the precedence order among revisers. This check guar-
antees compatibility among the modifications by revisers

since the modifications mutually affect each other. This
check is a cost of dealing with crosscutting concerns.
However, the unmodularity of GluonJ is a property grad-

ually introduced depending on language design. In fact,
avoiding the unmodularity of GluonJ is possible although
it restricts practical usefulness of the language. For exam-
ple, a compiler could modularly typecheck T-MethodR if
the language semantics were modified. We could avoid this
unmodularity if method overloading considered return types
as well as parameter types, for example, if we allow over-
loading two methods such as int foo() and String foo()
when one is declared in a class and the other is in a subclass
of that class. However, this new semantics is incompatible to
normal Java’s. Avoiding the global check of the precedence
order is also possible if we restrict usefulness of GluonJ.
For example, if a program can include only one reviser R
and its directly/indirectly requiring revisers, a compiler can
typecheck that the precedence order among those revisers
are total order when it compiles the root reviser R.

Is encapsulation broken?
Since a reviser destructively modifies a class, like AspectJ, it
might seem to break modularity. However, comparing Glu-
onJ with other OOP languages, we can hardly claim that
GluonJ largely breaks modularity. We see its AOP capabil-
ity is provided by simple variants of OOP constructs like
method overriding. It is just design decision to what ex-
tent the modularity is weakened from the rigid modularity
achieved in OOP. Although GluonJ still has the fragile point-
cut problem due to the within predicate and GluonJ’s de-
structive nature may be dangerous, these problems are some-
what addressed by the normal visibility rule by private and
so on. Typechecking is only mostly modular but, if we really
need, we can fix this problem by giving up some expressive
power of the language.
Our observation is that AOP is a paradigm for (not break-

ing but) loosing modularity to meet practical demands. The
degree of loosing is a design issue. Since modularity is
loosen with respect to typechecking and compilation, AOP
requires more global knowledge for reasoning than OOP.
However, OOP also requires global knowledge to a certain
degree. To know the exact behavior of a method call in OOP,
we need global knowledge, such as which class overrides the
method.

6. Implementation
6.1 Compilation overview
We implement a reviser by translating it into a subclass of
its target class and then adjusting a whole program so that
the reviser will be used instead of its target class in instantia-
tions. Thus, the compilation of a GluonJ program consists
of two stages: source-to-bytecode translation and linking.
We implemented the translation stage by extending JastAddJ
[14] and the linking stage by using Javassist [8]. The linking

stage is bytecode transformation and it is executed at load
time or statically at the end of compile time. The source code
of the compiler is available from our website.2

Translation stage
At the translation stage, a source file is separately com-
piled into Java bytecode. This compilation is modular; it
needs only the revisers specified by using declarations and
requires clauses as well as the classes and interfaces on
which the source file explicitly depends. Static typechecking
is executed at this stage except T-METHODR shown in Sec-
tion 4.3. Informally, our compiler performs the typechecking
for normal Java and generates bytecode as if a reviser is a di-
rect subclass of its target class. It also translates a member-
access expression if it accesses a member added by a reviser.
For example, an expression e.print() is translated into:

((Printing)e).print()

if the print method is newly added to the class of e by the
reviser Printing given by a using declaration (as in Figure 8).
A withinmethod is compiled as if it is a normal method. The
within predicate is translated into a Java annotation to that
method.
A constructor of a reviser is compiled differently from

normal constructors of Java classes. Recall that a reviser
cannot declare an explicit constructor. At this stage, the
compiler generates only the default constructor, which takes
no arguments, initializes field values, and calls the default
constructor of the target class since the target class of a
reviser is treated as its super class during compilation. The
target class does not have to declare the default constructor
since the generated constructor is modified at the next stage.

Linking stage
At the linking stage, all the revisers included in a program
must be given. In this sense, this stage needs a whole-
program analysis and hence it is not modular. Our linker
applies bytecode transformation to every compiled class.
Since this transformation can be applied separately to every
class if only all the revisers are given, this stage is still fairly
modular. It never refers to other classes.
Our linker first computes the precedence order among the

revisers and checks its validity. This may throw a compile er-
ror. Then the linker sets the direct super class of every reviser
to its target class. If multiple revisers revise the same target
class, then they are linearized to make a single inheritance
hierarchy according to the precedence order. For example,
if class R and S revises the same class C and the reviser R
has higher precedence than S, then R extends S, which ex-
tends C. If the target class has normal subclasses, their super
class is changed from that target class to the reviser. If a nor-
mal class D extends C, then D is also changed to extend R.
When a super class is changed, all method calls on super is

2www.csg.is.titech.ac.jp/projects/gluonj

also modified (at bytecode level) to invoke a method in the
new super class.
Our linker next checks the last premise of T-METHODR,

which requires that the method overriding by revisers is
valid. Suppose that two revisers revise the same class. If
these revisers declare methods with the same name and pa-
rameter types but with different (not-covariant) return types,
then this method overriding is invalid and a compile error
will be thrown.
The linker also generates constructors for every reviser

by modifying the default constructor generated at the first
stage. A constructor is generated per constructor of the super
class. It calls super() with the received arguments and then
initializes field values. For example, the reviser FloatExt in
Figure 5 will have the following constructor if its target class
AddExpr has a constructor AddExpr(ASTree,ASTree):

public FloatExt(ASTree left, ASTree right) {

super(left, right);

// initialize field values

}

The generated constructors are public. The constructors of
the target class may be changed to public or protected to be
visible from the reviser.
Finally, our linker applies bytecode transformation to ev-

ery class file. If a class C is revised by a reviser R, then all
instantiations of C is transformed into instantiations of R. If
C is revised by multiple classes, then they are instantiations
of the reviser with the highest precedence. Furthermore, if a
staticmethod is overridden by a reviser, then all occurrences
of the call to that staticmethod is redirected to the overriding
method in the reviser.

Implementing a withinmethod
If there is a within method, method dispatch considers a
triple: method name, receiver type, and caller location. In our
implementation, the method name and the caller location are
statically evaluated and only the receiver type is dynamically
evaluated at every method call. The overhead of calling a
within method is, therefore, equivalent to that of calling a
normal method, in which only the receiver type must be
dynamically evaluated. Although caller location is static,
this optimization is not naive since a within method may be
overridden by a normal method in a subclass.
Suppose that a method foo declared in R has a predicate

within L. Our linker first renames that within method to
foo L (the real method name is more elaborate). Next, our
linker transforms a call to foo into a call to foo L if that
call expression is located within L and the static type of the
receiver is R or a super type of R. Otherwise, the call is not
transformed. Since the dynamic type of that receiver may
not be R, if a super type or a subtype of R declares a method
foo, then our linker generates a method foo L for that type.
Here, a super/sub type of R is determined on the basis of the
inheritance relations modified at the linking stage. A super

type may be an interface. The generated foo L method just
executes the foo method declared in that same class by the
invokespecial bytecode (or the body of foo L is a copy of
the body of foo). This delegation may cause a small runtime
overhead. Furthermore, if a super type of R declares a foo
method, then all the subtypes of that type are transformed
to have a foo L method. If the super type is an interface, its
subtypes include classes implementing that interface.
Since Java prohibits transforming some built-in classes,

our implementation does not allow revising a class if it is
instantiated within those built-in classes. The linker can-
not modify this instantiation. It allows declaring a within
method that overrides a method in a built-in class, such as the
toString method in the Object class, but that within method
is implemented in a slightly different approach. Suppose that
a reviser FloatExt revises the AddExpr class and it declares
the toStringmethod with a predicatewithin Parser. Accord-
ing to the approach mentioned above, our linker must ap-
pend a toString Parser method to the Object class. How-
ever, since this is not possible, our linker transforms a call
to toString within the Parser class in a different approach.
For example, if the expression is expr.toString() and the
type of expr is a super type ofAddExpr, then the linker trans-
forms it into this:

expr instanceof AddExpr

? ((AddExpr)expr).toString_Parser()

: expr.toString()

This does not call the toString Parsermethod if the receiver
does not understand that method. The condition expression
will be more complex when a sibling of AddExpr is revised
to have a toString method with the same predicate.

6.2 Formal model of compilation
We formalize the core of the implementation scheme de-
scribed above as translation from GluonFJ to FJ. Instead of
reviewing the definition of FJ from scratch, we use a subset
of GluonFJ, where the reviser class table is empty, as the tar-
get language. (Precisely speaking, we need typecasts (C)e
in the target language but omit typing and reduction rules
since they can be added in a straightforward manner as in
FJ [24].) For simplicity, the formalized translation is done at
once, mixing the two stages described above. After giving
the definition of formal translation, we state that translation
preserves typing.
First, we give a few auxiliary definitions used in the

translation. The function origin(m, L) returns the name of the
super class of L that has first introduced m (be it normal or
within) in the class hierarchy.

class L {extends, revises} D using R′ {C f; M}
B m(B x){ return e; } [within L1] ∈ M

for any L0,mtype(m, next(L), dom(RT), L0) undefined
origin(m, L) = L

origin(m, next(L)) = L′

origin(m, L) = L′

The next two functions withinsub(m, C) and within(m, L) are
used to translatewithinmethods. The functionwithinsub(m, C)
collects all predicates L from classes that revise a subclass
of C and contain a within method of name m.

withinsub(m, C) =⎧⎨
⎩

R ∈ dom(RT) and (∃D.R rev D <: C)
L and class R revises · · · { M }
and B m(B x){return e;} within L ∈ M

⎫⎬
⎭

The function within(m, L), which collects all locations used
as predicates for m in L, is defined to bewithinsub(m, thistype(
origin(m, L))) where thistype(C) = C and thistype(R) = C if
R rev C. For example, consider the following classes:

class A extends Object { C m(){ return e1; } }
class B extends A { C m(){ return e2; }}
class R1 revises A {
C m(){ return e3; } within C

}
class R2 revises B {
C m(){ return e4; } within D

}

Then,withinsub(m, B) = {D} andwithin(m, B) = within(m, R2) =
within(m, R1) = within(m, A) = {C, D}. When L ∈ within(m, C)
the invocation of m on C from class L will be translated to the
invocation of mL, which stands for the name mangled from m
and L.
The judgment for translation is of the form L; Γ � e =⇒

e′, read “expression e is translated to e′ under L and Γ.” We
show only rules for method invocations and constructors,
since others are trivial. In translating a method invocation,
we ensure that a method only available in a reviser can be
invoked, by casting the receiver to L′, which is the reviser
that revises the receiver type with the highest priority. As we
mentioned above, the method name may be changed if the
caller location L is found in within(m, C0).

L; Γ � e0 =⇒ e0
′ L; Γ � e =⇒ e′ L; Γ � e0 : C0

L using R fstrev(C0, R) = L′

m′ =
{

mL if L ∈ within(m, C0)
m otherwise

L; Γ � e0.m(e) =⇒ ((L′)e0
′).m′(e′)

(TR-INVK)

For example, under the four classes A, B, R1, and R2 above,
D; x : B � x.m() =⇒ ((R2)x).mD() is derivable. The
translation of object creation is mostly trivial, except that the
class name is changed to fstrev(C).

fstrev(C) = L′ L; Γ � e =⇒ e′

L; Γ � new C(e) =⇒ new L′(e′)

The judgment for translation of methods is written L �
M =⇒ M. Note that the translation of one method may re-
sult in multiple methods. The first rule is for translation
of a normal method. The method body is translated under
the type environment where parameters have declared types
and this has thistype(L), which is equivalent to the static
type used in typechecking. Since a normal method is called
“within everywhere,” it overrides all the other within meth-
ods, which have mangled names. The location names are
collected by within(m, L).

L; x:B, this:thistype(L) � e =⇒ e′ within(m, L) = L

L � B m(B x){ return e; }

=⇒
B m(B x){ return e′; }
B mL1(B x){ return e′; }
...
B mLn(B x){ return e′; }

For example, the method m in class B above will translate to
three methods named m, mD, and mC, even though no reviser
revising B has a method with within C. (B will have R1,
which has mC after translation, as a super class of B.) The
translation of a within method is straightforward.

L; x:B, this:thistype(L) � e =⇒ e′

L � B m(B x){ return e; } within L′

=⇒ B mL′(B x){ return e′; }

Translation of a class is written � CL =⇒ CL′, and the
translation rule is below.

next(L) = L′ L � M =⇒ M′

� class L {extends, revises} D using R { C f; M }
=⇒ class L extends L′ { C f; M′ }

The super class D is replaced with L′, which is the name of
the next class when looking up definitions. Note that every
reviser is translated to a normal class, so, precisely speaking,
the set of class names of the target language is taken as the
union of the sets of class and reviser names of the source
language.
We write (CT ,RT) =⇒ CT ′ when every class in the

source class tables translates to one in the target, namely, (1)
dom(CT ′) = dom(CT)∪dom(RT); (2) � CT(C) =⇒ CT ′(C)
for any C ∈ dom(CT); and (3) � RT(R) =⇒ CT ′(R) for any
R ∈ dom(RT).

6.3 Properties of Translation
We show that translation preserves typing. Actually, trans-
lation does not change the type of an expression, except for
the case where the expression is new C(e), in which case it
will become fstrev(C). Since we mention two programs be-
fore and after translation at the same time, we explicitly say

class C {

public void work(T1 ticker) {

ticker.tick();

}

}

class T1 {

public void tick() {

Microbench.count1 += 1;

}

}

class R revises T1 {

public void tick() within C {

Microbench.count2 += 1;

}

}

class T2 extends T1 {

public void tick() {

Microbench.count1 += 1;

}

}

Figure 9. Microbenchmark workload

which class table is assumed to avoid confusion. Since lo-
cations are not significant in the target program, we omit L
from judgments.

LEMMA 1. If (CT,RT) =⇒ CT ′ and L; Γ � e : C under
(CT,RT) and L; Γ � e =⇒ e′, then Γ � e′ : L (under CT ′)
where L is either C or fstrev(C).

It is easy to show that translation succeeds when both class
and reviser tables are well typed. Then, we now have the
theorem that a pair of well-typed class and reviser tables
translates to a well-typed class table.

THEOREM 4. If (CT,RT) is OK, then there exists CT ′ such
that (CT,RT) =⇒ CT ′ and CT ′ is OK.

It is left for future work to prove that the translation also
preserves semantics, meaning that no typecasts inserted by
the translation will fail.

6.4 Experiments
As we showed above, since within methods are transformed
into normal method calls, the execution overheads due to
them are extremely small. To investigate this fact, we per-
formed series of experiments on a machine with Intel Core
2 Duo E8500 3.16GHz processor, 3GB memory, Gentoo
Linux with libc ver. 2.9, and Java 1.6.0 15 HotSpot Server
VM (build 14.1-b02, mixed mode).

Microbenchmark
We evaluated the technique adopted by GluonJ as well
as several other possible implementation techniques. For
comparison, we first implemented a micro benchmark in-
corporating several implementation techniques for within
methods. It uses two classes T1 and T2 and one reviser
R (see Figure 9). T2 extends T1 and R revises T1. Each

none static gluonj aspectj instanceof getclass dynamic

5
10

15
20

25
30 inline enabled

m
ic

ro
be

nc
hm

ar
k

lo
op

 it
er

at
io

n
tim

e,
 n

s
5

10
15

20
25

30
5

10
15

20
25

30
5

10
15

20
25

30
5

10
15

20
25

30
5

10
15

20
25

30
5

10
15

20
25

30
5

10
15

20
25

30

none static gluonj aspectj instanceof getclass dynamic

5
10

15
20

25
30

none static gluonj aspectj instanceof getclass dynamic

5
10

15
20

25
30 inline disabled

m
ic

ro
be

nc
hm

ar
k

lo
op

 it
er

at
io

n
tim

e,
 n

s
5

10
15

20
25

30
5

10
15

20
25

30
5

10
15

20
25

30
5

10
15

20
25

30
5

10
15

20
25

30
5

10
15

20
25

30
5

10
15

20
25

30

none static gluonj aspectj instanceof getclass dynamic

5
10

15
20

25
30

Figure 10. Overheads of method dispatch techniques.

class/reviser declares a method tick and R’s method has a
predicate within C. The benchmark calls tick from C on a
various mixture of objects with static type T1. This oper-
ation is repeated 10 million times in a hot loop, compiled
by a JIT (Just-In-Time) compiler with the highest optimiza-
tion level. We found in initial experiments that uniform or
close to uniform distribution of object types results in a JIT
compiler using additional optimizations and hence the com-
parison becomes biased towards cases with less object di-
versity. To reduce this bias, callee objects of different types
are pseudo-randomly chosen at every call to tick.
Figure 10 shows the results. The upper graph shows the

results when the code inlining by a JIT compiler is enabled.
The lower graph shows the results when it is disabled. The
vertical axis represents the duration of a single iteration of
micro benchmark in nano seconds. The horizontal axis rep-
resents implementation techniques for within methods. We
examined seven techniques: none, gluonj, static, aspectj, in-
stanceof, getclass, and dynamic. Gray dots visible on the
graphs show the data points of measurement with a particu-
lar ratio of object mixture.
When optimizations of the caller site are possible, like

guarded devirtualization, all implementation techniques ex-
hibit similar performance. none presents a reference point,
where the method is not overridden. gluonj presents our im-
plementation. The reviser R is translated into a subclass of

T1 (and a super class of T2). A within method tick is re-
named into tick C and a call by C to tick is translated into a
call to tick C. Thus, a tick Cmethod is also added to T1 and
T2. static is the same as gluonj except the body of a tick C
method in T1 and T2 is a copy of tick and thus it implies
no overhead due to delegation. aspectj presents an equiva-
lent implementation in AspectJ. In instanceof and getclass,
the caller calls tick C only when the receiver object is R;
otherwise, it calls tick. instanceof checks the type by the in-
stanceof operator:

public void work(T1 ticker) {

if (ticker instanceof R

&& !(ticker instanceof T2))

ticker.tick_C();

else

ticker.tick();

}

On the other hand, getclass does this by the getClass
method:

public void work(T1 ticker) {

if (ticker.getClass() == R.class)

ticker.tick_C();

else

ticker.tick();

}

Finally, in dynamic, the caller object passes a Class object
representing the type of the caller and thewithinmethod tick
in R checks it:
public void tick(Class caller) {

if (caller == C.class)

Microbench.count2 += 1;

else

Microbench.count1 += 1;

}

The DaCapo benchmarks
Next, we used the DaCapo suite of benchmarks [5] to evalu-
ate potential impact of within methods on real applications,
especially in the cold code. To conservatively estimate the
impact, we directly instrumented the bytecode of all applica-
tion methods, which is structurally equivalent to an “empty”
withinmethod. Thus, all method calls first invoke thatwithin
method, which delegates to the original one. We compared
several of the implementation techniques mentioned above,
those that can be easily imitated via code instrumentation.
Figure 11 shows the results on 8 of 11 DaCapo bench-

marks (the other benchmarks did not work after the instru-
mentation). The vertical axis represents the elapsed time of
each run in seconds. A lower number is better. The horizon-
tal axis represents the iteration of the run from the 1st to
the 10th. A first few iterations show the performance before
deep optimization by a JIT compiler.
Overhead of the instrumentation on the first iteration is

up to 22% for well-behaving benchmarks, and up to 151%

for luindex. Note that we measured overheads of extreme
cases, in which all methods are within methods. In real ap-
plications, most methods would not be within ones. Since
the modification to the benchmark bytecode is essentially
redundant code, the impact is contained only in a warm-up
phase except for lusearch and luindex, which have the
same underlying software package, Lucene. The cause of
such a drastic and constant slowdown remains a topic for
further inquiry. However, in the two benchmarks, the imple-
mentation technique of GluonJ shows the best performance.
For the other benchmarks, the impact of any implementation
technique is negligible on the 10th iteration.

7. Related work
Predicate dispatch
The original predicate dispatch allows only predicates that
access variables locally visible in the static scope of a
method, such as parameters, the receiver object (i.e. this
variable in Java), and their fields. For example, in JPred
[32], a method can be selected only when a parameter value
is an instance of some class. The predicates of JPred were
carefully selected by the JPred designer for modular compi-
lation.
On the other hand, GluonJ provides contextual predicate

dispatch. The within predicate of GluonJ refers to external
calling contexts, like who is a caller, since it must deal with
crosscutting structures, which intrinsically depend on the
externals. This fact removes some locality frommethods and
complicates modular compilation. However, as we showed
above, the compilation of a GluonJ program by our compiler
is still mostly modular.
Presenting similarity between predicate dispatch and the

pointcut-advice of AOP is not new. This idea has been
pointed out by other researchers [6, 21, 35] and ourselves
[9]. The idea of method dispatch depending on a caller ob-
ject is also found in [41]. Our contribution is that we actually
design and implement a language based on this idea and dis-
cussed modular typechecking and compilation.

Other related work
A unique feature of GluonJ is to provide OOP-based mech-
anisms for not only enabling destructive extension but also
limiting its scope. Although limiting its scope has not got
much attention except in the AOP contexts, enabling de-
structive extension has been actively studied in OOP. For
example, MixJuice [23], Feature-Oriented Programming
(FOP) [3], and JavaGI [45] enable this as much as AOP
languages. The partial classes of C# allow adding new mem-
bers to an existing class. Categories in Objective-C also do
so. Some researchers of FOP have suggested using AOP
constructs such as pointcut and advice for crosscutting struc-
tures while using their OOP-based construct, which is a de-
structive style of mixin, for destructive extension [2]. Their
proposal is a hybrid of OOP and AOP.

2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5 antlrantlrantlrantlr

2 4 6 8 10

0
1

2
3

4
5

chartchartchartchart

2 4 6 8 10

0
5

10
15

20
25

30 eclipseeclipseeclipseeclipse

2 4 6 8 10

0
1

2
3

4

fopfopfopfop

2 4 6 8 10

0
1

2
3

4

hsqldbhsqldbhsqldbhsqldb

2 4 6 8 10

0
5

10
15

luindexluindexluindexluindex

2 4 6 8 10

0
2

4
6

8

lusearchlusearchlusearchlusearch

2 4 6 8 10

0
2

4
6

8
10

12 xalanxalanxalanxalan

iteration

tim
e,

 s

base
dynamic
gluonj
instanceof

Figure 11. DaCapo benchmarks.

Open classes [12] and expanders [44] also enable destruc-
tive extension although they can only append new methods
but cannot override existing methods. They are using decla-
rations like using of GluonJ for modular typechecking. The
work by Malabarba et al. [30] allows dynamically changing
class definitions.
Classbox/J [4] and Context-Oriented Programming (COP)

[22] can apply destructive extension into only a limited
scope of program. However, their ability is not equivalent
to the within/withincode pointcut of AspectJ or GluonJ’s
contextual predicate dispatch. They do not enable executing
extra code in the middle of an existing method body without
modifying the body. For example, in Classbox/J, a new ex-
tension is applied and made effective only within a package
explicitly importing that extension. This import is described

in the source code of the package, that is, the client-side
code. On the other hand, in GluonJ, where a new extension
is applied is described in the source code of that extension.
J&s [38] also supports destructive extension through the

mechanism called class sharing. Although there is no need
to modify the original program that creates an object of a
modified class, a view change operation has to be applied to
enable access to new members. From a typechecking point
of view, the view change operation plays a role somewhat
similar to using declarations, but the execution model is
rather different since new members do not always override
old ones.
AspectJ2EE [13] is an AOP system but it has similarity

to GluonJ since it implements an aspect by a subclass of
the target class. However, it only supports the execution

pointcut but not call or within pointcuts. Hence it cannot
limit the scope of extension. It does not provide the same
expressiveness that GluonJ does.
An AOP language Hyper/J [36] might seem to adopt

OOP-style constructs as GluonJ does. It allows implement-
ing every concern by a normal Java class like the partial
classes of C#. However, how to weave (combine) multiple
classes to compose a complete class must be described sep-
arately in a dedicated language, which is far from typical
OOP languages like Java.
We have been developing a series of AOP languages and

some of the languages inherited the name GluonJ. However,
there is no overlap among this paper and the others. The
design of those languages are different. The first GluonJ
published in [11] used XML for describing aspects. The aim
of this work was to allow programmers to flexibly control
the construction of aspect instances. The second GluonJ
published in [33] is more similar to GluonJ presented in this
paper but it is a dynamic AOP language. The work focused
on how to dynamically deploy intertype declarations.

8. Concluding remark
We presented GluonJ, which supports revisers and within
methods for AOP. These mechanisms are natural enhance-
ment to OOP ones and hence GluonJ can be compared with
OOP languages on a side-by-side basis. We developed a for-
mal system for GluonJ and rigidly presented that mostly
modular typechecking and compilation is possible. Since the
AOP capability of GluonJ is a subset of AspectJ’s, extending
it and discussing its modularity is our future work.
Through this work, we observed that AOP does not

largely break modularity, relatively to OOP, but AOP looses
it to meet demands. Since crosscutting modules may con-
flict each other, the compatibility among the modules must
be checked in an unmodular fashion with global knowledge.
This is a source of the unmodularity of AOP. It might be
possible to avoid unmodular checking by restricting the ex-
pressive power of the language so that crosscutting modules
will not conflict. Although this approachmakes the language
more modular, we would have to give up the flexibility for
implementing destructive extension.
Our discussion in this paper is on modular typechecking

and compilation; it is not on modular reasoning. However,
our work would be a solid basis of further discussion of the
modularity of AOP.

Acknowledgement
We thank Hidehiko Masuhara and other members of the
Kumiki project for their helpful comments on this work. This
work was partly sponsored by the KAKENHI program of
JSPS/MEXT of Japan.

References
[1] Aldrich, J.: Open modules: Modular reasoning about advice.

In: ECOOP 2005. pp. 144–168. LNCS 3586, Springer-Verlag
(2005)

[2] Apel, S., Batory, D.: When to use features and aspects?: A
case study. In: Proc. of the 5th Int’l Conf. on Generative
Programming and Component Engineering (GPCE ’06). pp.
59–68. ACM Press (2006)

[3] Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-
wise refinement. IEEE Transactions on Software Engineering
30(6), 355–371 (2004)

[4] Bergel, A., Ducasse, S., Nierstrasz, O.: Classbox/J: Control-
ling the scope of change in Java. In: Proc. of ACM OOPSLA.
pp. 177–189 (2005)

[5] Blackburn, S.M., et al.: The DaCapo benchmarks: Java bench-
marking development and analysis. In: Proc. of ACM OOP-
SLA. pp. 169–190. ACM (2006)

[6] Bockisch, C., Haupt, M., Mezini, M.: Dynamic virtual join
point dispatch. Workshop on Software Engineering Properties
of Languages and Aspect Technologies (SPLAT ’06) (2006)

[7] Bracha, G., Cook, W.: Mixin-based inheritance. In: Proc. of
OOPSLA/ECOOP ’90. pp. 303–311. ACM Press (1990)

[8] Chiba, S.: Load-time structural reflection in Java. In: ECOOP
2000. pp. 313–336. LNCS 1850, Springer-Verlag (2000)

[9] Chiba, S.: Predicate dispatch for aspect-oriented program-
ming. In: the 2nd Workshop on Virtual Machines and Inter-
mediate Languages for emerging modularization mechanisms
(VMIL ’08). pp. 1–5. ACM (2008)

[10] Chiba, S., Igarashi, A., Zakirov, S.: Mostly modular com-
position of crosscutting structures by contextual predicate
dispatch. Research Reports C-267, Dept. of Math. and
Comp. Sciences, Tokyo Institute of Technology (December
2009)

[11] Chiba, S., Ishikawa, R.: Aspect-oriented programming be-
yond dependency injection. In: ECOOP 2005. pp. 121–143.
LNCS 3586, Springer-Verlag (2005)

[12] Clifton, C., Leavens, G.T., Chambers, C., Millstein, T.: Mul-
tiJava: modular open classes and symmetric multiple dispatch
for Java. In: Proc. of ACM OOPSLA. pp. 130–145. ACM
Press (2000)

[13] Cohen, T., Gil, J.Y.: AspectJ2EE = AOP + J2EE : Towards
an aspect based, programmable and extensible middleware
framework. In: ECOOP 2004 — Object-Oriented Program-
ming. pp. 219–243. LNCS 3086 (2004)

[14] Ekman, T., Hedin, G.: The Jastadd extensible Java compiler.
In: Proc. of ACM OOPSLA. pp. 1–18. ACM (2007)

[15] Ernst, E.: Family polymorphism. In: ECOOP 2001 — Object-
Oriented Programming. pp. 303–326. LNCS 2072, Springer-
Verlag (2001)

[16] Ernst, M., Kaplan, C., Chambers, C.: Predicate dispatching: A
unified theory of dispatch. In: ECOOP ’98 - Object-Oriented
Programming. pp. 186–211. Springer-Verlag (1998)

[17] Filman, R.E., Friedman, D.P.: Aspect-oriented programming
is quantification and obliviousness. In: Filman, R.E., Elrad,

T., Clarke, S., Akşit, M. (eds.) Aspect-Oriented Software De-
velopment, pp. 21–35. Addison-Wesley (2005)

[18] Fraine, B.D., Südholt, M., Jonckers, V.: Strongaspectj: flexible
and safe pointcut/advice bindings. In: Proc. of 7th Int’l Conf.
on Aspect-Oriented Software Development (AOSD 2008). pp.
60–71. ACM (2008)

[19] Griswold, W.G., et al.: Modular software design with cross-
cutting interfaces. IEEE Software 23(1), 51–60 (2006)

[20] Hannemann, J., Kiczales, G.: Design pattern implementation
in java and aspectj. In: Proc. of ACM OOPSLA. pp. 161–173
(2002)

[21] Haupt, M., Schippers, H.: A machine model for aspect-
oriented programming. In: ECOOP 2007 – Object-Oriented
Programming. LNCS, vol. 4609, pp. 501–524 (2007)

[22] Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented
programming. Journal of Object Technology 7(3), 125–151
(2008)

[23] Ichisugi, Y., Tanaka, A.: Difference-based modules: A class-
independent module mechanism. In: ECOOP 2002 – Object-
Oriented Programming. pp. 62–88. LNCS 2374 (2002)

[24] Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A
minimal core calculus for Java and GJ. ACM Trans. Prog.
Lang. Syst. 23(3), 396–450 (May 2001)

[25] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J., Irwin, J.: Aspect-oriented programming. In:
ECOOP’97 – Object-Oriented Programming. pp. 220–242.
LNCS 1241, Springer (1997)

[26] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
Griswold, W.G.: An overview of AspectJ. In: ECOOP 2001
– Object-Oriented Programming. pp. 327–353. LNCS 2072,
Springer (2001)

[27] Kiczales, G., Mezini, M.: Aspect-oriented programming and
modular reasoning. In: Proc. of the Int’l Conf. on Software
Engineering (ICSE’05). pp. 49–58. ACM Press (2005)

[28] Koppen, C., Stoerzer, M.: Pcdiff: Attacking the fragile point-
cut problem. In: Proc. of European Interactive Workshop on
Aspects in Software (EIWAS’04) (2004)

[29] Lesiecki, N.: Improve modularity with aspect-oriented
programming. http://www.ibm.com/developerworks/

java/library/j-aspectj (2002)
[30] Malabarba, S., et al.: Runtime support for type-safe dynamic

Java classes. In: ECOOP 2000. pp. 337–361. LNCS 1850,
Springer-Verlag (2000)

[31] McEachen, N., Alexander, R.T.: Distributing classes with wo-
ven concerns: an exploration of potential fault scenarios. In:
Proc. of Int’l Conf. on Aspect-Oriented Software Develop-
ment (AOSD’05). pp. 192–200. ACM Press (2005)

[32] Millstein, T.: Practical predicate dispatch. In: Proc. of ACM
OOPSLA. pp. 345–364. ACM (2004)

[33] Nishizawa, M., Chiba, S.: A small extension to Java for class
refinement. In: Proc. of the 23rd ACM Sympo. on Applied
Computing (SAC’08). pp. 160–165 (2008)

[34] Nystrom, N., Chong, S., Myers, A.C.: Scalable extensibility
via nested inheritance. In: Proc. of ACM OOPSLA. pp. 99–
115 (2004)

[35] Orleans, D.: Separating behavioral concerns with predicate
dispatch, or, if statement considered harmful. In: Workshop
on Advanced Separation of Concerns in Object-Oriented Sys-
tems at OOPSLA ’01 (2001)

[36] Ossher, H., Tarr, P.: Hyper/J: multi-dimensional separation of
concerns for Java. In: Proc. of the Int’l Conf. on Software
Engineering (ICSE). pp. 734–737 (2000)

[37] Parnas, D.L.: Information distributions aspects of design
methodology. In: Proc. of IFIP Congress ’71. pp. 26–30
(1971)

[38] Qi, X., Myers, A.C.: Sharing classes between families. In:
Proc. of Conf. on Programming Language Design and Imple-
mentation. pp. 281–292 (2009)

[39] Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.: Traits:
Composable units of behavior. In: Proceedings of European
Conference on Object-Oriented Programming (ECOOP’03).
LNCS, vol. 2743, pp. 248–274. Springer Verlag (July 2003)

[40] Smaragdakis, Y., Batory, D.: Mixin layers: an object-oriented
implementation technique for refinements and collaboration-
based designs. ACM Trans. Softw. Eng. Methodol. 11(2),
215–255 (2002)

[41] Smith, R.B., Ungar, D.: A simple and unifying approach to
subjective objects. Theory and Practice of Object Systems
2(3), 161–178 (1996)

[42] Steimann, F.: The paradoxical success of aspect-oriented pro-
gramming. ACM SIGPLAN Notices 41(10), 481–497 (2006)

[43] Stoerzer, M., Graf, J.: Using pointcut delta analysis to support
evolution of aspect-oriented software. In: ICSM ’05: Proceed-
ings of the 21st IEEE International Conference on Software
Maintenance. pp. 653–656. IEEE Computer Society (2005)

[44] Warth, A., Stanojević, M., Millstein, T.: Statically scoped
object adaptation with expanders. In: Proc. of ACMOOPSLA.
pp. 37–56 (2006)

[45] Wehr, S., Lämmel, R., Thiemann, P.: JavaGI: Generalized in-
terfaces for Java. In: ECOOP 2007 — Object-Oriented Pro-
gramming. LNCS 4609, Springer-Verlag (2007), 347–372

[46] Wright, A.K., Felleisen, M.: A syntactic approach to type
soundness. Information and Computation 115(1), 38–94 (Nov
1994)

