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Abstract. We propose an enhancement of method dispatch for enabling
to compose both normal and crosscutting program structures. Our idea
is to use predicate dispatch modified to refer to external calling con-
texts. Despite the support of crosscutting structures, our language based
on this idea, named GluonJ, allows mostly modular typechecking and
compilation. Its execution overhead is negligible. We show these facts
through practice and theory.

1 Introduction

Aspect-oriented programming (AOP) has been actively studied for more than a
decade. A challenge of AOP is to manage crosscutting structures in a modular
way. Typical AOP languages such as AspectJ [27] have been tackling this by
providing dedicated language constructs while they provide object-oriented pro-
gramming (OOP) constructs like classes, methods, and inheritance. The most
well-known language construct for AOP is pointcut-advice of AspectJ.

In this paper, we propose a natural enhancement of OOP language constructs
to be able to manage crosscutting structures. We do not orthogonally introduce
AOP-dedicated constructs into an OOP language. We instead enhance method
dispatch to introduce AOP flavor into OOP. In our previous workshop paper
[10], we presented that the language constructs of AspectJ can be emulated by
predicate dispatch [17, 31] modified to use external calling contexts. We also
presented a sketch of our new Java extension based on that idea. In this paper,
we follow that idea and present the design details of that language, which is now
named GluonJ, its type system, and its implementation. Although we tried to
emulate all the functionality of AspectJ in the previous paper (hence we proposed
several predicates), the language presented in this paper is much simpler and
shows better modularity and performance. Although GluonJ does not cover the
full functionality of AOP languages, it shows that we can deal with crosscutting



structures to a certain degree within the confines of OOP; we do not need a
different style of language construct dedicated to AOP.

The original predicate dispatch uses only variables visible in method scope,
such as parameters and their fields, and thereby enables modular typechecking
and compilation. Since GluonJ supports contextual predicate dispatch, in which
a predicate refers to external calling contexts, like who is a caller, we cannot
modularly typecheck and compile a GluonJ program. Note that crosscutting
structures inherently show bad locality in the sense of traditional modularity
and hence have difficulty in modular compilation. However, GluonJ programs
are still mostly modular. This paper presents only limited parts of typechecking
and compilation need global program analysis, from the viewpoints of not only
practice but also theory. Another interesting issue is execution performance. This
paper proposes an implementation technique, which involves negligible dispatch
overhead. It also shows this fact through experiments.

In the rest, Section 2 briefly overviews functionality that typical AOP lan-
guages provide. Section 3 proposes GluonJ, which enables that functionality
within OOP. Section 4 and 5 show the calculus and implementation of GluonJ.
Section 6 mentions related work and Section 7 concludes this paper.

2 Objectives of AOP languages

A contribution of AOP would be putting a spotlight on crosscutting structures in
software and practical demands on non-invasive modifications. These two might
have been known before AOP but AOP has boosted comprehensive research on
them.

2.1 Crosscutting structures

Software involves a number of crosscutting concerns, which are not only non-
functional ones such as logging and transaction but also functional ones. This fact
was revealed and reported by a number of AOP researchers at a series of AOSD
conferences [3]. From the viewpoint of programming language design, several
language constructs have been developed for joining components (or objects) in a
crosscutting way. The most well-known construct is a pointcut-advice mechanism
of AspectJ.

In AspectJ, a special method called advice can be implicitly invoked when
another method is executed. It can be invoked also in the middle of a method
body. This is a unique feature of AOP. Since it is considered as breaking the
information hiding principle [36] on a method, its benefits have been controversial
[41] and several ideas for dealing with this have been proposed so far [1, 20]. On
the other hand, this feature is necessary to implement a number of crosscutting
concerns represented by a famous logging concern. Figure 1 presents a simple
Logging aspect. Its before advice is invoked in the middle of the eval method in the
VariableDecl class, namely, just before the recordVariable method in Env is called
from the eval method. Although the Logging aspect is a simple example, the

2



public class VariableDecl extends ASTree {

String name;

Value eval() {

Value initValue = right.eval();

env.recordVariable(name, initValue);

return null;

}

}

public aspect Logging {

before(): call(void Env.recordVariable(String,Value))

&& withincode(Value VariableDecl.eval()) {

System.out.println("declare a variable");

}

}

Fig. 1. A logging aspect.

same idea can be used to implement a variety of crosscutting concerns including
performance profiling, transaction, synchronization, and security. For example,
it is possible to write around advice for performing mutual exclusion to make the
method thread-safe when the recordVariable method in Figure 1 is executed.

2.2 Non-invasive modification

Another issue that AOP put a spotlight on is non-invasive (or transparent) ex-
tension. AOP enables software customization without invasively modifying the
original source program due to the obliviousness property [18]. This level of cus-
tomizability is not available by other extension mechanisms such as inheritance,
mixins [8], mixin layers [39], family polymorphism [16], traits [38], and nested in-
heritance [33], although they also support non-invasive extension in some sense.
These mechanisms let an extended version of a class, namely a subclass, coexist
with the original version of that class. Thus, if programmers want to use the new
behavior for some instances, they must explicitly declare that fact, for example,
by giving the subclass name when the instances are created. The other instances
remain showing the old behavior. This is beneficial when reusing parts of a pro-
gram, such as classes, since both a new version and its original version can be
used in the same program. For example, programmers can implement a JarFile
class as a subclass of ZipFile class and use both in one program. On the other
hand, when programmers want to use only the new behavior, they also have to
modify all occurrences of object creation included in the original program to use
the new version.

AOP does not allow original and new versions of a class to coexist in a
program. It makes only the new version available in the program. This destructive
feature of AOP is useful when programmers want to reuse a whole program
and partly customize it to build new software. Reusing a whole program has
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public class Calc {

public static void main(String[] args) {

ASTree t = new Parser().parse(args[0]);

t.eval();

}

}

class AddExpr extends ASTree {

Value eval() {

return new IntValue(left.eval().intValue() + right.eval().intValue());

}

}

public aspect FloatExt {

Value around(AddExpr ae): execution(Value AddExpr.eval()) && this(ae) {

if (ae.left.isType(Integer.class) && ae.right.isType(Integer.class))

return proceed();

else

return new DoubleValue(ae.left.eval().doubleValue()

+ ae.left.eval().doubleValue());

}

}

Fig. 2. A simple interpreter in AspectJ.

practical needs. A good example is JastAdd [15], which is a compiler construction
framework. Since JastAdd contains a simple AOP mechanism, programmers can
develop a Java 1.5 compiler by only writing aspects for extending a Java 1.4
compiler. They do not have to modify object-creation expressions in the original
program of the Java 1.4 compiler. All extensions are separated into the aspects.

Figure 2 shows a simplified example of compiler/interpreter written with
aspects. The Calc class has a main method, which makes an instance of Parser
to parse a program given as a command-line argument. Then it evaluates the
program by calling the eval method. Suppose that this language can compute
only an integer value. We can extend this program by writing an aspect to
support floating-point numbers besides integers. For example, the AddExpr class,
which is for the + nodes of an abstract syntax tree, originally can process only
integer values but it can be extended by the FloatExt aspect to compute floating-
point numbers as well. Note that the aspect destructively extends the behavior
of the eval method in AddExpr and hence we do not have to modify the parse
method in the Parser class to instantiate a new version of the AddExpr class when
it finds a + expression.3 The original program (Calc and AddExpr) remains the
same; the behavior reverts to the original if the FloatExt aspect is removed.

3 No matter whether we use AOP, we must modify the Parser class to parse a floating-
point constant.
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While the extension by inheritance, mixin, and so on are useful for building
libraries, the extension by AOP is useful for building frameworks, where the pro-
grams are reused as a whole and customized partly. Existing application frame-
works written without AOP, therefore, come with a large amount of scaffolding
code to enable the non-invasive reuse of a whole program within the confines
of object-oriented programming. For example, Ruby on Rails [21] comes with a
generator of scaffolding code. Dependency injection containers like Spring [19,
26] can be regarded as frameworks that provide scaffolding to customize compo-
sition of components. The Eclipse platform includes a number of interface types
and extension points to develop plug-ins [43]. The plug-in mechanism of Eclipse
is typical scaffolding; it checks the existence of plug-in components at every ex-
tension point at runtime and, if any, executes the components. The scaffolding
code complicates the development of frameworks.

2.3 Language constructs

AOP languages such as AspectJ have been tackling the two issues above (not
limited to them, though). Their approach has been to provide new dedicated
language constructs, i.e. pointcut and advice, for dealing with the two issues
while keeping classes and methods for other programming issues. Hyper/J [35]
would not seem to provide such a new dedicated language construct since it
allows programmers to describe a program in normal Java. However, how to
weave multiple parts of a class must be described separately in a dedicated
language, which is far from typical OOP languages like Java and hence is a sort
of new dedicated language construct.

Although the crosscutting structures in Section 2.1 have not got much at-
tention, the non-invasive modification in Section 2.2 has been studied also in
the contexts of OOP. For example, MixJuice [24] and Feature-Oriented Pro-
gramming [4] enable this as much as AOP languages. The partial classes of C#
allow adding new members to an existing class. The category of Objective-C also
does. On the other hand, these languages do not provide linguistic supports for
dealing with the crosscutting structures. Some researchers of Feature-Oriented
Programming suggest using AOP constructs such as pointcut and advice for
the crosscutting structures while using their OOP-based construct, which is a
destructive style of mixin, for the non-invasive modification [2].

3 GluonJ

Our goal is to naturally enhance OOP language constructs to support not only
the non-invasive modification but also the crosscutting structure mentioned in
the previous section. Existing OOP languages have not paid much attention to
the crosscutting structure or they have been using language constructs borrowed
from AOP languages for it. AOP languages like AspectJ use two kinds of lan-
guage constructs: classes and methods for normal modularization and pointcut
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class FloatExt revises AddExpr {

Value eval() {

if (left.isType(Integer.class) && right.isType(Integer.class))

return super.eval();

else

return new DoubleValue(left.eval().doubleValue()

+ right.eval.()doubleValue());

}

}

Fig. 3. A revising class in GluonJ.

and advice for crosscutting modularization. Unlike them, we introduce AOP fla-
vor into method dispatch, which is essential to OOP. Our approach is to enhance
predicate dispatch to use external calling contexts. This section illustrates this
approach by presenting our language named GluonJ.

3.1 Revising classes

GluonJ is an extension of Java. In GluonJ, a class can consist of multiple mod-
ules: a normal Java class and some revising classes. A revising class non-invasively
modifies the definition of its target normal Java class as an aspect in AspectJ
does. Figure 3 presents a revising class that performs the same modification that
the FloatExt aspect in Figure 2 does. The revising class FloatExt may look like
a subclass of AddExpr but it is part of the definition of the AddExpr class. Note
that the class name is followed by not extends but revises. Since that revising
class overrides the original implementation of the eval method described in the
AddExpr class, a call to eval on an AddExpr object invokes the implementation
described in the FloatExt class. A call super.eval() included in FloatExt invokes
the original implementation of the eval method.

A static method in a revising class overrides the corresponding static method
declared in its target class. If the static method of the target class is called,
the implementation of the method in the revising class is invoked. If that static
method is called from the revising class, however, the implementation in the
target class is invoked as in the standard Java. This is for allowing an overriding
method in a revising class to invoke the original implementation.

Adding a new member
A revising class can also add a new method or field. If a method or a field in a
revising class is not declared in the target class, it is added to the definition of
the target class. A revising class is not allowed to declare a constructor. Only
the default constructor implicitly declared is available. Figure 4 is an example
of revising class adding a new member. It adds a tag field and a print method to
the AddExpr class. Note that the initial value of tag is given in the declaration.
No explicit constructor is declared.
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class Printing revises AddExpr {

String tag = "+";

void print() {

System.out.println(left + tag + right);

}

}

Fig. 4. A revising class adding new members.

using Printing;

class Printer {

static void print(AddExpr e) {

e.print();

}

}

Fig. 5. A class using a method added by a revising class.

To refer to the added members from a class different from that revising
class, a using declaration must be described. The added members are visible
only within the source file including the using declaration of that revising class.
Figure 5 shows an example. The Printer class can call the print method on an
AddExpr object since the source file includes a using declaration of the revising
class Printing. This restriction might seem to decrease the non-invasiveness of the
modification by revising classes. The reader might think that it is like rewriting
the class names in object-creation expressions and hence reusing a whole pro-
gram would be made difficult. However, the restriction is not a problem. If an
original program is self-contained, it never accesses newly added members since
it was written before the revising class. Only the classes written with or after
the revising class may access the added members and thus it is acceptable to
enforce programmers to include a using declaration in the source file of those
classes. On the other hand, a using declaration helps modular type checking. We
will mention this again later.

Design details
A method declared in a revising class may be overridden by a method in a sub-
class of the target class. Suppose that both FloatExt in Figure 3 and a subclass
PlusEqExpr of AddExpr declare eval methods. If the eval method is called on an
PlusEqExpr object, then the invoked eval method is one declared in the PlusEq-
Expr class. The eval method in FloatExt is invoked if super.eval() is executed in
PlusEqExpr.

A revising class follows a normal class with respect to the visibility rule. It
can only access public members, so-called package members in the same package,
protected members of the target class and its super classes, and private members
of the revising class itself. Method overriding by a revising class also follows
the rule of the standard Java. It cannot override a private method in the target
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class Tracer revises Env {

void recordVariable(String name, Value value) within VariableDecl.eval() {

System.out.println("declare a variable");

super.recordVariable(name, value);

}

}

Fig. 6. A method with a predicate.

class. This rule restricts the ability for the non-invasive modification but we
adopt this rule for the information hiding principle [36]. This rule will also ease
the fragile pointcut problem of AOP [28, 30, 42]. In a good Java program, a non-
private method can be expected to be available until the design of the program
is largely changed due to refactoring.

3.2 A within method

Method overriding by a revising class corresponds to advice with the execution
pointcut in AspectJ. It can change the behavior of an existing method. On
the other hand, AspectJ provides a richer pointcut language for dealing with
crosscutting structures.

GluonJ uses enhanced predicate dispatch for providing a similar function
to the within and withincode pointcuts of AspectJ. A revising class can declare
a method with a predicate within, which we below call a within method. This
method is selected for invocation only when its predicate is true. Otherwise, the
overridden method in the target class is selected. Figure 6 shows an example of
within method. Note that the method signature is followed by a within clause,
which specifies a class or a method. The revising class Tracer adds a logging
function as the Logging aspect in Figure 1 does. The recordVariable method in
this revising class is invoked only when it is called on an Env object from the
eval method in the VariableDecl class. It is invoked even if the static type of the
Env object at the caller site is a super type of Env. Unlike the call pointcut of
AspectJ, the apparent type of the receiver does not matter; the actual type is
considered.

Roughly to say, a within method of GluonJ corresponds to a combination
of call, within (or withincode), and target pointcuts in AspectJ. Since the call
pointcut selects join points when a specified method is called on an object with
a specified static type, the target pointcut is necessary to select join points by
considering the dynamic type of the receiver object.

AspectJ programmers might misunderstand that a call pointcut selects method-
call expressions at caller sites and hence it attaches advice in the middle of a
method body of the caller, which would look like a violation of encapsulation.
On the other hand, GluonJ provides more straightforward intuition. A within
method gives a chance to replace the behavior of a method when the method is
called from a specific caller site.
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Design details
A within method must be declared in a revising class. It does not have to override
a method in the target class or a super class of the target class. If it does
not override the method, since it is a method newly added by a revising class,
the source file of a method calling that within method must include a using
declaration of that revising class. The caller method must satisfy the within
predicate. Otherwise, it causes a type error.

Furthermore, in the current specification of the language, if a revising class
declares a method foo with a within predicate, then it cannot declare another
method foo with the same signature with/without a predicate. To declare more
than one within method for foo, multiple classes revising the same class must
be declared and each of them must declares one within method. As in Java, a
revising class can declare multiple methods foo if they have different signatures.

A within method is overridden by a normal method with the same name and
signature in a subclass of the target class. Suppose that a subclass ExEnv of
Env declares another recordVariable method. Then the within method in Tracer
in Figure 6 is not invoked when the recordVariable method is called on an ExEnv
object from the env method.

Predicate dispatch
The original predicate dispatch allows only predicates that access variables lo-
cally visible in the static scope of a method, such as parameters, the receiver
object (i.e. this variable in Java), and their fields. For example, in JPred [31],
a method can be selected only when a parameter value is an instance of some
class. The predicates of JPred were carefully selected by the JPred designer for
modular compilation. JPred ensures two properties, exhaustiveness and unam-
biguity, by modular static typechecking. Exhaustiveness checking ensures that a
program will not cause no-such-method errors at runtime. Unambiguity check-
ing ensures that every method call in a program has a unique most-applicable
method.

On the other hand, GluonJ provides contextual predicate dispatch. The
within predicate of GluonJ refers to external calling contexts, like who is a caller,
since it must deal with crosscutting structures, which inherently depends on
the externals. This fact removes some locality from methods and complicates
modular compilation. However, as we show later, the compilation of a GluonJ
program by our compiler is still mostly modular.4 The exhaustiveness property
is statically typechecked per source-file basis since our predicates are simple.
The unambiguity property is guaranteed by the precedence order among revis-
ing classes, which is shown next. Only the correctness of method overriding and
(part of) code generation need global typechecking and analysis.

4 The unmodularity mainly comes from revising classes. If GluonJ did not provide
a revising class but only allowed a within method declared in a normal class and
we did not care about execution performance, a within method could be modularly
typechecked and compiled.
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class StringExt requires FloatExt revises AddExpr {

Value eval() {

if (left.isType(Number.class) && right.isType(Number.class))

return super.eval();

else

return new StringValue(left.eval().toString() + right.eval().toString());

}

}

Fig. 7. A requires clause.

3.3 Precedence order among revising classes

Since GluonJ allows multiple revising classes to revise the same normal class,
it has a rule for resolving ambiguity among methods in those revising classes.
Suppose that two revising classes R and S revise the same class C and they
declare methods m with the same name and signature. When m is called on an
instance of C, GluonJ selects the m method declared in the revising class with
higher precedence. This is also true for within methods.

The precedence order among revising classes is specified by requires clauses
in class declarations. Figure 7 shows an example. This revising class StringExt
declares that it requires another revising class FloatExt in Figure 3. This means
that StringExt has higher precedence than FloatExt while both StringExt and
FloatExt revise the AddExpr class. Thus, a call to eval on an AddExpr object
invokes the eval method declared in StringExt. The eval method of StringExt
“overrides” eval of FloatExt, which then “overrides” eval of AddExpr. super.eval()
calls the overridden method of the class with the next precedence.

A requires clause can include multiple revising class names separated by
comma. The left has higher precedence. Moreover, a revising class may require
another revising class that revises a different class than the former one does.
In a valid GluonJ program, the requires relation over the classes revising the
same class must be a total order. This constraint ensures that the precedence
order does not have ambiguity and hence the most specific method is uniquely
determined among methods of revising classes.

Notes on within methods
If multiple within methods override the same normal method and their within
predicates specify the same location, the most specific one selected for invocation
is the within method declared in the revising class with the highest precedence.
The within predicates may have an overlap. For example, they may be within C
and within C.foo(). Both of them match the location of the foo method in the
class C. Whether a within predicate specifies a class name or a method name does
not affect the selection of the most specific method. The most specific method
is the method declared in the revising class with the highest precedence among
normal methods and the methods with predicates matching the caller location.
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When a within method calls a method on super, the location of that super
call is within the body of the method including that super call. Suppose that
multiple within methods override the same method m and their within predicates
specify the same class C. When the method m is called from the class C, Glu-
onJ invokes the within method with the highest precedence. Then, if this within
method executes super.m(), since the caller is not C any longer but the revising
class, the next invoked method is not the within method with the second highest
precedence. It is the original method m overridden by the within methods. In
Figure 6, the within method recordVariable in Tracer is invoked when it is called
from the eval method in VariableDecl. Then, this within method in Tracer exe-
cutes super.recordVariable(name, value). Here, the caller is not the eval method
but this within method in Tracer.

4 Core calculus of GluonJ and its type soundness

In this section, we give a formal calculus called GluonFJ as an extension of
Featherweight Java (FJ) [25] to discuss modular typechecking and type sound-
ness. GluonFJ adds revising classes and within methods to FJ. For simplicity,
we do not model super calls, and fields of revising classes; within clauses are
restricted so that only class names can be given as source code locations.

We first give the syntax, typing rules, and operational semantics of GluonFJ
and then prove type soundness.

4.1 Syntax

As mentioned above, GluonFJ has revising classes and within methods in addi-
tion to most of the features of FJ. Although they are important in compilation
as we see in the next section, typecasts have been removed from GluonFJ, since
they are orthogonal to the additional features.

The syntax of GluonFJ is given as follows:

CL ::= class C extends C using R { C f; M } normal classes
| class R revises C using R { M } revising classes

L ::= C | R locations
M ::= C m(C x){ return e; } [within L] methods
e ::= x | e.f | e.m(e) | new C(e) | e in L expressions
v, w ::= new C(v) values

Following the convention of FJ, we use an overline to denote a sequence and
write, for example, x as shorthand for x1, . . . , xn and C f; for “C1 f1;, . . . ,
Cn fn;”. The empty sequence is written •. The metavariables B, C, D, and E range
over normal class names; R ranges over revising class names; m ranges over method
names; and x and y range over variables, which include the special variable this.
For technical convenience, we assume that normal class names and revising class
names are disjoint and the (denumerable) set of revising class names is totally
ordered. This total order represents the precedence in method dispatch and so
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there are no requires clauses in class definitions. In what follows, we assume
that any sequence of revising class names R is sorted according to this order.

CL is a normal (or revising) class definition, consisting of its name, a su-
per class name (or the class name that it revises, respectively), revising class
names that it uses, fields, and methods. A revising class cannot have fields. We
omit explicit constructor definitions, which take initial values of all fields and
set them to the corresponding ones. Types of GluonFJ are only normal class
names, hence C for field, parameter, and return types. A method definition M
can have an optional clause within L, where L, standing for locations, is a nor-
mal/revising class name. One class cannot have more than one method of the
same name. The body of a method is a single return statement, following FJ.
Expressions are mostly the same as FJ except for omitted typecasts and the
new form e in L, which is used to mark which class e originates from in the
operational semantics. This form is not supposed to appear in class definitions.
We will denote a substitution of expressions e for variables x by [e/x].

A GluonFJ program is a triple consisting of a class table CT , which is a
mapping from normal class names to normal class definitions, a revising class
table RT , which is also a mapping from revising class names to revising class def-
initions, and an expression, which stands for the body of the main method. We
write dom(CT ) (and dom(RT )) for the domain of the table and write C ext D
when CT (C) = class C extends D · · · { · · · }. Similarly, we use R rev C and
L using R.

Finally, we always assume fixed class tables, which are assumed to satisfy the
following sanity conditions: (1) CT (C) = class C · · · for every C ∈ dom(CT )
and similarly for RT ; (2) Object /∈ dom(CT ) ∪ dom(RT ); (3) for every class
name L (except Object) appearing anywhere in CT and RT , we have L ∈
dom(CT ) ∪ dom(RT ); and (4) there are no cycles formed by extends clauses.

4.2 Lookup Functions

As in FJ, we need functions to look up fields, method signatures and bodies in
the class tables. The function fields(C) returns all the fields of C and its super
classes with their types as C f. It is defined by the following rules:

fields(Object) = • (F-Object)

class C extends D using R { C f; M } fields(D) = D g

fields(C) = D g, C f
(F-Class)

The function lowest(C, R) returns the first revising class that revises C, found in
R, or just returns C if there is no such revising class.

lowest(C, R) =
{
Rj if Rj rev C, and ¬∃k < j.Rk rev C
C if ¬∃j.Rj rev C

12



The function super(L, R) returns the next class of L to look up and is defined by:

super(Ri, R) =
{
Rj if j > i, Ri rev C, Rj rev C, and ¬∃k ∈ (i, j).Rk rev C
C if Ri rev C and ¬∃j > i.Rj rev C

super(C, R) = lowest(D, R) (if C ext D)

(Here, (i, j) stands for the set {i + 1, . . . , j − 1}). We often omit the second
argument R to these functions when it is dom(RT ).

lowest(C) = lowest(C, dom(RT ))
super(L) = super(L, dom(RT ))

The function mtype(m, L, R, L′) returns the signature C→C of the method found
in class L using R. L′ represents the location of the caller. It is defined by the
following rules:

class L {extends, revises} C using R′ { C f; M }
B m(B x){ return e; } [within L′] ∈ M

mtype(m, L, R, L′) = B→B
(MT-Class)

class L {extends, revises} C using R′ { C f; M }
m [within L′] ̸∈ M mtype(m, super(L, R), R, L′) = B→B

mtype(m, L, R, L′) = B→B
(MT-Super)

The first rule represents the case where m is found in L. The method may be a
within method, in which case the location has to agree with the last argument.
The second rule is for the case where m is not present in L (m [within L′] ̸∈ M
means that there is neither method named m nor m · · · within L′ in M); then,
the signature is equivalent to that from the next class, represented by super(L, R).
As we see in typing rules, R will be taken from the using clause of the class in
which a method invocation appears so that typechecking of expressions does not
need all revising classes. As in FJ, we assume that Object has no methods and
so mtype(m, Object, •, L) is undefined for any L.

Finally, we define the function mbody(m, L, L′) to look up a method body.
It returns the body of the method m in L called from L′ as the triple, written
x.e in L′′, where x are parameters, e is the method body, and the location
L′′ stands for the location where the method is found. The rules are similar to
mtype:

class L {extends, revises} C using R { C f; M }
B m(B x){ return e; } [within L′] ∈ M

mbody(m, L, L′) = x.e in L
(MB-Class)
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class L {extends, revises} C using R { C f; M }
m [within L′] ̸∈ M mbody(m, super(L), L′) = x.e in L′′

mbody(m, L, L′) = x.e in L′′

(MB-Super)

Unlike mtype, however, it (implicitly) uses all revising classes (remember that
super(L) is shorthand for super(L, dom(RT ))).

4.3 Type System

The subtype relation is written C <: D, which is the reflexive and transitive
closure of the extends relation. It is defined by the following rules:

C <: C (S-Refl)

C <: D D <: E

C <: E
(S-Trans)

C ext D

C <: D
(S-Extends)

The type judgment for expressions is of the form L; Γ ⊢ e : C, read “expression
e in class L is given type C under type environment Γ .” A type environment Γ ,
also written x:C, is a finite mapping from variables x to types C. The typing
rules are given below.

L;Γ ⊢ x : Γ (x) (T-Var)

L; Γ ⊢ e0 : C0 fields(C0) = C f

L;Γ ⊢ e0.fi : Ci

(T-Field)

L;Γ ⊢ e0 : C0 L; Γ ⊢ e : C
L using R mtype(m, lowest(C0, R), R, L) = D→C C <: D

L; Γ ⊢ e0.m(e) : C
(T-Invk)

fields(C) = D f
L; Γ ⊢ e : C C <: D

L; Γ ⊢ new C(e) : C
(T-New)

L′;Γ ⊢ e : C

L; Γ ⊢ e in L′ : C
(T-In)

Most rules are straightforward adaptations from FJ typing rules. In the rule
T-Invk, method lookup starts from lowest(C, R), taking into account revised
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classes R taken from the using clause of the current class L, which is also given
to mtype as the caller information. In the rule T-In, the location for e is switched
since e originates from a method in L′.

The type judgment for methods is of the form M OK IN L, read “method M
is well typed in class L.” The typing rules are given below:

C; x : C, this : C ⊢ e0 : E0 E0 <: C0

for any L, if mtype(m, super(C), dom(RT ), L) = D→D0, then C = D and C0 = D0

C0 m(C x){ return e0; } OK IN C
(T-Method)

R rev D R; x : C, this : D ⊢ e0 : E0 E0 <: C0

for any L, if mtype(m, super(R), dom(RT ), L) = D→D0, then C = D and C0 = D0

C0 m(C x){ return e0; } [within L′] OK IN R
(T-MethodR)

In both rules, the method body e has to be well typed under the type declarations
of the parameters x; the type of this is the (revised, if the method is declared in a
revising class) class name in which the method is declared. The last conditional
premise checks whether M correctly overrides all the method (be it normal or
within) of the same name in super classes. Note that dom(RT ) is used here.
It means that it requires all revising classes to check valid method overriding.
Only this condition prevents completely modular typechecking and thus the
corresponding check is deferred to the final stage of compilation (see the next
section).

Finally, the type judgment for classes is written CL OK, meaning “class CL is
well typed.” The typing rules, which are straightforward, are given as follows:

M OK IN C

class C extends D using R { C f; M } OK
(T-Class)

M OK IN R

class R revises D using R { M } OK
(T-RClass)

A class table CT or RT is well typed if all the classes in it are well typed and
we write (CT ,RT ) OK when both class tables are well typed.

4.4 Operational Semantics

The reduction relation is of the form L ⊢ e −→ e′, read “expression e reduces to
expression e′ in one step in L.” Reduction rules are given below:

fields(C) = C f

L ⊢ new C(v).fi −→ vi

(R-Field)
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L ⊢ v in L′ −→ v
(R-Return)

mbody(m, lowest(C), L) = x.e0 in L′

L ⊢ new C(v).m(w) −→ ([w/x, new C(v)/this]e0) in L′
(R-Invk)

All rules are straightforward. When a method is invoked on an object of C,
method lookup starts from lowest(C), the first revising class for C. To distinguish
the location of the method body from that of its caller, in L′ is added to it. The
rule R-Return represents the return from a method. Unlike FJ, the semantics
is call-by-value because the location where an expression is reduced is important.
Passing a non-value expression from one location to another changes its meaning.
So, the receiver and arguments must be a value, whose meaning is independent
of locations, in R-Field and R-Invk. (We could formalize the call-by-name
semantics, as in FJ, by annotating expressions with in L before substitution.)

We show congruence rules below:

L ⊢ e0 −→ e0
′

L ⊢ e0.f −→ e0
′.f

(RC-Field)

L ⊢ e0 −→ e0
′

L ⊢ e0.m(e) −→ e0
′.m(e)

(RC-Invk-Recv)

L ⊢ ei −→ ei
′

L ⊢ e0.m( . . . ,ei, . . . ) −→ e0.m( . . . ,ei
′, . . . )

(RC-Invk-Arg)

L ⊢ ei −→ ei
′

L ⊢ new C( . . . ,ei, . . . ) −→ new C( . . . ,ei
′, . . . )

(RC-New-Arg)

L′ ⊢ e0 −→ e0
′

L ⊢ e0 in L′ −→ e0 in L′
(RC-In)

These rules represent that the order of argument evaluation is not really fixed.

4.5 Type Soundness

GluonFJ is type sound; it enjoys subject reduction and progress [46]. Here, we
suppose that (CT ,RT ) OK and write L ⊢ e1 −→∗ en when L ⊢ e1 −→ e2, . . . ,
L ⊢ en−1 −→ en.

Theorem 1 (Subject Reduction). If L; Γ ⊢ e : C and L ⊢ e −→ e′, then
L; Γ ⊢ e′ : D for some D such that C <: D.

Theorem 2 (Progress). If L; ∅ ⊢ e ∈ C, then either e is a value, or there exists
some e′ such that L ⊢ e −→ e′.

Theorem 3 (Type Soundness). If L; ∅ ⊢ e : C and L ⊢ e −→∗ e′ with e′ a
normal form, then e′ is either a value v with L; ∅ ⊢ v : D for some D <: C.

Proof. Immediate from Theorems 1 and 2.
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5 Implementation

We implement a revising class by translating it into a subclass of its target
class and then adjusting a whole program so that the revising class will be used
instead of its target class in instantiations.

5.1 Compilation Overview

The compilation of a GluonJ program is mostly modular. It consists of two
stages: source-to-bytecode translation and linking. We implemented the transla-
tion stage by extending JastAddJ [15] and the linking stage by using Javassist
[9]. The linking stage is bytecode transformation and it is executed at load time
or statically at the end of compile time.

Translation stage
At the translation stage, a source file is separately compiled into Java bytecode.
This compilation is modular; it needs only the revising classes specified by using
declarations as well as the classes and interfaces on which the source file explic-
itly depends. Static typechecking is executed at this stage except T-MethodR
shown in Section 4.3. Informally, our compiler performs the typechecking for
normal Java and generates bytecode as if a revising class is a direct subclass
of its target class. It also translates a member-access expression if it accesses
a member added by a revising class. For example, an expression e.print() is
translated into ((Printing)e).print() if the print method is newly added to
the class of e by the revising class Printing given by a using declaration (as in
Figure 5). A within method is compiled similarly to a normal method. The within
predicate is translated into Java annotations to that method.

A constructor of a revising class is compiled differently from normal con-
structors of Java classes. Recall that a revising class cannot declare an explicit
constructor. At this stage, the compiler generates only the default constructor,
which takes no arguments, initializes field values, and calls the default construc-
tor of the target class since the target class of a revising class is treated as
its super class during compilation. The target class does not have to declare the
default constructor since the generated constructor is modified at the next stage.

Linking stage
At the linking stage, all the revising classes included in a program must be
given. In this sense, this stage needs a whole-program analysis and hence it is
not modular. Our linker applies bytecode transformation to every compiled class.
Since this transformation can be applied individually to a normal class if only
all the revising classes are given, this stage is still fairly modular. It never refers
to the set of all normal classes.

Our linker first computes the precedence order among the revising classes
and checks its validity. Then it sets the direct super class of every revising class
to its target class. If multiple classes revise the same target class, then they are
linearized to make a single inheritance hierarchy according to the precedence
order. For example, if class R and S revises the same class C and the revising
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class R has higher precedence than S, then R extends S, which extends C. If the
target class has normal subclasses, their super class is changed from that target
class to the revising class. If a normal class D extends C, then D is also changed
to extend R. When a super class is changed, all method calls on super is also
modified (at bytecode level) to invoke a method in the new super class.

Our linker next checks the last premise of T-MethodR, which requires that
the method overriding by revising classes is valid. Suppose that two revising
classes revise the same class. If these revising classes declare methods with the
same name and parameter types but with different (not-covariant) return types,
then this method overriding is invalid since the revising classes now have an
inheritance relationship.5

The linker also generates constructors for every revising class by modifying
the default constructor generated at the first stage. A constructor is generated
per constructor of the super class. It calls super() with the received arguments
and then initializes field values. For example, the revising class FloatExt in Fig-
ure 3 will have the following constructor if its target class AddExpr has a con-
structor AddExpr(ASTree,ASTree):

public FloatExt(ASTree left, ASTree right) {
super(left, right);
// initialize field values

}

The generated constructors are public. The constructors of the target class may
be changed to public or protected to be visible from the revising class.

Finally, our linker applies bytecode transformation to every class file. If a
normal class C is revised by a revising class R, then all instantiations of C is
transformed into instantiations of R. If C is revised by multiple classes, then
they are instantiations of the revising class with the highest precedence, that is,
the lowest subclass. Furthermore, if a static method is overridden by a revising
class, then all occurrences of the call to that static method is redirected to the
overriding method in the revising class.

Implementing a within method
If there is a within method, method dispatch considers a triple: method name,
receiver type, and caller location. In our implementation, the method name and
the caller location are statically evaluated and only the receiver type is dynami-
cally evaluated at every method call. The overhead of calling a within method is,
therefore, equivalent to that of calling a normal method, in which only the re-
ceiver type must be dynamically evaluated. This optimization, however, requires
global program analysis and transformation.

5 Actually, most of these checks could be performed by the compiler. If classes that
revise the same class are totally ordered by requires clauses, it suffices to check the
revising class at the bottom against T-MethodR. So, if the compiler checks each
class for valid method overriding using only the classes it (transitively) requires, then
the linker only has to check if requires clauses form a total order.
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Suppose that a method foo declared in R has a predicate within L. Our
linker first renames that within method to foo L (the real method name is more
elaborate). Next, our linker transforms a call to foo into a call to foo L if that
call expression is located within L and the static type of the receiver is R or
a super type of R. Otherwise, the call is not transformed. Since the dynamic
type of that receiver may not be R, if a super type or a subtype of R declares
a method foo, then our linker generates a method foo L for that type. Here,
a super/sub type of R is determined on the basis of the inheritance relations
modified at the linking stage. A super type may be an interface. The generated
foo L method just executes the foo method declared in that same class by the
invokespecial bytecode (or the body of foo L is a copy of the body of foo). This
delegation may cause a small runtime overhead. Furthermore, if a super type
of R declares a foo method, then all the subtypes of that type are transformed
to have a foo L method. If the super type is an interface, its subtypes include
classes implementing that interface.

Since Java prohibits transforming some built-in classes, our implementation
does not allow revising a class if it is instantiated within those built-in classes.
The linker cannot modify this instantiation. It allows declaring a within method
that overrides a method in a built-in class, such as the toString method in the
Object class, but that within method is implemented in a slightly different ap-
proach. Suppose that a revising class FloatExt revises the AddExpr class and it
declares the toString method with a predicate within Parser. According to the
approach mentioned above, our linker must append a toString Parser method to
the Object class. However, since this is not possible, our linker transforms a call
to toString within the Parser class in a different approach. For example, if the
expression is expr.toString() and the type of expr is a super type of AddExpr,
then the linker transforms it into this:

expr instanceof AddExpr ? expr.toString_Parser() : expr.toString()

This does not call the toString Parser method if the receiver does not understand
that method. The condition expression will be more complex when a sibling of
AddExpr is revised to have a toString method with the same predicate.

5.2 Formal model of compilation

We formalize the core of the implementation scheme described above as transla-
tion from GluonFJ to FJ. Instead of reviewing the definition of FJ from scratch,
we use a subset of GluonFJ, where the revising class table is empty, as the target
language. Precisely speaking, we need type casts (C)e in the target language.
Typing rules and reduction rules are given as follows:

L; Γ ⊢ e0 : D D <: C

L; Γ ⊢ (C)e0 : C
(T-UCast)

L;Γ ⊢ e0 : D C <: D C ̸= D

L; Γ ⊢ (C)e0 : C
(T-DCast)
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C <: D

L ⊢ (D)(new C(v)) −→ new C(v)
(R-Cast)

L ⊢ e −→ e′

L ⊢ (C)e −→ (C)e′
(RC-Cast)

(Since we conjecture that casts inserted through compilation do not fail, we
intentionally omit the typing rule for so-called stupid casts [25], which represent
casts that have failed during execution.) For simplicity, the formalized translation
is done at once, mixing the two stages described above. After giving the definition
of formal translation, we state that translation preserves typing.

First, we give a few auxiliary definitions used in the translation. The function
origin(m, L) returns the name of the highest super class of L in which m (be it
normal or within) is defined.

class L {extends, revises} D using R′ {C f; M}
B m(B x){ return e; } [within L1] ∈ M

for any L0,mtype(m, super(L), dom(RT ), L0) undefined
origin(m, L) = L

origin(m, super(L)) = L′

origin(m, L) = L′

The next two functions withinsub(m, C) and within(m, L) are used to translate
within methods. The function withinsub(m, C) collects all predicates L from classes
that revise a subclass of C and contain a within method of name m.

withinsub(m, C) =

 R ∈ dom(RT ) and (∃D.R rev D <: C)
L and class R revises · · · { M }

and B m(B x){return e;} within L ∈ M


The function within(m, L), which collects all locations used as predicates for m in
L, is defined to be withinsub(m, thistype(origin(m, L))) where thistype(C) = C and
thistype(R) = C if R rev C. For example, consider the following classes:

class A extends Object { C m() { return e1; } }
class B extends A { C m() { return e2; } }
class R1 revises A { C m() { return e3; } within C }
class R2 revises B { C m() { return e4; } within D }

Then, withinsub(m, B) = {D} and within(m, B) = within(m, R2) = within(m, R1) =
within(m, A) = {C, D}. When L ∈ within(m, C) the invocation of m on C from class
L will be translated to the invocation of mL, which stands for a name mangled
from m and L.

The judgment for translation is of the form L; Γ ⊢ e =⇒ e′, read “expression
e is translated to e′ under L and Γ .” Translation rules are given below.
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The rules to translate variables and field accesses are trivial.

L; Γ ⊢ x =⇒ x
(Tr-Var)

L; Γ ⊢ e0 =⇒ e′0

L; Γ ⊢ e0.f =⇒ e′0.f
(Tr-Field)

In translating a method invocation, we ensure that a method only available in
a revising class can be invoked, by casting the receiver to L′, which is the lowest
revising class that revises the receiver type. As we mentioned above, the method
name may be changed if the caller location L is found in within(m, C0).

L; Γ ⊢ e0 =⇒ e0
′ L; Γ ⊢ e =⇒ e′ L; Γ ⊢ e0 : C0

L using R lowest(C0, R) = L′ m′ =
{
mL if L ∈ within(m, C0)
m otherwise

L; Γ ⊢ e0.m(e) =⇒ ((L′)e0
′).m′(e′)

(Tr-Inv)

For example, under the four classes A, B, R1, and R2 above, D; x: B ⊢ x.m() =⇒
((R2)x).mD() is derivable. The translation of object creation is mostly trivial,
except that the class name is changed to lowest(C).

lowest(C) = L′ L; Γ ⊢ e =⇒ e′

L; Γ ⊢ new C(e) =⇒ new L′(e′)

The judgment for translation of methods is written L ⊢ M =⇒ M. Note
that the translation of one method may result in multiple methods. The first
rule is for translation of a normal method. The method body is translated un-
der the type environment where parameters have declared types and this has
thistype(L), which is equivalent to the static type used in typechecking (see the
rule T-Method in the last section). Since a normal method is called “within ev-
erywhere,” it overrides all the other within methods, which have mangled names.
The location names are collected by within(m, L).

L; x:B, this:thistype(L) ⊢ e =⇒ e′ within(m, L) = L

L ⊢ B m(B x){ return e; } =⇒

B m(B x){ return e′; }
B mL1(B x){ return e′; }
...
B mLn(B x){ return e′; }

(Tr-Method)

For example, the method m in class B above will translate to three methods
named m, mD, and mC, even though no class revising B has a method with within
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C. (B will have R1, which has mC after translation, as a super class of B.) The
translation of a within method is straightforward.

L; x:B, this:thistype(L) ⊢ e =⇒ e′

L ⊢ B m(B x){ return e; } within L′ =⇒ B mL′(B x){ return e′; }
(Tr-Within)

Translation of a class is written ⊢ CL =⇒ CL′, and the translation rule is
below.

super(L) = L′ L ⊢ M =⇒ M′

⊢ class L {extends, revises} D using R { C f; M }
=⇒ class L extends L′ { C f; M′ }

(Tr-Class)

The super class D is replaced with L′, which is the name of the next class when
looking up definitions. Note that every class is translated to a normal class, so,
precisely speaking, the set of class names of the target language is taken as the
union of the sets of normal and revising class names of the source language.

We write (CT ,RT ) =⇒ CT ′ when every class in the source class tables
translates to one in the target, namely, (1) dom(CT ′) = dom(CT ) ∪ dom(RT );
(2) ⊢ CT (C) =⇒ CT ′(C) for any C ∈ dom(CT ); and (3) ⊢ RT (R) =⇒ CT ′(R)
for any R ∈ dom(RT ).

5.3 Properties of Translation

We show that translation preserves typing. Actually, translation does not change
the type of an expression, except for the case where the expression is new C(e),
in which case it will become lowest(C). Since we mention two programs before
and after translation at the same time, we explicitly say which class table is
assumed to avoid confusion. Since locations are not significant in the target
program, we omit L from judgments.

Lemma 1. If (CT ,RT ) =⇒ CT ′ and L; Γ ⊢ e : C under (CT ,RT ) and L; Γ ⊢
e =⇒ e′, then Γ ⊢ e′ : L (under CT ′) where L is either C or lowest(C).

It is easy to show that translation succeeds when both normal and revising class
tables are well typed. Then, we now have the theorem that a pair of well-typed
normal and revising class tables translates to a well-typed class table.

Theorem 4. If (CT ,RT ) is OK, then there exists CT ′ such that CT ′ is OK.

It is left for future work to prove that the translation also preserves semantics,
meaning that no typecasts inserted by the translation will fail.
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Fig. 8. Overheads of method dispatch techniques.
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Fig. 9. callers and tickers arrays segregated by object type.

5.4 Experiments

As we showed above, since within methods are transformed into normal method
calls, the execution overheads due to them are extremely small. To investigate
this fact, we performed series of experiments on a machine with Intel Core 2
Duo E8500 3.16GHz processor, 3GB memory, Gentoo Linux with libc ver. 2.9,
and Java 1.6.0 15 HotSpot Server VM (build 14.1-b02, mixed mode). Details of
the experiments will be presented in our technical report [11].

5.5 Microbenchmark

We implemented a microbenchmark incorporating several implementation tech-
niques that can be used to alternate method dispatch. Since microbenchmark
executes a tight loop, it allows us to estimate impact of different dispatch tech-
niques on performance of a hot loop, compiled by the JIT compiler with highest
optimization level.

Microbenchmark constructs two sets of objects: callers and callees. Caller ob-
ject has a method call, which receives callee object as a parameter, and invokes
method tick on callee (called Ticker in the microbenchmark). The microbench-
mark operation proceeds by sequentially taking one object from each array and
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for (int i = 0; i < n; i++) {

callers[(count1+count2) % callers.length]

.work(tickers[(count1+count2) % tickers.length]);

}

// regular caller, always calls tick()

class Caller {

public void work(Ticker ticker) {

ticker.tick();

}

}

class Ticker {

public void tick() {

Microbench.count1 += 1;

}

}

class Ticker3 extends Ticker2 {

public void tick() {

Microbench.count1 += 1;

}

}

Fig. 10. Microbenchmark workload

calling method call on caller object, passing callee object as a parameter. The
operation is repeated 10 million times in a hot loop. 200 thousands untimed
iterations are performed for warm-up.

Callee objects have two versions of the target method (tick and tick2) Objects,
implementing dispatch to alternative method version are injected into caller and
callee arrays in varying quantities, making it possible to control the ratio of
dispatching the call to original and alternate target method.

We found in initial experiments, that uniform or close to uniform distribu-
tion of object types results in JIT compiler using additional optimizations, so
the comparison becomes biased towards cases with less object diversity. In or-
der to reduce bias, callee objects of three types are used: Ticker and Ticker3
present original functionality, while Ticker2 is emulation of a within method.
Figure 10 presents Ticker and Ticker3. Results for two series of experiments are
presented, when objects of different type are segregated, and when objects are
shuffled pseudo-randomly. In each series two experiments were performed, with
JIT compiler inlining enabled and disabled.

Figure 8 and 9 show results of experiments. Dispatch techniques are on the
x axis, and duration of a single iteration of microbenchmark in ns is shown on
y axis. Gray dots visible on the graphs shows the data points of performance
measurement with particular ratio between original call target tick and modified
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// statically altered dispatch, always calls tick2()

class Caller2Static extends Caller {

public void work(Ticker ticker) {

ticker.tick2();

}

}

class Ticker {

// for static caller-side dispatch

public void tick2() {

// copy of tick() code

Microbench.count1 += 1;

}

}

class Ticker2 extends Ticker {

public void tick2() {

Microbench.count2 += 1;

}

}

Fig. 11. Static dispatch

call target tick2. The leftmost column none presents performance of the case
when no modification to dispatch were made, and serves as a reference point.
Note that this case also exibits dependency on uniformity of calls.

While experimenting with the microbenchmark we saw that number of po-
tential call targets and particular ordering of calls to different target methods can
have significant impact on performance (e.g. compare the left graphs of Figure 8
and 9). However, most of optimizations that are applied by the JIT compiler to
our microbenchmarks are also likely to be possible with our within method used
in practice. For this reason, we consider microbenchmark results relevant.

When optimizations of the call site are possible, all dispatch methods exhibit
similar performance. However, different techniques may result in different profile
of the call sites, which in turn may prevent JIT from applying best possible
optimization. In particular, static techniques shown in Figure 11 result in a
single multiple-target call site, which may or may not be subject to guarded
devirtualization and inlining optimizations. If the diversity is low, and single
target is taken, the performance is close to the best possible, but if the call site in
fact dispatches to multiple different implementations, then performance degrades
significantly. The techniques adopted in GluonJ implementation is essentially the
same as static techniques excpet that tick2 in Ticker delegates to tick .

This contrasts with techniques instanceof or its slight variation getclass, which
use conditional construct, and two call sites, each having less variation in call
target (Figure 12 and 13). This results in consistent ability of JIT compiler to
optimize call sequence.
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// static caller with instanceof check

class Caller2Instanceof extends Caller {

public void work (Ticker ticker) {

if (ticker instanceof Ticker2 && !(ticker instanceof Ticker3))

ticker.tick2();

else

ticker.tick();

}

}

Fig. 12. Dispatch via instanceof check

class Caller2Getclass extends Caller {

public void work (Ticker ticker) {

if (ticker.getClass() == Ticker2.class)

ticker.tick2();

else

ticker.tick();

}

}

Fig. 13. Dispatch via getclass check

dynamic dispatch techniques shown in Figure 14 delegates the dispatch deci-
sion to callee side, which also proved to be a challenge to the JIT compiler. Its
performance is somewhat worse than fastest techniques.

For the sake of comparison, we also implemented the same microbenchmark
using AspectJ as in Figure 15. The resulting code is similar to our instanceof
techniques, though distribution of code between classes is different. Performance
of code produced by AspectJ is similar to other techniques if inlining is enabled,
and is somewhat slower if inlining is disabled.

Since the variation of microbenchmark performance due to applicability of
agressive JIT optimization has the order of magnitude of of 2–3 times, and
variation between performance of different dispatch techniques is much less, we
expect that choice of implementation techniques for non-invasive modification
will not have visible impact on hot loop performance.

5.6 the DaCapo benchmarks

Next, we used the DaCapo suite of benchmarks [6] to evaluate potential impact of
within methods on real applications, especially in the cold code. To conservatively
estimate the impact, we instrumented all application methods with bytecode,
which is structurally equivalent to an “empty” within method. Thus, all method
calls first invoke that within method, which delegates to the original one. We
compared the different implementation techniques mentioned above. Figure 16

26



// marker caller class for dynamic callee-dispatch

class Caller2Dynamic extends Caller {

public void work(Ticker ticker) {

ticker.tick(Caller2Dynamic.class);

}

}

// different caller class for callee-dispatch

class CallerDynamic extends Caller {

public void work(Ticker ticker) {

ticker.tick(CallerDynamic.class);

}

}

class Ticker {

public void tick(Class x) {

if (x == Caller2Dynamic.class)

Microbench.count2 += 1;

else

Microbench.count1 += 1;

}

}

Fig. 14. Dispatch via dynamic check in the callee

shows the results on 8 of 11 DaCapo benchmarks (the other benchmarks did
not work after the instrumentation). Overhead of the instrumentation on the
first iteration is up to 22% for well-behaving benchmarks, and up to 151% for
luindex. Since the modification to the benchmark bytecode is essentially redun-
dant code, the impact is contained only in a warm-up phase except for lusearch
and luindex, which have the same underlying software package, Lucene. The
cause of such a drastic and constant slowdown remains a topic for further in-
quiry. For the other benchmarks, the impact of any implementation technique is
negligible on the 10th iteration. Table 1 lists the overheads on each benchmark.
The details of the bytecode transformation are shown in Figure 17 to 20.

6 Related work

A large number of languages and systems must be cited as related work. We
have already mentioned some of them. We below show other related work but it
does not cover all.

Non-invasive modification has been actively studied. Classboxes [5] and Context-
Oriented Programming (COP) [23] allow applying new behavior to all instances
in an original program although the programmers have to explicitly specify when
the new behavior gets effective. While they allow dynamically switching old and
new behavior for one instance, an original program must be slightly modified if
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aspect TickerR {

pointcut tick(): call(void Ticker.tick());

pointcut withinCaller(): within(Caller2);

void around():

tick() && withinCaller() && target(Ticker2) && !target(Ticker3) {

final_tick2();

}

private final void final_tick2() {

Microbench.count2 += 1;

}

}

Fig. 15. Implementation using AspectJ
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Fig. 16. DaCapo benchmarks.

it needs to activate new behavior. This is good with respect to modularity but
not suitable when the program is a framework and programmers want to reuse
the whole program after customization. Classboxes activate new behavior only
within a new package. In COP, a layer must be explicitly activated for using new
behavior. Their method dispatch can be regarded as also using external calling
contexts like GluonJ. The proposed implementation of classboxes needs runtime
stack inspection, which will imply non-negligible overheads.

On the other hand, our GluonJ is categorized into the non-invasiveness in
which only the new behavior is always effective. JavaGI [45] belongs to this cat-
egory. Open classes [13] and expanders [44] also belong although they can only
append new methods but cannot override existing methods. They are using dec-
larations like using of GluonJ for modular typechecking. The work by Malabarba
et al. [29] allows dynamically changing class definitions. A difference from those
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public class Hello {

void x() { y(); }

void y() {}

}

Fig. 17. Sample class

public class Hello {

void x() {

Hello hello = this;

hello.y$prime();

}

void y() {}

void x$prime() { x(); }

void y$prime() { y(); }

}

Fig. 18. Imitation of static dispatch

public class Hello {

void x() {

Hello hello = this;

if (hello instanceof Hello) {

hello.y();

Object obj = null;

} else {

hello.y();

Object obj1 = null;

}

}

void y() {}

}

Fig. 19. Imitation of caller-side dispatch
with instanceof check

public class Hello {

void x() {

Hello hello = this;

hello.y$prime(Hello);

}

void y() {}

void x$prime(Class class1) {

Hello hello = this;

hello.y$prime(Hello);

}

void y$prime(Class class1) {}

}

Fig. 20. Imitation of dynamic dispatch
by callee
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Table 1. Impact of bytecode transformation on DaCapo benchmarks

Overhead for iteration
benchmark first tenth

antlr 4 to 19% -2 to -3%
chart -1 to -2% 0%
eclipse 1 to 3% 1 to 7%
fop 8 to 12% 1%
hsqldb 17 to 22% 1 to 6%
luindex 122 to 151% 178 to 214%
lusearch 26 to 37% 61 to 97%
xalan 3 to 6% 2 to 4%

work is that GluonJ also provides support for crosscutting structures by using
the idea of predicate dispatch.

J&s [37] also supports non-invasive modification through the mechanism
called class sharing. Although there is no need to modify the original program
that creates an object of a modified class, a view change operation has to be
applied to enable access to new members. From a typechecing point of view, the
view change operation plays a role somewhat similar to using clauses, but the
execution model is rather different since new members do not always override
old ones.

AspectJ2EE [14] is an AOP system but it has similarity to GluonJ since it
implements an aspect by a subclass of the target class. However, it only supports
the execution pointcut but not the call pointcut. Hence it does not provide the
same expressiveness that GlounJ does.

Presenting similarity between predicate dispatch and the pointcut-advice of
AOP is not new. This idea has been pointed out by other researchers [34, 7, 22].
The idea of method dispatch depending on a caller object is also found in [40].
Our contribution is that we proposed an OOP language based on this idea and
discussed modular typechecking and compilation.

We have been developing a series of AOP languages and some of the languages
inherited the name GluonJ. However, the design of those languages are different.
The first GluonJ published in [12] used XML for describing aspects. The aim
of this work was to allow programmers to flexibly control the construction of
aspect instances. The second GluonJ published in [32] is more similar to GluonJ
presented in this paper but it is a dynamic AOP language. The work focused on
how to dynamically deploy intertype declarations.

7 Conclusion

We presented GluonJ, which supports revising classes and within methods. These
language constructs are natural enhancement to method dispatch and help non-
invasive modification and composition of crosscutting structures. Helping not
only the first one but also the second one is unique among method dispatch

30



mechanisms. We also showed that typechecking of GluonJ programs is modular
except checking T-MethodR through the calculus. Compilation is also mostly
modular. Only the bytecode transformation lastly applied to each class requires
all the revising classes. Furthermore, we mentioned that the execution perfor-
mance is negligible through experiments. GluonJ does not cover full functionality
of typical AOP languages. Extending our approach to cover a wider range of it
is our future work.
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A Proof of Theorems 1 and 2

Lemma 2 (Weakening). If L; Γ ⊢ e : C, then L; Γ, x: D ⊢ e : C.

Proof. By induction on L; Γ ⊢ e : C. ⊓⊔

Lemma 3. If fields(C) = C f and D <: C, then fields(D) = C f, D g for some
D g.

Proof. By induction on D <: C. ⊓⊔

Lemma 4. If mtype(m, L1, (R1, R2), L2) = C→C and R ⊇ (R1, R2), then mtype(m, L1, R, L2) =
C→C.

Proof. By induction on the derivation of mtype(m, L1, (R1, R2), L2) = C→C. The
only interesting case is class L1 · · · { [C f;] M } and m [within L2] ̸∈ M. Let
L1

′ = super(L1, (R1, R2)). By the induction hypothesis, we have

mtype(m, L1
′, R, L2) = C→C

mtype(m, L1
′, dom(RT ), L2) = C→C.

If super(L1, R) = L1
′, then, by MT-Super, mtype(m, L1, R, L2) = C→C. Otherwise,

if super(L1, R) ̸= L1
′, then there exists a sequence of class names L2

′, . . . , Ln
′

such that L′i−1 = super(Li
′, R) and Ln

′ = super(L1, R). By T-Method and
T-MethodR, if class Li

′ · · · { · · · M} and D m(D x){ · · · } [within L2] ∈ M,
then D = C and D = C for any i. It follows that mtype(m, Ln

′, R, L2) = C→C and
MT-Super finishes the proof. ⊓⊔

Lemma 5. mtype(m, lowest(C, (R1, R2)), (R1, R2), L) = mtype(m, lowest(C, (R1, R, R2)), (R1, R, R2), L).

Proof. The case where lowest(C, (R1, R2)) = lowest(C, (R1, R, R2)) follows from
Lemma 4. Otherwise, it must be the case that lowest(C, (R1, R, R2)) = R and
super(R, (R1, R, R2)) = lowest(C, (R1, R2)). Let class R · · · { M }. If m [within L] ̸∈
M, then use MT-Super. Otherwise, C m(C x){ · · · } [within L] ∈ M and, by
Lemma 4, we have to show that

mtype(m, lowest(C, (R1, R2)), dom(RT ), L) = C→C.

which follows from T-MethodR.

Lemma 6. If mtype(m, lowest(C, R), R, L) = C→C0 and D <: C, then mtype(m, lowest(D, R), R, L) =
C→C0.

Proof. By Lemma 5, it suffices to show the case where R = dom(RT ). The proof
proceeds by induction on D <: C. The only interesting case is when D ext C; in
that case, we have a sequence L1, . . . , Ln of class names, where L1 = lowest(D),
Li+1 = super(Li), and Ln = lowest(C). By T-Method and T-MethodR, it
is easy to show that mtype(m, Li, dom(RT ), L) = mtype(m, Li+1, dom(RT ), L) for
any i. Induction on n finishes the case. ⊓⊔
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Lemma 7 (Values are Location-Independent). If L;Γ ⊢ v : C, then, for
any L′, L′; Γ ⊢ v : C.

Proof. Easy induction on L;Γ ⊢ v : C. ⊓⊔

Lemma 8 (Substitution Preserves Typing). If L;Γ, x: C ⊢ e : C and L; Γ ⊢
v : D and D <: C, then there exists some D such that L; Γ ⊢ [v/x]e : D and D <: C.

Proof. By induction on the derivation of L;Γ, x: C ⊢ e : C with case analysis on
the last rule used.

– Case T-Var is easy.
– Case T-Field. Then, we have e = e0.fi and L; Γ, x: C ⊢ e0 : C0 and

fields(C0) = D f and C = Di for some e0, C0, D, and f. By the induction
hypothesis, for some D0, L; Γ ⊢ [v/x]e0 : D0 and D0 <: C0. By Lemma 3 and
T-Field, we have L; Γ ⊢ [v/x](e0.fi) : C.

– Case T-Invk. Then, we have e = e0.m(e) and L;Γ, x: C ⊢ e0 : C0 and
L; Γ, x: C ⊢ e : D and L using R and mtype(m, lowest(C0, R), R, L) = E→C and
D <: E for some e0, e, C0, D, R, and E. By the induction hypothesis, there
exist some D0 and E′ such that L; Γ ⊢ [v/x]e0 : D0 and L;Γ ⊢ [v/x]e : E′ and
D0 <: C0 and E′ <: D. By Lemma 6, mtype(m, lowest(D0, R), R, L) = E→C and,
by S-Trans, E′ <: E. The rule T-Invk finishes the case.

– Case T-New is easy.
– Case T-In is also easy by Lemma 7. ⊓⊔

Lemma 9. If mbody(m, L1, L2) = x.e0 in L3 and mtype(m, L1, dom(RT ), L2) =
D→D0, then there exists E0 such that L3; x: D, this: thistype(L3) ⊢ e0 : E0 and
E0 <: D0 and thistype(L1) <: thistype(L3).

Proof. Easy induction on mbody(m, L1, L2) = x.e0 in L3. ⊓⊔

Proof of Theorem 1. By induction on the derivation of L ⊢ e −→ e′ with case
analysis on the last rule used.

– Case R-Field. Then, e = new C0(v).fi and fields(C0) = C f and e′ = vi

for some C0, f, v, C. By T-Field and T-New, we have L; Γ ⊢ v : D and
D <: C and C = Ci for some D. In particular, L;Γ ⊢ vi : Di finishes the case.

– Case R-Invk. Then, e = new C0(v).m(w) and mbody(m, lowest(C0), L) =
x.e0 in L′ and e′ = ([w/x, new C0(v)/this]e0) in L′ for some C0, v, w, x,
e0, and L′. By T-Invk and T-New, we have L; Γ ⊢ new C0(v) : C0 and
L; Γ ⊢ w : E and L using R and mtype(m, lowest(C0, R), R, L) = D→C and
E <: D for some E, R, and D. By Lemmas 5 and 9, there exists E0 such that
L′; x: D, this: thistype(L′) ⊢ e0 : E0 and E0 <: C and thistype(lowest(C0, R)) =
C0 <: thistype(L′). Then, by Lemmas 2, 7 and 8, there exists E0

′ such that
L′;Γ ⊢ [w/x, new C0(v)/this]e0 : E0

′ and E0
′ <: E0. By T-In, L;Γ ⊢

([w/x, new C0(v)/this]e0) in L′ : E0
′ and, by S-Trans, E0

′ <: C, finish-
ing the case.

– Case R-Return follows from Lemma 7.

35



– Case RC-Field follows from Lemma 3.
– Case RC-Invk-Recv follows from Lemma 6.
– Other cases are easy. ⊓⊔

Now we prove progress, which requires the following lemma:

Lemma 10. If mtype(m, L1, dom(RT ), L2) = D→D0, then mbody(m, L1, L2) =
x.e0 in L3 for some x, whose length is the same as that of D, and e0 and
L3.

Proof. Easy induction on the derivation of mtype(m, L1, dom(RT ), L2) = D→D0.
⊓⊔

Proof of Theorem 2. By induction on the structure of e.

– Case e = x cannot happen since the type environment is empty.
– Case e = e0.fi. By T-Field, L; Γ ⊢ e0 : C0 and fields(C0) = C f and

Ci = C for some C0 and C f. If e0 is a value, then it must be the case that
e0 = new C0(v) and L; Γ ⊢ v : D and D <: C, so L ⊢ e −→ vi by R-Field.
Otherwise, by the induction hypothesis, L ⊢ e0 −→ e0

′ for some e0
′ and, by

RC-Field, L ⊢ e0.fi −→ e0
′.fi.

– Case e = e0.m(e). By T-Invk, L; Γ ⊢ e0 : C0 and L; Γ ⊢ e : C and
L using R and mtype(m, lowest(C0, R), R, L) = D→C and C <: D for some C0, C,
R, and D. If one of e0, e is not a value, then by the induction hypothesis, there
exists an expression ei

′ such that L ⊢ ei −→ ei
′ and by RC-Invk-Recv or

RC-Invk-Arg, L ⊢ e −→ e′ for some e′. Otherwise, all of e0, e are val-
ues. In particular, it must be the case that e0 = new C0(v) by T-New. By
Lemmas 5 and 10, we have mbody(m, lowest(C0), L) = x.e0 in L′ for some
x, whose length is the same as that of D (and e), and e0 and L′. By R-Invk,
L ⊢ e −→ ([e/x, new C0(v)/this]e0) in L′.

– Other cases are easy. ⊓⊔

B Proof of Theorem 4

Lemma 11. If (CT ,RT ) =⇒ CT ′, then fields(C) = fields(L) under CT ′ for
any C ∈ dom(CT ) and L = lowest(C) (under (CT ,RT )).

Proof. Easy since no revising classes have fields. ⊓⊔

Lemma 12. Suppose (CT ,RT ) =⇒ CT ′. Then mtype(m, L0, dom(RT ), L) =
D→C under (CT ,RT ) if and only if mtype(m, L0, •, L) = D→C under CT ′.

Proof. By induction on the derivation of mtype(m, L0, dom(RT ), L) = D→C. The
other direction is similar. ⊓⊔

Lemma 13. Suppose (CT ,RT ) =⇒ CT ′ and L ∈ within(m, thistype(L0)). Then,
mtype(m, L0, dom(RT ), L) = D→D under (CT ,RT ) if and only if mtype(mL, L0) =
D→D under CT ′.

Proof. Similar to Lemma 12. ⊓⊔
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Proof of Lemma 1. By induction on L; Γ ⊢ e : C with case analysis on the last
typing rule used.

– Case T-Var. Trivial.
– Case T-Field. We have e = e0.fi and L; Γ ⊢ e0 : C0 and fields(C0) = C f

and C = Ci. Then, it must be the case that L; Γ ⊢ e0 =⇒ e0
′ and e′ = e0

′.fi.
By the induction hypothesis, L; Γ ⊢ e0

′ : L0 and L0 is either C0 or lowest(C0).
For the latter case, by Lemma 11, fields(lowest(C0)) = C f. So, in either
case, L;Γ ⊢ e′ : Ci.

– Case T-Invk. Then, we have e = e0.m(e) and L; Γ ⊢ e0 : C0 and L; Γ ⊢
e : C and L using R and mtype(m, lowest(C0, R), R, L) = D→C and C <: D.
It must be the case that e′ = ((L′)e0

′).m′(e′) and L; Γ ⊢ e0 =⇒ e0
′

and L; Γ ⊢ e =⇒ e′ and L′ = lowest(C0, R) and m′ is either mL (if L ∈
withinsub(m, C0)), or m (otherwise). We show the former case. By the induc-
tion hypothesis, L; Γ ⊢ e0

′ : E0 and L; Γ ⊢ e′ : E and each Ei is either Ci

or lowest(Ci). We also have L ∈ within(m, C0) since it is easy to show that
withinsub(m, C0) ⊆ within(m, C0). By T-UCast or T-DCast, L; Γ ⊢ (L′)e0

′ :
L′. By lowest(L′, R) = L′ and thistype(L′) = C0 (under CT ′) and Lemmas 4
and 13, mtype(m, L′, R, L) = mtype(m, L′, dom(RT ), L) = mtype(mL, L′, •, L).
By S-Trans, E <: D. So, by T-Invk, we have L; Γ ⊢ e′ : C.
The other case is similar.

– Case T-New is easy by Lemma 11. ⊓⊔

Lemma 14. If (CT ,RT ) =⇒ CT ′ and M OK IN L under (CT ,RT ) and L ⊢
M =⇒ M, then M OK IN L (under CT ′).

Proof. We first show the case L = C for some C. By Tr-Method, M = B m(B x){ return e; }
and C; x : B, this : C ⊢ e =⇒ e′ and

M =

B m(B x){ return e′; }
B mL1(B x){ return e′; }

...
B mLn(B x){ return e′; }

where within(m, C) = L. By T-Method,

C; x : B, this : C ⊢ e : C0 C0 <: B.

By Lemma 1, we have
C; x : B, this : C ⊢ e′ : D0

for some D0 such that D0 <: B. Now, suppose mtype(mLi , super(C)) = D→D. Then,
by Lemma 13, mtype(m, super(C), dom(RT ), Li) = D→D. Then, by T-Method,
D = B and D = B. So, by T-Method,

B mLi(B x){ return e′; } OK IN C.

B m(B x){ return e′; } OK IN C is similar.
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Lemma 15. If (CT ,RT ) =⇒ CT ′ and CL OK under (CT ,RT ) and ⊢ CL =⇒
CL′, then CL′ OK (under CT ′).

Proof. It must be the case that CL = class L {extends, revises} D using R { C f; M }
and super(L) = L′ and L ⊢ M =⇒ M′ and CL′ = class L extends L′ { C f; M }.
By Lemma 14, M′ OK IN L. ⊓⊔

Proof of Theorem 4. It is easy to show the existence of CT ′. Then, Lemma 15
finishes the proof. ⊓⊔
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