A Hoare Logic for GPU Kernels

KENSUKE KOJIMA, Kyoto University and CREST, JST
ATSUSHI IGARASHI, Kyoto University and CREST, JST

We study a Hoare Logic to reason about parallel programs executed on graphics processing units (GPUs),
called GPU kernels. During the execution of GPU kernels, multiple threads execute in lockstep, that is,
execute the same instruction simultaneously. When the control branches, the two branches are executed
sequentially, but during the execution of each branch only those threads that take it are enabled; after
the control converges, all the threads are enabled and again execute in lockstep. In this article, we first
consider a semantics in which all threads execute in lockstep (this semantics simplifies the actual execution
model of GPUs), and adapt Hoare Logic to this setting by augmenting the usual Hoare triples with an
additional component representing the set of enabled threads. It is determined that the soundness and
relative completeness of the logic do not hold for all programs; a difficulty arises from the fact that one thread
can invalidate the loop termination condition of another thread through shared memory. We overcome this
difficulty by identifying an appropriate class of programs for which the soundness and relative completeness
hold. Additionally, we discuss thread interleaving, which is present in the actual execution of GPUs but not
in the lockstep semantics mentioned above. We show that, if a program is race-free, then the lockstep and
interleaving semantics produce the same result. This implies that our logic is sound and relatively complete
for race-free programs, even if the thread interleaving is taken into account.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs—Logics of programs

General Terms: Theory, Verification

Additional Key Words and Phrases: GPU, Hoare Logic

ACM Reference Format:

Kensuke Kojima and Atsushi Igarashi. 2014. A Hoare Logic for GPU Kernels. ACM Trans. Comput. Logic V,

N, Article A (January YYYY), 42 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

General-purpose computing on graphics processing units (GPGPU) has recently be-
come widely available even to end-users, enabling them to utilize the computational
power of GPUs for solving problems other than graphics processing. Application areas
include physics simulation, signal and image processing, etc. [Owens et al. 2007]. How-
ever, the writing and optimizing of GPU kernels, which are parallel programs executed
on GPUs, remain difficult tasks and are error-prone. For example, in programming in
CUDA, a parallel computing platform and programming model on a GPU [NVIDIA
2014], attention must be paid to synchronization and data races so that many threads
cooperate correctly. Moreover, to obtain the best performance, low-level mechanisms
should be considered, to optimize the memory access pattern, increase occupancy, etc.

This is a revised and extended version of Kojima and Igarashi [2013]. Author’s addresses: K. Kojima and
A. Igarashi, Department of Communications and Computer Engineering, Graduate School of Informatics,
Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© YYYY ACM 1529-3785/YYYY/01-ARTA $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A2 K. Kojima and A. Igarashi

Considerable effort has recently been invested in developing automated verification
tools for GPU kernels [Betts et al. 2012; Collingbourne et al. 2013; Collingbourne et al.
2011; 2012; Li and Gopalakrishnan 2010; 2012; Li et al. 2012b; Li et al. 2012a; Chiang
et al. 2013; Bardsley et al. 2014]. These tools are implemented to attempt to automate
the detection of synchronization errors, data races, and inefficiency, as well as to check
functional correctness and generate test cases. Although automation is a great advan-
tage, it tends to suffer false positives/negatives because of approximation, as well as
combinatorial explosion.

Another approach to formal verification is deductive verification, in which the cor-
rectness of a program is verified by formally proving (using a fixed set of deduction
rules) that it is indeed correct. Relative completeness of the inference rules guaran-
tees that all correct programs can be proved to be correct, although often frequently a
considerable effort is required to complete the correctness proof. Deductive approaches
have been implemented as tools that can be applied to real-world programs (Why3?, for
example). However, in the context of GPU programming, this approach has not thus
far been extensively studied (at the time of writing, we are aware of only the studies
based on permission-based separation logic reported by Blom et al. [2014] and Asakura
et al. [2016]).

In this study, we investigated a deductive verification method for GPU programs.
In this particle, we focus on the Single-Instruction, Multiple-Thread (SIMT) execution
model (described in Section 1.1) and demonstrate that Hoare Logic, one of the tradi-
tional approaches to deductive verification, can be applied to GPU kernels with only a
few modifications. Although SIMT is a terminology employed by CUDA, this does not
mean that our theory is specialized for CUDA. In particular, it applies also to OpenCL.

In general, reasoning about parallel programs requires techniques that are consider-
ably more sophisticated than those used for sequential ones, because parallel threads
can interfere with each other through shared resources [Apt et al. 2009]. Although ex-
isting techniques can be applied to GPU kernels, we take advantage of the so-called
lockstep semantics of SIMT to obtain simpler inference rules. In fact, our inference
rules are similar to the usual Hoare Logic, and soundness and relative completeness
hold under a very mild restriction regarding the loop guards: a thread does not inval-
idate other threads’ loop guards through shared memory. Any program can be easily
transformed into one conforming to this restriction.

This article is an extended version of the authors’ previous article [Kojima and
Igarashi 2013] in which a Hoare Logic for GPU kernels was introduced, and its sound-
ness and relative completeness for a large class of GPU kernels was proved. In this
article, we also consider interleaved thread execution and prove that it does not affect
the result of the execution if the program is race-free.

In the rest of this section, we describe the manner in which SIMT operates and how
Hoare Logic can be extended to the SIMT setting.

1.1. Overview of the SIMT Execution Model

SIMT is a parallel execution model of GPUs employed by CUDA [NVIDIA 2014]. A
CUDA program is written in CUDA C, an extension of the C language, and run on
GPUs with multiple (typically thousands of) threads, as specified in the SIMT execu-
tion model. In this model, launched threads are divided into groups called warps. Each
warp consists of a fixed (currently 32) number of threads, and threads belonging to the
same warp all execute the same instruction simultaneously. Therefore, the execution
of threads in a single warp never interleaves. This type of execution is often called
lockstep.

Thttp://why3.Iri.fr/

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:3

When a conditional branch is encountered during the lockstep execution, and the
decisions on which branch to be taken vary among threads within a single warp, then
that warp executes both branches sequentially. During the execution of each branch,
only those threads that take it are enabled. After all branches are completed, all the
threads in the warp are enabled and executed in lockstep again.

Thus, in SIMT, some statements may actually be executed by only some of the
threads, depending on the branching. We say that a thread is active if it is currently
enabled, and inactive otherwise. A mask is a piece of data (typically a bit mask, but
below we often represent a mask as a set) that describes which thread is active. The
state of a mask may change during execution and the result of executing a statement
may depend on a mask.

For example, let us consider the following program.

k = tid; while (k < n) { c[k] = alk] + blk]; k =k + ntid; }

Here, we assume that k is a thread local variable, a, b, and c are shared arrays of length
n, and ntid is a constant, the value of which is the number of threads. The constant
tid represents the thread identifier, ranging from 0 to ntid - 1. Let us suppose that
this program is launched with four threads forming a single warp, and n equals 6. In
the first iteration, the condition k < n holds in all threads, and therefore the mask
is {0,1,2, 3}, and all threads execute the loop body. In the second iteration, however,
the values of k in threads 0, 1, 2, and 3 are 4, 5, 6, and 7, respectively, and therefore
the condition k¥ < n does not hold in threads 2 and 3. Therefore, these threads are
deactivated, and the loop body is executed with mask {0, 1}. Then, all threads exit the
loop, and the program terminates. The final value of ¢ is the sum of a and b.

Although SIMT appears to execute threads in a manner similar to that of single
instruction multiple data (SIMD) in that a single instruction operates on multiple
data, they differ in that parallel operations on vectors are explicitly specified in SIMD,
whereas this is not the case in SIMT. Indeed, when programming in CUDA C only the
behavior of a single scalar thread is specified, as in a usual sequential program written
in C or C++.

1.2. Extending Hoare Logic

Next, we consider a Hoare Logic for GPU kernels. The programs about which we rea-
son constitute a single GPU kernel, like the example above. In our formalization, we
consider mainly a simplified execution model in which all threads execute the same
instruction simultaneously (in other words, SIMT execution with only one warp). We
call this manner of execution complete lockstep.

In fact, we can employ most of the inference rules from the ordinary Hoare Logic
without significant changes, although the form of Hoare triples has to be changed. As
explained above, the effect of the lockstep execution of a statement depends on the
mask. Since the usual Hoare triple {¢} P {¢)} does not contain the information about a
mask, it cannot fully specify a program. Therefore, we augment the usual Hoare triple
with an additional piece of information, and consider a Hoare quadruple of the form
{p}m = P {vy}, where m denotes a mask. Intuitively, this quadruple means that “if an
initial state satisfies ¢, and a program P is executed with a mask denoted by m, then
after termination the state satisfies 1.”

However, a difficulty arises from while loops. We found that, in some corner cases,
it is difficult to reason about while loops correctly. Although it would be possible to
modify the inference rule so that we could handle all programs soundly, we decided
for the sake of simplicity to make a certain assumption about the programs we re
handling. As a result, we consider a certain class of programs and obtain soundness
and relative completeness for this class of programs. We consider only loops such that,

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A4 K. Kojima and A. Igarashi

during their execution, a thread never invalidates the loop termination condition of
another thread through shared memory. We call such loops monotonic. This is not a
serious restriction, because any loop can be transformed into a monotonic one without
changing the behavior (with respect to our operational semantics).

Interestingly, our operational semantics and Hoare Logic are quite similar to the
ordinary one for sequential programs, despite the parallel nature of GPU programs.
It seems that this is a result of the fact that threads work basically independently
during the execution of GPU kernels. Although CUDA provides synchronization prim-
itives, their use is allowed only under a certain condition (which will be addressed in
Section 5).

1.3. Thread Interleaving

The extension of Hoare Logic above is sound and relatively complete for the semantics
in which threads are executed in complete lockstep, but this is not exactly how GPU
kernels are executed on real GPUs (we assumed that there is only one warp consist-
ing of all launched threads). This means that our Hoare Logic and its soundness and
relative completeness do not immediately apply to actual GPU kernels.

However, even if the actual thread execution is interleaved, if we restricted our at-
tention to race-free programs, the result would not depend on the choice of execution
semantics, and therefore, it would be sound to assume that programs are executed in
complete lockstep. Therefore, under the assumption of race-freedom, our method can
be applied without modification to actual GPU kernels. This assumption would be rea-
sonable, because, as far as we know, many GPU kernels are intended to be race-free.

To investigate this direction, we consider another semantics, which we call inter-
leaving semantics (following Collingbourne et al. [2013]), in which the execution of
threads is interleaved. The execution in this semantics can be regarded as SIMT ex-
ecution in which every warp consists of only one thread, whereas the lockstep exe-
cution is SIMT execution with only one warp. Intuitively, lockstep and interleaving
semantics are under-approximation and over-approximation of the actual SIMT ex-
ecution, respectively. Interleaving semantics does not necessarily produce the same
result as lockstep semantics, but it is possible to show that if a program is race-free,
then both lockstep and interleaving semantics produce the same result (Collingbourne
et al. [2013] proved a similar result, but our formalization and proof are more formal
than theirs; see Section 8 for more detailed comparisons). As a consequence, our Hoare
Logic is sound and relatively complete for race-free programs with respect to the in-
terleaving semantics. This means that our Hoare Logic can be used to reason about
actual GPU kernels provided that the kernel is race-free.

1.4. Organization of the Article

The rest of the article is organized as follows. In Section 2, we introduce the lockstep
semantics which is an extension of the usual while-language. Section 3 describes our
Hoare Logic. In Section 4 we introduce the notion of monotonic loops, and prove the
soundness and relative completeness of our Hoare Logic for programs in which all
loops are monotonic. In Section 5, we introduce interleaving semantics and discuss the
soundness and relative completeness of our Hoare Logic with respect to this semantics.
Section 6 is devoted to the proof of the equivalence between lockstep and interleaving
semantics for race-free programs. In Section 7, we discuss a few possible variants and
extensions of our system. Section 8 describes related work and Section 9 concludes the
article. Some of the detailed proofs are collected in the electronic appendix.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A5

2. LOCKSTEP SEMANTICS

In this section, we formalize the complete lockstep execution. Our formalization is
based on Habermaier and Knapp’s [2012], but there are some differences. First, we
omit break, function calls, and return. Second, we include arrays, which are almost
always used in CUDA programs, and barrier synchronization.

2.1. Formal Syntax

We assume countable, disjoint sets of variables LV, and SV, for each nonnegative
integer n. Elements of LV ,, and SV, are thread local and shared variables of arrays
of dimension n, respectively (when n = 0, they are considered scalars). We also fix the
set of n-ary operations Op,, for each n. We assume that the standard arithmetic and
logical operations, such as +, <, && and !, are included in the language.

Well-formed expressions e and programs P are defined as

e = tid | ntid | z, [€] | fn(€)
P :=uz,[e] :=¢| skip | sync | P; P' | if ethen P else P’ | while edo P.

where z,, and f,, range over LV, U SV,, and Op,, respectively, and e stands for the
sequence e, ..., €.

The expressions include special constants tid, thread identifier, and ntid, the num-
ber of threads.? If a variable z is of dimension 0, we write z instead of = [].

z, Leq, ..., e,] :=c is an assignment, which is performed by all active threads in par-
allel. skip is a statement that has no effect. sync is a barrier synchronization, typically
used to avoid data races in CUDA. Although in the semantics defined in this section
barrier synchronization does not play an important role, it is essential for the discus-
sion of thread interleaving in Section 5. The remaining constructs are the same as the
usual while-language. Note that we do not include Boolean expressions, and therefore
we use integer expressions for conditions of if- and while-statements, and regard any
nonzero value as true.

2.2. Operational Semantics

Next, we define a formal semantics for the language introduced above. For simplicity,
arrays are represented simply by total maps from tuples of integers to integers. We do
not care about array bounds, and negative indices are also allowed. Our operational
semantics basically follows the standard evaluation rules, but one of the main differ-
ences is that it is nondeterministic, because multiple threads may attempt to write
into the same shared variable simultaneously.

Below we fix a positive integer N that specifies the number of threads and therefore
is the interpretation of the constant ntid. We also assume that for each n-ary operation
fn, a map from Z" to Z (also denoted by f,,) is assigned. We denote the set of threads
{0,1,...,N—1} by T.

Definition 2.1. A state o consists of a map o(z) : T — Z™ — Z for each z € LV ,,, and
o(y) : 2" — Z for each y € SV,.

Given a state o, we naturally interpret o(z) as the value of z.
The denotation of an expression ¢ under a state o is a map o [e] : T — Z defined by

o[tid] (i) =4 o[ntid] (i) = N

2The name of this constant is taken from a special register in PTX [NVIDIA 2015]. In our formalization,
this is the same as the number of threads, although this is not always the case for PTX.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A6 K. Kojima and A. Igarashi

skip, i, 0 | o (E-SKIP) wu=Torpu=>0

(E-SYNC)
sync, i, o ‘U’ g

/ cr’(x)(?) _(x)(z) for eachi ¢ 1 .
o'(z)(i) = o(x) (z)x[aé[][e]]izz »:;75@]{]7/(1)] foreach i € u (E-LASSIGN)
z is shared o'(y) = o(y) for each variable y # x

if Vi € p.o [e] () ; 7, then o’ (x)(7) = o(z)(R)

for all 7, { otherwise, 3i € p.0 [€] (i) = n and o'(x)(n) = o [€] (4)

zlel :=e,u,0 o

(E-SASSIGN)

P,//L,O'U»O'/ Qv,uao.l‘U/UN
P Qoo (E-SEQ)

Punolfe],o o Q,u\ole],o" I a”
if ethen Pelse Q,u,0 | o’
pNaole] #0 Puncle],o o while edo P,uNofe],o' | o”
while edo P, u,o | o”

(E-IF)

(E-WHILETRUE)
pNole] =0
whileedo P,u,0l o

(E-WHILEFALSE)
Fig. 1. Lockstep semantics of GPU kernels.

. o(x)(@) (o [e1] (7),...,0[en] (4 if z is local
olzler, ..., ex1] () = { Jﬁxﬂﬁﬁﬁeﬁ] (@ﬂ),(.). Lo [[en[[]] @]])5) if z is ssh;f:d

o[f(er, s en)] (1) = flofea] (0); - .-, 0 [ea] (7).

NOTATION 2.2. For a state o, we define o[z — a| as the state o’ such that: o'(z) = a
and o'(y) = o(y) for each y # .

When an expression is used as a predicate (e.g., the condition part of an if-
statement), we regard o [¢] as a set of threads satisfying the condition e, that is, the
set {i€T|ofe] (i) #0}. We also use the notation o [e] to denote this set, when no
confusion arises.

The execution of a program is defined as a relation of the form

P7/'1"0-\U/0-/’

where P is a program, ;. C T, and o and ¢’ are states. This relation means that “if P is
executed with mask . and initial state o, and if P terminates, then the resulting state
is o’

The evaluation rules are listed in Figure 1. A barrier synchronization succeeds only
if all threads are active or no thread is active, and hence, the set of active threads
should be either T or () in the rule E-SYNC. A synchronization does not change the
state. The case where u # T and p # () corresponds to barrier divergence [Betts et al.
2012], for which there is no evaluation rule. This means that there is no ¢’ such that

P, pu,0 |} o’ if P causes barrier divergence (for given i and o), although, on real GPUs,

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A7

such a program may terminate with an unpredictable state.? The rule E-IF means that
both branches are executed serially but under different masks: the mask p N o [e] for
P is the set of threads where ¢ holds and the second is its (relative) complement (in p).

Nondeterministic behavior can arise from E-SASSIGN; there can be more than one
choice of ¢/, in the case of a data race. More precisely, by a data race here we mean
a situation where there exist two (or more) distinct active threads i and j, where the
index ¢ takes the same value on i and j, while e does not (formally, o [e] (¢) = o [e] (5)
and o [e] (i) # o [e] (). In such a case, following Habermaier and Knapp [Habermaier
and Knapp 2012], we allow either o [e] (i) or o [e] (j) to be selected as the value to be
set to z [e].

3. REASONING ABOUT GPU KERNELS

In this section, we describe the extension of Hoare Logic to the language formalized in
the previous section.

3.1. Assertion Language

Our assertion language is based on first-order logic with function variables. We assume
as many n-ary variables as we want for each nonnegative integer n. Formally, the
syntax is

terms t :=c | fu(te, .. tn) | Tn(ts, ...y tn)
formulas ¢ ::= p,(t1, ...y tn) | @1 A2 | 01V pa | 01 = wa | @ | Va.p | Fz.p.

Here, ¢ ranges over constant symbols, and f,, z,, and p, range over n-ary function
symbols, variables, and predicate symbols, respectively.

We assume our assertion language contains N (the number of threads) as a con-
stant symbol, and each operation f € Op,, as an n-ary function symbol. Additional
constants and function symbols are allowed. We also assume that standard predicates
on integers such as < are included.

We associate a unique variable to each program variable. A variable that is not
associated to any program variable is called a specification variable. We denote the
variable corresponding to a program variable x again by xz. Each z € SV, is n-ary,
and each z € LV, is (n + 1)-ary. This is because a local variable’s value varies among
threads: a local variable has to receive a thread identifier as one additional argument
to determine its value. We assume that the first argument of a local variable always
represents a thread identifier.

An assertion is just a formula of the first-order logic. We briefly describe how to
interpret it. First, we fix a model M of our first-order signature, with domain Z, such
that the interpretation of ntid is NV that we fixed above, and the interpretation of each
fn € Op,, also equals the function used to define the denotation of an expression. An
assignment is a map that assigns to (both program and specification) variables of arity
n a map Z"™ — Z. The satisfaction relation p = ¢ for each assignment p and a formula
 is defined as usual.

Precisely, we have to distinguish program states from assignments, but for brevity
we frequently regard assignments as program states (by restricting their domain to
the set of program variables) if no confusion arises. We write P, u,0 | ¢’ when o
and ¢’ are assignments, the precise meaning of which is the following: it holds that
P, u,lo| | |o’'| (where |o| and |o’| denote o and ¢’ restricted to the program variables)
and that o and ¢’ agree on specification variables. We also use the notation o [e] for the

3The behavior for barrier divergence is indeed undefined in the specification. See Section 7 for more discus-
sions.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A8 K. Kojima and A. Igarashi

set {i € T|o[e] (¢) #0}, where o is an assignment and e is a term that may contain
specification variables.

Definition 3.1. A Hoare quadruple is of the form {¢} m = P {4}, where P is a pro-
gram, m is an expression built from fresh variables, and ¢ and v are formulas. Note
that no variable occurring in m occurs in P.

Definition 3.2. A Hoare quadruple {¢} m = P {¢} is valid if, for every assignment
o satisfying ¢ and every ¢’ such that P, o [m],c | ¢/, it holds that ¢’ = .

Definition 3.3. For an expression e and a term ¢, we define a term eQt as
tidQt =t ntid@Qt = N
_ J x(t,e1@t,...,e,Qt) if zis local
(zler, .. end)Qt = { x(e1@Qt,... e,Qt) if xis shared
(f(er, ..., en))Qt = f(e1Qt, ..., e,Q1).
The intended meaning of eQt is the value of e at thread .

NOTATION 3.4. We occasionally use T in place of m when m is an expression that is
nonzero in all threads (1, for example).

Definition 3.5. We use the following abbreviations.

—all(e) := (Vi.0 <i< N — eQj # 0)

—none(e) ;== (Vi.0 <i < N — e@i =0)

—iem:=(mQi#0)

—Vi e m.p:=(¥i.0 <i< N — mQi # 0 —). Similarly for 3 and other variants.
—If x is a shared variable, assign(z’, m, x, ¢, e) is defined as

(&
vn. (Vi € m.eQi #n) Az’ (n) = 2(n)) vV (3i € m.eQi =n Az’ (n) = eQi),
and, if z is local,
Vi, i. (i ¢ mVeQi #n— 2'(i,n) = z(i,n)) A (i € m A eQi =n — 2'(i,n) = e@i).

Intuitively, assign(a’,m,z,¢€,e) is true when 2’ is (one of) the result(s) of executing
z [€] := e with mask m. If x is shared, this is the case if, for each index 7, either

—no thread modifies z(7) and 2'(7) equals the original value z (1), or
— some (possibly multiple) threads try to modify z(72), and 2’ (i) equals a value written
by one of these threads.

The description is complicated because of possible data races. The case where x is local
is similar, but the situation is simpler because there is no data race.
We can state the meaning of assign formally as follows.

LEMMA 3.6. z[e] :=e,0[m],o | o’ holds if and only if there exists an assignment a
such that ¢’ = o[z — a), and o[z’ — a] = assign(z’,m, z, €, e).

3.2. Inference Rules

The inference rules are listed in Figure 2. We write - {¢} m = P {¢} if the quadruple
{¢} m = P {4} is provable from the rules in Figure 2. The variables z’ in H-ASSIGN
and z in H-IF and H-WHILE are fresh variables of an appropriate arity. The expression
e = z appearing in H-IF and H-WHILE is shorthand for Vi € T.ecQi = 2@,

Rules H-CONSEQ, H-SKiIP, and H-SEQ are standard. H-ASSIGN appears to be dif-
ferent from the standard assignment rule of Hoare Logic, but in view of Lemma 3.6 this
would be natural (see also Remark 3.7 below). H-SYNC is also understood similarly.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:9

{p}m = skip{p} (H-SKIP)

{all(m) V none(m) — ¢} m = sync {p} (H-SYNC)
Fe'=e {ptm=P{} E¢=¢

{WYm=P{) (H-CoNsEQ)

{p}m=P{y} {Y}m=0Q{x}
{eym=P; Q{x}
{Va'.assign(z’,m,z, e, e) = o[z’ /x]} m = z[€] :=e{p} (H-ASSIGN)
{phe=z}m&kz= P{y} {Y}mas !z = Q{x}
{¢}m = if ethen Pelse Q {x}
{pNe=2z} m&&z= P{p}
{¢} m = while edo P {¢ A none(m && e)}

(H-SEQ)

(H-IF)

(H-WHILE)

Fig. 2. Inference rules.

Rules H-IF and H-WHILE are more interesting. Since an if statement executes both
then- and else-branches sequentially, the precondition of the second premise is 1 (the
postcondition of the first), not ¢. In both rules, we have to remember the initial value
of e into a fresh variable z (see Remark 3.8 below). Since the threads in which the
condition is false do not execute the body, the mask part of the premises has to be
m && z (or m && ! z).

Remark 3.7. The standard assignment rule of Hoare Logic
{ole/a]}z :=e{p}
is equivalent to
{Va'.a' = e — g2/ /x]}z := e{p},
which has the same form as H-ASSIGN.

Remark 3.8. We introduce a fresh variable z in rules H-IF and H-WHILE. To see
that this is indeed necessary, suppose the rule is of the form

{ofmete=P{p} {y}mek!e= Q{x}
{¢} m = if ethen Pelse Q {x}

(although this is actually ill-formed because the mask part may contain variables that
are not fresh). Let = and y be shared variables and e = (z >0), P = (2 :=0; y :=1), and
@ = skip. Then, the following is valid:

{z@0 > 0} T = if ethen Pelse @ {y@Q0 = 1}.
To prove this by using the above rule, we attempt to prove
{z@Q0 > 0} x>0 = P{y@0 =1},
but this is impossible because the verification condition would be
x@Q0 > 0 — Va'.assign(x’, x> 0,2,-,0) — Vy'.assign(y’, 2’ >0,y,-,1) — y'Q0 = 1,

which is not true: @0 > 0 implies ’@Q0 = 0, but we can prove y’@0 = 1 only if /@0 > 0.
The problem is that, when executing y :=1, the actual mask is represented by z > 0,
whereas in the above verification condition it is incorrectly replaced by z’ > 0. This does
not occur in the actual rule H-IF, because, instead of e being directly evaluated, the
value of e at the point just before branching is referenced through a fresh variable z.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 K. Kojima and A. Igarashi

PROPOSITION 3.9. Our Hoare Logic admits the disjunction and conjunction rules:

{e1}m = P{y1} {2t m = P{to} {p1}m= P{1} {pa}m= P{th}
{p1 A2} m = P{1 Ao} ’ {p1 V2t m= P{y1 Vio}

PROOF. By induction on the derivations of {¢;} m = P {1;}. Consider the following
cases separately: (1) one of the derivations ends with H-CONSEQ, and (2) both of the
derivations end with the same rule (uniquely determined by P), which is other than
H-CONSEQ. The proofs are straightforward in both cases. O

3.3. Examples

3.3.1. Vector addition. Let us consider the program that appeared in Section 1.1. When
this program is called with N threads, each thread i writes a[k] + b[k] into c[k] for
k=14,N +1,2N +1,... until k£ exceeds the length n of the arrays. Therefore, after this
program terminates, the value of ¢ should be the sum of a and b. More precisely, letting
P be the program in Section 1.1, it holds that

(}T = P{¥i.0 <i<n—cli) = a(i)+b)}.

Note that in the postcondition we have to write ¢(i), not cQi, because c is a shared
variable and i is the index specified in the program (and similarly for a and b). We can
prove this quadruple using the loop invariant

Vi€ T.3.kQi =IN +i AVI'0<I'"<l—c(I'N+1i)=a(l'N +1i)+b(I'N +1).

This formula asserts that at the beginning and end of each iteration, the value of & at
thread i is of the form [N + i, and all elements at indices ¢, N +4,...,(l — 1)N + ¢ have
been processed correctly. Here, the value of [is the number of iterations that thread i
has performed.

3.3.2. Array sum. For simplicity, we assume the number N of threads is a power of 2,
and a is an array of length n = 2N. Consider the following program P:

s=n/ 2;

while (s > 0) {
if (tid < s) al[tid] = altid] + a[tid + s];
s =8/ 2;
sync;

3

When this program has been executed, the value of ¢ [0] is the sum of all values in
the original array a. Intuitively, this program implements the following algorithm. In
each iteration, we split a given array into two arrays a; and as of equal length (s in the
program). Then, we compute the elementwise sum a; + as, and store the result into
a1. This process is continued until the length of the array becomes 1. The final value of
the 0-th element is the answer.

The following is an invariant:

3 >0.(VieT.s@i=2/2) A2 /2 < NAVG(0< 5 <2 = a(j) =3, a0(j +2'k)) .

Here, a denotes the initial value of a, and the variable k in Y, a¢(j + 2'k) ranges over
all nonnegative integers such that j + 2'k < n. The expression 2!/2 is interpreted to be
0 when [= 0. We can verify that

m=0

{n=2N=2""Na=a}T= P{a(O) =y ag(m)}.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:11

4. SOUNDNESS AND RELATIVE COMPLETENESS

We now prove the soundness and relative completeness. Unfortunately, however, they
do not hold for all programs. We first describe the situation in which soundness fails
and introduce the notion of monotonic loops, based on this observation. Then we
prove the soundness and relative completeness for programs containing only mono-
tonic loops.

4.1. Monotonic Loops
As a counterexample for the soundness, let us consider the program

e =z [tid] ==tid, P =whileedo(z[0] :=1; z[1] :=1),
where z is a shared variable and the assertion
p= (3 eTax()=1i).
It can be verified that ¢ is an invariant:
{pNz=¢e}z=2[0]:=1; z[1] :=1{p},

and therefore, we can prove {¢} T = P {p A none(e)}. However, this is not a valid
quadruple. Suppose that the initial value of x is 2 [0] = z[1] = 0. Starting from such a
state, it is easy to see that P terminates with some state, say ¢’. If the quadruple above
is valid, it means that o’ satisfies ¢ A none(e). However, this formula is inconsistent.
Therefore the rule H-WHILE is not sound for this example.

The problem is that initially the condition e is false at thread 1, but after the body is
executed by thread 0, it becomes true at thread 1. In general, a difficulty arises when

— thread i has already exited the loop,
— another active thread j modifies some shared variable, and
— as a result, the condition ¢ becomes true at thread :.

In fact, this is the only obstacle to proving the soundness and relative completeness.
We restrict our attention to programs that do not cause this situation.

First, we define the notion of a stable expression under a given program. We say that
e is stable under P, if the value of e at thread i does not change when P is executed
with 7 being disabled. More precisely:

Definition 4.1. Let P be a program and e an expression. We say that e is stable
under P if for all u, o, and ¢’ such that P, u,0 | ¢/, it holds that o [e] (i) = o' [¢] (i) for

alli ¢ pu.

If e is stable under P, the above difficulty does not arise during the execution of the
loop while edo P. Formally, this is stated as follows:

LEMMA 4.2. Suppose ¢ is stable under P. Then, for all p, o, and ¢’ such that P, u N
ole],o | o, it holds that uNo'[e] C pNole].

Definition 4.3. Let us say a loop while edo P is monotonic if e is stable under P. A
program with monotonic loops is a program in which all loops are monotonic.

The following lemma gives a reasonable sufficient condition for the monotonicity.

LEMMA 4.4. Let P be a program and e an expression. Suppose that any shared vari-
able occurring in e does not occur on the left-hand side of any assignment in P. Then, ¢
is stable under P.

PROOF. It suffices to show that, if P, u, o || o/, then
—o(x)(i) = o' (x)(7) for all local = and ¢ ¢ y, and

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 K. Kojima and A. Igarashi

—o(x) = ¢'(z) for all shared z not occurring on the left-hand side of any assignment in
P.

This is proved by induction on the derivation of P, u,0 || ¢/. D

LEMMA 4.5. Let P be a program, and assume that for any subprogram of the form
while edo Q, e and Q satisfy the condition of Lemma 4.4. Then, P is a program with
monotonic loops.

Below we consider only programs with monotonic loops. However, this is not a lim-
itation in practice, because it is possible to transform a loop into a monotonic one,
which is equivalent to the original one (in the sense that, if they are executed under
the same state with the same mask, then the set of resulting states is also the same).
Indeed, given a program, its subprograms of the form while e do P can be replaced with
z :=e; while zdo (P; z :=¢), where z is a fresh local variable. The program obtained by
this transformation satisfies the condition of Lemma 4.5.

4.2. Soundness and Relative Completeness

After restricting our attention to monotonic loops, we can prove the soundness by ver-
ifying that each rule preserves validity. H-WHILE can be checked by induction on the
number of iterations (more precisely, the height of the derivation tree of the execution
relation |}). For details, see the electronic appendix.

THEOREM 4.6 (SOUNDNESS). If P is a program with monotonic loops and {p} m =
P {4y} is derivable from the rules in Figure 2, then it is valid.

Next, we consider relative completeness. The statement and proof strategy are stan-
dard for the most part, except that masks are involved in the weakest preconditions.

Definition 4.7 (Weakest Liberal Precondition). The weakest liberal precondition
wlp(m, P,) is defined as

wip(m, P,¢) = { o | Yo' P,o(m),0 b o' —> o’ =},
We use wlp(m, P,) to denote a formula defining this set.

To prove the relative completeness, it suffices to show that (1) the weakest lib-
eral precondition is definable in the assertion language, and (2) it holds that +
{wlp(m, P,)} m = P {p}. Definability can be checked in a standard manner [Winskel
1993]. The second claim can be proved by induction on P. When P is a while-statement,
we can use the formula 3z.e = z Awlp(m && z, P, p) as an invariant. For details, see the
electronic appendix.

THEOREM 4.8 (RELATIVE COMPLETENESS). If P is a program with monotonic
loops and {p} m = P {vy} is valid, then it is derivable.

5. INTERLEAVING SEMANTICS

The first part of this section introduces another semantics, which we call interleaving
semantics, in which the execution of threads interleaves. In the second part we formal-
ize race-freedom and formally state the soundness and relative completeness of our
Hoare Logic with respect to the interleaving semantics. We defer its proof to Section 6,
because it is rather long and technical. The basic idea of our formulation of the inter-
leaving semantics is similar to the semantics considered in the literature [Habermaier
and Knapp 2012; Collingbourne et al. 2013].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:13

5.1. Definition of Interleaving Semantics

To define interleaving semantics, we slightly extend the program syntax. We add a
new construct endif and an annotation (which we call a label) to each endif, if-, and
while-statement. endif appears during interleaved execution, but is not supposed to
be written by programmers. Labels play an essential role in the semantics to handle
sync correctly.

The precise syntax is

P :=uz,[€] :=¢| skip | sync | P; P’ | if' e then Pelse P’ | while' edo P | endif’.

A label | ranges over a fixed set L. We assume that the set of labels L is infinite and to-
tally ordered, and the same label does not appear more than once in a single program.

In our interleaving semantics, we have to keep track of the control flow of the ex-
ecution of each thread so that we can treat sync correctly. According to the NVIDIA
CUDA C programming guide [NVIDIA 2014],

__syncthreads () is allowed in conditional code but only if the conditional
evaluates identically across the entire thread block, otherwise the code exe-
cution is likely to hang or produce unintended side effects.

This means that if all threads reach a sync but under different control flows (syncs in
different places or sync inside a loop with different numbers of iterations), then the
execution may fail to proceed correctly. Therefore, we should design an execution rule
for sync such that the synchronization succeeds only if all threads are in the same
control flow. In the case of lockstep semantics, it was sufficient to check that the mask
is either T or (), but this solution is not available in the interleaving semantics.

To this end we introduce an extra component, which we call stack, into a configu-
ration of a thread. A stack is the history of branches that a thread has taken. Each
element of a stack is a pair ([, k) of a label and a positive integer. If | appears in the
stack of a thread configuration, then that thread is executing a statement with label
l. When [is a label of an if-statement, ¥ determines which of the two branches the
thread is executing: k = 1 if the thread is executing a then part, and k£ = 2 otherwise.
If [is a label of a while-statement, then ([, k) in the stack means that the thread is
executing the k-th iteration of the loop.

Definition 5.1 (I-configuration).

— A stack is a list of pairs (I, k) € L x (N\ {0}).

— A thread configuration is a pair (P, s), where P is a program or a symbol v/, and s is
a stack.

— An I-configuration, a configuration of interleaving semantics, is of the form (P;, s;);, 0.
Here, (P;, s;); is a family of thread configurations indexed by the set of threads T and
o is a state.

NOTATION 5.2. For a predicate ®(i) on threads (typically of the form i € u),
we denote by (P;,s; | ®(i)) the family of thread configurations, the i-component of
which is (P;,s;) if ®(i) is true, and (v, &) otherwise. A variant with multiple clauses

<P¢ia5i | ®1(4)

. is used in a similar meaning.
Qi t; <I>2(z>) o

The evaluation rules are listed in Figures 3 and 4. Figure 3 defines the execution
of a single thread and Figure 4 defines the interleaving execution. P represents a
(possibly empty) list of programs. When P is empty, P; P is understood as P, and the
empty list is identified with v if it appears alone. In the rules, we implicitly identify

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 K. Kojima and A. Igarashi

skip; P, 5,0 — P,s,0 (T-SKIP)
x is local o' =ox,i,oe] (i) — oe] (i)]

- - (T-LASSIGN)
zlel :=e; P,s,0 — P,s,0’

x is shared o' = oz, U-[[é]] (1) — o [e] (¢)] (T-SASSIGN)

zlel :=e; P,s,0 — P,s,0’

i) #0
ol @ 7 _ (T-IFTRUE)
if! ethen P; else Py; P,s,0 — Py; endif!; P,s-(I,1),0
A
le] (’)Z_ _ (T-IFFALSE)
if! ethen P; else Py; P, s,0 — Py; endif!; P,s-(1,2),0
endit!; P,s- (I,k),0c - P,s,o (T-ENDIF)
i) #0
- 7 [[,6]] Oks - (T-WHILETRUE)
while! edo P; P,s,0 — P; while'edo P; P,s+ 1,0
ofe] (@) =0

(T-WHILEFALSE)

while! edo P; P,s,0 — P,s\l,0
Fig. 3. Thread execution of GPU kernels.
P, s;, 0 N P s o

(Pi,Si)i,U —7T (Pz7sz)z [’L — (PI7S/)] 70'/
VZ,]SZ =55

(I-THREAD)

— = I-SyNcC
(sync; P, si)i,0 =1 (P, 8i)i,0 ()

Fig. 4. Interleaving semantics of GPU kernels.

programs up to associativity of sequential composition (that is, we identify (P;; Ps); Ps3
with P;; (P; Ps)). The same convention is frequently used hereafter in this article.

In the assignment rules, we used the notation o[z,i,7 — v] to denote the state o’
such that ¢/(x)(7)(72) = v and other values are the same as o.

The operations + and \ used in rules T-WHILETRUE and T-WHILEFALSE are de-
fined as

s (Lk+1) ifs=5" (k) s ifs=¢ (k)
s+i= { s-(1,1) otherwise, s\l= s otherwise.

The rules for if, while, and sync modify the stacks. T-IFTRUE and T-IFFALSE push
(1,1) and (I, 2), respectively, on the stack, and T-ENDIF pops the element ([, k) out of the
stack (if the labels in the statement and the stack agree). T-WHILETRUE increments
the second component (the number of iterations) of the stack and T-WHILEFALSE re-
moves (I, k) if it is the top element of the stack.

In I-THREAD, (P;, s;); [i — (P’,s")] denotes the family of thread configurations, the i-
component of which is replaced by (P’, s’). The rule I-SYNC checks whether the stacks
of all threads agree, that is, all threads are in the same control flow.

5.2. Race-Freedom and Equivalence

To define race-freedom, we first define a read set, which describes which part of the
shared memory is accessed when an expression is evaluated. The read set is repre-

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:15

sented by a set of pairs of the form (z,n), where = is a shared variable and © is a
sequence of integers of appropriate length (the dimension of x).
Below, by abuse of notation, when ¢ = (z, 1) we write o(¢) for o(x)(7).

Definition 5.3 (Read Set, Write Set). We define the function Rd for expressions as
Rd(tid,0,i) = Rd(ntid,o,i) = 0
{{z,o[e] (4))} URA(e,o,i) if x is shared
Rd(e, o,1) if z is local
Rd(f(e),0,i) = Rd(e, 0,1)
Rd(e,o,1) = U Rd(e, 0,1).

ece

Rd(z[el,o,i) = {

For programs, we define:
Rd(z[e] :=e,0,i) = Rd(e,0,i) URd(e, 0,1)
Rd(skip, 0,7) = Rd(sync, 0,i) = Rd(endif!, 0,i) = RA(V,0,4) = 0)
Rd(if' ethen Pelse P’ 0,i) = Rd(e, 0, 1)
Rd(while' edo P,0,i) = Rd(e,0,1%).

For an assignment to a shared variable x, we define Wr as
Wr(z el :=e,0,i) = ((z,0 [e] (1)), o [e] (7).
Definition 5.4 (Race-freedom).

(1) An I-configuration (P;, s;);, o is said to be racy if there exist two distinct threads ¢
and j such that either
(a) the first statement of P, is an assignment to a shared variable, Wr(P;,0,i) =
(l,v), o(l) # v, and | € Rd(P;},0,j), or
(b) the first statements of P, and P, are both assignments to the same shared
Variable, WI'(Pi,O', Z) = (&,’Ui), WT(Pj, O’,j) = (£j7’l)j), £1 = éj and V; 7é Vj.
(2) An I-configuration is said to be race-free if it cannot reach a racy I-configuration.

Note that we do not consider writes by multiple threads as a race if the values being
written are the same. This is because this type of race (sometimes called a benign race)
is common in practice, and considered tolerable [Betts et al. 2012].

We can prove that the race-freedom defined above implies the equivalence of inter-
leaving and lockstep semantics. The proof is given in Section 6.

THEOREM 5.5. Let P be a program and p a mask and suppose that (P,e | i € u),o
is race-free. Then, P,p,0 | o' if and only if (P,e | i € p),0 =5 (V,€);, 0.

From this theorem, together with the results of Section 4, soundness and relative
completeness with respect to the interleaving semantics follow.

COROLLARY 5.6. Let P be a program with monotonic loops and suppose that
{}m = P{y} is derivable. Let o be a state such that the I-configuration (P,c | i €
o [m]),o is race-free, o |= ¢ holds, and (P,e | i € o [m]),o0 —7 (v, ¢€)i,0’. Then, it holds
that o’ = 1.

COROLLARY 5.7. Let P be a program with monotonic loops such that (P,c | i €
o [m]), o is race-free for all o such that o |= . Then, {9} m = P {4} is derivable if for
all 0 and o' such that o = p and (P,e |i € 0 [m]),0 =7 (V,¢€);, 0’ it holds that o' |= .

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 K. Kojima and A. Igarashi

6. PROOF OF EQUIVALENCE

This section is devoted to showing that the lockstep and interleaving semantics are
equivalent for race-free programs (Theorem 5.5). As the proof'is rather long, we outline
the proof before providing the details.

We first introduce a derivation search procedure for the lockstep semantics in Sec-
tion 6.1. This is a procedure to construct a derivation of P, u,o || o' for some (ini-
tially unknown) o’ step by step. The soundness and completeness of this procedure
are proved: a derivation produced by this procedure is always valid and any valid
derivation can be produced by this procedure. This procedure can be regarded as a
small-step version of the lockstep semantics. A small-step semantics is more conve-
nient when comparing lockstep and interleaving semantics, as the latter is defined as
a small-step semantics (a similar approach has been considered by Gunter and Rémy
[1993] to state and prove the absence of runtime type errors when the language has a
big-step semantics).

In Section 6.2 we define a translation from a partial derivation into an I-
configuration and prove that this gives a simulation: each step of the derivation search
corresponds to an execution of the interleaving semantics (possibly in multiple steps).
This fact implies a half of Theorem 5.5. Let us remember the statement of the theorem:
under the assumption of race-freedom, it holds that

Pu,cllo < (Pelieup),o—5(V, e (@)

The left-to-right direction follows from the simulation and the completeness of the
derivation search. Additionally, it is easily checked that, if there exists an infinite se-
quence of derivation search, then there also exists an infinite interleaving execution
sequence.

In Section 6.3, we prove that a race-free I-configuration is deterministic, that is, if
an I-configuration C is race-free and there exists a finite sequence C —} C’ that is
maximal (that is, there exists no C” such that ¢’ —; C”), then every maximal sequence
starting from C is also finite and ends with C’. This means that, to prove the right-to-
left direction of (1), it suffices to show that the lockstep execution terminates with some
state. Indeed, if the lockstep execution terminates with some ¢” (that is, P, u,o | "),
then by simulation it holds that (P,e | i € p),0 =% (v,€);,0”, but from determinacy
the resulting state is unique, and hence ¢’ = ¢”.

In Section 6.4, we prove that, if the derivation search barrier-diverges (i.e., fails at
a barrier synchronization), then there exists an interleaving execution sequence that
does not terminate successfully (i.e., does not end with a configuration of the form
(v, €)i,0”). The proof is rather involved; the problem is that, even if the lockstep ex-
ecution gets stuck at a barrier, it does not mean that the interleaving execution also
gets stuck at the same point, since we could choose a thread that is not synchronizing
and execute it. The proof is sketched at the beginning of Section 6.4. This result im-
plies the right-to-left direction of (1) as follows. As mentioned above, by determinacy it
suffices to show that

(Pelieu),oc—=5(V,e)o = Fo".Pu,ol o’

Assume the negation of the right-hand side. Then, the derivation search does not ter-
minate or barrier-diverge. In the first case, there is an infinite sequence of the inter-
leaving execution, but this contradicts determinacy. In the second case, the result of
Section 6.4 implies that the interleaving execution does not successfully terminate, but
this also contradicts determinacy. Therefore, the lockstep execution has to terminate.
Although the proof of Theorem 5.5 was outlined above, a more formal proof of it is
given in Section 6.5. The proof does not directly refer to the details of Sections 6.3 and

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A7

6.4; only Lemmas 6.16, 6.20, and 6.21 are used. If the reader is not interested in the
proofs of these lemmas, the details of these two sections may be skipped.

6.1. Partial Derivation and Derivation Search

We first define partial judgments and partial derivations. We assume an infinite set
of state variables, ranged over by X. A state variable is used in a partial judgment or
derivation as a placeholder, which is eventually replaced with the result of the execu-
tion of the statement being executed.

Definition 6.1 (Partial judgments). We define partial judgments as
Ji=Puocl|X|PuX{|X;, Yu=0c|X.

A partial judgment allows state variables to appear in place of concrete states. How-
ever, if the final state is concrete, the initial state has to be concrete.

Definition 6.2 (Partial derivation). Partial derivations are inductively defined by
the rules below. We denote by #7(.J) the set of partial derivations with conclusion J.
We also assume that D; and D below do not contain a common state variable except
for ¥/ occurring in their conclusions.

1) Je 2(J);
2) If Dy € 2(P,u,0 4 Y)and Dy € P (Py, 1, Y ||), then
Dy Dy
Py; Py, po I 5
3) If Dy € 2(P,unole],oc 4 ¥)and Dy € Z(Py,u\oe] ,X | X), then
Dy Do
if! ethen P) else Py, p,0 | ¥

@) If pnofe] # 0, D1 € P(P,unofe],o | ¥'),and Dy € P(whilel edo P,uNaoe], ¥ |
¥), then

S gZ(Ply PQ,/L,O’»U«E);

€ Z(if' ethen P; else Py, 1,0 ||);

Dy Dy c
while'edo Py, 0 | &

P (whilel edo Py, 0 |).

We say that a derivation D is total if it contains no state variable. Occasionally a
partial derivation that is not total is said to be strictly partial.

Remark 6.3. As is easily seen by case analysis, Z(P,u, X | X’) has actually only
one element P, u, X || X'.

Remark 6.4. The names of state variables appearing in a partial derivation are
essentially irrelevant, so we implicitly replace state variables with fresh ones so that
any two unrelated occurrences of variables have distinct names.

More precisely, relevant occurrences of a state variable is defined as follows. Let D
be a partial derivation and X a state variable. We define the relevance of occurrences
of X in D as the least equivalence relation such that, for all subderivations of D of the
form

Pla,ulla‘a—l I X P23M27X&X/ or D' P27M27.0'2 ‘uX’
J Puol X

the two occurrences of X explicitly indicated are relevant.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 K. Kojima and A. Igarashi

P is either sync, skip, or an assignment Pu,oll o

E[P.jr.o § X] — B[P.p.0 § X]{0'/X) (5-AT0W
/ /
E[Pi; Poo b X] — B Pl’“";l“; §27Mf5’$§ “X] (S-SEQ)
E [ifl ethen P; else Py, i, 0) X] —
E{Pl,uﬁa[[e]],aliX’ Pg,,u\a[[e]],X’iLX} (S-IF)
if! ethen P else Py, p,0 | X
pNole] #0

E [whileledoP,u,al}X] —
B {P,uﬂa[[e]],ol}X’ whileledo P,unaofe], X’ || X

while!edo P, 0 | X

(S-WHILETRUE)
unole] =0
E [whilel edo P, u,o X] — F [whilel edoP,u,ol X} {c/X}
(S-WHILEFALSE)

Fig. 5. Derivation search procedure

It is always possible to rename state variables to eliminate irrelevant occurrences
of the same variable. Hereafter, unless otherwise specified, we assume that partial
derivations have no irrelevant occurrences of the a variable.

Next, we define a derivation search procedure. We describe the procedure as a set
of rules, in which we use evaluation contexts. Therefore, we first introduce evaluation
contexts.

Definition 6.5 (Evaluation context). An evaluation context, ranged over by E, is de-
fined by the following syntax.

E PuX' X |D E
7 J

Here, D denotes an arbitrary total derivation.

E =]

Application of evaluation contexts, denoted by E[D], is defined as usual.

The derivation search procedure is formally described as a binary relation — on
partial derivations. The rules are listed in Figure 5, where X’ is a fresh variable. In
S-ATOM and S-WHILEFALSE, all occurrences of X have to be replaced by ¢/, because
the variable X is a placeholder for the result of the execution of P.

This procedure is sound and complete in the following sense.

PROPOSITION 6.6 (SOUNDNESS). If P,u,0 | X —* D and D is a total derivation,
then D is a valid derivation with respect to the rules in Figure 1.

PROPOSITION 6.7 (COMPLETENESS). If Dy is a derivation of P,u,0c | o' con-
structed from rules in Figure 1, then P,u,0 |} X —* Dj.

For the proofs of these propositions, see the electronic appendix.

6.2. Simulating the Derivation Search Procedure

Having defined the derivation search procedure, we wish to prove that each step of this
procedure can be simulated by the interleaving execution. To achieve this, we construct
a translation from partial derivations into I-configurations, denoted by | - |, and show
that this translation is a simulation between lockstep and interleaving semantics.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:19

Unfortunately, however, the desired result is not quite true. For example, consider
the program z :=z + 1, where z is a shared variable. In the lockstep semantics, this pro-
gram increments the value of = by 1, but in the interleaving semantics it increments x
by the number of active threads. Therefore, we have to work under some assumption
that excludes this situation. (Another possible approach is to split the execution rule
of assignment into two phases [Habermaier and Knapp 2012]. The first phase calcu-
lates the index of the array and the value to be stored, and actual write operation is
performed at the second phase.)

Definition 6.8.

(1) Let A = z[e] :=e be an assignment to a shared variable z. An instance of the
rule E-SASSIGN with conclusion A, pu,o | ¢’ is said to be interleavable if there
exists an enumeration i,...,%, of u and a sequence of states o1,...,0,,_1 such
that A, ¢, 04_1 -2 v, &, 0, for each 1 < k < m, where oy = ¢ and o,, = ¢'.

(2) A partial derivation D is said to be locally interleavable if every instance of
E-SASSIGN appearing in D is interleavable.

We show that the race-freedom implies the local interleavability, in Section 6.3.
In the definition of the translation |-| from partial derivations into I-configurations,
we use the following auxiliary operation:

4o Lk+1)-¢ ifs=(k)- s
(1,1)-s otherwise.

We first define, for an evaluation context E, a transformation |E| of families of
thread-configurations. Throughout the following definition, D is a total derivation and

(Ri ti) = |E|(Qi, 5:)i-
Qi 8i)i = (Qi 81)i

E PQ,M,XI@X .
ir8i)i = (Ri; P2l
’P1;Pz,u,al}X (Qisi)i = (oyt | 1€)

D FE .
Pr Pono I X (Qissi)i = (Risti | € p)
E Pyp\ofe], X' | X (Q15:);s = (Ri; endif! (1,1) -t ieuﬁa[[e]])
if! ethen P else Py, p,0 | X B Py; endif', (1,2) i€ pu\oe]
D FE . .
if! ethen P else Py, pi,0 | X (Qir80)i = (Ri; endif', (,2)-t: i e u\a[[e]])
‘E whileledo P,pnaofe], X’ | X
whileledo P, p,0 |} X
D F
whileledo P, p,0 | X

(Qiy8:); = (Ri; while! edo Pl +¢; |ieun a[[e]])

(Qi,si)i:(Ri,l—f—ti|i€uﬂ0[[€]] andRZ;E\/)

|E| is basically an operation that appends the continuation denoted by E. Note that,
in the last case, [is not added to the stack of thread ¢ if R; = v'. This is because such a
thread 7 has already exited the loop.

We define the transformation from a partial derivation into an I-configuration by

|E [P, p,ol X]|=|E|(Pel|i€p),o for a strictly partial derivation;

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 K. Kojima and A. Igarashi

= (v,e)i, 0 for a total derivation.

Pp,ollo’

PROPOSITION 6.9. If D — D' and D’ is locally interleavable, then |D| —7 |D’|.
Moreover, if D is of the form E[P, u,o || X] where P is not a sequencing and p # 0, then
[D| =7 |D'].

PROOF. By induction on E. For details, see the electronic appendix. O

6.3. Race-Freedom and Determinacy

In this section, we prove that the race-freedom implies the determinacy and local in-
terleavability.

We first prove the determinacy. In the proof, we use several notions about abstract
rewriting system.

Definition 6.10 (Diamond Property). Let A be a set and — a binary relation on it.

(1) We say (A, —) has the diamond property if, for all a,b,c € A such that a — b, a — ¢,
and b # ¢, there exists d € A such that b — d and ¢ — d.

(2) An element a € A is said to have the diamond property if — restricted to the set of
all elements of A reachable from « has the diamond property.

The above definition of the diamond property is slightly different from the usual one in
that we assume b # c. This assumption is redundant when the relation — is reflexive,
which is often the case. However, here we need this assumption, because the relation
we have in mind is —;, which is not reflexive.

Definition 6.11 (Determinacy). Let A be a set and — a binary relation on it. An
element a € A is said to be

— normal if there exists no b € A such that a — b;

—a normal form of b € A if a is normal and b —* q;

— strongly normalizing if there exists no infinite sequence a = ag — a1 — as — ...}

— weakly normalizing if it has a normal form,;

— deterministic if either (1) it is strongly normalizing and has a unique normal form,
or (2) it is not weakly normalizing.

LEMMA 6.12. Let A be a set and — a binary relation on it, and suppose a € A has
the diamond property. For any pair of elements b,c € A such that a —* b and a —* ¢,
there exists d € A such that b —* d and ¢ —* d.

PRrROOF. By inductionona —»*banda —*c. O

LEMMA 6.13. Let A be a set and — a binary relation on it. If a € A has the diamond
property and is weakly normalizing, then a is strongly normalizing.

PROOF. It suffices to show that, if a — b and b is strongly normalizing, then « is also
strongly normalizing, provided that — has the diamond property. Suppose that b is
strongly normalizing but « is not, and take an infinite sequence a = ay — a1 — as....
We inductively construct an infinite sequence b = by — by — b ... such that a; — b;
for each i. Suppose we have already constructed such a sequence up to b;. From the
assumption, we have a; — b; and a; — a;11. Moreover, b; # a;1, because b; is strongly
normalizing (since it is reachable from b, which is strongly normalizing), while a1 is
not. Therefore, from the diamond property, there exists b;,; such that b, — b, and
ai+1 — bir1, as required. 0O

The following is an immediate consequence of the lemmas above.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:21

COROLLARY 6.14. Let A be a set and — a binary relation on it. If a € A has the
diamond property, then a is deterministic.

We can apply this corollary to show that race-freedom implies determinacy.

LEMMA 6.15. Let e be an expression, o and o’ states such that o(¢) = o'({) for all
¢ € Rd(e,0,i), and o(z)(i) = o'(z) (i) for any local variable x. Then o [e] (i) = o’ [e] (7).

PROOF. By inductionone. O

LEMMA 6.16. A race-free I-configuration has the diamond property. In particular, it
is deterministic.

PROOF. If an I-configuration has two distinct transitions, then both of them have
to be derived by I-THREAD. By definition, — is deterministic for each i, and hence it
suffices to show that for distinct ¢ and j if (P, s;);, o is race-free, P;, 8i,0 5 Pl.s, o,

79 9%

and P; 185,0 AN P/, s’, 0", then there exists o’ such that P;,s;, 0" 5 P!, s, 0" and

Pj,sj,0 AN P, s, 0"

This is verified by case analysis on thread execution rules in Figure 3. If both threads
i and j use rules that do not modify the state, the conclusion is obvious. Suppose that
at least one of the two threads uses an assignment rule. Without loss of generality,
we may assume thread i uses either T-LASSIGN or T-SASSIGN, and ¢’ = o[¢ — v]
(here, ¢ takes the form (z,4,n) if x is local). From the race-freedom and Lemma 6.15, it

follows that o’ [e] (j) = o [e] (j) for any expression e that is to be evaluated by thread

j. Therefore, if the head of P; is not an assignment, then P;,s;, 0’ — Pj, s}, 0, as
required. If P; is also an assignment, we have ¢ = o[¢' — y} for some ¢’ and v'. For

these ¢ and v" we have P;,s;,0’ REIN Pj, %, 0'[(" — v'], and therefore it suffices to show
that o’[¢/ — v'] = o”'[¢ — v], that is, o[¢ — V][— V'] = o[¢/ — V'][¢ — v] but this follows
from the race-freedom. O

Next, we show that any D € Z(P,u,0 || X) is locally interleavable, if the I-
configuration (P,e | i € pu),o (which corresponds to P, u,0 || X) is race-free. In fact,
we prove a stronger assertion that every judgment of the form A, i, o || o/, where A is
an assignment to a shared variable, is race-free in the following sense.

Definition 6.17 (Race-free assignment). Consider an assignment to a shared vari-
able A = z[e] :=e. For brevity, let us write R;, ¢;, and v; for Rd(A, o,1), (z,0 [€] (¢)),
and o [e] (i), respectively. Then, (A, u, o) is said to be race-free if, for any i, j € p,

(1) lf& = fj then v; = vy, and
(2) if 4 75] and V; 75 O’(El) then El ¢ Rj.

Remark 6.18. The above definition of race-freedom is consistent with Definition 5.4
in the following sense: (A, u, o) is race-free in the sense of Definition 6.17 if and only if
(A,e | i € p), o is not racy in the sense of Definition 5.4.

We first show that a race-free assignment is interleavable.

LEMMA 6.19. Consider an assignment to a shared variable A = z[e] :=e, and sup-
pose that (A, u, o) is race-free. Then, o’ for which A, u,o || o' is valid is unique, and this
Jjudgment is interleavable.

PROOF. We use R;, ¢;, and v; in the same meaning as Definition 6.17. Let {i1, ... 4, }
be an arbitrary enumeration of ..

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 K. Kojima and A. Igarashi

We first check the uniqueness. Let us suppose A, i, 0 |} o/, and show that ¢’/(¢) is
uniquely determined for each (. If ¢ # /;, for every j, then o'({) necessarily equals
o(¢), and hence it is unique. Otherwise, o(¢) = v;; for some j with / = /;,. From the
race-freedom, if /;; = ¢;, then v;, = v;,, and hence ¢’ () is unique.

Let us define

O = O'[gil — Uil] Ce [6” — 'Uik]
for 0 < k < m. It is easy to check that A, u,o |} o,,,. To prove the interleavability, it is

sufficient to show that A.e,0,_1 — v ,¢,05 for 1 < k < m. By T-SASSIGN rule, we
have

Ae,on1 -5 v e, 001 [(z, 061 [€] (in)) = o1 [€] (ir)].

It suffices to show that the state on the right equals o;. Therefore, what we have
to show is o1 [€] (ix) = o[€] (ix) and ox_1 [€] (ixr) = o[e] (éx). To prove this, by
Lemma 6.15 it suffices to check that o = 051 on R;, and o(x)(ix) = or—1(z)(ix) for
all local variables x. The latter part is immediate from the definition of o’s. Consider
¢ € R;,, and suppose o({) # o,_1(¢). Then, since the only differences between o and
op—1 are the values at 4;,,...,¢; ,, we have { = /; for some j with 1 < j <k —1. Then,
by definition of 041, we have o(¢;;) # or_1({;;) = v;;, and hence it follows from the
race-freedom that ¢;, ¢ R;, (note that j # k, hence i; # i;), a contradiction. O

LEMMA 6.20. Suppose (P, | i € u), 0 is race-free, and let D be a partial derivation
reachable from P, u,o |} X. Then, D is locally interleavable.

PROOF. By Lemma 6.19, it suffices to show that, for every instance A, u,o0 || ¢’ of
T-SASSIGN in D, (A, u, o) is race-free. We prove this by induction on —*. The base
case is obvious, because there is no such rule instance. For the induction step, consider
D and D’ such that (P, u,0 | X) —* D — D’, and suppose that D is locally inter-
leavable. If D’ contains an instance of E-SASSIGN that does not appear in D, then it
has to be the case that D — D’ is obtained by S-ATOM; note that the substitution per-
formed by S-WHILEFALSE does not produce a new instance of E-SASSIGN, because it
does not replace an occurrence of a state variable on a leaf except for the leaf to which
E-WHILEFALSE is applied. Therefore, D takes the form F[A, 1/, o’ || X'] where A is an
assignment to a shared variable, and D’ = D{c"/X'}.

By the induction hypothesis, D is locally interleavable, and hence by Proposition 6.9,
|D| is reachable from (P,e | i € u),0. To show that (4,u/,0’) is race-free, by Re-
mark 6.18 it suffices to show that (A,e | i € i’), ¢’ is not racy. Here, we use the follow-
ing facts: from the assumption of race-freedom, |D| is not racy, and |D| has the form
(Qi, 8:)i,0' where Q; = (A; Q)) if i € p'. First, if (Q;, s;);, 0’ is not racy, then neither is
a configuration (Q;,s; | ¢ € u');, o’ with fewer active threads (that is, i with Q; # V).
This is because the definition of a race can be written as an existential statement on
active threads (there exists two active threads such that...). Since Q; = A; @/, this
means that (A; Q/,s; | i € i');, 0’ is not racy. Second, this implies that (A,e | i € p');, 0’
is not racy, because the definition of a race only mentions the first statement of each
program, and hence Q; and s; are irrelevant. 0O

6.4. Barrier Divergence
In this section, we prove the following Lemma.

LEMMA 6.21. If Py, po,00 {4 Xo —* D = E[sync,pu,0 | X] and p # 0, T, then there
exists no o' such that |D| —7% (v',€);,0".

The basic strategy of the proof is to define an ordering <, on thread configurations
so that

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:23

—if (P, 8:)i,0 =1 (P!, s})i, 0, then (P, s;) <L (P, s}) for each 1,

— under the same assumptions as Lemma 6.21, if j € p, k ¢ u, and |D| = (P, s:)s, 0,
then (Pj, Sj) <L (Pk, Sk), and

—if (P}, s;);, 0 is an I-configuration to which I-SYNC applies, then (P;,s;) £ (Pk, sk)
for every pair of threads j, k.

We call this order L-order (L stands for lockstep). The intuition behind this order is
that to simulate the lockstep execution in the interleaving semantics, the least thread
with respect to this order has to be executed first. The first and third clauses mean
that a smaller configuration becomes larger as its execution proceeds and, by the time
a barrier synchronization succeeds, all configurations are incomparable. The second
clause means that, if threads are barrier-divergent, then a thread that has reached
sync is strictly smaller. Therefore, being strictly smaller is an invariant condition (by
the first clause), and the threads are never ready for synchronization. The lemma fol-
lows from this observation, because | D| cannot terminate without using I-SYNC.

The precise definition of L-order (Definition 6.33) is complicated, but basically it
compares program counters (which we introduce below) of both sides, so that the state
increases as the execution of the program proceeds (this implies the first condition
above). A difficulty arises from the existence of loops: when the execution returns to
the beginning of a loop, the program counter decreases. To handle such a case correctly,
L-order takes the state of stacks into account, and this complicates the definition of L-
order.

The proof of Lemma 6.21 is as follows. First, we introduce counters and modify the
notions we have introduced thus far, such as derivation search and interleaving se-
mantics; then, we show that Lemma 6.21 follows from its variant, Lemma 6.31 (Sec-
tion 6.4.1). The latter states that Lemma 6.21 holds for the annotated versions of par-
tial derivations and I-configurations. Then, it remains to prove Lemma 6.31. To prove
this, we define L-order (Section 6.4.2) and show that it is transitive on reachable thread
configurations (Lemma 6.48 in Section 6.4.3). To prove the transitivity, we have to in-
troduce several auxiliary notions and lemmas. This machinery is used only in the proof
of the transitivity, and is not used in the remaining part of the proof, except in Lem-
mas 6.41 and 6.46. After the transitivity has been proved, in Section 6.4.4, the first and
second properties of L-order listed above are proved in Lemma 6.51 and Lemma 6.53,
respectively. The third property is almost immediate from the definition of L-order.
Finally, at the end of this section, we put these results together to prove Lemma 6.31.

6.4.1. Interleaving Semantics with Program Counters. First, we introduce a program
counter into our program syntax:
Pu=c:z,[€] :=e| c:skip|c:sync|P; P'|c:if'ethenPelse P’
| ¢ :while' edo P | ¢ : endif!
Counters ¢ range over natural numbers.
Since c represents a position of each statement in the initial program, it is natural

to assume that ¢ is annotated from left to right. In addition, we assume a certain
condition on counters, which we specify below.

Definition 6.22. Let P be a program. Then we denote the sequence of labels appear-
ing in P by labs(P). Similarly the counters appearing in P is denoted by cts(P). More
formally,

labs(c:zle] :=e)=¢
labs(c : skip) = ¢
labs(c : sync) =€

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 K. Kojima and A. Igarashi

labs(P; P') = labs(P) - labs(P")
labs(c : if! ethen P else P') =1 - labs(P) - labs(P")
labs(c : while! edo P) =1 - labs(P)

labs(c : endif!) = ¢

cts(c:xzlel :=e)=c
cts(c: skip) = ¢
y=c¢

)

)

)

cts(c : sync) =

cts(c: if! ethen Pelse P') = c- cts(P) - cts(P’)
cts(c : while! edo P
cts(c : endif!) = ¢,

where - represents the concatenation of sequences.

Although labs(P) and cts(P) are sequences, we sometimes regard them as sets. For
example, | € labs(P) means that [appears in labs(P). Also, ct(P) denotes the first
element of cts(P). Since cts(P) is always non-empty, ct(P) is well-defined. For conve-
nience, we also define cts(v') = labs(v') = ¢ and ct(v') = oo.

Definition 6.23. Let P be a program. A subprogram P’ of P with label | is a subpro-
gram of P of the form either ¢ : if! e then P, else Py or ¢ : while! edo P;.

Definition 6.24. Let P be a program such that labs(P) contains no multiple occur-
rences of the same label. We define bgn for such a program as a map from labs(P)
(regarded as a set) to N such that for each label | € labs(P) and the subprogram P’ of P
with label [, bgnp (1) = ct(P’) (that is, bgn, () is the counter annotated to the statement
with label 1).

Definition 6.25. A program P is said to be well-annotated if

— cts(P) and labs(P) are strictly increasing, and
— there exists a function end : labs(P) — N such that, for all subprograms P’ of P, if P’
has a label [, then
—end(!’) < end(l) for all I’ € labs(P’),
—c < end(!) for all ¢ € cts(P’), and
—end(l) < cfor all ¢ € cts(P) \ cts(P’) such that bgn(l) < c.

The function end is used to define the semantics (see Figure 7). As an example, con-
sider the programs in Figure 6. Although both programs satisfy the first condition of
Definition 6.25, the program on the left is well-annotated while the one on the right is
not. The function end for the program on the left is given by end(!) = 8 and end(m) = 5,
whereas for the one on the right, we have to choose end(m) so that 4 < end(m) < 5,
which is impossible.

Hereafter, when we consider a well-annotated program, we implicitly assume that a
function end (which is sometimes denoted by endp, making P explicit) is specified.

NOTATION 6.26. We denote by || the operation that removes all counters, which
applies to both programs and I-configurations. Below we often follow the convention
that if we have to treat both annotated and unannotated programs, we use P for

unannotated one and P for annotated one (and similarly for partial derivations and
I-configurations).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:25

l:s =n / 2; l:s =n/ 2;
2:while! (s > 0) { 2:while! (s > 0) {
3:1f™ (tid < s) 3:if™ (tid < s)
4:a[tid] = a[tid] + a[tid + s]; 4:a[tid] = al[tid] + a[tid + s];
6:s = s/ 2; 5:s =8/ 2;
7:sync; 6:sync;

} }

Fig. 6. Examples of well- and ill-annotated programs.

The following lemma shows that any program can be made well-annotated.

LEMMA 6.27. For any program P in the sense of Section 5 (i.e., without counters),
there exists a well-annotated program P such that Py and | P| are the same except for

labels.

PROOF. We may assume that labsP is increasing (if not, rename the labels). Then,
define counter annotation and end by the following procedure:

—annot(Py; Py,c) = (Pq; P},ca,my W my), where (P{,c1,m1) = annot(Pj,c) and
(P, c2,mg) = annot(Py, ¢1);

— annot(if! e then Py else Py,c) = (c : if! ethen P] else Py, co + 1,my Wma W {(l,c2)})
where (Pj, c1,m1) = annot(Py, ¢+ 1) and (Py, c2, m2) = annot(Ps, ¢1);

— annot(while! edo P,c) = (¢ : whilel edo P’ ¢y + 1,my W{(l,c1)}) where (P’ c;,my) =
annot(P, ¢+ 1);

— if none of the above clauses applies, annot(P,c) = (¢ : P,c+ 1,0).

annot receives a program P and an auxiliary natural number ¢ that represents the
least value of the counter that may be used to annotate P, and returns an annotated
program P, a natural number ¢ that is greater than any counter appearing in P, and a
partial function m that constitutes end for P. Let (P, ¢, m) = annot(P, ¢). Then it holds
that P is well-annotated with end = m. O

Having introduced the counters and well-annotated programs, we now adapt some
of the arguments in the current and the previous sections to the new setting. Fig-
ures 7 and 8 show how to modify the interleaving semantics introduced in Section 5.1
to annotated programs (differences are highlighted). Most part of the modification is
straightforward, except that every endif' appearing on the right-hand side is anno-
tated by end(l), and similarly for a while-statement in T-WHILETRUE. Because we
expect counters to increase from left to right, we have to annotate them with some
number larger than the counters of P, or P, but smaller than those of P. The second
condition of Definition 6.25 is exactly what is needed here. I-SYNC allows the coun-
ters to vary among threads. Although it seems more natural to require that they are
uniform, this relaxed version makes the proofs below simpler.

In the interleaving semantics defined here, we assume a fixed, well-annotated initial
program . The functions bgn and end appearing in these rules are considered as bgnp,
and endp,, respectively. Below, unless otherwise specified we implicitly assume that a
well-annotated initial program is fixed, and we omit the subscripts of bgn and end for
brevity.

Since the new rules only add counters to programs and change nothing else, —;. and
— 1 are almost equivalent.

LEMMA 6.28. Let C be an annotated I-configuration.

(1) IfC' is another annotated I-configuration and C —. C, then |C| —; |C'].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 K. Kojima and A. Igarashi

c:skip; P,s,o . P,s,0 (T-Ski1pP)
x is local o' =ox,i,oe] (i) — oe] (i)]

= —— (T-LASSIGN)
c:xle]l :=e; P,s,0 —. P,s,0’

x is shared o' =olz,oe] (i) — oe] (7)] (T-SASSIGN)

_ = i 5
c:zlel :=e; P,s,0 —. P,s,o0’

; 0
_old®# _ (T-IFTRUE)
c:if!' ethen P; else Py; P,s,0 —. P1; end(l) : endif!; P,s-(I,1),0
N0
_ ol _ (T-IFFALSE)
c:if' ethen P; else Py; P,s,0 —. Py; end(l) : endif!; P,s-(1,2),0
c:endif!; P,s- (I,k),o L>C P.s o (T-ENDIF)
; 0
- ol @) # : (T-WHILETRUE)
¢ :while' edo P; P,s,0 —, P; end(l) : while' edo P; P,s + 1,0
o le] () =

(T-WHILEFALSE)

¢ :while'edo P; P,s,0 -, P,s\l,0
Fig. 7. Thread execution of GPU kernels with counters.
Pi, Siy O L)C Pl, 8/, O’l

(Pi,8i)iy0 —1e (P, 88)i [t — (P, 8")], 0’
Vi,j.si = Sj

(I-THREAD)

_ _ I-SynNc
(¢; :sync; Py, 8:)i,0 —=1e (Piy 8i)iy0 ()

Fig. 8. Interleaving semantics of GPU kernels with counters.

(2) If C' is an unannotated I-configuration satisfying LCJ —1 C’, then there exists a
unique annotated I-configuration C' such that C —;. C' and |C']| =C'.

We next annotate partial derivations and the derivation search procedure defined
in Section 6.1. The new definition of partial derivations is mostly the same as Defi-
nition 6.2. The only nontrivial case is (4) of Definition 6.2, where the counter of the
while-statement of Dy has to be end(l), while the counter of the statement at the bot-
tom is arbitrary. The other clauses are exactly the same as before, except that P, P;,
and P, denote annotated programs. This means that, for example, in clause (4) the
three occurrences of P in the conclusions of D, D>, and the whole partial derivation
have to be identical including counters. The derivation search procedure defined in
Figure 5 is adapted in a straightforward manner. We occasionally use — . to denote
the resulting relation for clarity.

LEMMA 6.29. Let D be an annotated partial derivation.

(1) If D' is another annotated partial derivation and D —s. D', then |D| — | D'|.
(2) If D' is an unannotated partial derivation satzsfymg |D| — D', then there exists
a unique annotated partial derivation D' such that D —s, D' and |D'| = D',

We can prove analogues of the results in Sections 6.2 and 6.3 in the same way as
before. We omit the details because they are mostly straightforward. Below we denote

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:27

the translation from annotated partial derivations into annotated I-configurations by

| ' ‘c-
LEMMA 6.30. For an annotated partial derivation D, it holds that ||D|.| = || D]|.

Now we can reduce our goal, Lemma 6.21, to the following lemma.

LEMMA 6.31. If Py, jug,00 | Xo —* D = E|c : sync,p,0 || X] and p # 0,T, then

there exists no o' such that |D|. —3, (V' ,€)i, 0.

LEMMA 6.32. Lemma 6.31 implies Lemma 6.21.

PROOF. We may assume labsP, is increasing, without affecting the premises of
Lemma 6.21, because the interleaving semantics do not rely on the ordering over la-
bels. Then, by Lemma 6.27 we have a well-annotated program P, such that | P, | = P,.
By Lemma 6.29, the assumption of Lemma 6.21 implies the existence of D satisfying

the assumption of Lemma 6.31 and the equation |D| = D. Therefore, there is no o’

such that | D|. —%, (v,€);, 0. Let us assume there exists o’ such that |D| —% (v, ¢);,0".

Then, by using D = Lf)J and Lemma 6.30, we obtain L|l~)|CJ —% (v, ¢€)i,0'. Therefore,
by Lemma 6.28, there exists an annotated I-configuration C such that |D|. —%, C and
|C|] = (V,€);,0’. However, by definition of |C| this equality implies ¢ = (v',¢);,0', a
contradiction. O

In the rest of this section, we prove Lemma 6.31. In what follows, we mostly consider
annotated programs and configurations. Therefore, for brevity, we usually omit the
word “annotated” and use P and C rather than P and C. Counters are also omitted, if
they are not important.

6.4.2. L-order
Definition 6.33 (L-order).

— The partial order < on stacks is the prefix relation, that is, s < s’ if and only if there
exists s’/ (which is possibly empty) such that s’ = s - s”.

— The relation || on stacks is defined as: s || s’ if and only if neither s < s’ nor s’ < s.
We use }f for the negation of ||.

— The partial order <, on stacks is the lexicographical order, where elements are also
ordered lexicographically. More precisely, s <, s’ if and only if either
—s=éd,or
—s=s0-(l,k) 51,8 =s0-(',K)-s2and (I, k) < (I', k'),
where (I,k) < (I, k') if and only if either I < !, or I =" and k < k'.

— The relation < on thread configurations is such that (P, s) <, (P’,s') if and only if
either
—s| ¢ and s <5 ¢/, or
—s s and ct(P) < ct(P’).
In particular, (P,s) <. (v,¢) for all P # v and s since ct(v') = co. We call this
relation L-order.

As usual, we write s < s’ when s < s’ and s # s/, and similarly for <. We also write <
for the reflexive closure of <, .

Intuitively, two thread configurations 7' and 7" satisfy 7' <. 7’ when T is at an
earlier stage of execution than 7”. To see that this applies when the execution branches
on if-statement, remember that our semantics executes the then part first. Thus, the
then part is considered an earlier stage of execution than the else part. Taking this

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 K. Kojima and A. Igarashi

into account, T-IFTRUE and T-IFFALSE push ([, 1) and (I, 2) to the stacks, respectively,
sothat s- (I,1) <. s (1,2).

Therefore, we basically compare counters of both configurations, as in the second
clause of the definition of L-order. However, it is not sufficient to compare counters
only, if a loop is involved. For example, consider a program while! edo (1 : Pi; 2 : Py)
and two thread configurations

T =(2: Py; 3:while'edo(1: Py; 2: Py),(I,1)),
T' = (1:P1;2: Py; 3:whileledo(1: Py; 2: Ps),(1,2)).

T is executing P, in the first iteration, and 7" is executing P; in the second iteration.
We expect that T' <, T’, and this is indeed the case for the actual definition of L-order
(apply the first clause), but if we compare only counters, we would have 77 <, T. To
treat this situation correctly, we have to take the stack into account.

6.4.3. Transitivity of L-order. L-order defined above is not transitive, when considered as
a relation over the set of all thread configurations. For example, consider the three
thread configurations (1 : Py,¢e), (2 : P2,(l,1)) and (1 : Py,(,2)). Then we have: (1 :
Pi,e) <L (2: P2, (1,1)) because € }t (1,1) and 1 < 2 (the second clause of the definition of
L-order); (2 : Po,(1,1)) <. (1 : P1,(l,2)) because (I,1) || (1,2) and (I,1) < (I,2) (the first
clause); but it is not the case that (1 : P1,¢) <. (1: P1,(l,2)) because ¢ }f (1,2) but 1 £ 1.

However, we do not need the transitivity on all thread configurations. Since we are
interested in configurations that are reachable from the initial configuration, it is suf-
ficient to have the transitivity on such configurations. We show that this is indeed the
case (Lemma 6.48). The precise definition of reachabe configuration is as follows:

Definition 6.34 (Reachability). We say an I-configuration C is reachable from an ini-
tial configuration Cy if Cy —7}, C. We also say (P, s) is reachable if it is a thread con-
figuration of some reachable I-configuration, that is, (P,s) = (F;, s;) for some i and a
reachable configuration (P;, s;);, 0.

To prove the transitivity, we analyze the relationship between P and s when (P, s) is
a reachable thread configuration. In particular, we prove Lemma 6.45, which says that
dom(s) is actually determined by P. We first define the function p used in Lemma 6.45.

Definition 6.35 (Context). We define a (one-hole) context as follows:
C:u=[|C;P|P;C|c:if'ethenCelseP |c:if' ethen Pelse C
| ¢ :while' edo C.

Definition 6.36 (Path). For each context C, we define the path to the hole in C as
follows:

p(l) =& p(C; P)=p(P; C) = p(C);
p(c:if' ethen Pelse C) = p(c: if' ethen Celse P) =1 p(C);
p(c:whileledo C) =1-p(C).

Also, for a well-annotated program P, we define a map pp from cts(P) U endp(labs(P))
to L* as follows:

—given ¢ € cts(P), there exists a unique context C' and program P’ such that P = C[c:
P']. Define pp(c) = p(C);
—given | € labs(P), define pp(endp (1)) = pp(bgnp(l)) - I (note that bgnp(l) € labs(P)).

Below we denote the set cts(P) Uendp(labs(P)) by dom(pp).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:29

Remember that we work under some initial program F,. Below we omit the subscript
P, of pp,, and similarly for bgn and end.

LEMMA 6.37. bgn and end are injective, and bgn is strictly monotone.
PROOF. By definition of bgn and end. O

LEMMA 6.38. Take any pair of labels I,I' € labs(Py), and consider two intervals
[bgn(l),end(l)] and [bgn(l’),end(l")]. Then either they are disjoint, or one of them is con-
tained in the other. Equivalently, if bgn(l) < bgn(l') then either end(l) < bgn(l') or
end(l’) < end(l).

PROOF. Let [,l’ € labs(P,) and suppose bgn(l) < bgn(l’). Let P’ be the program with
label I. If I’ € labs(P’) then by Definition 6.25 we have end(l’) < end(l). Otherwise,
U ¢ labs(P’") implies bgn(l’) ¢ cts(P’), therefore by the last clause of Definition 6.25
(put ¢ = bgn(l")) we obtain end(l) < bgn(!’), as required. O

LEMMA 6.39. Let | € labs(Py) and ¢ € dom(p). Then | € p(c) if and only if bgn(l) <
¢ < end(l).

PROOF. We first consider the case ¢ € cts(Py). Let C be the context such that P, =
Cle : P]. Then p(c) = p(C). Let P, be the subprogram of P, with label /, and take
Cy so that Py = C’[P]. Then by Definition 6.25 we have ¢ € cts(P;) if and only if
bgn(l) < ¢ < end(l). It is also easy to see that ¢ € cts(P,) if and only if there exists C
such that P, = Cy[c : P]. Therefore it suffices to show that

lep(C) < P, = Csc: P]for some Cs, and ¢ # bgn(l) (2
where Py = C[c: P] = C'[P] and P, has label /. First, note that
l€p(C) < C = (C4]Cs] for some Cy,Cy where Cs # || has label [

(here by abuse of terminology we apply the predicate “has label {” to a context when
the context is non-empty) since in general p(C[Cs]) = p(C1) - p(C2) and p(C) starts
with [if and only if C has label I. If C = C4[C5] and C; has label I, then P, = Cs[c : P].
In this case we also have ¢ # bgn({) since otherwise ¢ = bgn(l) = ct(P;) and therefore C5
has to be empty. This shows the left-to-right direction of (2). For the converse, suppose
P, = Cylc : P] and ¢ # bgn(l). Then, because Py, = C|c : P] = C'[P], we have P, =
C’'[Cyc : P]]. Therefore C = C’[Cs]. Also, we can check that Cs # [] in the same way as
above, hence [€ p(C3) C p(C). This proves the lemma for ¢ € cts(F).
If ¢ = end(l’), then p(c) = p(bgn(l')) - ', so

leple) < 1=1orle plgn(l))
<= =1 orbgn(l) < bgn(l') < end(l)
<= bgn(l) < end(l') < end(l).

The second equivalence follows from this lemma for ¢ = bgn(I’) which is already proved
above. The last equivalence follows from Lemmas 6.37 and 6.38. O

LEMMA 6.40. p(c) is strictly increasing for all ¢ € cts(P,y), where Py is well-
annotated.

PROOF. It suffices to prove that p(c) is a subsequence of labs(P). It is easy prove
that if P, = Clc : P] then p(C) is a subsequence of labs(P,), by induction on Fy. This
immediately implies the lemma for ¢ not of the form end(l).

Consider the other case: ¢ = end(l). Suppose that [is a label of an if-statement, and
define C and C’ so that Py = C[if! ethen P; else P3| and C’ = C[if! ethen|[| else Py).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 K. Kojima and A. Igarashi

Then p(end(l)) = p(C’) since both sides equal p(C) - I, and therefore p(end(l)) is a
subsequence of labs(Py). The case [is a label of a while-statement is similar. O

LEMMA 6.41. Let c¢1,ca,c3 € dom(p). If c1 < co < c3 then p(c1) N p(cs) C p(ea).

PROOF. If I € p(c1) N p(cs), by Lemma 6.39 we have bgn(l) < ¢1,¢3 < end(l). Since
c1 < ¢ < ¢z it has to be the case that bgn(l) < ¢; < end(l). Again applying Lemma 6.39
we obtain ! € p(c2) as required. O

In the proof of Lemma 6.45, we use an auxiliary function rm. This function receives
a program and returns the list of labels which will be removed from the stack when
the program is executed.

Definition 6.42. Define a mapping rm from programs to L* by

—rm(Py; Pp) =rm(Pe) - rm(Py),
—rm(end(!) : endif!) = rm(end(l) : while' edo P) = [, and
—rm(P) = ¢ in other cases.

LEMMA 6.43. If (P, s) is reachable for some s, and P’ is a subprogram of P that does
not occur in the top level of P (precisely, there exists no (sequences of) programs P and
P’ such that P = P; P'; P'), then P’ is a subprogram of the initial program.

PRrROOF. By induction on —7j.. O
LEMMA 6.44. If P is a subprogram of the initial program, then rm(P) = e.

PROOF. By straightforward induction on P, using the fact that neither end(l) :
endif! nor end(l) : while! edo P’ appears in the initial program. Note that end(l) is
defined as a label that does not appear in the initial program. O

LEMMA 6.45. Let (P,s) be a reachable thread configuration. Then p(ct(P)) =
dom(s).

PROOF. By induction on —%_ we prove that if (P, s) is reachable, then for any @,
and @ such that P = Q1; Q2 (here we allow (); to be empty) it holds that dom(s) =
p(ct(Q2)) - rm(Q1). The base case is obvious as both sides are empty (the right-hand
side is empty by the above two lemmas). Below we say that such Q- is a tail of P.

Consider the case of T-IFTRUE. We have (¢ : if'ethen Pjelse Py; P,s) —=,
(Py; end(l) : endif!; P,s - (I,1)). If Py;end(l) : endif’; P = Qi; Q2, then there are
three cases: (1) Q- is a tail of P, (2) Q2 = end(l) : endif!; P, or (3) Q. starts with a
tail of P;. Case (1) is immediate from the induction hypothesis, using the fact that
rm(P;) = ¢ (because P; is a subprogram of the initial program). In case (2) we have
rm(Q1) = rm(P;) = e. Moreover p(ct(Q2)) = p(end(l)) = p(bgn(l)) - I. By the induc-
tion hypothesis and the fact that the counter ¢ is actually bgn(l) (which is easy to
prove that in general the counter of this statement is always bgn(l)), this sequence
equals dom(s) - I = dom(s - ([,1)), as required. The case (3) can be treated similarly,
if we notice that p(ct(Q2)) = p(bgn(l)) - I = p(end(l)). The second equality is by def-
inition, and the first is checked as follows. Since P; has the form Q;; @), and there-
fore if C is the context such that Py = C[if! e then P, else Py, then p(bgn(l)) = p(C),
and p(ct(Q2)) = p(C[if! ethen (Q1; []) else Py]) = p(C) - I, as required. The case of
T-IFFALSE is proved in the same way.

Next we consider T-WHILETRUE. In this case we have

(c:while' edo P; P,s) Ly, (P; end(l) : while' edo P; P, s +1).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:31

First, by the induction hypothesis, we have p(c) = dom(s). It is easily checked by
induction on — . that c is either bgn(l) or end(l). If ¢ = bgn(l), then [¢ p(c), since
p(end(l)) = p(bgn(l)) - I by definition, and by Lemma 6.40 this sequence is strictly
increasing. Therefore | ¢ dom(s), so s does not end with (I, k) (for any k). If ¢ = end(l),
then p(c) = p(bgn(l)) - I. Therefore s = s' - (I, k) for some s’ and k. To summarize the
argument above, s ends with (I, k) for some £ if and only if ¢ = end(l).

With this in mind, we consider three cases, similarly to the case of T-IFTRUE. First,
consider the case Q) is a tail of P, and write P = P’; 5. By the induction hypothesis
we have

2)) -rm(c : while' edo P; P)
2)) - rm(P’) - rm(c : while! edo P)

p

p

frie@-m(e ot
(ct(Q2)) -rm(P") -1 ¢ =end(l).

What we have to prove is
dom(s +1) = p(ct(Q2)) - rm(P; end(l) : while! edo P; P').
Rewriting the right-hand side using the previous equation we obtain
RHS = p(ct(Q2)) - 1m(P') -1

_ {dom(s) -l ¢ =bgn(l)
dom(s) ¢ = end(l).

This indeed equals dom(s+1), since s ends with (I, k) for some & if and only if ¢ = end((),
as we have proved above. Consider the second case, where ; = P and Q2 = end(l) :
while! edo P; P.In this case p(ct(Q2)) - tm(Q1) = p(end(l))-rm(P) = p(end(l)). By a case
splitting similar to the previous case we can verify that this indeed equals dom(s + {).
In the third case, @, starts with a tail of P, by an argument similar to (3) of T-IFTRUE
case, we obtain p(ct(Q2)) = p(end(l)). The rest of the proof is the same as the previous
case.

Other cases are almost straightforward. We only mention T-ENDIF, in which case

we have (end(l) : endif’; P,s- (I,k)) —. (P,s). If we split P as Q1; Q2, by the induc-

tion hypothesis we have p(ct(Q2)) - rm(end(l) : endif'; Q1) = dom(s - (I, k)), and hence
p(ct(Q2)) -tm(Q1) - I = dom(s) - I. By canceling | we obtain the conclusion. O

LEMMA 6.46. If (P, s) is reachable, then dom(s) is strictly increasing.
PROOF. Immediate from Lemmas 6.40 and 6.45. O

LEMMA 6.47. Let (P;,s;) for i = 1,2,3 be reachable configurations, and let ¢; =
ct(P;). If s1 =X 82, 81 = 83, S2 || 3, and c; is in the closed interval spanned by cs and cs,
then sy <s s3 if and only if c3 < cs.

PROOF. From the assumption we have either ¢; < ¢; < ¢3 or ¢3 < ¢; < ¢o. In either
case we have p(c2) N p(c3) C p(c1) by Lemma 6.41, and therefore dom(ss) N dom(sz) C
dom(s1) by Lemma 6.45. The converse of this inclusion also holds since s; is a common
prefix. Since if we write s; = s1 - (I2,k2)--- and s3 = s1 - (I3, k3) -+ -, then Iy # I3 (for
otherwise Iy = I3 € dom(sy) N dom(s3) = dom(sy), so lo appears in s;, and hence Iy
appears more than once in dom(s;), but this contradicts Lemma 6.46).

From the argument above, we have l; € dom(s3)\ dom(s3) and I3 € dom(s3) \ dom(ssz).
By using an equivalence

I € dom(s;) <= bgn(l) < ¢; < end(l)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 K. Kojima and A. Igarashi

which follows from Lemma 6.45 and Lemma 6.39, we can obtain

ca € (bgn(l2),end(l2)] \ (bgn(ls),end(l3)], and
cs € (bgn(l3),end(l3)] \ (bgn(l2),end(l2)].

Therefore by Lemma 6.38 two intervals (bgn(l2),end(l2)] and (bgn(l3),end(l3)] are dis-
joint. Therefore ¢; < c¢3 if and only if bgn(l3) < bgn(l3). since bgn is strictly monotone
map between linear orders (Lemma 6.37), bgn(ly) < bgn(l3) if and only if I < I3. So it
only remains to show that [, < I3 if and only if s5 < s3, but this is immediate from the
definition of <4 and the choice of [, and I3 (also note that I5 #[3). O

LEMMA 6.48. L-order <, when restricted to the set of all reachable thread configu-
rations, is transitive.

PROOF. Suppose (P1,s1) <L (P2,s2) <L (P3,s3). Let ¢; = ct(FP;) for i = 1,2,3, and
consider the conditions

1) S1 || S9o and S1 <g S92,
2) s1 = 8o and c1 < Cg,
3) 59 <X 81 and c1 < ca,
4) So || S3 and S9 <g S3,
(5) 59 =< S3 and ¢y < c3, and
(6) S3 = 89 and co < C3.

Then we have (1V2V3)A(4V5V6),hence (1A4)V(LAL)V---V(3A6).

First, consider the case 1 A 4. Since s; <s s3 is clear, it suffices to show that s; || ss.
Suppose otherwise. It does not hold that s3 < s1, since this implies s3 < s; but this
contradicts s; <5 s3. So we have s; < s3. However, together with s; < s2 and s; || s2
this implies s35 <s so (which is a contradiction) as follows. From s; || s we have s; =
so-q--- and sg = s - ¢’ - -- where s is the longest common prefix. As s; < s2, we have
q < ¢'.If s1 < s3 then s3 also has the form sq - ¢- - -, therefore s3 < s5.

If 1A 5 is the case, since s; <s s3 it suffices to check that s; || s3. If 51 < s3, then both
s1 and sy are prefixes of s, but this implies s; [s2, a contradiction. If s3 < s1, then
sg < s3 < s1, but this also implies s; }f s2, a contradiction.

Suppose 1 A 6 is the case. Then s; A s3, since otherwise the transitivity of < implies
s1 = sg. Let us first consider the case s3 A s;. In this case we can show that s; <; s3. Let
so be the longest common prefix of s; and s,. Then because s; || so we have s1 = sg-¢q---
and so = sp - ¢’ -+ with ¢ < ¢/. Since s3 < s but s3 A s1, s3 also has the form sq - ¢’ - - -,
therefore s; <s s3. Next consider the case s3 < s;1. In this case ¢; < c3 holds, because
otherwise ¢y < ¢3 < ¢1, so by Lemma 6.47 we have s; < s1, but this contradicts 1.

Consider the case 2 A 4. Since s; <s s3, it suffices to consider the case s; || s3. It is
clear that s3 A s1, so suppose s; < s3. We prove that ¢; < c3. Otherwise, c3 < ¢; < ¢s.
Because s; < s9, s1 = s3, and ss || s3, by Lemma 6.47 we have s3 < so. However this
contradicts 4.

The case 2 A 5 holds is easy since < and < are transitive.

If 2 A 6 holds, then both s; and s3 are prefixes of s,. Therefore one of s; and s3 is a
prefix of the other, that is, s; Jf s3. Moreover we have ¢; < ¢y < ¢3, 80 (Py, $1) <. (Ps, S3)
as required.

Consider the case 3 A 4 holds. First, note that so < s1, so < s3, and sy A s3 implies
s1 <s 83, so it suffices to show that s; || s5. Clearly s3 £ s; since s; <g s3, while s < s3
implies sy < s3, a contradiction.

If 3 A 5 is the case, it suffices to show that s; || s35 implies s; < s3. Because s, is a
common prefix of s; and s3, and ¢; < ¢y < ¢3, this follows from Lemma 6.47.

Finally, the case of 3 A 6 is similar to 2 A 5. This completes the proof. O

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:33

6.4.4. More Properties of L-order. Having proved the transitivity of L-order, we next
show that the thread configuration keeps increasing (with respect to L-order) during
the execution. To prove this we use the fact that for all reachable thread configurations
of the form (¢ : P; ¢/ : P’; P,s) it holds that ¢ < ¢ (which follows from Lemma 6.50).
However, to prove this by induction, we need a stronger induction hypothesis, which is
stated in terms of the following functions.

Definition 6.49. We define alicts and allcts™ as follows:
allcts(P; P') = allcts(P) - allcts(P")
allcts(c : if! ethen P else P') = ¢ - allcts(P) - allcts(P') - end(1)
allcts(c : while! edo P) = c - allcts(P) - end(l)
P’
) =

allcts™ (P; allcts™ (P) - allcts™ (P")
allets*(c : if' ethen Pelse P') = ¢- llcts(P) allcts(P') - end(l)

end(! ¢ = end(l)

*(c:while' edo P)
allets™(c : while' edo {c allcts(P) - end(l) otherwise

and, if none of the above applies,
allcts™ (¢ : P) = allcts(c: P) =

allets(P) is the list of all counters appearing in P and end({) for all [€ labs(P), sorted
in ascending order. allcts™(P) is similar, but the body of a while-statement is ignored if
its counter is end(l) (that is, that loop is currently being executed).

LEMMA 6.50. If (P, s) is reachable, then allcts™(P) is strictly increasing.
PROOF. We prove that

(1) allcts™(P) is strictly increasing, and B B
(2) for each tail of P the form while'! edo P’; P, the sequence allcts(P’)-end(l)-allcts™ (P)
is also strictly increasing

by induction on —7j.. This holds for initial configurations by definition of well-
annotated programs. For the induction step, we only check T-IFTRUE, T-IFFALSE, and
T-WHILETRUE since other cases are easy. In the first two cases, we have

¢:if' ethen P; else Py; P LM Py; end(l) : endif!; P

for k = 1 or k = 2, hence the allcts™ of the right-hand side is a subsequence of that
of the left-hand side, so the first claim is immediate from the induction hypothesis.
For the second claim, consider a tail @ of the right-hand side with the specified form.
It suffices to consider the case where the tail contains a tail of P, since otherwise
Q is a tail of P in which case the conclusion is immediate from the induction hy-
pothesis. If Q contains a tail of Py, split P, as P, = Qq; while! edo P’; Q> so that
Q = while’ edo P’; Qy; end(l) : endif!; P. Then what we have to show is that

allets(P') - end(l") - allcts™ (Q2) - end(l) - allcts™(P)

is increasing. Notice that alicts(P’) - end(l') - allcts*(Q2) is a subsequence of
allets(while! edo P’; Q3), which is a subsequence of allcts(Py). Therefore the whole

sequence is a subsequence of allcts*(c : if! e then P; else Py; P), which is increasing
by the induction hypothesis.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 K. Kojima and A. Igarashi

Consider T-WHILETRUE
¢ :while'edo P; P —, P; end(l) : while! edo P; P.

The second claim of the induction hypothesis implies that allcts(P) - end(l) - allcts*(P)
is strictly increasing. Since this sequence is a subsequence of alicts™ of the right-hand
side, the first claim is verified. For the second claim, we have three cases: the tail
either (1) contains a tail of P, (2) equals end(l) : while! edo P; P, and (3) is a tail of
P. The last case is immediate from the induction hypothesis. In case (1), let the tail
be while! ¢’ do P’; P'. Then the sequence we have to consider is alicts(P’) - end(!') -
allets™(P') -end(l) - allcts™ (P). This is indeed strictly increasing as it is a subsequence of
allcts(P) - end(l) - allcts™ (P). In case (2), what we have to show is that allcts(P) - end(l) -
allcts™ (P) is strictly increasing, which is the induction hypothesis. O

LEMMA 6.51. Let (P;,s;)i,c be a reachable I-configuration and suppose
(P, 8:)iy0 —1c (P!, 84,0’ Then (P;,s;) <. (P!, s.) for each i.

791 79971

PROOF. We check that the assertion holds for each rule. We omit the state part of
the I-configurations, because it is irrelevant to the proof of this lemma.

First, consider I-SYNC. By Lemma 6.50 and the fact that ct(P) is the first element
of allcts™ (P), we have ¢ < ct(P). Therefore (c : sync; P,s) <. (P, s).

Other cases uses [-THREAD, so we check that (P,s) —. (P’,s') implies (P,s) <.
(P', s') for each i.

The cases of T-SKIP, T-LASSIGN, and T-SASSIGN are similar to the case of I-SYNC.
The cases of T-IFTRUE, T-IFFALSE, T-ENDIF, and T-WHILEFALSE are also similar.
Although in these cases the stack is modified, in any cases we have s } s’: In the first
two cases we have s < s’, and the other two cases we have s’ < s.

The remaining case is T-WHILETRUE. If s is of the form s, - (I, k), then we have
s = s0-(l,k+ 1), so we have s | s’ and s < s, from which the conclusion follows.
Otherwise, we have

¢ :while'edo P; P, s Lﬁc P; end(l) : while' edo P; P,s- (I,1).

If ¢ = bgn(l) then this case is treated in the same way as other cases, using Lemma 6.50.
Therefore it suffices to show that ¢ = bgn(l). Suppose otherwise. Then it has to be the
case that ¢ = end(l), because a counter of a statement with label [is necessarily one
of bgn(l) and end(l), which is easily proved by induction on the interleaving execution.
However, by an easy induction we can also show that for any reachable thread config-
uration (P, s), if end(l) appears in P then [has to appear in dom(s). However, this is
impossible since dom(s - (I, 1)) = dom(s) - [is strictly increasing by Lemma 6.46. O

LEMMA 6.52. Suppose D = E[P,u,0 || X| € P(Py,po,00 | Xo), and |D| =
(Pi, Si)i,O'. Then

(1) for each i, P; is a sequence of subprograms of P;
@) 1 < po;

(3) ifi €y, then P, # V;

(4) le%,uo, thenPlz\/,

(5) lsz = \/, then S; = €&.

PROOF. By inductionon D. O

LEMMA 6.53. Suppose D = E[P,,u,cr U X} S @(Po,uo,O'o U Xo), and |D| =
(P, si)i,0. Then for all i € pand j € T\ p, it holds that (P;,s;) <L (P}, s;). Moreover, if
7 € lo, then s; ﬁ Sj.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:35

PROOF. First, note that if i € ; then P, # v/, and if j ¢ po then P; = v/ and s; = «.
In such a case the lemma is obvious. Therefore, below we assume j € g \ p.

We prove the lemma by induction on the construction of D. (Notice that if P’ is a
subprogram of a well-annotated program P, then P’ is also well-annotated with endp,
being the restriction of endp.)

In the base case, we have D = (P, po,00 | Xo), hence pg = p. Therefore we have
nothing to prove.

Consider the case D is of the form

D1 Po;po, X' | X
Py; P, po, 00,1 Xo

for non-total D;. Let (Q;,s;); = |Di1| (in the proof below, we omit the state part
of an I-configuration because it is irrelevant). Then by definition of | - | we have
|D| = (Qi; P2,s; |t € o), and by the induction hypothesis (Q;, s;) <. (Q;,s;). We have
to show that (Q;; P2, s;) <L (Q;; P2,s;) and s; A s;; the latter is immediate from the in-
duction hypothesis. If s; || s;, then by the induction hypothesis we have s, <s s;, hence
the conclusion follows. Otherwise, the induction hypothesis implies ct(Q;) < ct(Q;).
If Q; # v/, this implies ct(Q;; P2) = ct(Q;) < ct(Q;) = ct(Q;; P2), so the conclusion
follows. If Q; = v/, we have to show that ct(Q;) < ct(P). To see this, note that (); con-
sists of subprograms of P; and P;; P, is well-annotated. This means that any counter
appearing in P; is greater than any counter in Q;, hence ct(Q;) < ct(P).
If D is of the form

D =

D_ D, D,
Pl; P27M070—07‘U’ XO
and D, is total, we have |D| = | D5/, so the conclusion is immediate from the induction

hypothesis.
Next, consider the case

D, P27M0\00 [[6]] , X | Xo
if! e then P; else Ps, o, o0 4 Xo
where D, is non-total. Let (Q;, s;); = |D1|. We have

|D| = (Qi; endit’, (I,1) - s; | i € po Moy [e]) .

D =

PQ; endiflv (172) | (S Ho \ 0o [[Eﬂ
In case j € uo \ 0p [€], the claim is that
(Qu endifla (la 1) ’ 57,) <L (P27 endifla (l72)) and (la 1) " Si ﬁ (la2)

The latter is obvious. The former follows from (I,1) - s; || (1,2), Q; # v/, and ct(Q;) <
ct(P,). The last inequality can be checked by an argument similar to the first case of
sequencing. If j € (10 N oy [e]) \ p, we have to show

(Qi; endif!, (1,1)-s) <L (Qj; endif!, (1,1)-s;)and (I,1) - s; A (1,1) - s;

which follows from the induction hypothesis and, in case of @; = v/, the fact that

ct(Q;) < end(l).
Next, consider the case

D; Dy
if! e then P; else Ps, Lo, 0o \U« Xo
where D; is total. Let (Q;, s;); = |D2|. In this case we have j € (uo \ 0o [e]) \ 1, and

|D| = (Qi; endif', (1,2) - s; | i € p\ 0 [e]).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 K. Kojima and A. Igarashi

The claim, (Q;; endif!, (1,2) - 5;) <| (Q;; endif!,(1,2) - s;) and (1,2) - 5; £ (1,2) - 55, is
checked in a similar way to the previous case.
The remaining cases are while-statement. We first consider the case D has the form

D; while!edo Py, pu, X1 | Xo
whilel edo P(), Mk—1,0k—1 ll Xo

Po, p1,00 § 01 while! edo Py, 1,01 I} Xo
whilel edo P(),/IJ(), o) U« X(]

where k£ > 1 and D; is non-total. Let (Q;, s;); = |D1|. Then s; does not contain ! since
Dy, € (P, uk,0r-1 4 X1) and Py does not contain [. Therefore

‘DI = (sz end(l) :Whilel edo Pv (l7k) " Si ‘ (S /’Lk)

If j ¢ pu the claim is obvious, so suppose j € p. Note that (I,k) - s; || (k) - s; if and
only if s; || s;. In case s; || s;, we have s; < s; by the induction hypothesis, and hence
(I,k)-s; <s (I,k)-s;. Next, suppose s; {f s;. Then we have ct(Q;) < ct(Q;), and the claim
follows in a similar way to other cases (e.g. the case of sequencing). (k) -s; Z (I,k) - s;
easily follows from the induction hypothesis.

Finally, we consider the case D is of the form

D; whileledo Py, ux, ok I Xo
while! edo Py, ir—1, 061 I Xo

Py, p1,00) 01 whileledoﬁo,ul,al U Xo
while! edo Py, Lo, o0 4 Xo
where k£ > 1 and D, is total. We have
|D| = (end(l) : while' edo Py, (1,k) | i €).

In this case y = uy, so the claim is obvious. O

PROOF OF LEMMA 6.31. Suppose Py, (10,00 | Xo — D = E[sync,pu,0 | X] and
p # 0,T. Then P; is of the form sync; P for every i € u # (. Therefore |D| never
terminates without using I-SYNC, since the execution of thread i does not proceed by
other rules. So it suffices to show that I-SYNC is not applicable to any I-configuration
reachable from |D)|.

Suppose otherwise: there exists an I-configuration (P}, s});,o’ to which I-SYNC is
applicable and is reachable from |D|. Then from the premise of I-SYNC we obtain s, =
s’; for any pair of threads i, j. Without loss of generality we may assume that I-SYNC is
not used in the transition |D| = (P, s;);,0 —7. (P!, s;);0’. Then we also have (P, s;) =
(P!, s;) for every i € p.

Takei € pand j € T\ p. If j ¢ 10, then it follows that P; = v/, and in that case it is
easy to see the conclusion: since P; = v’ the rule I-SYNC is never applicable. Therefore,

we may assume j € uo. Then, by Lemmas 6.48, 6.51, and 6.53, we have
(P;,si) <s (Pj,85) <s (P;,Si) and s; A s;.
We will show that this leads to a contradiction. From the above inequalities we have
—if's; || s; then s; < s;, and otherwise ct(P;) < ct(P;), and
—if's; || s; then s; <s s;, and otherwise ct(P;) < ct(F;).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:37

Since || is symmetric while s; <s s; and s; <s s; are exclusive, it has to be the case
that s; [f s; and ct(P;) < ct(P;) < ct(P]). By Lemma 6.41, the latter implies dom(s;) C
dom(s;). On the other hand, since s; £ s; as mentioned above, s; }f s; implies s; <
s;. Therefore s; - t = s; for some ¢t # ¢. Then clearly dom(¢) C dom(s;), but because
dom(s;) C dom(s;), we have dom(t) C dom(s;). However this is impossible because
dom(s;) - dom(t) = dom(s;) has to be strictly increasing and ¢ is non-empty. O

6.5. Proof of the Equivalence

We now prove the equivalence between lockstep and interleaving semantics under
race-freedom.

THEOREM. Let P be a program and u a mask and suppose that (P,c | i € u),0 is
race-free. Then, P, ji,0 || o’ if and only if (P,e | i € p),0 =5 (vV,€);, 0.

PROOF. Below, Cy denotes the initial I-configuration (P,c | i € p), 0.

Suppose that P, u,0 || ¢/ has a derivation D. From completeness of the derivation
search procedure (Proposition 6.7), we have P, i, 0 || X —* D. By Lemma 6.20, the as-
sumption of race-freedom implies that D is locally interleavable, so by Proposition 6.9
we conclude that Cy —7 |D| = (v, ¢€);,0'.

For the converse, suppose that C, =} (v',¢);,0’. Notice that, by Lemma 6.16, any
execution sequence from Cj is finite and ends with (v',¢);, 0.

First, suppose that the lockstep execution terminates, that is, there exists ¢” such
that P, u,0 | o”. Then by the same argument as above we obtain Cy —7 (v',¢€);,0”, so
by determinacy ¢’ = ¢”. Therefore, if the lockstep execution terminates, the final state
necessarily equals o/, that is P, u, o |} o’ holds, as required. This argument means that
it is sufficient to show the termination of the lockstep execution.

Below we suppose that there does not exist ¢” such that P, u,0 || ¢, and derive a
contradiction. From this assumption, at least one of the following holds: (1) there is an
infinite sequence via — from P, u,0 |} X, or (2) P,u,0 | X —* E[sync, u1,01 | Xi]

and py # 0, T.
In case (1), let Dy = (P,u,0 §{ X) — Dy — ... be an infinite sequence. Then by
Proposition 6.9 we obtain a sequence Cy = |Dg| —7 |D1| —7 It suffices to show that

this sequence is also infinite, since the existence of such a sequence contradicts the
determinacy mentioned above. To this end, we show that |D,,| —] |D,1| for infinitely
many n. Let us write D,, = E,[P,, tn,0n | X,], and D,, = D,,;, if either P, is a
sequencing or p,, = (). Then, from Proposition 6.9, |D,,| = |D, 1] if and only if D,, =
Dy 11. It is easy to check that there is no infinite sequence using only = (the length
of such a sequence can be bound by the size of the program). Therefore |D,,| —7 | Dy 1]
for infinitely many n.

In case (2), let D = E[sync, 11,01 | X1]. Then by Lemma 6.20, D is locally interleav-
able, hence by Proposition 6.9, we obtain Cy —7 |D|. This means that any execution
sequence from |D| is a suffix of an execution sequence from C;, which eventually has
to terminate with (v, ¢);, ¢’ by determinacy. Therefore |D| —7 (v, €);, o', but this con-
tradicts Lemma 6.21. O

7. ADDITIONAL REMARKS

Treatment of synchronization failure. As already mentioned, barrier divergence and
non-termination are identified in our lockstep semantics, although the behavior of bar-
rier divergence is typically given as undefined [NVIDIA 2014] and, in fact, barrier di-
vergence may cause the program execution to terminate, but with an unpredictable
result on a real GPU. Since our logic is for partial correctness assertions, any asser-
tion can be proved for a program that causes barrier divergence. Therefore, in order

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 K. Kojima and A. Igarashi

for our verification technique to be useful in practice, the absence of barrier divergence
should be verified separately, e.g., by using other verification techniques studied else-
where [Li and Gopalakrishnan 2010; 2012; Li et al. 2012b; Betts et al. 2012; Bardsley
et al. 2014].

As we elaborate below, it would not be difficult to adapt our lock-step semantics
and logic so that barrier divergence results in a special, erroneous state, but corre-
spondence with interleaving execution (under the race-freedom assumption) would be
rather subtle.

The lock-step semantics could be modified by introducing a special symbol | and a
new rule

p#FE0 p#T

sync, o b L (E-SYNCD1v)

which models barrier divergence. The Hoare quadruple {¢} m = P {¢'} would be de-
fined to be valid if and only if P,o [m],os | ¢’ implies ¢/ # | and ¢’ = v¢; H-SYNC
would be replaced with

{(all(m) V none(m)) A ¢} m = sync {p}.

(Other rules have to be adapted to handle 1.) Then, we could prove {¢} m = sync {¢}
only if ¢ implies all(m) V none(m). Both soundness and relative completeness would
hold.

Can we modify the interleaving semantics so that Theorem 5.5 holds as it is? Such
interleaving semantics has to simulate E-SYNCDIV for the left-to-right direction of the
theorem to hold, but we find it difficult to define such semantics, because there is no
obvious way of detecting barrier-divergence when threads interleave.

One possible trick would be to use the L-order introduced in Section 6.4: we conjec-
ture that we can recover the equivalence between lockstep and interleaving semantics
by extending the interleaving semantics with the following execution rule, which han-
dles barrier divergence.

P; = sync; P] (Pj,55) <v (P, sk)

J

((Pi,si)i,o) —7T 1

The second premise (P;,s;) <_ (Pk,sr) above means that thread j is waiting at a
barrier, but thread & cannot reach this location. Note that, in this case, we have to work
with programs annotated with program counters, as in Section 6.4. We conjecture that
P,u,0 | L if and only if (P,e | i € u),0 —7 L; both directions would be proved as in
Section 6. Soundness and relative completeness with respect to the new interleaving
semantics would be stated as follows:

CONJECTURE 7.1. Let P be a program with monotonic loops and suppose that
{¢} m = P{y} is derivable. Let o be a state such that the I-configuration (P,c | i €
o [m]),o is race-free, o |= ¢ holds, and (P,c | i € o [m]),0c =% C /1. Then, it holds that
C is of the form (v ,¢);, 0’ and o’ = .

CONJECTURE 7.2. Let P be a program with monotonic loops such that (P,e | i €
o [m]),o is race-free for all o such that o = . Then, {¢} m = P {¢} is derivable if for
all o and o' such that o = p and (P,e | i € o[m]),0 =} C /1, it holds that C is of the
form (v',¢e);,0" and o’ |= 1.

(Here, C /4 means that there is no C’ such that C —; C’.) Note that under the new
semantics a terminating configuration is of the form either (v, ¢);,0" or L. The changes
in the statements correspond to those in the definition of valid quadruples (under the
new lockstep semantics).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:39

Even without changing the interleaving semantics, a slightly weakened version of
Theorem 5.5 still holds by modifying the statement to “...Then, P, u,0 || ¢’ and ¢’ # L
if and only if (P,e | i € u),0 =% (V,€);,0".” The proof of Section 6 would still work
(notice that ¢/ # L if and only if P, u,0 || ¢’ is derived without using E-SYNCDI1V).
Soundness (Corollary 5.6) would hold as it is, but relative completeness (Corollary 5.7)
would not. A counterexample can be easily constructed from a program that results
in barrier divergence. We conjecture that relative completeness is recovered by as-
suming that P does not result in barrier divergence (in the lockstep semantics), i.e.,
P, [m],o § L whenever o | ¢.

Multiple warps. The actual execution of GPUs is a hybrid of our interleaving and
lockstep semantics. Instead of scheduling each thread individually, we treat each warp
as a unit of interleaving execution. Each warp executes a program as in our lock-
step semantics, and warps interleave as in our interleaving semantics. Equivalence
between this semantics and complete lockstep semantics would be proved similarly.
Race-freedom can be relaxed so that a race involving two threads belonging to the
same warp occurs only within a single assignment.

Function calls. We did not include function calls in our formalism, but we conjecture
that we can follow the existing extension of Hoare Logic with function calls, and this
would not be technically difficult. However, a complication would stem from function
parameters. If a function is called from the host code, then the arguments are uniform
(i.e., all threads receive the same value), but if it is called from the device code the
arguments may vary among threads. Therefore, we would have to treat these two types
of function calls differently.

In addition, masks have to be taken into account to write the specifications of func-
tions. Currently, we do not have to introduce a mask into pre- and postconditions, be-
cause we assume that the program is a complete device code, and therefore all threads
are enabled at the beginning of the execution. If we extend our system with function
calls, then a function may have to specify a formula referring to the state of the mask.
Thus, we have to slightly extend the assertion language.

8. RELATED WORK

Semantics of GPU programs. Habermaier and Knapp [2012] formalized both SIMT
(lockstep) and interleaved multi-thread semantics and discussed the relationships be-
tween them. In particular, they proved that their SIMT semantics can be simulated
by the interleaved semantics with appropriate scheduling. Collingbourne et al. [2013]
considered a lockstep execution of an unstructured program based on a control-flow
graph. They defined both interleaving and lockstep semantics and proved that the two
semantics are equivalent in a certain sense under the assumption of race-freedom and
termination. Betts et al. [2012] defined another semantics, called synchronous, delayed
visibility (SDV) semantics. The main difference between this and other semantics (in-
cluding ours) is that it keeps track of the accesses to shared memory, and raises an
error if a race is detected. Based on this semantics, they developed a verification tool
GPUVerify that automatically detects race condition and barrier divergence. These
three semantics are all small-step, and it appears that ours is the first big-step seman-
tics for lockstep execution.

Deductive verification. The Owicki—Gries method [Owicki and Gries 1976] and
rely/guarantee reasoning [Jones 1981] are well-known approaches for deductive ver-
ification of concurrent programs. Their main concern is to reason about interference.
The difficulty is that an assertion can be invalidated by other threads through shared
variables. To solve this problem, the Owicki-Gries method verifies that each assertion

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 K. Kojima and A. Igarashi

is not invalidated by other threads; rely/guarantee reasoning specifies an assumption
on the behavior of an environment as a rely condition. In contrast, in this work we did
not need to handle such an interference. This is because we assumed lockstep execu-
tion, in which threads cannot interleave. Although a race can occur when assigning to
a shared variable, such a race does not affect the soundness of our logic because the
assertion language can express such a nondeterminism (as in the rule H-ASSIGN).

For deductive verification of GPU programs, Blom, Huisman, and Mihel¢ié suggested
using permission-based separation logic [Blom et al. 2014]. They demonstrated that
they could verify race-freedom and functional correctness by using separation logic.
They considered an assignment of resources to thread, and used it to prove race-
freedom. As compared to their approach, our framework cannot prove race-freedom,
but provides a simpler proof system for verifying functional correctness relying on the
assumption of race-freedom. An extension of Blom et al.’s system with a frame rule has
recently been proposed by Asakura et al. [2016]. The soundness of their system was
proved on the Coq proof assistant.

Equivalence between lockstep and interleaving semantics. Collingbourne et al. [2013]
also proved an equivalence result between lockstep and interleaving execution. We
discuss several differences between their work and ours, and what is improved from
theirs.

First, our semantics treats barrier synchronizations more formally than that of
Collingbourne et al., by introducing a stack into a thread configuration. Collingbourne
et al. did not do this formally. They introduced special thread-local variables vparrier,
which are set to the id of the barrier when a barrier is reached, and v;, for every loop
labeled by L, which counts the number of iterations of the loop L. These variables are
called barrier variables and play a role similar to that of the stack in our semantics. It
is assumed that these variables are modified appropriately when a thread executes a
loop or reaches a barrier, but this is stated informally only in prose English. The for-
mal execution rules do not mention barrier variables, and thus, the rules do not specify
when and to what value the contents of barrier variables should be changed.

Second, our proof given in Section 6 is more formal than that provided in the full
version of [Collingbourne et al. 2013]. This is partly because barrier variables are not
fully formalized in their execution rules. For example, to prove that the interleaving
semantics can simulate the lockstep semantics, they had to show that if the lockstep
semantics succeeds synchronization, then so does the interleaving semantics (the first
part of the claim in the proof of Theorem B.20). To do this, they argued that the bar-
rier variables satisfy the premise of the execution rule for synchronization, but this
argument does not appear to be formal. In contrast, we have made our arguments as
formal as possible throughout the proof of equivalence. We believe that most parts of
our arguments are sufficiently formal that one can mechanize them in a proof assistant
without nontrivial modifications.

Third, the statement of our equivalence theorem is simpler. The equivalence stated
in Collingbourne et al. [2013], unlike ours, guarantees the equivalence on shared vari-
ables only, and the statement explicitly mentions the termination of the program. Fur-
ther, their lockstep semantics was not directly defined. It was given by a translation
from a GPU program P (which is executed in an interleaving semantics) into a sequen-
tial vector program ¢(P) encoding the lockstep execution of P.

Verification tools. Verification tools for GPU programs have been developed by sev-
eral authors. Tripakis, Stergiou, and Lublinerman [2010] developed a method to
check the determinism and equivalence of SPMD programs based on non-interference.
Collingbourne, Cadar, and Kelly [2011; 2012] proposed a method of symbolic execu-
tion of SIMD programs based on the KLEE symbolic execution tool. Li and Gopalakr-

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels A:41

ishnan [2010; 2012] developed SMT-based verification tools. Li et al. [2012b] devel-
oped a concolic verification and test generation tool for GPU programs, called GKLEE.
Further optimizations and extensions of GKLEE have also been considered [Li et al.
2012a; Chiang et al. 2013]. Bardsley et al. developed a tool, GPUVerify [Betts et al.
2012; Bardsley et al. 2014; Betts et al. 2015], which statically checks the race freedom
of OpenCL and CUDA kernels.

9. CONCLUSION

We extended the while-language with arrays and several features of GPU kernels, and
defined a Hoare Logic for this language. We formalized the execution model of our
language using two semantics, lockstep and interleaving, and we first proved that our
Hoare Logic is sound and relatively complete for the lockstep semantics. Although in
the proof we worked under the assumption that the program contains only monotonic
loops, this additional assumption is not a serious limitation, because we can transform
any program into an equivalent one conforming to this condition. We also considered
the relationship between lockstep and interleaving semantics. We proved that for race-
free programs the two semantics produce the same result. This means that, as far as
race-free programs are concerned, our Hoare Logic is sound and relatively complete
with respect to the interleaving semantics. This implies that we can separate the ver-
ification of GPU kernels into two problems, race-freedom and functional correctness,
and our framework can be used to solve the latter, assuming that the former has al-
ready been verified.

We are currently implementing an automated verifier based on this work. It success-
fully verifies a matrix multiplication program with shared-memory optimization [Ko-
jima et al. 2016]. We have also mechanized our Hoare Logic on Coq, and manually ver-
ified several implementations of prefix-sum algorithms [Okumura et al. 2016], which
are more complicated than the examples shown in Section 3.3.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

We thank Kohei Suenaga and the anonymous reviewers for valuable comments.

REFERENCES

Krzysztof R. Apt, Frank de Boer, and Ernst-Rdiger Olderog. 2009. Verification of Sequential and Concurrent
Programs (3rd ed.). Springer Publishing Company, Incorporated.

Izumi Asakura, Hidehiko Masuhara, and Tomoyuki Aotani. 2016. Proof of Soundness of Concurrent Sepa-
ration Logic for GPGPU in Coq. Journal of Information Processing 24, 1 (2016), 132—-140.

Ethel Bardsley, Adam Betts, Nathan Chong, Peter Collingbourne, Pantazis Deligiannis, Alastair F. Donald-
son, Jeroen Ketema, Daniel Liew, and Shaz Quadeer. 2014. Engineering a Static Verification Tool for
GPU Kernels. In Proc. of the 26th International Conference on Computer Aided Verification, CAV 2014
(LNCS), Armin Biere and Roderick Bloem (Eds.), Vol. 8559. Springer Verlag, 226—242.

Adam Betts, Nathan Chong, Alastair Donaldson, Shaz Qadeer, and Paul Thomson. 2012. GPUVerify:
a verifier for GPU kernels. In Proc. of the ACM International Conference on Object Oriented Pro-
gramming Systems Languages and Applications (OOPSLA ’12). ACM, New York, NY, USA, 113-132.
DOI:http://dx.doi.org/10.1145/2384616.2384625

Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema, Shaz Qadeer, Paul Thom-
son, and John Wickerson. 2015. The Design and Implementation of a Verification Technique
for GPU Kernels. ACM Trans. Program. Lang. Syst. 37, 3, Article 10 (May 2015), 49 pages.
DOI:http:/dx.doi.org/10.1145/2743017

Stefan Blom, Marieke Huisman, and Matej Mihel¢ié. 2014. Specification and verification of GPGPU pro-
grams. Science of Computer Programming 95, 3 (12 2014), 376-388.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42 K. Kojima and A. Igarashi

Wei-Fan Chiang, Ganesh Gopalakrishnan, Guodong Li, and Zvonimir Rakamari¢. 2013. Formal Analysis of
GPU Programs with Atomics via Conflict-Directed Delay-Bounding. In Proc. of the 5th NASA Formal
Methods Symposium (NFM 2013) (LNCS), Vol. 7871. Springer Verlag, 213—-228.

Peter Collingbourne, Cristian Cadar, and Paul H.J. Kelly. 2011. Symbolic crosschecking of floating-point
and SIMD code. In Proc. of the sixth conference on Computer systems (EuroSys ’11). ACM, New York,
NY, USA, 315-328. DOI: http://dx.doi.org/10.1145/1966445.1966475

Peter Collingbourne, Cristian Cadar, and Paul H.J. Kelly. 2012. Symbolic Testing of OpenCL Code. In Proc.
of Hardware and Software: Verification and Testing (LNCS), Kerstin Eder, Jodo Lourenco, and Onn She-
hory (Eds.), Vol. 7261. Springer Verlag, 203—218. DOI : http://dx.doi.org/10.1007/978-3-642-34188-5_18

Peter Collingbourne, Alastair F. Donaldson, Jeroen Ketema, and Shaz Qadeer. 2013. Interleaving and Lock-
Step Semantics for Analysis and Verification of GPU Kernels. In Proc. of European Symposium on
Programming (ESOP’13) (LNCS), Vol. 7792. Springer Verlag, 270-289. full version is available at http:
//multicore.doc.ic.ac.uk/tools/GPUVerify/ESOP2013/.

Carl A. Gunter and Didier Rémy. 1993. A Proof-Theoretic Assessment of Runtime Type Errors. Technical
Report. AT&T Bell Laboratories Technical Memo 11261-921230-43TM.

Axel Habermaier and Alexander Knapp. 2012. On the Correctness of the SIMT Execution Model of GPUs.
In Proc. of European Symposium on Programming (ESOP’12) (LNCS), Vol. 7211. Springer Verlag, 316—
335.

C. B. Jones. 1981. Development methods for computer programs including a notion of interference. Ph.D.
Dissertation. Oxford University. Printed as: Programming Research Group, Technical Monograph 25.

Kensuke Kojima and Atsushi Igarashi. 2013. A Hoare Logic for SIMT Programs. In Proc. of Asian Sympo-
sium on Programming Languages and Systems (LNCS), Chung chieh Shan (Ed.), Vol. 8301. Springer
Verlag, 58-73.

Kensuke Kojima, Akifumi Imanishi, and Atsushi Igarashi. 2016. Automated Verification of Functional Cor-
rectness of Race-Free GPU Programs. (2016). draft.

Guodong Li and Ganesh Gopalakrishnan. 2010. Scalable SMT-based verification of GPU kernel functions.
In Proc. of the 18th ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE’10). ACM, 187-196. DOI : http://dx.doi.org/10.1145/1882291.1882320

Guodong Li and Ganesh Gopalakrishnan. 2012. Parameterized Verification of GPU Kernel Programs. In
2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Fo-
rum. IEEE, 2450-2459.

Guodong Li, Peng Li, Geof Sawaya, Ganesh Gopalakrishnan, Indradeep Ghosh, and Sreeranga P. Rajan.
2012b. GKLEE: concolic verification and test generation for GPUs. In Proc. of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming (PPoPP’12). ACM, New York, NY, USA,
215-224. DOI : http://dx.doi.org/10.1145/2145816.2145844

Peng Li, Guodong Li, and Ganesh Gopalakrishnan. 2012a. Parametric flows: automated behavior equiv-
alencing for symbolic analysis of races in CUDA programs. In Proc. of the International Conference
on High Performance Computing, Networking, Storage and Analysis (SC’12). IEEE Computer Society
Press, Article 29, 10 pages.

NVIDIA 2014. NVIDIA CUDA C Programming Guide. NVIDIA.

NVIDIA 2015. Parallel Thread Execution ISA Version 4.3. NVIDIA.

Kentaro Okumura, Kensuke Kojima, and Atsushi Igarashi. 2016. Mechanization of Hoare Logic for SIMT
in Coq and Verification of Parallel Prefix-Sum Algorithms. In Proceedings of the 18th JSSST Workshop
on Programming and Programming Languages (PPL2016). in Japanese.

John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Kriiger, Aaron Lefohn, and Timothy J.
Purcell. 2007. A Survey of General-Purpose Computation on Graphics Hardware. Computer Graphics
Forum 26, 1 (2007), 80-113.

Susan Owicki and David Gries. 1976. An Axiomatic Proof Technique for Parallel Programs I. Acta Informat-
ica 6 (1976), 319-340.

Stavros Tripakis, Christos Stergiou, and Roberto Lublinerman. 2010. Checking Equivalence of SPMD Pro-
grams Using Non-Interference. Technical Report UCB/EECS-2010-11. EECS Department, University of
California, Berkeley.

Glynn Winskel. 1993. The Formal Semantics of Programming Languages. The MIT Press.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Online Appendix to:
A Hoare Logic for GPU Kernels

KENSUKE KOJIMA, Kyoto University and CREST, JST
ATSUSHI IGARASHI, Kyoto University and CREST, JST

A. AUXILIARY LEMMAS

LEMMA A.1. Let o be a state. Then o = all(e) if and only of oe] = T, and 0 =
none(e) if and only if o [e] = 0.

LEMMA A.2. If 2’ is a variable not occurring in ¢, then o[z’ — a] = pl2'/z] if and
only if o[z — a] = ¢.

LEMMA A.3. Suppose that m does not contain variables occurring in P. Then
P,o[m],o | o' implies o [m] = o' [m].

LEMMA A.A4. If P,(,0 | o/, then o = o’.

LEMMA A.5. Let W = while edo P. Suppose ppNofe] = p' Nole] and there is a
derivation of W, u,o |} o'. Then there is a derivation of the same size (the number of
nodes) with conclusion W, /', o | o’

B. PROOF OF SOUNDNESS

Soundness of H-CONSEQ, H-SKIP, and H-SEQ are obvious. H-SYNC is also easy; sync
gets stuck if and only if o (£ all(m) V none(m).

To show that H-ASSIGN is sound, suppose z[€] :=e,0 [m],c |} o’. From Lemma 3.6,
o' is of the form o[z — o] where a satisfies o[z’ — a] = assign(z’, m, z, €, e). So if we have
o | V' .assign(x’,m,x, € e) — @[z’ /x], then o[z’ — a] = @[z’ /z]. By using Lemma A.2,
we obtain o[z — a] = ¢, and therefore ¢’ |= ¢ (because ¢’ = o[z — a]), as required.

Next we check H-IF. Suppose 0 = ¢ and if ethen Pelse Q,0[m],o | o”. Then
there exists ¢’ such that P,o[m]Nofe],o | o’ and Q,c[m] \ o[e],o’ I o”. We have
to show ¢” = x. Let 09 = o[z — o[e]], of = o'[z = o[e]], and o = o"[z — o [e]].
Then, since z does not occur in P and o [e] = o¢(z) it holds that P, o [m && 2], 0¢ |} o).
Similarly, we also have Q,c{ [m && ! z]],0{ | of. Then from the induction hypotheses
we have o{ = ¢ and o{ |= x. Since z does not occur in x, and ¢ and ¢” differ only in z,
it holds that ¢” | x.

Finally we show that H-WHILE is sound by induction on the size of the derivation
of ||. Precisely, by induction we prove that if {¢ A e =z} m && z = P {¢} is valid, then
for all o and ¢’ such that while edo P,o[m],o | ¢’ and ¢ &= ¢, it holds that ¢’ |
© A none(m && e).

The base case is the rule E-WHILEFALSE, which is obvious. For the induction step,
let us assume the derivation has the form

. D
Po[m]nole],o o while edo P,o[m]Nole],o’ J o”
while edo P,o [m],o | o'

and suppose o = ¢. We have to show that ¢” = ¢ A none(m && e).

© YYYY ACM 1529-3785/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

App—2 K. Kojima and A. Igarashi

Let 09 = o[z — o [e]] and o, = 0'[z — o [€]]. Then, since z is fresh, we have
P oo [m] Nog €], o0 I oy,

and o¢ = pAe = z. Since og [m]Nog [e] = oo [m && 2], by assumption we obtain o, = .
Let o = 0”[z + 09 [e]]. Then we have a derivation of

while edo P,o [m]Noe],of | of
with the same size as D. Now we are going to use Lemma A.5 to obtain a derivation of
while edo P, o(, [m], o0 | o,

again with the same size as D. Here the assumption of Lemma A.5 is indeed satisfied:
the monotonicity and Lemma 4.2 implies o [m] N o’ [e] C o [m] N o [e], so by definition
of o, we have (o [m] No[e]) Noy [e] = of [m] N} [e]-

Then we can apply the induction hypothesis, therefore o = ¢ implies o E ¢ A
none(m && ¢). Since the antecedent is already proved, we have (] = ¢ A none(m && e).

Moreover, z does not occur in ¢, m nor e, which implies ¢” | ¢ A none(m && e). This
completes the proof.

C. PROOF OF RELATIVE COMPLETENESS
By the standard argument, it suffices to show that

F {wlp(m, P,p)} m = P{p}.

We proceed by induction on P

When P = skip, by H-SKIP we have - {¢} m = skip {¢}. So it suffices to show that
E wlp(m, skip,) — . Suppose o = wlp(m, skip, ¢). Then, since skip,m,o | o, we
conclude o = .

When P = sync, by H-SYNC we have F {all(m) V none(m) — ¢} m = sync{p}, so
it suffices to show that = wlp(m, sync, ¢) — all(m) V none(m) — . This is clear from
E-SyYNc.

When P = z[€] :=¢, by H-ASSIGN we have

F{Va' .assign(z’,m,z,€,e) = plz'/z]} m = z[€] :=e{p}.
So it suffices to show that
E wlp(m,z[€] :=e,p) — Va'.assign(z’',m, z,e,e) — o[z’ /x].

Suppose o | wlp(m,z[e] :=e,p) and o[z’ — a] | assign(a’,m,z,€,¢e). Then from
Lemma 3.6, we have z[e] :=¢e,0[m],o || o[z — a]. Therefore o[z — a] E ¢, hence
by Lemma A.2 we obtain o[z’ — a] = ¢[z'/x].

When P = P;; P», by the induction hypotheses we have - {wlp(m, P1,v¢)} m = P; {4}
and F {wlp(m, P2,)} m = P, {¢} for all ¢ and ¢. Therefore by H-SEQ

F {Wlp(m7P17W1p(maP27(p)>}m = Pla P2 {@} .
So it suffices to show that
): Wlp(m7 P17 P25 (p) — Wlp(m7P15W1p(m7 P27 90))

Suppose o = wlp(m, Py; Pa,), and consider ¢’ such that P;,o [m],o || o’. We have to
show that ¢’ = wlp(m, Ps, ¢), that is, ¢’ = ¢ for all ¢ with P5, 0’ [m],o’ || ¢”. This is
immediate from P;; P, 0 [m],o | o” which follows from assumptions and E-SEQ.

When P = if ethen P; else Ps, let x = wlp(m && z, P1, wlp(m && ! z, Py, ¢)). Then by
the induction hypotheses we have

F{x}m&&z= P {wlp(m&& 'z, P2,¢)},

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels App-3

F{wlp(m && ! z, Po, o)} m&& ! z = P {y}.
Since
E(Jze=zAx)Ne=2z— X,
we have
F{Bze=zAx)Ne=2z}m&&z= P, {wlp(m&& 'z, P ¢)}
by H-CONSEQ. Therefore, by H-IF,
F {3z.e = 2 A x} m = if ethen P; else Py {¢}.
So our goal is to prove
= wlp(if ethen P; else Py,m,) — Jz.e = 2 A x.

Suppose o = wlp(if ethen P; else Po,m,), and let oy = o[z — o [e]]. It suffices to
show that og = e = z A x. It is obvious that oy = e = z. To prove o |= x, suppose

Pyyog[m&& 2], 00) o,
Pyo'[mak 2], 0" | o”.

Then, since z and variables in m are fresh, we have o’ [m && ! 2] = 0o [m && ! 2], hence
Py,09[mé&& ! 2] ,0’ | o”. Therefore by E-IF and the equality o¢(z) = o [e] = o¢ [¢] we
obtain

if ethen Pj else Py, 00 [m], 00 |} 0.

On the other hand, we assumed that o = wlp(if e then P; else Py, m, @) and this for-
mula does not depend on z, so o satisfies the same formula. Hence ¢” |= ¢, as required.
When P = while edo @, let ¢ = 3z.e = z A wlp(m && z, P, ¢). We prove

QD) F{pAe=z}me&tz= Q{v},
(2) E ¢ A none(m&& e) — ¢, and
(3) & wlp(m, P,p) — 1.

The conclusion follows from them by H-WHILE and H-CONSEQ.
First we prove (1). By the induction hypothesis it suffices to prove the validity in-
stead of the provability. So our goal is

cEYANe=zand Q,0[m&&z],0ll o’ = o E1.

If 0 [m && z] = 0, then by Lemma A.4 we have ¢’ = o, hence this is clear. Below we
assume o [m && z] # 0. By definition of 1, the above statement is equivalent to

cEYANe=2z Q,o[m&&z],0l o, and
P (o'[z+ o' [e]]) [m&& 2] ,0' [z — o' [e]] I o”
= " .

Suppose the premises hold for o, 0’ and ¢”. Let o = 0”[z — ¢’(z)]. Then it suffices to
show that o = .

First, from o |= ¢ A e = z it follows that o = wlp(m && z, P,), so to prove o = ¢ it
suffices to show that

Po[m&gz],o | op.
To prove this, we first show that
Q,o[m&& z]Nole],oll o’ and P,o[m&& 2] Nofe],o | of,

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

App—4 K. Kojima and A. Igarashi

and then apply E-WHILETRUE. Note that the rule is applicable because the assump-
tion o |= e = z implies o [m && z] N o [e] = o [m && z]. The first assertion also follows
from o [m && z] N o [e] = o [m && z] together with the assumption. For the second one,
note that

P (d'z— o' [e]]) [m&& 2], 0" | of

holds from assumption and the fact that z is fresh. In view of Lemma A.5, it suffices to
show that

(o[m&& z] Nole]) No' [e] = ((o'[z — o' [e]]) [m && z]) N o’ [e] .
From o [e]] = o [z] this reduces to
(c[m]naole])ne[e] =c[m]no [e].

This follows from the assumption of monotonicity and Lemma 4.2. This completes the
proof of (1).

Next we prove (2). Suppose o |= 1) A none(m && e) and let oy = o[z — o [e]]. Then
by definition of ¢y we have oy = wlp(m && z, P,). Moreover, oy [z] = o[e] and o |=
none(m && e) imply that o [m && 2] = (), therefore P, o [m && 2], 00 | 5o. Hence o¢ = ¢,
and ¢ does not contain z, so o = ¢ as required.

Finally we prove (3). Suppose o = wlp(m, P,¢), and let oy = o[z — o [e]]. Then
clearly 09 &= e = 2. We will prove oo = wlp(m&&z, P,¢). To do this suppose
P oy [m && 2] ,00 | 0. Then, since o [m && z] = o [m] N o [e], by Lemma A.5 we have
P,o[m],o0 | of. Since wlp(m, P, ¢) does not depend on z and ¢ satisfies this formula,
so does og. Therefore o, |= .

D. PROOF OF THE SOUNDNESS OF DERIVATION SEARCH

Let us say a partial derivation D to be admissible if, for every substitution {5/X}
such that X is the list of all state variables occurring in D and every leaf of D{5/X}
is derivable, then D{5/X} is obtained by truncating several branches of some valid
derivation.

It suffices to prove that all partial derivations are admissible: a total derivation D
is a partial derivation that does not contain state variables, hence its admissibility
implies that D itselfis a valid derivation.

To prove this it suffices to prove that — preserves admissibility, since P, u,o || X
is clearly admissible. The cases of S-ATOM and S-WHILEFALSE are obvious. Consider
the case of S-SEQ:

Plvuao—‘UXl PQ?,“‘vXI‘U’X
Pl; P27,LL7‘7@X

D:E[Pl;Pg,u,ollX]—>E{ }:D’.

Suppose D is admissible, and let {5/X} be a substitution such that every leaf of

D'{5/X} is a valid judgment. Let us denote by oy the state corresponding to a variable
Y appearing in X. Then the assumption means that

D'{o/X) = Blo/x) [Pl 0 _Trope i Lox]

Pl; P2a,u70 il ox
has valid judgments as its leaves.* Then, its truncation
D{6/X} = E{&/X} [Plv PQa;u'vJ U’O—X}

“Here E{5/X} does not belong to any syntactic category that we have defined so far, but we believe the
meaning of the whole expression is clear.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels App-5

also has valid judgments as its leaves: leaves appearing in E{5/X } are valid since they
are leaves of D'{5/X}, and Py; P2, p,0 | ox is valid by rule E-SEQ and the assump-
tions that both P, u,0 || ox/ and P, 1, 0x/ || ox are valid. Therefore, by admissibility
of D it follows that D{5/X} is a truncation of some valid derivation, say D,. The node
of Dy corresponding to Py; Po, i, 0 || ox in place of the hole of F has to be extended as

Plvﬂao—‘uo-// PZ»/lLvo'//‘UJX
Py; Po,p,ollox

in Dy. Although ¢ does not necessarily coincide with o, it is possible to replace this
node with another one. This is because the premises of

Plvﬂao—‘ng/ PQv,uao—X"UO—X
Pl; P27/J“aU‘U'UX

are both valid, hence have some derivations. Therefore D'{5/X} is also a truncation of
some derivation. S-IF and S-WHILETRUE can be treated in the same way.

E. PROOF OF THE COMPLETENESS OF DERIVATION SEARCH

Let us say a partial derivation D approximates a total derivation Dy if there exists a
substitution {5/X} such that D{5/X} is obtained by truncating several branches of
Dy. We write D C D if D approximates Dy.

Clearly if Dy is a derivation of P, u,o || ¢’ then (P,u,0 |} X) C Dy, so it suffices to
show that

(1) for every partial derivation D, if D C Dy and D # Dy, then there exists D’ such
that D — D’ and D’ C Dy, and
(2) there exists no infinite sequence D; — Dy — ... such that D; C Dy for all 7 > 0.

To prove the first claim, note that if D C Dy and D # Dy, then D contains at least one
state variable, and hence of the form E[P, u,o || X]. If this cannot be extended, then
it has to be the case that P = sync and u # (), T. However, since D approximates Dy,
for some ox the judgment P, u,0 || ox has to appear in Dy, and hence this has to be
a valid judgment, a contradiction. Therefore there exists some D’ such that D — D’.
It remains to check that D’ can be chosen so that D’ T Dy. If S-ATOM is applicable
to D, take ¢’ so that P,u,0 |} o’ is the corresponding rule instance in Dy, and let
D" = D{o'/X}. Then we have D — D’, and D’ is a truncation of Dy. The case of
S-WHILEFALSE is similar. Next, consider S-SEQ:

Pl»/ivo-‘U’Xl P27/1J3X1‘U’X

=D
Pl; P27NJ;0—‘UX

D = E[Py; Py, p,0 | X] — F

The state corresponding to X; in D, determines ox,, so that D'{7,0x, /X, X } is a
truncation of Dy. Other two rules are similar.

For the second claim, let n(D) be the number of nodes of a partial derivation D,
and v(D) the number of state variables occurring in D. For each D such that D C D,
consider the pair m(D) = (n(Dy) — n(D),v(D)) € N x N. Then it is easy to check that
if D — D’ then m(D’) < m(D) where < is the lexicographic order. The absence of an
infinite sequence follows from the well-foundedness of (N x N, <).

F. PROOF OF SIMULATION
LEMMA F.1. Suppose (P;,s; | i € u),0 =1 (P!,s; | i € u),0’, and consider families

of programs Q; indexed by i € p and a stack t. In case t # ¢ we additionally assume
that, for each i such that s; = ¢, the last element of dom(t) does not appear in P;. Then,

(P'La Qi7t'si‘i€ﬂ‘)70—>1 (Piv Qi,t'82|’i6/.l/),0'/.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

App—6 K. Kojima and A. Igarashi

PROOF. By induction on the derivation of ——. In the case of T-WHILEFALSE, we
need to check that if s; does not end with an element of the form (I, k) then neither
does t - s;, which is a consequence of the assumption that if s; = ¢ the last element of
dom(t) does not appear in P;. O

LEMMA F2. Let D € Z(P,pu,0 || X) and (Q;,8;)i,0’ = |D|. Then all labels appear-
ing in Q; appear in P.
PROOF. By inductionon D. O
PROOF OF PROPOSITION 6.9. By induction on the size of E. First, consider the case
E =[]. Then we have D = (P, u,0 | X). If P is a sequencing, |D| = |D’|. Otherwise, we
can obtain |D| —% |D’| by applying I-THREAD |u| times, so if 1 # () we have |D| —7 |D’|.
Note that if P is an assignment to a shared variable, we use the assumption that D’ is
locally interleavable.
Suppose E # || and the conclusion of E is while' e do Py. Then FE is either
E’ whilel edo Py, jup, X1 I Xo
whilel edo P(), Hk—1,0k—1 ll Xo

: 3
Po, 1,00 01 while! edo Py, 1,01 | Xo
while! edo Py, pg, 00 | Xo
where k > 1, or
Po, prsop—1 4 on]
while! edo Py, ir—1, 061 I Xo
: (4)

Po, p1,00 4 o1 while! edo Py, 1,01 I} Xo
whilel edo PU,/J,(),UO ll X()

where £ > 1. In both cases p1; = pj_1 Noj_1 [e] for each 1 < j < k, and py, # (. Below
we abbreviate while! e do P, as R.

Consider the case (3), and let D; = E’'[P, u, 0 || X|. Let E” be a context enclosing D,
in D, that is, E = E”[E’] and therefore D = E”[D,]. Since E” is an evaluation context,
we have either D’ = E”[D}] for some D} with D; — D}, or D' = E"[D;]{c’/X;} for
some ¢’ with D1 — D;{0’/X;}. In each of these cases, by the induction hypothesis we
have |D,| —7 |D}| and |D1| =7 (v, €);, o', respectively. In the first case, let (Q;, s;)i, 0 =
|D1| and (Q}, s});, 0’ = |D}|. Then what we have to show is

|E"|(Qis si)i;0 =T [E"(Qf, 57)ir 0,

that is
(Qi; R, (I,k)-s;i |i€puk),o—7(Q R, (I,k)-s,|i€ug)o.

This follows from Lemma F.1 and the induction hypothesis, but to apply Lemma F.1
we have to check that | ¢ labs(Q;). This follows from the fact that @), is a program part
of |Dy| and D; has a conclusion of the form Py, ux, 011 | X1. Here Py is the body of a
while-statement with label [, hence does not contain ! (because we assume the same
label does not appear twice in a single program). Therefore by Lemma F.2, ; does not
contain /. In the second case, where |D,| —7 (v, ¢);,0’, we have D’ = E”"[D;]{0’/ X1} so
|D'| = (R, (l,k) | i € ux),o’. Since | D| is of the form (Q;; R, (I, k)-s;);, o and by induction
hypothesis we have (Q;,s;);,0 =7 (v, €);,0’, the conclusion follows from Lemma F.1,
using | ¢ labs(Q;) which is verified in the same way as above.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hoare Logic for GPU Kernels App-7

Next, consider the case (4). In this case D = FE[R, u, 0 || Xo] and there are two
possibilities:
Po, pey1, 06 4 X1 R per1, X1 4 Xo

R, pg,0r | Xo

In the first case, we have |D'| = (v',¢);, 0 and ui N oy [e] = 0, and in the second case
|D'| = (Po; R,(I,k+1) | i € pigt1), 0k and pig+1 = p N o [e]. In both cases it is easy to
see that |D| = (R, (L,k) | i € pg),0 =75 |D'|.

Next we consider the case of sequencing:
B D, FE or E—E/ Py, pg, X1 4 Xo

Py; P, puo, 00 4 Xo Py; Py, pig, 00 I Xo

Then we have either

D' = D{oy/Xo},or D' =FE

E

|D| = (Qi,si)i,0 or |D| = (Qs; Pa,s;),0.

The conclusion follows by an argument similar to the previous case, using Lemma F.1.
The case of if-statement is also similar. O

Received February 2007; revised March 2009; accepted June 2009

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

