On Inner Classes

Atsushi Igarashi'* and Benjamin C. Pierce?

! Department of Information Science, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
igarashi@is.s.u-tokyo.ac. jp
2 Department of Computer & Information Science, University of Pennsylvania
200 South 33rd St., Philadelphia, PA 19104, USA

bcpierce@cis.upenn.edu

Abstract. Inner classes in object-oriented languages play a role similar
to nested function definitions in functional languages, allowing an ob-
ject to export other objects with direct access to its own methods and
instance variables. However, the similarity is deceptive: a close look at
inner classes reveals significant subtleties arising from their interactions
with inheritance.

The goal of this work is a precise understanding of the essential features
of inner classes; our object of study is a fragment of Java with inner
classes and inheritance (and almost nothing else). We begin by giving a
direct reduction semantics for this language. We then give an alternative
semantics by translation into a yet smaller language with only top-level
classes, closely following Java’s Inner Classes Specification. We prove
that the two semantics coincide, in the sense that translation commutes
with reduction, and that both are type-safe.

1 Introduction

It has often been observed that the gap between object-oriented and functional
programming styles is not as large as it might first appear; in essence, an object
is just a record of function closures. However, there are differences as well as
similarities. On the one hand, objects and classes incorporate important mech-
anisms not present in functions (static members, inheritance, object identity,
access protection, etc.). On the other hand, functional languages usually allow
nested definitions of functions, giving inner functions direct access to the local
variables of their enclosing definitions.

A few object-oriented languages do support this sort of nesting. For example,
Smalltalk [8] has special syntax for “block” objects, similar to anonymous func-
tions. Beta [15] provides patterns, unifying classes and functions, that can be
nested arbitrarily. More recently, inner classes have been popularized by their
inclusion in Java 1.1 [9, 12].

Inner classes are useful when an object needs to send another object a chunk
of code that can manipulate the first object’s methods and/or instance variables.

* This work was done while the author was visiting University of Pennsylvania.

Such situations are typical in user-interface programming: for example, Java’s
Abstract Window Toolkit [4] allows a listener object to be registered with a
user-interface component such as a button; when the button is pressed, the
actionPerformed method of the listener is invoked. For example, suppose we
want to increment a counter when a button is pressed. We begin by defining a
class Counter with an inner class Listener:

class Counter {
int x;
class Listener implements ActionListner {
public void actionPerformed(ActionEvent e) { x++; }

}
void listenTo(Button b) {
b.addActionListener(new Listener());

}
}

In the definition of the method actionPerformed, the field x of the enclosing
Counter object is changed. The method listenTo creates a new listener object
and sends it to the given Button. Now we can write

Counter c = new Counter();

Button b = new Button("Increment");
c.listenTo(b);

gui.add(b);

to create and display a button that increments a counter every time it is pressed.’

Inner classes are a powerful abstraction mechanism, allowing programs like
the one above to be expressed much more conveniently and transparently than
would be possible using only top-level classes. However, this power comes at a
significant cost in complexity: inner classes interact with other features of object-
oriented programming—especially inheritance—in some quite subtle ways. For
example, a closure in a functional language has a simple lexical environment,
including all the bindings in whose scope it appears. An inner class, on the
other hand, has access, via methods inherited from superclasses, to a chain of
environments—including not only the lexical environment in which it appears,
but also the lexical environment of each superclass. Conversely, the presence of
inner classes complicates our intuitions about inheritance. What should it mean,
for example, for an inner class to inherit from its enclosing class? What happens
if a top-level class inherits from an inner class defined in a different top-level
class?

JavaSoft’s Inner Classes Specification [12] provides one answer to these ques-
tions by showing how to translate a program with inner classes into one using
only top-level classes, adding to each inner class an extra field that points to
an instance of the enclosing class. This specification gives clear basic intuitions

! Strictly speaking, the increment of x should be synchronized with the listener’s own
counter, written Counter.this: listener methods are generally triggered in a thread
different from the constructor thread of the current object.

about the behavior of inner classes, but it falls short of a completely satisfying
account. First, the style is indirect: it forces programmers to reason about their
code by first passing it through a rather heavy transformation. Second, the docu-
ment itself is somewhat imprecise, consisting only of examples and English prose.
Different compilers (even different versions of Sun’s JDK) have interpreted the
specification differently in some significant ways (cf. Section 6).

The goal of this work is a precise understanding of the essential features of
inner classes. Our main contributions are threefold:

— First, we give a direct operational semantics and typing rules for a small
language with inner classes and inheritance. The typing rules are shown
to be sound for the operational semantics in the standard sense. To our
knowledge, this direct style of semantics is formalized for the first time.

To keep the model as simple as possible, we focus on the most basic form of
inner classes in Java, omitting the related mechanisms of anonymous classes,
local classes within blocks, and static nested classes. Also, we do not deal with
the (important) interactions between access annotations (public/private/etc.)
and inner classes (cf. [12, 2, 1]).

— Next, we give a translation from the language with inner classes to an even
smaller language with only top-level classes, formalizing the translation se-
mantics of the Java Inner Classes Specification. We show that the translation
preserves typing.

— Finally, we prove that the two semantics define the same behavior for in-
ner classes, in the sense that the translation commutes with the high-level
reduction relation in the direct semantics. This property, together with the
property of preservation of typing, guarantees correctness of the translation
semantics with respect to the direct semantics, for the case where whole
programs are being translated.

The case where some translated classes are linked with classes written di-
rectly in the target language is more subtle, and we do not handle it here.
The main desired theorem in this case would be full abstraction, which states
that translated expressions that can be distinguished by a target language
context can also be distinguished in the source language. Unfortunately, our
translation is not fully abstract, because our modeling language does not
include private fields, which are used by the real translation to prevent ob-
servers from directly accessing the field of an inner class instance that holds
a pointer to its containing object. (The question of full abstraction for full-
scale inner class translations has been considered by Abadi [1] and Pugh [2].)

Recently, Glew [7] has studied closure conversion in the context of an object
calculus without classes; our translation semantics can be viewed as closure
conversion of class definitions. However, since his calculus does not have classes,
a semantic account of interaction between inheritance and nested classes has not
been given.

The basis of our work is a core calculus called Featherweight Java, or FJ.
This calculus was originally proposed in the context of a formal study [10] of
GJ [3], an extension of Java with parameterized classes. It was designed to omit

as many features of Java as possible (even assignment), while maintaining the
essential flavor of the language and its type system. Its definition fits comfort-
ably on a page, and its basic properties can be proved with no more difficulty
than, say, those of the simply typed lambda-calculus with subtyping. This ex-
treme simplicity makes it an ideal vehicle for the rigorous study of new language
features such as parameterized classes and inner classes.

The remainder of the paper is organized as follows. Section 2 briefly reviews
Featherweight Java. Section 3 defines FJI, an extension of FJ with inner classes,
giving its syntax, typing rules, and reduction rules, and stating standard type
soundness results. Section 4 defines a compilation from FJI to FJ, modeling
the translation semantics of the Inner Classes Specification, and proves its cor-
rectness with respect to the direct semantics in the previous section. Section 5
discusses the elaboration process from user programs to FJI, which is considered
an intermediate language to define semantics. Section 6 examines some behav-
ioral differences between compilers resulting from inconsistencies in the existing
specification, Section 7 discusses related work, and Section 8 offers concluding
remarks.

For brevity, proofs of theorems are omitted; they appear in a companion
technical report [11].

2 Featherweight Java

We begin by reviewing the basic definitions of Featherweight Java [10]. FJ is
a tiny fragment of Java, including only top-level class definitions, object in-
stantiation, field access, and method invocation. (The original version of FJ also
included typecasts, which are required to model the compilation of GJ into Java.
They are omitted from this paper, since they do not interact with inner classes in
any significant way.) Our main goal in designing FJ was to make a proof of type
soundness (“well-typed programs don’t get stuck”) as concise as possible, while
still capturing the essence of the soundness argument for the full Java language.
Any language feature that made the soundness proof longer without making it
significantly different was a candidate for omission. Even assignments are omit-
ted from FJ, as well as advanced features such as reflection and concurrency.
Since FJ is a sublanguage of the extension defined in Section 3, we just show
its syntax and an example of program execution here. The rest of the definition
can be found in Figure 4.

The abstract syntax of FJ class declarations, constructor declarations, method
declarations, and expressions is given as follows:

L = class C extends C {C f; K M}
K:=C(C f) {super(f); this.f = f;}
M:=C m(C x) {return e;}
ex=x]|e.f|e.m(e) | new C(&)

The metavariables A, B, C, D, and E range over class names; f and g range
over field names; m ranges over method names; x ranges over parameter names;

c, d and e range over expressions; L ranges over class declarations; K ranges
over constructor declarations; and M ranges over method declarations. We write
f as shorthand for fy,...,f, (and similarly for C, %, &, etc.) and write M
as shorthand for M...M, (with no commas). We write the empty sequence
as e and denote concatenation of sequences using a comma. The length of a
sequence X is written #(X). We abbreviate operations on pairs of sequences
in the obvious way, writing “C £” as shorthand for “c; f;,...,C, f,” and
“C £;” as shorthand for “C; f£1;...C, f,;” and “this.f=f;” as shorthand for
“this.fy=f;;...this.f,=f,;”. For the sake of conciseness, we often abbreviate
the keyword extends to the symbol extends and the keyword return to the
symbol return. Sequences of field declarations, parameter names, and method
declarations are assumed to contain no duplicate names.

A key simplification in FJ is the omission of assignment, making FJ purely
functional. It is realized by assuming that all fields and method parameters are
implicitly marked final. (Of course, most useful examples of programming in
Java do involve its side-effecting features, and inner classes do interact with as-
signment: in particular, if inner classes may appear inside method definitions,
then local variables of the enclosing method must be marked final if they are
mentioned in an inner class. To handle this feature, our model would need to
be extended with assignment. However, we do not need it for the present mod-
eling task, and, by omitting assignment from FJ and FJI, we obtain a much
simpler model that offers just as much insight into inner classes.) An object’s
fields are initialized by its constructor and never changed afterwards. More-
over, a constructor has a stylized syntax such that there is one parameter for
each field, with the same name as the field; the super constructor is invoked
on the fields of the supertype; and the remaining fields are initialized to the
corresponding parameters. (These constraints are enforced by the typing rules.)
This stylized syntax makes the operational semantics simple: a field access ex-
pression new C(€).f; just reduces to the corresponding constructor argument
e;. Also, since FJ does not have assignment statements, a method body always
consists of a single return statement: all the computation in the language goes
on in the expressions following these returns. A method invocation expression
new C(e).m(d) is reduced by looking up the expression ey following the return
of method m in class C in the class table, and reducing to the instance of ey in
which d and the receiver object (new C(€)) are substituted for formal arguments
and the special variable this, respectively. Figure 4 states these reduction rules
precisely.

A program in FJ is a pair of a class table (a set of class definitions) and an
expression (corresponding to the main method in a Java program). The reduction
relation is of the form e — €', read “expression e reduces to expression e’ in
one step.”

For example, given the class definitions

class A extends Object {
AQ { super(); }
}

class B extends Object {
B() { super(); }
}
class Pair extends Object {
Object fst;
Object snd;
Pair(Object fst, Object snd) {
super () ; this.fst=fst; this.snd=snd;
}
Pair setfst(Object newfst) {
return new Pair(newfst, this.snd);

}
}

the expression new Pair(new A(), new B()).setfst(new B()) reduces to
new Pair(new B(), new B()) as follows

new Pair(new A(), new B()).setfst(new B())
— new Pair(new B(), new Pair(new A(), new B()).snd)
— new Pair(new B(), new B())

where the underlined subexpressions are the ones being reduced at each step.

3 FJ with Inner Classes

We now define the language FJI by extending FJ with inner classes. Like FJ,
FJI imposes some syntactic restrictions to simplify its operational semantics: (1)
receivers of field access, method invocation, or inner class constructor invocation
must be explicitly specified (no implicit this); (2) type names are always abso-
lute paths to the classes they denote (no short abbreviations); and (3) an inner
class instantiation expression eg.new C(€) is annotated with the static type T
of eg, written eg.new<T> C(e).

Because of conditions (2) and (3), FJI is not quite a subset of Java (whereas
FJ is); instead, we view FJI as an intermediate language, to which the user’s
programs are translated by a process of elaboration. We describe the elaboration
process only informally in this paper (in Section 5), since it is rather complex but
not especially deep, consisting mainly of a large number of rules for abbreviating
long qualified names; a detailed treatment is given in the companion technical
report [11]. We begin with a brief discussion of the key idea of enclosing instances.

3.1 Enclosing Instances

Consider the following FJI class declaration:

class Outer extends Object {
Pair p;
Outer (Pair p) {super(); this.p = p;}
class Inner extends Object {
Inner() {super();}
Object snd_p { return Outer.this.p.snd; }
}
Outer.Inner make_inner () { return this.new<Outer> Inner(); }

}

Conceptually, each instance o of the class Outer contains a specialized version of
the Inner class, which, when instantiated, yields instances of Quter. Inner that
refer to o’s instance variable p. The object o is called the enclosing instance of
these Outer. Inner objects.

This enclosing instance can be named explicitly by a “qualified this” ex-
pression (found in both Java and FJI), consisting of the simple name of the
enclosing class followed by “.this”. In general, the class C; . - -+ .C, can refer to
n—1 enclosing instances, C; . this to C,,_; . this, as well as the usual this, which
can also be written C,,.this. To avoid ambiguity of the meaning of C.this, the
name of an inner class must be different from any of its superclasses.

In FJI, an object of an inner class is instantiated by an expression of the form
eo.new<T> C(€), where eq is the enclosing instance and T is the static type of
eo. The result of eg.new<T> C(e) is always an instance of T.C, regardless of
the run-time type of eg. (We avoid a notation like ep.new T.C(e€) because it
is not in the Java syntax. Java allows only the notation new T.C(€) (without
a prefix), which roughly means an instantiation from the class T.C with an
enclosing instance T.this; see Section 5 for more details.) This rigidity reflects
the static nature of Java’s translation semantics for inner classes. The explicit
annotation <T> is used in FJI to “remember” the static type of eg. (By contrast,
inner classes in Beta are wvirtual [14], i.e., different constructors may be invoked
depending on the run-time type of the enclosing instance; for example, if there
were a subclass Duter’ of the class Outer that also had an inner class Inner, then
o.new Inner () might build an instance of either Outer . Inner or Outer’. Inner,
depending on the dynamic type of o.)

The elaboration process allows type names to be abbreviated in Java pro-
grams. For example, the FJI program above can be written

class Outer extends Object {
Pair p;
Outer (Pair p) {super(); this.p = p;}
class Inner extends Object {
Inner() {super();}
Object snd_p () { return p.snd; }
}
Inner make_inner () { return new Inner(); }

}

in Java. Here, the return type Inner of the make_inner method denotes the
nearest Inner declaration. Also, in Java, enclosing instances can be omitted

when they are this or a qualified this. Thus, this.new<Quter> Inner () from
the original example is written new Inner () here.

3.2 Subclassing and Inner Classes

Almost any form of inheritance involving inner classes is allowed in Java: a top-
level class can extend an inner class of another top-level class, or an inner class
can extend another inner class from a completely different top-level class. An
inner class can even extend its own enclosing class. (Only one case is disallowed:
a class cannot extend its own inner class. We discuss the restriction later.) This
liberality, however, introduces significant complexity because a method inherited
from a superclass must be executed in a “lexical environment” different from the
subclass’s. Figure 1 shows a situation where three inner classes, A1.A2.A3 and
B1.B2.B3 and C1.C2.C3, are in a subclass hierarchy. Each white oval represents
an enclosing instance and the three shaded ovals indicate the regions of the
program where the methods of a C1.C2.C3 object may have been defined. A
method inherited from A1.A2.A3 is executed under the environment consisting
of enclosing instances Al.this and A2.this and may access members of enclos-
ing classes via Al.this and A2.this; similarly for B1.B2.B3 and C1.C2.C3. In
general, when a class has n superclasses which are inner, n different environ-
ments may be accessed by its methods. Moreover, each environment may consist
of more than one enclosing instance; six enclosing instances are required for all
the methods of C1.C2.C3 to work in the example above.

class Al ... {
Tl al; ...
class A2 ... { ...
class A3 ... { ...

11

class Bl ... { ... i e‘xtends

class B2 ... { ...
T2 b2; ...
class B3 extends Al. A2. A3 {

11}
class C1 ... { ...
class C2 ... { ...
class C3 extends Bl.B2.B3 {

1334

Fig. 1. A chain of environments

From the foregoing, we see that we will have to provide, in some way, six
enclosing instances to instantiate a C1.C2.C3 object. Recall that, when an object
of an inner class is instantiated, the enclosing object is provided by a prefix
ep of the new expression. For example, a C1.C2.C3 object is instantiated by
writing eg.new<C1.C2> C3(e), where e is the enclosing instance corresponding
to C2.this. Where do the other enclosing instances come from?

First, enclosing instances from enclosing classes other than the immediately
enclosing class, such as C1.this, do not have to be supplied to a new expres-
sion explicitly, because they can be reached via the direct enclosing instance—
for example, the enclosing instance eg in eg.new<C1.C2> C3(€) has the form
new C1(<).new<C1> C2(d), which includes the enclosing instance new C1(c)
that corresponds to C1.this.

Second, the enclosing instances of superclasses are determined by the con-
structor of a subclass. Taking a simple example, suppose we extend the inner
class Outer.Inner. An enclosing instance corresponding to Outer.this is re-
quired to make an instance of the subclass. Here is an example of a subclass of
Quter. Inner:

class RefinedInner extends Outer.Inner {
Object c;
RefinedInner (Outer this$0uter$Inner, Object c) {
this$Outer$Inner.super(); this.c=c;

1}

In the declaration of the RefinedInner constructor, the ordinary argument
this$0uter$Inner becomes the enclosing instance prefix for the super con-
structor invocation, providing the value of Duter.this referred to in the inher-
ited method snd_p. Similarly, in the C1.C2.C3 example, the subclass B1.B2.B3
is written as follows (we assume A1.A2.A3 has a field a3 of type Object):

class Bl extends ... { ...
class B2 extends ... { ...
class B3 extends A1.A2.A3 {
Object b3;

B3(Object a3, Al.A2 this$A1$A28A3, Object b3) {
this$A1$A28A3. super(al); this.b3 = b3; }
11}

Note that, since an enclosing instance corresponding to Al.this is included in
an enclosing instance corresponding to A2.this, the B3 constructor takes only
one extra argument for enclosing instances. Here is C1.C2.C3 class:

class Cl extends ... { ...
class C2 extends ... { ...
class C3 extends B1.B2.B3 {
Object c3;

C3(Ubject a3, A1.A2 this$A1$A2$A3,
Object b3, B1.B2 this$B1$B2$B3, Object c3) {
this$B1$B2$B3.super(a3, this$A1$A2$A3, b3); this.c3 = c3; }
1}

Since the constructor of a superclass B1.B2.B3 initializes A2.this, the construc-
tor C3 initializes only B2.this by qualifying the super invocation; the argument
this$A1$A2$A3 is just passed to super as an ordinary argument.

In FJI, we restrict the qualification of super to be a constructor argument,
whereas Java allows any expression for the qualification. This permits the same
clean definition of operational semantics we saw in FJ, since all the state infor-
mation (including fields and enclosing instances) of an object appears in its new
expression. Moreover, for technical reasons connected with the name mangling
involved in the translation semantics, we require that a constructor argument
used for qualification of super be named this$C;$---$C,,, where C;.---.C, is
the (direct) superclass, as in the example above.

Lastly, we can now explain why it is not allowed for a class to extend one
of its (direct or indirect) inner classes. It is because there is no sensible way to
make an instance of such a class. Suppose we could define the class below:

class Foo extends Foo.Bar {
Foo (Foo f) { f.super(); }
class Bar { ... } }

Since Foo extends Foo.Bar, the constructor Foo will need an instance of Foo
as an argument, making it impossible to make an instance of Foo. (Perhaps one
could use null as the enclosing instance in this case, but this would not be useful,
since inner classes are usually supposed to make use of enclosing instances.)

3.3 Syntax

Now, we proceed to the formal definitions of FJI. The abstract syntax of the
language is shown at the top left of Figure 2. We use the same notational con-
ventions as in the previous section. The metavariables S, T, and U ranges over
types, which are qualified class names (a sequence of simple names Cy,...,C,
concatenated by periods). For compactness in the definitions, we introduce the
notation x for a “null qualification” and identify x.C with C. The metavariable
P ranges over types (T) and x. We write C€ Pif P=C;.---.C, and C = C; for
some 1.

A class declaration L includes declarations of its simple name C, superclass
T, fields T F, constructor K, inner classes L, and methods M. There are two kinds
of constructor declaration, depending on whether the superclass is inner or top-
level: when the superclass is inner, the subclass constructor must call the super
constructor with a qualification “f.” to provide the enclosing instance visible
from the superclass’s methods. As we will see in typing rules, constructor ar-
guments should be arranged in the following order: (1) the superclass’s fields,
initialized by super(f) (or f.super(f)); (2) the enclosing instance of the su-
perclass (if needed); and (3) the fields of the class to be defined, initialized by
this.f=f. Like FJ, the body of a method just returns an expression, which is
a variable, field access, method invocation, or object instantiation. We assume
that the set of variables includes the special variables this and C.this for every
C, and that these variables are never used as the names of arguments to methods.

Syntax:
T:=Ci.---.Cp
L :=class CaT {T f; KL M}
K:=C(T) {
super (f); this.f = £;}
| C(T £) { 3 o
f.super(f); this.f = f;}

=

=T m (T X) {fe;}
n=x|e.f|e.m(®
| new C(€) | e.new<T> C(e)

(0]

Computation:

fields(C) =T £
new C(e).f; — e;

fields(T.C)=T £
eo.new<T> C(e).f; — e;

mbody(m, C) = (X,do,C1. -+ .Cp)
cn = new C(8)

C; = enclcl,...,ciH (Ci+1) i€l..n-1

new C(g).m(d)

{d/i, cn/this,]d

Cl/CZ .thig i€l 0

mbody(m, T.C) = (X,do,C1.---.Cy)
cn ' ep.new<T> C(&)
- encle,c;q (Cit1) i€ln=l
eo.new<T> C(e).m(d)
{d/i, C./this,] 4
ci/Ci.this €t | 70

Subtyping:

S<T T< U

T< T
S<U

CT(S) =class C«T {...}
S<T

Expression typing:

'x)=T
I'FxeT
I'Feo€To fields(To) =T £
I'keo.f; €T,
ey €Ty mtype(m, Tp) = U—Uy

'FeeS S<«T
I'Fep.m(e) €Uy

fields(C) =T £ r-eefs S<T
I'Fnew C(e) eC

FFeyeS F|—€e§_ B
fields(T.C) =T f S< T S<T
'k eg.new<T> C(e) € T.C

Method typing:

E:T,thiszcl.---.cn7
Ci.this:Cy..--.C; "€tm
CT(Cy.--.Cy) =class C,<S {...}
So < Ty if mty_pe(an):I_J—)Uo,
thenU:TandUozTo
To m(T X) {feo;} OK IN C;.---.Cy

Fep €So

Class typing:

K= CS g, T H)1{
~ super(g); this.f = £;}
fields(D) =S g c¢gPp

M OK in P.C L 0K in P.C
class C<«<D {T f; KL M} OK IN P

_CB g Teg, THI

K go.super(g); this.f = £;}
fields(T.D)=S g C¢gP
M 0K in P.C L 0K in P.C
class C<T.D{T f; KL M} OK IN P

Fig. 2. FJI: Main Definitions

A program is a pair of a class table CT (a mapping from types T to class
declarations L) and an expression e. Object is treated exactly in the same way
as in FJ. From the class table, we can read off the subtype relation between
classes. We write S <: T when S is a subtype of T—the reflexive and transitive
closure of the immediate subclass relation given by the extends clauses in C'T'.
This relation is defined formally at the bottom left Figure 2.

We impose the following sanity conditions on the class table: (1) CT(P.C) =
class C ... for every P.C € dom(CT). (2) If CT(P.C) has an inner class
declaration L of name D, then CT(P.C.D) =L. (3) Object & dom(CT). (4) For
every type T (except Object) appearing anywhere in CT, we have T € dom(CT).
(5) For every ep .new<T> C(€) (and new C(@), resp.) appearing anywherein CT,
we have T.C € dom(CT) (and C € dom(CT), resp.). (6) There are no cycles in
the subtyping relation. (7) T ¢ T.U, for any two types T and T.U. By conditions
(1) and (2), a class table of FJI can be identified with a set of top-level classes.
Condition (7) prohibits a class from extending one of its inner classes.

3.4 Auxiliary Functions

For the typing and reduction rules, we need a few auxiliary definitions, given
in Figure 3. The fields of a class T, written fields(T), is a sequence T f pairing
the class of each field with its name, for all the fields declared in class T and all
of its superclasses. In addition, fields(T) collects the types of (direct) enclosing
instances of all the superclasses of T. For example, fields(C1.C2.C3) returns the
following sequence:

fields(C1.C2.C3) = Object a3, (field from A1.A2.A3)

A1.A2 this$A1$A28$A3, (enclosing instance A2.this)

Object b3, (field from B1.B2.B3)

B1.B2 this$B1$B2$B2, (enclosing instance B2.this)
(

Object c3 field from C1.C2.C3)

The third rule in the definition inserts enclosing instance information between
the fields S g of the superclass U.D and the fields T £ of the current class. In a
well-typed program, fields(T) will always agree with the constructor argument
list of T.

The type of the method m in class T, written mtype(m, T), is a pair, written
S—8, of a sequence of argument types S and a result type S. Similarly, the body
of the method m in class T, written mbody(m, T), is a triple, written (X, e, T), of
a sequence of parameters X, an expression e, and a class T where the method is
defined.

The function enclr(e) plays a crucial role in the semantics of FJI. Intuitively,
when e is a top-level or inner class instantiation, encly(e) returns the direct
enclosing instance of e that is visible from class T (i.e., the enclosing instance
that provides the correct lexical environment for methods inherited from T). The
first rule is the simplest case: since the type of an expression eg.new<T> C(€)
agrees with the subscript T.C, it just returns the (direct) enclosing instance

Field lookup:

fields(Object) = o

CT(T) = class C<«D {T f; K L M}
fields(D) =S g
fields(T) =S g, T £

CT(T) = class C<U.D {T f; K L M}
fields(U.D) =S g

U=Ci. - .Cp

fo =thisCi---$C,$D

fields(T) =S g, U £,, T T

Method type lookup:

CT(T) = class C<S {S f; KL M}
Up m (U X {fe;}eM
mtype(m, T) = T—Uj
CT(T)=class CaS {S f; KL M}
m is not defined in M
mitype(m, T) = mitype(m, S)

Method body lookup:
CT(T)=class CaS {S f; KL M}

Uym (UX) {fe;}el

mbody(m, T) = (X, e, T)

CT(T) = class C<S {S f; K L M}
m is not defined in M
mbody(m, T) = mbody(m, S)

Enclosing instance lookup:
enclt.c(eg.new<T> C(€)) = ep

CT(C) =class C<D {S f;...}
#() = #(8)
enclr(new C(d, @))
= enclr(new D(d))

CT(C) =class CaU.D {S £f;...}
#(£) = #(3)
enclr(new C(d, do, ©))
= enclt(do .new<U> D(d))

CT(S.C) =class C<D {S f;...}
#E) =#() T#S.C
enclt(eg.new<S> C(d, @))
= enclr(new D(d))

CT(S.C) =class C<U.D {S f;...}
#(E) =#@ T#S.C
enclr(eo .new<S> C(d, doy, ©))
= enclt(do.new<U> D(d))

Fig. 3. FJI: Auxiliary definitions

ep. The other rules follow a common pattern; we explain the fifth rule as a
representative. Since the subscripted type T is different from the type of the
argument eg.new<S> C(d, dg, @), the enclosing instance eq is not the correct
answer. We therefore make a recursive call with an object dg.new<U> D(d) of
the superclass obtained by dropping eg and as many arguments € as the fields
£ of the class S.C. We keep going like this until, finally, the argument becomes
an instance of T and we match the first rule. For example:

enclM,Ag_Ag(eg.new<Cl.C2> Cc3(a, e;, b, es, C))

enclAl,Ag_Ag(el .new<Al.A2> A3(a))
new A1() .new<A1> A2()

enclM,Ag,Ag(ez.new<B1.B2> B3(a, e ,b))

where e; = new A1() .new<A1> A2() and es = new B1() .new<B1> B2().

Note that the encl function outputs only the direct enclosing instance. To ob-
tain outer enclosing instances, such as Al.this, encl can be used repeatedly:
enClM.Az(enClM.Az.As(e))-

3.5 Computation

As in FJ, the reduction relation of FJI has the form e —» e'. We write —* for
the reflexive and transitive closure of —. The reduction rules are given in the
middle of the left column of Figure 2. There are four reduction rules, two for field
access and two for method invocation. The field access expression new C(g) .f;
looks up the field names £ of C using fields(C) and yields the constructor argu-
ment e; in the position corresponding to £; in the field list; eg.new<T> C(€) .f;
behaves similarly. The method invocation expression new C(€).m(d) first calls
mbody(m, C) to obtain a triple of the sequence of formal arguments %, the method
body e, and the class C; . - -- .C,, where m is defined; it yields a substitution in-
stance of the method body in which the X are replaced with the actual arguments
d, the special variables this and C,, .this with the receiver object new C(g), and
each C;.this (for i < n) with the corresponding enclosing instance c;, obtained
from encl. Since the method to be invoked is defined in C;. ---.C,, the direct
enclosing instance C,_1 .this is obtained by enclg, ¢, (e), where e is the re-
ceiver object; similarly, C,,_2.this is obtained by enclg,c,_, (encle, ¢, (e)),
and so on. The reduction rules may be applied at any point in an expression, so
we also need the obvious congruence rules (if e — e’ then e.f — e'.£f, and
the like), which we omit here.

For example, if the class table includes Outer, RefinedInner, Pair, A, and
B, then

new RefinedInner (
new Outer(new Pair(new A(), new B())), new Object()).snd_p()

reduces to new B() as follows:

new RefinedInner(

new Outer(new Pair(new A(), new B())), new Object()).snd_p()
— new Outer (new Pair(new A(), new B())).p.snd
— new Pair(new A(), new B()).snd
— new BQ

3.6 Typing Rules

The typing rules for expressions, method declarations, and class declarations are
given in the right column of Figure 2. An environment I' is a finite mapping
from variables to types, written X:T. The typing judgment for expressions has
the form I' F e € T, read “in the environment I', expression e has type T.” The
typing rules are syntax directed, with one rule for each form of expression. The
typing rules for object instantiations and method invocations check that each
actual parameter has a type which is a subtype of the corresponding formal

parameter type obtained by fields or mtype; the enclosing object must have a
type which is a subtype of the annotated type T in new<T>.

The typing judgment for method declarations has the form M 0K IN Cy.--:.Cpy,
read “method declaration M is ok if it is declared in class C; . - - - .C,.” The body
of the method is typed under the context in which the formal parameters of the
method have their declared types and each C;.this has the type C;.---.C;. If a
method with the same name is declared in the superclass then it must have the
same type in the subclass.

The typing judgment for class declarations has the form L 0K IN P, read
“class declaration L is ok if it is declared in P.” If P is a type T, the class
declaration L is an inner class; otherwise, L is a top-level class. The typing rules
check that the constructor applies super to the fields of the superclass and
initializes the fields declared in this class, and that each method declaration and
inner class declaration in the class is ok. The condition C ¢ P ensures that the
(simple) class name to be defined is not also a simple name of one of the enclosing
classes, so as to avoid ambiguity of the meaning of C.this.

3.7 Properties

As well as FJ programs, FJI programs also enjoy standard subject reduction and
progress properties, which together guarantee that well-typed programs never get
stuck on field accesses or method invocations.

Theorem 1 (Subject Reduction). IfT'Fe € Tande — &', thenT'Fe' €T
for some T' such that T' <: T.

Theorem 2 (Progress). Suppose e is a well-typed expression.

(1) If e includes new Co(€).f as a subexpression, then fields(Co) = T £ and
f € £. Similarly, if e includes eg.new<To> C(8).f as a subexpression, then
fields(To.C) =T £ and £ € £.

(2) If e includes new Cy(e).m(d) as a subexpression, then mbody(m,Co) =
(X,e0,C1. - .Cp) and #(X) = #(d), and c1,...,c, appearing in the third
computation rule are well defined.

Similarly, if e includes eg.new<To> C(€).m(d) as a subexpression, then
mbody(m, Ty .C) = (%,do,C1. - .Cpn) and #(X) = #(d) and cy1,...,c, ap-
pearing in the fourth computation rule are well defined.

4 Translation Semantics

In this section we consider the other style of semantics: translation from FJI
to FJ. Every inner class is compiled to a top-level class with one additional
field holding a reference to the direct enclosing instance; occurrences of quali-
fied this are translated into accesses to this field. For example, the Outer and
RefinedInner classes in the previous section are compiled to the following three
FJ classes.

class Outer extends Object {
Pair p;
Outer (Pair p) { super(); this.p = p; }
Outer$Inner make_inner () { return new Outer$Inner(this); }

}

class Outer$Inner extends Object {
OQuter this$Outer$Inner;
Outer$Inner (Outer this$Outer$Inner) {
super () ; this.this$0uter$Inner = this$Outer$Inner; }
Object snd_p { return this.this$Outer$Inner.p.snd; }

}

class RefinedInner extends Outer$Inner {
Object c;
RefinedInner (Outer this$0uter$Inner, Object c) {
super (this$0uter$Inner); this.c = c;
}
}

The inner class Outer. Inner is compiled to the top-level class Outer$Inner; the
field this$Outer$Inner holds an Outer object, which corresponds to the direct
enclosing instance Quter.this in the original FJI program; thus, OQuter.this is
compiled to the field access expression this.this$0uter$Inner.

We give a compilation function | - | for each syntactic category. Except for
types, the compilation functions take as their second argument the FJI class
name (or, x) where the entity being translated is defined, written | - |, (or | - |,).

4.1 Types, Expressions and Methods

Every qualified class name is translated to a simple name obtained by syntactic
replacement of . with $.

ICL. - .Cu| = C1$---$C,,
The compilation of expressions, written |e|;, is given below. We write [g|; as
shorthand for |ei|y, ..., |en|; (and similarly for |T|, [M|, and |T|,).

| =X

|e0.f|T ==|e0|T.f

leo-m(@)|; = leoly -m([8[;)

lnew D(&)|; =new D([g|;)

|eo .new<T> D(&) |, =new |T.D|(|g|;, |eo|;)

|this|; = this

ICn.this|; .. . =this

|Ci.thiS|c1'___'cn = |Ci+1.this|c1'_“'cn .thiS$C1$"'$Ci+1 (]. <i<n-—].)

As we saw above, a compiled inner class has one additional field, called this$ |T|,
where T is the original class name. C;.this in the class C;.---.C, becomes an

expression that follows references to the direct enclosing instance in sequence
until it reaches the desired one. An enclosing instance eg of eg.new<T> C(&)
will become the last argument of the compiled constructor invocation.

Compilation of methods, written |M|, is straightforward. We use the notation
|T| x for |T1| Xlgoeny |Tn| Xn.

|T0 m (T X) { return e; }|T: [To m(|T| %) { return |e|;; }

4.2 Constructors and Classes

Compilation of constructors, written [K|;, is given below.
CSg TH5

_C(|§| g, |T| £)
{ super(g); this.f = f; } N

{super(g); this.f=f;}

C

C(§ E, SO g0 T f)

c(|S| &, IS0l &, |T| B
{ go.super(g); this.f = f; } f=f

{super(g, go); this.f=f;}

c
IT.cl(|8] &, |T| %,
B IT| this$|T.C|)
" {super(g); this.f = f;
this.this$|T.C|=this$|T.C|;}

csg, TH
{ super(g); this.f = f; }

T.C

IT.Cl([S] & [So| &, |T| %,
_ |T| this$|T.C|)
" {super(g, go); this.f = f;
this.this$|T.C|=this$|T.C|;}

C(§ E, SO g0 T f)
{ go.super(g); this.f = f; }

T.C

It has four cases, depending on whether the current class is a top-level class or
an inner class and whether its superclass is a top-level class or an inner class.
When the current class is an inner class, one more argument corresponding to
the enclosing instance is added to the argument list; the name of the constructor
becomes |T.C|, the translation of the qualified name of the class. When the super-
class is inner (the third and fourth cases), the argument used for the qualification
of £.super (f) becomes the last argument of the super () invocation.
Finally, the compilation of classes, written |L|,, is as follows:

|class Cas {T £f; KL ﬁ}|*= class Cd |S] {|T| £; |K|g |ﬁ|c} |f|c

class |T.C| <« S| {
|class C«S {T f; XL ﬁ}|T T

Il
Al
H
=
ct
(=2
[
n
&
—
a
=

d

aQ
=

-

Q
(-]

The constructor, inner classes, and methods of class C defined in P are compiled
with auxiliary argument P.C. Inner classes L become top-level classes. As in
constructor compilation, when the compiled class is inner, its name changes
to |T.C| and the field this$|T.C|, holding an enclosing instance, is added. The
compilation of the class table, written |CT, is achieved by compiling all top-level
classes L in CT (i.e., |T],).

4.3 Properties of Translation Semantics

We develop three theorems here. First, the translation semantics preserves typ-
ing, in the sense that a well-typed FJI program is compiled to a well-typed FJ
program (Theorem 3). Second, we show that the behavior of a compiled program
exactly reflects the behavior of the original program in FJI: for every step of re-
duction of a well-typed FJI program, the compiled program takes one or more
steps and reaches a corresponding state (Theorem 4) and vice versa (Theorem 5).

Theorem 3 (Compilation preserves typing). When ' = X : T, we write |T|

forx: |T| If an FJI class table CT is ok and X : T, this : Cy. ---.C,, C;.this :
Cr.--.C; ®€n by e € T with respect to CT, then |CT| is ok and X :
|T|, this:[Ci. - - .Chl Fry lel,c, € |T| with respect to |CT].

Theorem 4 (Compilation commutes with reduction). IfI' by, e € T
where dom (L) does not include this or C.this for any C, and e— €', then

lel, —ea T €],

Theorem 5 (Compilation preserves termination). If I' -y, e € T where
dom(T') does not include this or C.this, and |e|, — €', then e— g6’ and
e'— ;" |e''|, for some €'’

Unfortunately, Theorems 4 and 5 would not hold for a call-by-value ver-
sion of FJI, since their properties depend on our non-deterministic reduction
strategy. An intuitive reason is as follows. In FJI, after method invocation,
C.this is directly replaced with the corresponding enclosing instance. On the
other hand, in the compiled FJ program, C.this is translated to an expression
this.f;.f,5. - .f,, where each f; is a mangled field name, and its evaluation
may be guarded by its context. Therefore, reduction steps do not commute with
compilation straightforwardly. Nevertheless, it should be possible to show cor-
rectness pby using another technique, such as contextual equivalence [18], as
Glew proved a similar result in the context of object closure conversion for a
call-by-value object calculus [7].

5 Elaboration

In this section we formalize the elaboration of user programs. In user programs,
the receivers of field access or method invocation, the enclosing instances of
inner class instantiation, and the qualifications of type names may be omitted.
For example, a simple name C means an inner class T.C when it is used in the
direct enclosing class T. A basic job of elaboration is to find where a name f, m,
or C is bound and to recover its receiver information or absolute path.

In the conventional scoping rules of simple block structured languages, simple
names are bound to their syntactically nearest declaration. In Java, however,
they can be bound to declarations in superclasses, or even in superclasses of
enclosing classes. For example, in the class below, f in the method m is bound
to the field £ of the enclosing class C unless D has a field £.

class C extends Object {
Object f;
class D extends Object { ...
Object m (O { return f; }
}
}

Similarly, £ in the method m is bound to the field £ of its superclass B (when
neither C nor D has field £) in the following classes.

class B extends Object { Object f; ... }
class C extends Object { ...
class D extends B { ...
Object m () { return f; }
}
}

In general, beginning with the current class where the field/method name is
used, the search algorithm looks for the definition in superclasses; if there is no
definition in any superclass, it looks in the direct enclosing class and its super-
classes, and then in the second direct enclosing class and its super classes, and so
on. Once the declaration where a name is bound is known, it is easy to recover
the appropriate qualification. In the examples above, f becomes C.this.f and
D.this.f, respectively.

Suppose the algorithm above finds the definition of the field/method in one
of the superclasses of the current class. Then, a field/method of the same name
must not be defined in any of the enclosing classes. Similarly, if the field/method
definition is found in a superclass of an enclosing class C, a field/method of the
same name must not be defined in any of C’s enclosing classes. In the example
above, if both B and C declared a field £ (and D did not), then elaboration would
fail as f in m is ambiguous; the user must write C.this.f or D.this.f, specifying
the enclosing instance explicitly. This rule also has one significant exception: it
is not considered ambiguous if the definition found in a superclass is also the
syntactically nearest definition in enclosing classes. This situation occurs when
an inner class extends one of its enclosing classes. For example, suppose E does
not declare the field £ in the class definition below.

class C extends Object {
Object f;
class D extends Object { ...
class E extends C { ...
Object m () { return f; }
}
}
}

The reference to £ in m is not ambiguous unless D declares the field £. (The
algorithm finds the definition f in a superclass of E.)

Simple type names obey similar elaboration rules. For example, D occurring
in C is elaborated to C.D. However, unlike field names and method names, pre-
elaborated type names themselves can be qualified. In such a case the head
simple name is elaborated first, then it looks up the definitions of the following
names in a manner similar to field lookup. For example, consider the following
class declarations:

class A extends Object { ...

class B extends Object { ... }
}
class C extends Object { ...
class D extends A { ... }
}
class E extends C { D.B f; ... }

The type D.B of £ is elaborated to A.B as follows:

1. The first name D is elaborated to C.D.

2. It is checked whether C.D.B makes sense; in this case, it does not, since the
inner class D does not have the declaration of B. The elaborator replaces C.D
with its superclass A and elaborates A.B in the context of C.

3. Since A is not declared in C, it denotes the top-level class A.

4. Finally, since B is declared in the top-level class A, A.B is the elaborated type
for D.B in the context of E.

Last, we describe how a constructor invocation new T(€) is elaborated. Ac-
tually, it is slightly more involved than others since it requires both elaboration
of the type and recovering of an enclosing instance (when it turns out to be
instantiation of an inner class). First of all, the pre-elaborated type name T is
elaborated to T'. If T’ is a simple name C, then the constructor invocation does
not need an enclosing instance. On the other hand, if T' is U.C, then we have to
make up an enclosing instance D.this, whose type is subtype of U, by checking
which enclosing class is a subclass of U. Finally, among such enclosing classes, the
innermost one is chosen and new T(€) is elaborated to D.this.new<U> C(...).
The annotation <U> is important to specify which inner class is instantiated,
since there might be more than one inner class C defined in classes between D
and U. Consider the following classes and the expression new A.B() inside the
class D.E:

class A extends Object { ...

class B extends Object { ... }
}
class C extends A { ...

class B extends Object { ... }
}

class D extends C { ...
class E extends C { ...
Object m O { ... new A.BO) ...}
}
}

First, A.B is elaborated to itself. Now, we need to find out which enclosing class
(including the current class) is a subclass of A. In this case, both D and D.E
are; then, the innermost one, D.E, is chosen, and new A.B() is elaborated to
E.this.new<A> B(). The annotation <A> is important since we have to remem-
ber that the class A.B is to be instantiated (not C.B).

For brevity, we omit the formal rules of elaboration, which closely follow
the algorithm described above; interested readers are referred to a companion
technical report [11].

6 Interpretations of the Inner Class Specification

Through this work, we have experimented a few Java compilers, including Sun’s
JDK (for Solaris), JDK for linux, and guavac. Besides finding a few bugs related
to inner classes (mostly already known to the developers), we observed some
interesting variations in behavior corresponding to an underspecification in the
currently available Inner Classes Specification [12], concerning the meaning of
the C.this expression. Consider the following Java program:

class C {
void who () {
System.out.println("I’m a C object");

}

class D extends C {
void m () { C.this.who(O; }
void who () {
System.out.println("I’m a C.D object");
}r

public static void main (String[] args) {
new C().new D().mQ);
}
}

Surprisingly, this program prints out I'm a C.D object when compiled with
JDK 1.1.7a, but I'm a C object under JDK 1.2. In the old JDK, the meaning
of C.this is exactly the same as D.this or this when C is a superclass of the
inner class C.D; thus, C.this is bound to the receiver new C() .new D (). In
JDK 1.2, on the other hand, C.this is always bound to the enclosing object of
the receiver regardless of superclass.

7 Related Work

Nested classes in Beta. Beta [15] also allows nested class definitions (as an in-
stance of nested patterns, the only abstraction mechanism in Beta, which unifies
classes and procedures). There are two significant differences from inner classes.
First, inner classes are covariantly specialized in a subclass: for example, if C <: D

and both C and D have the declaration of an inner class of name E, then C.E
must extend D.E. Second, nested classes are virtual [14], in the sense that it de-
pends on run-time type of the enclosing instance which constructor is invoked.
A constructor invocation e.new E(€) instantiates an object of class C.E when
the run-time type of e is C while it instantiates an object of class D.E when that
of e is D.

Madsen has recently described the algorithm of elaboration (they call seman-
tic analysis) used in the Mjglner Beta compiler [13]. The algorithm is very close
to the rules presented in Section 5, in a sense that the search order is the same
as ours, although the presence of virtual classes complicates the algorithm.

Specification of inner classes. In the currently available Inner Classes Specifica-
tion [12], semantics of inner classes is given as a translation from inner classes to
top-level classes. It also explains how inner classes affect other language aspects,
such as synchronization, access restriction and binary compatibility. However,
description is rather informal and sometimes vague, resulting in different imple-
mentations with different semantics, as explained in the previous section.

Object closure conversion. Recently, Glew [7] has studied closure conversion in
the context of a call-by-value object calculus (without classes) and shown correct-
ness of conversion based on contextual equivalence. Our translation semantics
can also be viewed as closure conversion of class definitions. Since his calculus
does not have classes, semantic account of interaction between inheritance and
nested classes is not given.

Microsoft’s delegates. Microsoft has proposed delegates [16] as an alternative to
inner classes. The basic idea of delegates resembles the function pointers found
in C and C++. Programmers can create a delegate with an expression of the
form e.m (without parameters) and pass it elsewhere; later, the method m can be
invoked through the delegate. We believe it would be possible to model delegates
in an extension of FJ, as we have done here for inner classes. On the one hand,
the formalization would be simpler than inner classes due to the absence of
interaction with inheritance. On the other hand, it would be hard to model
the implementation scheme of delegates, since it depends on Java’s reflection
features.

Other core calculi for Java. There have been proposed several calculi [5, 19, 17, 6]
to study formal properties and extensions of Java; none of them, however, treats
inner classes, although we don’t see any inherent difficulty to integrate inner
classes into their calculi.

8 Conclusions and Future Work

We have formalized two styles of semantics for inner classes: a direct style and
a translation style, where semantics is given by compilation to a low-level lan-
guage without inner classes, following Java’s Inner Classes Specification. We

have proved that the two styles correspond, in the sense that the translation
commutes with the high-level reduction relation in the direct semantics. Besides
deepening our own understanding of inner classes, this work has uncovered a
significant underspecification in the official specification.

For future work, the interaction between inner classes and access restrictions
in Java is clearly worth investigating. We also hope to be able to model Java’s
other forms of inner classes: anonymous classes and local classes, which can be
declared in method bodies; these are slightly more complicated, since method
arguments (not just fields) can occur in them as free variables, but we expect
they can be captured by a variant of FJL

Acknowledgments

This work was supported by the University of Pennsylvania and the National
Science Foundation under grant CCR-9701826, Principled Foundations for Pro-
gramming with Objects. Igarashi is a research fellow of the Japan Society of the
Promotion of Science.

We would like to thank bug parade in Java Developer Connection (http://
developer.java.sun.com/developer/bugParade/index.html) for providing use-
ful information. Comments from the anonymous referees of POPL’99, FOOL7,
and ECOOP2000 helped us improve the final presentation.

References

[1] Martin Abadi. Protection in programming-language translations. In Proceedings
of the 25th International Colloquium on Automata, Languages and Programming
(ICALP’98), pages 868—883. Springer-Verlag, July 1998. also appeared as DEC
SRC Research Report 154 (April 1998).

[2] Anasua Bhowmik and William Pugh. A secure implementation of Java inner
classes. Handout from PLDI ’99 Poster Session. Available through http://
www.cs.umd.edu/"pugh/java.

[3] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the
future safe for the past: Adding genericity to the Java programming language. In
Craig Chambers, editor, Object Oriented Programming: Systems, Languages, and
Applications (OOPSLA), ACM SIGPLAN Notices volume 33 number 10, pages
183-200, Vancouver, BC, October 1998.

[4] Patrick Chan and Rosanna Lee. The Java Class Libraries, volume 2. Addison-
Wesley, Reading, MA | second edition, October 1997.

[5] S. Drossopoulou, S. Eisenbach, and S. Khurshid. Is the Java Type System Sound?
Theory and Practice of Object Systems, 7(1):3-24, 1999. Preliminary version in
ECOOP "97.

[6] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mix-
ins. In ACM Symposium on Principles of Programming Languages (POPL), San
Diego, January 1998. ACM.

[7] Neal Glew. Object closure conversion. In Andrew Gordon and Andrew Pitts,
editors, Proceedings of the 3rd International Workshop on Higher Order Opera-
tional Techniques in Semantics (HOOTS’99), volume 26 of Electronic Notes in

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

Theoretical Computer Science, Paris, France, September 1999. Elsevier. Available
through http://www.elsevier.nl/locate/entcs/volume26.html.

Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Imple-
mentation. Addison-Wesley, Reading, MA, 1983.

James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addi-
son Wesley, 1996.

Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A
minimal core calculus for Java and GJ. In Linda M. Northrop, editor, Object
Oriented Programming: Systems, Languages, and Applications (OOPSLA), ACM
SIGPLAN Notices, volume 34, number 10, pages 132-146. ACM Press, October
1999.

Atsushi Igarashi and Benjamin C. Pierce. On inner classes. Technical Report MS-
CIS-99-23, University of Pennsylvania, Philadelphia, PA, November 1999. Avail-
able through http://web.yl.is.s.u-tokyo.ac.jp/ igarashi/papers.html.
JavaSoft. Inner classes specification, February 1997. Available through http://
java.sun.com/products/JDK/1.1/.

Ole Lehrmann Madsen. Semantic analysis of virtual classes and nested classes. In
Linda M. Northrop, editor, Object Oriented Programming: Systems, Languages,
and Applications (OOPSLA), ACM SIGPLAN Notices, volume 34, number 10,
pages 114-131, Denver, CO, October 1999. ACM Press.

Ole Lehrmann Madsen and Birger Mgller-Pedersen. Virtual classes: A powerful
mechanism in object-oriented programming. In Object Oriented Programming:
Systems, Languages, and Applications (OOPSLA), 1989.

Ole Lehrmann Madsen, Birger Mgller-Pedersen, and Kristen Nygaard. Object-
Oriented Programming in the Beta Programming Language. Addison-Wesley, 1993.
Microsoft. Microsoft Java SDK 3.2 documentation. Available online through
http://www.microsoft.com/Java/sdk/32/, 1999.

Tobias Nipkow and David von Oheimb. Javaygp; is type-safe — definitely. In ACM
Symposium on Principles of Programming Languages (POPL), pages 161-170, San
Diego, January 1998. ACM.

G. D. Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5:223-255, 1977.

Don Syme. Proving Java type soundness. Technical Report 427, Computer Lab-
oratory, University of Cambridge, June 1997.

Syntax:

L::=class C<C {C f; x M}

K:=C(C T)
{super(f); this.f = f;}
M:=C mn(C %) {fTe;}
ex=x|e.f|e.m(e) | new C(e)
Computation:

fields(C)=C f
(new C(e)).f; — e;

mbody(m, C) = (X, eo)
(new C(&)).m(d)
— [d/%, new C(€)/this]ey

Subtyping:

C<:D D< E

c< C
C< E

CT(C) =class C«D {...}
C<:D

Expression typing:
I'Fxel(x)

TheoeCo fields(Co)=C T
I'eo.f; €C;

I'kepeCo miype (Co) D—C
'-recC ©C«xD

I'Fey.m(@) €C

fields(C) =D £ r-eecC c <«

D

I'new C(e) eC

Method typing:

X:C,this: ClF ep € Eg Eo < Co
CT(C) =class C«D {...}
if mtype(m, D) = D—Do,
then C =D and Co = Do
Com (CX) {feo;} OK IN C
Class typing:
_c(g, CH
~ {super(g); this.f = f;}
fieldsD)=D g M 0K IN C
class CaD {C f; K M} OK
Field lookup:
fields(Object) = o
CT(C) =class CaD {C f; K M}
fields(D) =D g
fields(C) =D g,C £

Method type lookup:

CT(C) =class CaD {C f; K M}
Bm (B X) {fe;}elM
=B—B

mtype(m, C)

CT(C) =class CaD {C f; K M}
m is not defined in M

mitype (m, C) = mitype(m, D)
Method body lookup:
CT(C) =class CaD {C f; K M}

Bm (B X) {fe;}elM
mbody(m, C) = (X, e)

m is not defined in M
CT(C) =class CaD {C f; K M}
mbody (m, C) = mbody(m, D)

Fig. 4. FJ Definitions

