
On Inner Classes

Atsushi Igarashi

1?

and Benjamin C. Piere

2

1

Department of Information Siene, University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

igarashi�is.s.u-tokyo.a.jp

2

Department of Computer & Information Siene, University of Pennsylvania

200 South 33rd St., Philadelphia, PA 19104, USA

bpiere�is.upenn.edu

Abstrat. Inner lasses in objet-oriented languages play a role similar

to nested funtion de�nitions in funtional languages, allowing an ob-

jet to export other objets with diret aess to its own methods and

instane variables. However, the similarity is deeptive: a lose look at

inner lasses reveals signi�ant subtleties arising from their interations

with inheritane.

The goal of this work is a preise understanding of the essential features

of inner lasses; our objet of study is a fragment of Java with inner

lasses and inheritane (and almost nothing else). We begin by giving a

diret redution semantis for this language. We then give an alternative

semantis by translation into a yet smaller language with only top-level

lasses, losely following Java's Inner Classes Spei�ation. We prove

that the two semantis oinide, in the sense that translation ommutes

with redution, and that both are type-safe.

1 Introdution

It has often been observed that the gap between objet-oriented and funtional

programming styles is not as large as it might �rst appear; in essene, an objet

is just a reord of funtion losures. However, there are di�erenes as well as

similarities. On the one hand, objets and lasses inorporate important meh-

anisms not present in funtions (stati members, inheritane, objet identity,

aess protetion, et.). On the other hand, funtional languages usually allow

nested de�nitions of funtions, giving inner funtions diret aess to the loal

variables of their enlosing de�nitions.

A few objet-oriented languages do support this sort of nesting. For example,

Smalltalk [8℄ has speial syntax for \blok" objets, similar to anonymous fun-

tions. Beta [15℄ provides patterns, unifying lasses and funtions, that an be

nested arbitrarily. More reently, inner lasses have been popularized by their

inlusion in Java 1.1 [9, 12℄.

Inner lasses are useful when an objet needs to send another objet a hunk

of ode that an manipulate the �rst objet's methods and/or instane variables.

?

This work was done while the author was visiting University of Pennsylvania.

Suh situations are typial in user-interfae programming: for example, Java's

Abstrat Window Toolkit [4℄ allows a listener objet to be registered with a

user-interfae omponent suh as a button; when the button is pressed, the

ationPerformed method of the listener is invoked. For example, suppose we

want to inrement a ounter when a button is pressed. We begin by de�ning a

lass Counter with an inner lass Listener:

lass Counter {

int x;

lass Listener implements AtionListner {

publi void ationPerformed(AtionEvent e) { x++; }

}

void listenTo(Button b) {

b.addAtionListener(new Listener());

}

}

In the de�nition of the method ationPerformed, the �eld x of the enlosing

Counter objet is hanged. The method listenTo reates a new listener objet

and sends it to the given Button. Now we an write

Counter = new Counter();

Button b = new Button("Inrement");

.listenTo(b);

gui.add(b);

to reate and display a button that inrements a ounter every time it is pressed.

1

Inner lasses are a powerful abstration mehanism, allowing programs like

the one above to be expressed muh more onveniently and transparently than

would be possible using only top-level lasses. However, this power omes at a

signi�ant ost in omplexity: inner lasses interat with other features of objet-

oriented programming|espeially inheritane|in some quite subtle ways. For

example, a losure in a funtional language has a simple lexial environment,

inluding all the bindings in whose sope it appears. An inner lass, on the

other hand, has aess, via methods inherited from superlasses, to a hain of

environments|inluding not only the lexial environment in whih it appears,

but also the lexial environment of eah superlass. Conversely, the presene of

inner lasses ompliates our intuitions about inheritane. What should it mean,

for example, for an inner lass to inherit from its enlosing lass? What happens

if a top-level lass inherits from an inner lass de�ned in a di�erent top-level

lass?

JavaSoft's Inner Classes Spei�ation [12℄ provides one answer to these ques-

tions by showing how to translate a program with inner lasses into one using

only top-level lasses, adding to eah inner lass an extra �eld that points to

an instane of the enlosing lass. This spei�ation gives lear basi intuitions

1

Stritly speaking, the inrement of x should be synhronized with the listener's own

ounter, written Counter.this: listener methods are generally triggered in a thread

di�erent from the onstrutor thread of the urrent objet.

about the behavior of inner lasses, but it falls short of a ompletely satisfying

aount. First, the style is indiret: it fores programmers to reason about their

ode by �rst passing it through a rather heavy transformation. Seond, the dou-

ment itself is somewhat impreise, onsisting only of examples and English prose.

Di�erent ompilers (even di�erent versions of Sun's JDK) have interpreted the

spei�ation di�erently in some signi�ant ways (f. Setion 6).

The goal of this work is a preise understanding of the essential features of

inner lasses. Our main ontributions are threefold:

{ First, we give a diret operational semantis and typing rules for a small

language with inner lasses and inheritane. The typing rules are shown

to be sound for the operational semantis in the standard sense. To our

knowledge, this diret style of semantis is formalized for the �rst time.

To keep the model as simple as possible, we fous on the most basi form of

inner lasses in Java, omitting the related mehanisms of anonymous lasses,

loal lasses within bloks, and stati nested lasses. Also, we do not deal with

the (important) interations between aess annotations (publi/private/et.)

and inner lasses (f. [12, 2, 1℄).

{ Next, we give a translation from the language with inner lasses to an even

smaller language with only top-level lasses, formalizing the translation se-

mantis of the Java Inner Classes Spei�ation. We show that the translation

preserves typing.

{ Finally, we prove that the two semantis de�ne the same behavior for in-

ner lasses, in the sense that the translation ommutes with the high-level

redution relation in the diret semantis. This property, together with the

property of preservation of typing, guarantees orretness of the translation

semantis with respet to the diret semantis, for the ase where whole

programs are being translated.

The ase where some translated lasses are linked with lasses written di-

retly in the target language is more subtle, and we do not handle it here.

The main desired theorem in this ase would be full abstration, whih states

that translated expressions that an be distinguished by a target language

ontext an also be distinguished in the soure language. Unfortunately, our

translation is not fully abstrat, beause our modeling language does not

inlude private �elds, whih are used by the real translation to prevent ob-

servers from diretly aessing the �eld of an inner lass instane that holds

a pointer to its ontaining objet. (The question of full abstration for full-

sale inner lass translations has been onsidered by Abadi [1℄ and Pugh [2℄.)

Reently, Glew [7℄ has studied losure onversion in the ontext of an objet

alulus without lasses; our translation semantis an be viewed as losure

onversion of lass de�nitions. However, sine his alulus does not have lasses,

a semanti aount of interation between inheritane and nested lasses has not

been given.

The basis of our work is a ore alulus alled Featherweight Java, or FJ.

This alulus was originally proposed in the ontext of a formal study [10℄ of

GJ [3℄, an extension of Java with parameterized lasses. It was designed to omit

as many features of Java as possible (even assignment), while maintaining the

essential avor of the language and its type system. Its de�nition �ts omfort-

ably on a page, and its basi properties an be proved with no more diÆulty

than, say, those of the simply typed lambda-alulus with subtyping. This ex-

treme simpliity makes it an ideal vehile for the rigorous study of new language

features suh as parameterized lasses and inner lasses.

The remainder of the paper is organized as follows. Setion 2 briey reviews

Featherweight Java. Setion 3 de�nes FJI, an extension of FJ with inner lasses,

giving its syntax, typing rules, and redution rules, and stating standard type

soundness results. Setion 4 de�nes a ompilation from FJI to FJ, modeling

the translation semantis of the Inner Classes Spei�ation, and proves its or-

retness with respet to the diret semantis in the previous setion. Setion 5

disusses the elaboration proess from user programs to FJI, whih is onsidered

an intermediate language to de�ne semantis. Setion 6 examines some behav-

ioral di�erenes between ompilers resulting from inonsistenies in the existing

spei�ation, Setion 7 disusses related work, and Setion 8 o�ers onluding

remarks.

For brevity, proofs of theorems are omitted; they appear in a ompanion

tehnial report [11℄.

2 Featherweight Java

We begin by reviewing the basi de�nitions of Featherweight Java [10℄. FJ is

a tiny fragment of Java, inluding only top-level lass de�nitions, objet in-

stantiation, �eld aess, and method invoation. (The original version of FJ also

inluded typeasts, whih are required to model the ompilation of GJ into Java.

They are omitted from this paper, sine they do not interat with inner lasses in

any signi�ant way.) Our main goal in designing FJ was to make a proof of type

soundness (\well-typed programs don't get stuk") as onise as possible, while

still apturing the essene of the soundness argument for the full Java language.

Any language feature that made the soundness proof longer without making it

signi�antly di�erent was a andidate for omission. Even assignments are omit-

ted from FJ, as well as advaned features suh as reetion and onurreny.

Sine FJ is a sublanguage of the extension de�ned in Setion 3, we just show

its syntax and an example of program exeution here. The rest of the de�nition

an be found in Figure 4.

The abstrat syntax of FJ lass delarations, onstrutor delarations, method

delarations, and expressions is given as follows:

L ::= lass C extends C {C f; K M}

K ::= C(C f) {super(f); this.f = f;}

M ::= C m(C x) {return e;}

e ::= x j e.f j e.m(e) j new C(e)

The metavariables A, B, C, D, and E range over lass names; f and g range

over �eld names; m ranges over method names; x ranges over parameter names;

, d and e range over expressions; L ranges over lass delarations; K ranges

over onstrutor delarations; and M ranges over method delarations. We write

f as shorthand for f

1

,. . . ,f

n

(and similarly for C, x, e, et.) and write M

as shorthand for M

1

. . .M

n

(with no ommas). We write the empty sequene

as � and denote onatenation of sequenes using a omma. The length of a

sequene x is written #(x). We abbreviate operations on pairs of sequenes

in the obvious way, writing \C f" as shorthand for \C

1

f

1

,. . . ,C

n

f

n

" and

\C f;" as shorthand for \C

1

f

1

;. . . C

n

f

n

;" and \this.f=f;" as shorthand for

\this.f

1

=f

1

;. . . this.f

n

=f

n

;". For the sake of oniseness, we often abbreviate

the keyword extends to the symbol extends and the keyword return to the

symbol return. Sequenes of �eld delarations, parameter names, and method

delarations are assumed to ontain no dupliate names.

A key simpli�ation in FJ is the omission of assignment, making FJ purely

funtional. It is realized by assuming that all �elds and method parameters are

impliitly marked final. (Of ourse, most useful examples of programming in

Java do involve its side-e�eting features, and inner lasses do interat with as-

signment: in partiular, if inner lasses may appear inside method de�nitions,

then loal variables of the enlosing method must be marked final if they are

mentioned in an inner lass. To handle this feature, our model would need to

be extended with assignment. However, we do not need it for the present mod-

eling task, and, by omitting assignment from FJ and FJI, we obtain a muh

simpler model that o�ers just as muh insight into inner lasses.) An objet's

�elds are initialized by its onstrutor and never hanged afterwards. More-

over, a onstrutor has a stylized syntax suh that there is one parameter for

eah �eld, with the same name as the �eld; the super onstrutor is invoked

on the �elds of the supertype; and the remaining �elds are initialized to the

orresponding parameters. (These onstraints are enfored by the typing rules.)

This stylized syntax makes the operational semantis simple: a �eld aess ex-

pression new C(e).f

i

just redues to the orresponding onstrutor argument

e

i

. Also, sine FJ does not have assignment statements, a method body always

onsists of a single return statement: all the omputation in the language goes

on in the expressions following these returns. A method invoation expression

new C(e).m(d) is redued by looking up the expression e

0

following the return

of method m in lass C in the lass table, and reduing to the instane of e

0

in

whih d and the reeiver objet (new C(e)) are substituted for formal arguments

and the speial variable this, respetively. Figure 4 states these redution rules

preisely.

A program in FJ is a pair of a lass table (a set of lass de�nitions) and an

expression (orresponding to the mainmethod in a Java program). The redution

relation is of the form e �! e

0

, read \expression e redues to expression e

0

in

one step."

For example, given the lass de�nitions

lass A extends Objet {

A() { super(); }

}

lass B extends Objet {

B() { super(); }

}

lass Pair extends Objet {

Objet fst;

Objet snd;

Pair(Objet fst, Objet snd) {

super(); this.fst=fst; this.snd=snd;

}

Pair setfst(Objet newfst) {

return new Pair(newfst, this.snd);

}

}

the expression new Pair(new A(), new B()).setfst(new B()) redues to

new Pair(new B(), new B()) as follows

new Pair(new A(), new B()).setfst(new B())

�! new Pair(new B(), new Pair(new A(), new B()).snd)

�! new Pair(new B(), new B())

where the underlined subexpressions are the ones being redued at eah step.

3 FJ with Inner Classes

We now de�ne the language FJI by extending FJ with inner lasses. Like FJ,

FJI imposes some syntati restritions to simplify its operational semantis: (1)

reeivers of �eld aess, method invoation, or inner lass onstrutor invoation

must be expliitly spei�ed (no impliit this); (2) type names are always abso-

lute paths to the lasses they denote (no short abbreviations); and (3) an inner

lass instantiation expression e

0

.new C(e) is annotated with the stati type T

of e

0

, written e

0

.new<T> C(e).

Beause of onditions (2) and (3), FJI is not quite a subset of Java (whereas

FJ is); instead, we view FJI as an intermediate language, to whih the user's

programs are translated by a proess of elaboration. We desribe the elaboration

proess only informally in this paper (in Setion 5), sine it is rather omplex but

not espeially deep, onsisting mainly of a large number of rules for abbreviating

long quali�ed names; a detailed treatment is given in the ompanion tehnial

report [11℄. We begin with a brief disussion of the key idea of enlosing instanes.

3.1 Enlosing Instanes

Consider the following FJI lass delaration:

lass Outer extends Objet {

Pair p;

Outer(Pair p) {super(); this.p = p;}

lass Inner extends Objet {

Inner() {super();}

Objet snd_p { return Outer.this.p.snd; }

}

Outer.Inner make_inner () { return this.new<Outer> Inner(); }

}

Coneptually, eah instane o of the lass Outer ontains a speialized version of

the Inner lass, whih, when instantiated, yields instanes of Outer.Inner that

refer to o's instane variable p. The objet o is alled the enlosing instane of

these Outer.Inner objets.

This enlosing instane an be named expliitly by a \quali�ed this" ex-

pression (found in both Java and FJI), onsisting of the simple name of the

enlosing lass followed by \.this". In general, the lass C

1

. � � �.C

n

an refer to

n�1 enlosing instanes, C

1

.this to C

n�1

.this, as well as the usual this, whih

an also be written C

n

.this. To avoid ambiguity of the meaning of C.this, the

name of an inner lass must be di�erent from any of its superlasses.

In FJI, an objet of an inner lass is instantiated by an expression of the form

e

0

.new<T> C(e), where e

0

is the enlosing instane and T is the stati type of

e

0

. The result of e

0

.new<T> C(e) is always an instane of T.C, regardless of

the run-time type of e

0

. (We avoid a notation like e

0

.new T.C(e) beause it

is not in the Java syntax. Java allows only the notation new T.C(e) (without

a pre�x), whih roughly means an instantiation from the lass T.C with an

enlosing instane T.this; see Setion 5 for more details.) This rigidity reets

the stati nature of Java's translation semantis for inner lasses. The expliit

annotation <T> is used in FJI to \remember" the stati type of e

0

. (By ontrast,

inner lasses in Beta are virtual [14℄, i.e., di�erent onstrutors may be invoked

depending on the run-time type of the enlosing instane; for example, if there

were a sublass Outer

0

of the lass Outer that also had an inner lass Inner, then

o.new Inner()might build an instane of either Outer.Inner or Outer

0

.Inner,

depending on the dynami type of o.)

The elaboration proess allows type names to be abbreviated in Java pro-

grams. For example, the FJI program above an be written

lass Outer extends Objet {

Pair p;

Outer(Pair p) {super(); this.p = p;}

lass Inner extends Objet {

Inner() {super();}

Objet snd_p () { return p.snd; }

}

Inner make_inner () { return new Inner(); }

}

in Java. Here, the return type Inner of the make_inner method denotes the

nearest Inner delaration. Also, in Java, enlosing instanes an be omitted

when they are this or a quali�ed this. Thus, this.new<Outer> Inner() from

the original example is written new Inner() here.

3.2 Sublassing and Inner Classes

Almost any form of inheritane involving inner lasses is allowed in Java: a top-

level lass an extend an inner lass of another top-level lass, or an inner lass

an extend another inner lass from a ompletely di�erent top-level lass. An

inner lass an even extend its own enlosing lass. (Only one ase is disallowed:

a lass annot extend its own inner lass. We disuss the restrition later.) This

liberality, however, introdues signi�ant omplexity beause a method inherited

from a superlass must be exeuted in a \lexial environment" di�erent from the

sublass's. Figure 1 shows a situation where three inner lasses, A1.A2.A3 and

B1.B2.B3 and C1.C2.C3, are in a sublass hierarhy. Eah white oval represents

an enlosing instane and the three shaded ovals indiate the regions of the

program where the methods of a C1.C2.C3 objet may have been de�ned. A

method inherited from A1.A2.A3 is exeuted under the environment onsisting

of enlosing instanes A1.this and A2.this and may aess members of enlos-

ing lasses via A1.this and A2.this; similarly for B1.B2.B3 and C1.C2.C3. In

general, when a lass has n superlasses whih are inner, n di�erent environ-

ments may be aessed by its methods. Moreover, eah environment may onsist

of more than one enlosing instane; six enlosing instanes are required for all

the methods of C1.C2.C3 to work in the example above.

A1.this.a1

B2.this.b2

T1 a1;

T2 b2;

A1 A1.A2 A1.A2.A3

B1 B1.B2
B1.B2.B3

C1 C1.C2
C1.C2.C3

extends

extends

class A1 ... {

 T1 a1; ...

 class A2 ... { ...

 class A3 ... { ...

}}}

class B1 ... { ...

 class B2 ... { ...

 T2 b2; ...

 class B3 extends A1.A2.A3 {

 ...

}}}

class C1 ... { ...

 class C2 ... { ...

 class C3 extends B1.B2.B3 {

 ...

}}}

Fig. 1. A hain of environments

From the foregoing, we see that we will have to provide, in some way, six

enlosing instanes to instantiate a C1.C2.C3 objet. Reall that, when an objet

of an inner lass is instantiated, the enlosing objet is provided by a pre�x

e

0

of the new expression. For example, a C1.C2.C3 objet is instantiated by

writing e

0

.new<C1.C2> C3(e), where e

0

is the enlosing instane orresponding

to C2.this. Where do the other enlosing instanes ome from?

First, enlosing instanes from enlosing lasses other than the immediately

enlosing lass, suh as C1.this, do not have to be supplied to a new expres-

sion expliitly, beause they an be reahed via the diret enlosing instane|

for example, the enlosing instane e

0

in e

0

.new<C1.C2> C3(e) has the form

new C1().new<C1> C2(d), whih inludes the enlosing instane new C1()

that orresponds to C1.this.

Seond, the enlosing instanes of superlasses are determined by the on-

strutor of a sublass. Taking a simple example, suppose we extend the inner

lass Outer.Inner. An enlosing instane orresponding to Outer.this is re-

quired to make an instane of the sublass. Here is an example of a sublass of

Outer.Inner:

lass RefinedInner extends Outer.Inner {

Objet ;

RefinedInner(Outer this$Outer$Inner, Objet) {

this$Outer$Inner.super(); this.=;

}}

In the delaration of the RefinedInner onstrutor, the ordinary argument

this$Outer$Inner beomes the enlosing instane pre�x for the super on-

strutor invoation, providing the value of Outer.this referred to in the inher-

ited method snd_p. Similarly, in the C1.C2.C3 example, the sublass B1.B2.B3

is written as follows (we assume A1.A2.A3 has a �eld a3 of type Objet):

lass B1 extends ... { ...

lass B2 extends ... { ...

lass B3 extends A1.A2.A3 {

Objet b3;

B3(Objet a3, A1.A2 this$A1$A2$A3, Objet b3) {

this$A1$A2$A3.super(a3); this.b3 = b3; }

}}}

Note that, sine an enlosing instane orresponding to A1.this is inluded in

an enlosing instane orresponding to A2.this, the B3 onstrutor takes only

one extra argument for enlosing instanes. Here is C1.C2.C3 lass:

lass C1 extends ... { ...

lass C2 extends ... { ...

lass C3 extends B1.B2.B3 {

Objet 3;

C3(Objet a3, A1.A2 this$A1$A2$A3,

Objet b3, B1.B2 this$B1$B2$B3, Objet 3) {

this$B1$B2$B3.super(a3, this$A1$A2$A3, b3); this.3 = 3; }

}}}

Sine the onstrutor of a superlass B1.B2.B3 initializes A2.this, the onstru-

tor C3 initializes only B2.this by qualifying the super invoation; the argument

this$A1$A2$A3 is just passed to super as an ordinary argument.

In FJI, we restrit the quali�ation of super to be a onstrutor argument,

whereas Java allows any expression for the quali�ation. This permits the same

lean de�nition of operational semantis we saw in FJ, sine all the state infor-

mation (inluding �elds and enlosing instanes) of an objet appears in its new

expression. Moreover, for tehnial reasons onneted with the name mangling

involved in the translation semantis, we require that a onstrutor argument

used for quali�ation of super be named this$C

1

$ � � � $C

n

, where C

1

. � � �.C

n

is

the (diret) superlass, as in the example above.

Lastly, we an now explain why it is not allowed for a lass to extend one

of its (diret or indiret) inner lasses. It is beause there is no sensible way to

make an instane of suh a lass. Suppose we ould de�ne the lass below:

lass Foo extends Foo.Bar {

Foo (Foo f) { f.super(); }

lass Bar { ... } }

Sine Foo extends Foo.Bar, the onstrutor Foo will need an instane of Foo

as an argument, making it impossible to make an instane of Foo. (Perhaps one

ould use null as the enlosing instane in this ase, but this would not be useful,

sine inner lasses are usually supposed to make use of enlosing instanes.)

3.3 Syntax

Now, we proeed to the formal de�nitions of FJI. The abstrat syntax of the

language is shown at the top left of Figure 2. We use the same notational on-

ventions as in the previous setion. The metavariables S, T, and U ranges over

types, whih are quali�ed lass names (a sequene of simple names C

1

,. . . ,C

n

onatenated by periods). For ompatness in the de�nitions, we introdue the

notation ? for a \null quali�ation" and identify ?:C with C. The metavariable

P ranges over types (T) and ?. We write C 2 P if P = C

1

. � � �.C

n

and C = C

i

for

some i.

A lass delaration L inludes delarations of its simple name C, superlass

T, �elds T f, onstrutor K, inner lasses L, and methods M. There are two kinds

of onstrutor delaration, depending on whether the superlass is inner or top-

level: when the superlass is inner, the sublass onstrutor must all the super

onstrutor with a quali�ation \f." to provide the enlosing instane visible

from the superlass's methods. As we will see in typing rules, onstrutor ar-

guments should be arranged in the following order: (1) the superlass's �elds,

initialized by super(f) (or f.super(f)); (2) the enlosing instane of the su-

perlass (if needed); and (3) the �elds of the lass to be de�ned, initialized by

this.f=f. Like FJ, the body of a method just returns an expression, whih is

a variable, �eld aess, method invoation, or objet instantiation. We assume

that the set of variables inludes the speial variables this and C.this for every

C, and that these variables are never used as the names of arguments to methods.

Syntax:

T ::= C

1

. � � �.C

n

L ::= lass C /T {T f; K L M}

K ::= C(T f) {

super(f); this.f = f;}

j C(T f) {

f.super(f); this.f = f;}

M ::= T m (T x) {"e;}

e ::= x j e.f j e.m(e)

j new C(e) j e.new<T> C(e)

Computation:

�elds(C) = T f

new C(e).f

i

�! e

i

�elds(T.C) = T f

e

0

.new<T> C(
e
).f

i

�! e

i

mbody(m;C) = (x;d

0

; C

1

. � � �.C

n

)

n

def

= new C(e)

i

def

= enl

C

1

.���.C

i+1

(

i+1

)

i21:::n�1

new C(e).m(d)

�!

�

d=x;

n

=this;

i

=C

i

.this

i21:::n

�

d

0

mbody(m;T.C) = (x;d

0

;C

1

. � � �.C

n

)

n

def

= e

0

.new<T> C(e)

i

def

= enl

C

1

.���.C

i+1

(

i+1

)

i21:::n�1

e

0

.new<T> C(e).m(d)

�!

�

d=x;

n

=this;

i

=C

i

.this

i21:::n

�

d

0

Subtyping:

T <

:

T

S <

:

T T <

:

U

S <

:

U

CT (S) = lass C /T {...}

S <

:

T

Expression typing:

�(x) = T

� ` x 2 T

� ` e

0

2 T

0

�elds(T

0

) = T f

� ` e

0

.f

i

2 T

i

� ` e

0

2 T

0

mtype(m;T

0

) = U!U

0

� ` e 2 S S <

:

U

� ` e

0

.m(
e
) 2 U

0

�elds(C) = T f � ` e 2 S S <

:

T

� ` new C(e) 2 C

� ` e

0

2 S � ` e 2 S

�elds(T.C) = T f S <

:

T S <

:

T

� ` e

0

.new<T> C(e) 2 T.C

Method typing:

x : T; this : C

1

. � � �.C

n

;

C

i

.this : C

1

. � � �.C

i

i21:::n

` e

0

2 S

0

CT (C

1

. � � �.C

n

) = lass C

n

/ S {...}

S

0

<

:

T

0

if mtype(m;S) = U!U

0

;

then U = T and U

0

= T

0

T

0

m(T x) {"e

0

;} OK IN C

1

. � � �.C

n

Class typing:

K =

C(S g, T f){

super(g); this.f = f;}

�elds(D) = S g C 62 P

M OK in P.C L OK in P.C

lass C /D {T f; K L M} OK IN P

K =

C(S g, T g

0

, T f){

g

0

.super(g); this.f = f;}

�elds(T.D) = S g C 62 P

M OK in P.C L OK in P.C

lass C /T.D{T f; K L M} OK IN P

Fig. 2. FJI: Main De�nitions

A program is a pair of a lass table CT (a mapping from types T to lass

delarations L) and an expression e. Objet is treated exatly in the same way

as in FJ. From the lass table, we an read o� the subtype relation between

lasses. We write S <

:

T when S is a subtype of T|the reexive and transitive

losure of the immediate sublass relation given by the extends lauses in CT .

This relation is de�ned formally at the bottom left Figure 2.

We impose the following sanity onditions on the lass table: (1) CT (P.C) =

lass C ... for every P.C 2 dom(CT). (2) If CT (P.C) has an inner lass

delaration L of name D, then CT (P.C.D) = L. (3) Objet 62 dom(CT). (4) For

every type T (exept Objet) appearing anywhere in CT , we have T 2 dom(CT).

(5) For every e

0

.new<T> C(e) (and new C(e), resp.) appearing anywhere in CT ,

we have T.C 2 dom(CT) (and C 2 dom(CT), resp.). (6) There are no yles in

the subtyping relation. (7) T 6<

:

T.U, for any two types T and T.U. By onditions

(1) and (2), a lass table of FJI an be identi�ed with a set of top-level lasses.

Condition (7) prohibits a lass from extending one of its inner lasses.

3.4 Auxiliary Funtions

For the typing and redution rules, we need a few auxiliary de�nitions, given

in Figure 3. The �elds of a lass T, written �elds(T), is a sequene T f pairing

the lass of eah �eld with its name, for all the �elds delared in lass T and all

of its superlasses. In addition, �elds(T) ollets the types of (diret) enlosing

instanes of all the superlasses of T. For example, �elds(C1.C2.C3) returns the

following sequene:

�elds(C1.C2.C3) = Objet a3, (�eld from A1.A2.A3)

A1.A2 this$A1$A2$A3, (enlosing instane A2.this)

Objet b3, (�eld from B1.B2.B3)

B1.B2 this$B1$B2$B2, (enlosing instane B2.this)

Objet 3 (�eld from C1.C2.C3)

The third rule in the de�nition inserts enlosing instane information between

the �elds S g of the superlass U.D and the �elds T f of the urrent lass. In a

well-typed program, �elds(T) will always agree with the onstrutor argument

list of T.

The type of the method m in lass T, written mtype(m; T), is a pair, written

S!S, of a sequene of argument types S and a result type S. Similarly, the body

of the method m in lass T, written mbody(m; T), is a triple, written (x; e; T), of

a sequene of parameters x, an expression e, and a lass T where the method is

de�ned.

The funtion enl

T

(e) plays a ruial role in the semantis of FJI. Intuitively,

when e is a top-level or inner lass instantiation, enl

T

(e) returns the diret

enlosing instane of e that is visible from lass T (i.e., the enlosing instane

that provides the orret lexial environment for methods inherited from T). The

�rst rule is the simplest ase: sine the type of an expression e

0

.new<T> C(e)

agrees with the subsript T.C, it just returns the (diret) enlosing instane

Field lookup:

�elds(Objet) = �

CT (T) = lass C /D {T f; K L M}

�elds(D) = S g

�elds(T) =
S g

;
T f

CT (T) = lass C /U.D {T f; K L M}

�elds(U.D) = S g

U = C

1

. � � �.C

n

f

0

= this$C

1

$ � � �$C

n

$D

�elds(T) = S g; U f

0

; T f

Method type lookup:

CT (T) = lass C /S {S f; K L M}

U

0

m (U x) {"e;} 2 M

mtype(m;T) = U!U

0

CT (T) = lass C /S {S f; K L M}

m is not de�ned in M

mtype(m;T) = mtype(m;S)

Method body lookup:

CT (T) = lass C /S {S f; K L M}

U

0

m (U x) {"e;} 2 M

mbody(m; T) = (
x
;e;T)

CT (T) = lass C /S {S f; K L M}

m is not de�ned in M

mbody(m;T) = mbody(m;S)

Enlosing instane lookup:

enl

T.C

(e

0

.new<T> C(
e
)) = e

0

CT (C) = lass C /D {S f;...}

#(f) = #(e)

enl

T

(new C(d, e))

= enl

T

(new D(d))

CT (C) = lass C /U.D {S f;...}

#(f) = #(e)

enl

T

(new C(d, d

0

, e))

= enl

T

(d

0

.new<U> D(d))

CT (S.C) = lass C /D {S f;...}

#(f) = #(e) T 6= S.C

enl

T

(e

0

.new<S> C(d, e))

= enl

T

(new D(d))

CT (S.C) = lass C /U.D {S f;...}

#(f) = #(e) T 6= S.C

enl

T

(e

0

.new<S> C(d, d

0

, e))

= enl

T

(d

0

.new<U> D(d))

Fig. 3. FJI: Auxiliary de�nitions

e

0

. The other rules follow a ommon pattern; we explain the �fth rule as a

representative. Sine the subsripted type T is di�erent from the type of the

argument e

0

.new<S> C(d, d

0

, e), the enlosing instane e

0

is not the orret

answer. We therefore make a reursive all with an objet d

0

.new<U> D(d) of

the superlass obtained by dropping e

0

and as many arguments e as the �elds

f of the lass S.C. We keep going like this until, �nally, the argument beomes

an instane of T and we math the �rst rule. For example:

enl

A1.A2.A3

(e

0

.new<C1.C2> C3(a, e

1

, b, e

2

,))

= enl

A1.A2.A3

(e

2

.new<B1.B2> B3(a, e

1

,b))

= enl

A1.A2.A3

(e

1

.new<A1.A2> A3(a))

= new A1().new<A1> A2()

where e

1

= new A1().new<A1> A2() and e

2

= new B1().new<B1> B2().

Note that the enl funtion outputs only the diret enlosing instane. To ob-

tain outer enlosing instanes, suh as A1.this, enl an be used repeatedly:

enl

A1.A2

(enl

A1.A2.A3

(e)).

3.5 Computation

As in FJ, the redution relation of FJI has the form e �! e

0

. We write �!

�

for

the reexive and transitive losure of �!. The redution rules are given in the

middle of the left olumn of Figure 2. There are four redution rules, two for �eld

aess and two for method invoation. The �eld aess expression new C(e).f

i

looks up the �eld names f of C using �elds(C) and yields the onstrutor argu-

ment e

i

in the position orresponding to f

i

in the �eld list; e

0

.new<T> C(e).f

i

behaves similarly. The method invoation expression new C(e).m(d) �rst alls

mbody(m; C) to obtain a triple of the sequene of formal arguments x, the method

body e, and the lass C

1

. � � � .C

n

where m is de�ned; it yields a substitution in-

stane of the method body in whih the x are replaed with the atual arguments

d, the speial variables this and C

n

.this with the reeiver objet new C(e), and

eah C

i

.this (for i < n) with the orresponding enlosing instane

i

, obtained

from enl . Sine the method to be invoked is de�ned in C

1

. � � � .C

n

, the diret

enlosing instane C

n�1

.this is obtained by enl

C

1

.���.C

n

(e), where e is the re-

eiver objet; similarly, C

n�2

.this is obtained by enl

C

1

.���.C

n�1

(enl

C

1

.���.C

n

(e)),

and so on. The redution rules may be applied at any point in an expression, so

we also need the obvious ongruene rules (if e �! e

0

then e.f �! e

0

.f, and

the like), whih we omit here.

For example, if the lass table inludes Outer, RefinedInner, Pair, A, and

B, then

new RefinedInner(

new Outer(new Pair(new A(), new B())), new Objet()).snd_p()

redues to new B() as follows:

new RefinedInner(

new Outer(new Pair(new A(), new B())), new Objet()).snd_p()

�! new Outer(new Pair(new A(), new B())).p.snd

�! new Pair(new A(), new B()).snd

�! new B()

3.6 Typing Rules

The typing rules for expressions, method delarations, and lass delarations are

given in the right olumn of Figure 2. An environment � is a �nite mapping

from variables to types, written x:T. The typing judgment for expressions has

the form � ` e 2 T, read \in the environment �, expression e has type T." The

typing rules are syntax direted, with one rule for eah form of expression. The

typing rules for objet instantiations and method invoations hek that eah

atual parameter has a type whih is a subtype of the orresponding formal

parameter type obtained by �elds or mtype; the enlosing objet must have a

type whih is a subtype of the annotated type T in new<T>.

The typing judgment for method delarations has the form M OK IN C

1

. � � � .C

n

,

read \method delaration M is ok if it is delared in lass C

1

. � � � .C

n

." The body

of the method is typed under the ontext in whih the formal parameters of the

method have their delared types and eah C

i

.this has the type C

1

. � � � .C

i

. If a

method with the same name is delared in the superlass then it must have the

same type in the sublass.

The typing judgment for lass delarations has the form L OK IN P, read

\lass delaration L is ok if it is delared in P." If P is a type T, the lass

delaration L is an inner lass; otherwise, L is a top-level lass. The typing rules

hek that the onstrutor applies super to the �elds of the superlass and

initializes the �elds delared in this lass, and that eah method delaration and

inner lass delaration in the lass is ok. The ondition C 62 P ensures that the

(simple) lass name to be de�ned is not also a simple name of one of the enlosing

lasses, so as to avoid ambiguity of the meaning of C.this.

3.7 Properties

As well as FJ programs, FJI programs also enjoy standard subjet redution and

progress properties, whih together guarantee that well-typed programs never get

stuk on �eld aesses or method invoations.

Theorem 1 (Subjet Redution). If � ` e 2 T and e �! e

0

, then � ` e

0

2 T

0

for some T

0

suh that T

0

<

:

T.

Theorem 2 (Progress). Suppose e is a well-typed expression.

(1) If e inludes new C

0

(e).f as a subexpression, then �elds(C

0

) = T f and

f 2 f. Similarly, if e inludes e

0

.new<T

0

> C(e).f as a subexpression, then

�elds(T

0

.C) = T f and f 2 f.

(2) If e inludes new C

0

(e).m(d) as a subexpression, then mbody(m; C

0

) =

(x; e

0

; C

1

. � � � .C

n

) and #(x) = #(d), and

1

; : : : ;

n

appearing in the third

omputation rule are well de�ned.

Similarly, if e inludes e

0

.new<T

0

> C(e).m(d) as a subexpression, then

mbody(m; T

0

.C) = (x; d

0

; C

1

. � � �.C

n

) and #(x) = #(d) and

1

; : : : ;

n

ap-

pearing in the fourth omputation rule are well de�ned.

4 Translation Semantis

In this setion we onsider the other style of semantis: translation from FJI

to FJ. Every inner lass is ompiled to a top-level lass with one additional

�eld holding a referene to the diret enlosing instane; ourrenes of quali-

�ed this are translated into aesses to this �eld. For example, the Outer and

RefinedInner lasses in the previous setion are ompiled to the following three

FJ lasses.

lass Outer extends Objet {

Pair p;

Outer(Pair p) { super(); this.p = p; }

Outer$Inner make_inner () { return new Outer$Inner(this); }

}

lass Outer$Inner extends Objet {

Outer this$Outer$Inner;

Outer$Inner(Outer this$Outer$Inner) {

super(); this.this$Outer$Inner = this$Outer$Inner; }

Objet snd_p { return this.this$Outer$Inner.p.snd; }

}

lass RefinedInner extends Outer$Inner {

Objet ;

RefinedInner(Outer this$Outer$Inner, Objet) {

super(this$Outer$Inner); this. = ;

}

}

The inner lass Outer.Inner is ompiled to the top-level lass Outer$Inner; the

�eld this$Outer$Inner holds an Outer objet, whih orresponds to the diret

enlosing instane Outer.this in the original FJI program; thus, Outer.this is

ompiled to the �eld aess expression this.this$Outer$Inner.

We give a ompilation funtion j � j for eah syntati ategory. Exept for

types, the ompilation funtions take as their seond argument the FJI lass

name (or, ?) where the entity being translated is de�ned, written j � j

T

(or j � j

?

).

4.1 Types, Expressions and Methods

Every quali�ed lass name is translated to a simple name obtained by syntati

replaement of . with $.

jC

1

. � � � .C

n

j = C

1

$ � � � $C

n

The ompilation of expressions, written jej

T

, is given below. We write jej

T

as

shorthand for je

1

j

T

; : : : ; je

n

j

T

(and similarly for

�

�

T

�

�

,

�

�

M

�

�

T

and

�

�

L

�

�

P

).

jxj

T

= x

je

0

.fj

T

= je

0

j

T

:f

je

0

.m(e)j

T

= je

0

j

T

.m(jej

T

)

jnew D(e)j

T

= new D(jej

T

)

je

0

.new<T> D(e)j

T

= new jT.Dj (jej

T

, je

0

j

T

)

jthisj

T

= this

jC

n

.thisj

C

1

.���.C

n

= this

jC

i

.thisj

C

1

.���.C

n

= jC

i+1

.thisj

C

1

.���.C

n

.this$C

1

$ � � �$C

i+1

(1 � i � n� 1)

As we saw above, a ompiled inner lass has one additional �eld, alled this$ jTj,

where T is the original lass name. C

i

.this in the lass C

1

. � � � .C

n

beomes an

expression that follows referenes to the diret enlosing instane in sequene

until it reahes the desired one. An enlosing instane e

0

of e

0

.new<T> C(e)

will beome the last argument of the ompiled onstrutor invoation.

Compilation of methods, written jMj

T

, is straightforward. We use the notation

�

�

T

�

�

x for jT

1

j x

1

; : : : ; jT

n

j x

n

.

�

�

T

0

m (T x) { return e; }

�

�

T

= jT

0

j m(

�

�

T

�

�

x) { return jej

T

; }

4.2 Construtors and Classes

Compilation of onstrutors, written jKj

T

, is given below.

�

�

�

�

C(S g, T f)

{ super(g); this.f = f; }

�

�

�

�

C

=

C(

�

�

S

�

�

g,

�

�

T

�

�

f)

{super(g); this.f=f;}

�

�

�

�

C(S g, S

0

g

0

, T f)

{ g

0

.super(g); this.f = f; }

�

�

�

�

C

=

C(

�

�

S

�

�

g, jS

0

j g

0

,

�

�

T

�

�

f)

{super(g, g

0

); this.f=f;}

�

�

�

�

C(S g, T f)

{ super(g); this.f = f; }

�

�

�

�

T.C

=

jT.Cj (

�

�

S

�

�

g,

�

�

T

�

�

f,

jTj this$ jT.Cj)

{super(g); this.f = f;

this.this$ jT.Cj=this$ jT.Cj;}

�

�

�

�

C(S g, S

0

g

0

, T f)

{ g

0

.super(g); this.f = f; }

�

�

�

�

T.C

=

jT.Cj (

�

�

S

�

�

g, jS

0

j g

0

,

�

�

T

�

�

f,

jTj this$ jT.Cj)

{super(g, g

0

); this.f = f;

this.this$ jT.Cj=this$ jT.Cj;}

It has four ases, depending on whether the urrent lass is a top-level lass or

an inner lass and whether its superlass is a top-level lass or an inner lass.

When the urrent lass is an inner lass, one more argument orresponding to

the enlosing instane is added to the argument list; the name of the onstrutor

beomes jT.Cj, the translation of the quali�ed name of the lass. When the super-

lass is inner (the third and fourth ases), the argument used for the quali�ation

of f.super(f) beomes the last argument of the super() invoation.

Finally, the ompilation of lasses, written jLj

P

, is as follows:

�

�

lass C /S {T f; K L M}

�

�

?

=

lass C / jSj {

�

�

T

�

�

f; jKj

C

�

�

M

�

�

C

}

�

�

L

�

�

C

�

�

lass C /S {T f; K L M}

�

�

T

=

lass jT.Cj / jSj {

�

�

T

�

�

f; jTj this$ jT.Cj ; jKj

T.C

�

�

M

�

�

T.C

}

�

�

L

�

�

T.C

The onstrutor, inner lasses, and methods of lass C de�ned in P are ompiled

with auxiliary argument P.C. Inner lasses L beome top-level lasses. As in

onstrutor ompilation, when the ompiled lass is inner, its name hanges

to jT.Cj and the �eld this$ jT.Cj, holding an enlosing instane, is added. The

ompilation of the lass table, written jCT j, is ahieved by ompiling all top-level

lasses L in CT (i.e.,

�

�

L

�

�

?

).

4.3 Properties of Translation Semantis

We develop three theorems here. First, the translation semantis preserves typ-

ing, in the sense that a well-typed FJI program is ompiled to a well-typed FJ

program (Theorem 3). Seond, we show that the behavior of a ompiled program

exatly reets the behavior of the original program in FJI: for every step of re-

dution of a well-typed FJI program, the ompiled program takes one or more

steps and reahes a orresponding state (Theorem 4) and vie versa (Theorem 5).

Theorem 3 (Compilation preserves typing). When � = x : T, we write j�j

for x :

�

�

T

�

�

. If an FJI lass table CT is ok and x : T; this : C

1

. � � � .C

n

; C

i

.this :

C

1

. � � � .C

i

i21:::n

`

FJI

e 2 T with respet to CT, then jCT j is ok and x :

�

�

T

�

�

; this : jC

1

. � � �.C

n

j `

FJ

jej

C

1

.���.C

n

2 jTj with respet to jCT j.

Theorem 4 (Compilation ommutes with redution). If � `

FJI

e 2 T

where dom(�) does not inlude this or C.this for any C, and e�!

FJI

e

0

, then

jej

?

�!

FJ

+

je

0

j

?

.

Theorem 5 (Compilation preserves termination). If � `

FJI

e 2 T where

dom(�) does not inlude this or C.this, and jej

?

�!

FJ

e

0

, then e�!

FJI

e

00

and

e

0

�!

FJ

�

je

00

j

?

for some e

00

.

Unfortunately, Theorems 4 and 5 would not hold for a all-by-value ver-

sion of FJI, sine their properties depend on our non-deterministi redution

strategy. An intuitive reason is as follows. In FJI, after method invoation,

C.this is diretly replaed with the orresponding enlosing instane. On the

other hand, in the ompiled FJ program, C.this is translated to an expression

this.f

1

.f

2

. � � �.f

n

, where eah f

i

is a mangled �eld name, and its evaluation

may be guarded by its ontext. Therefore, redution steps do not ommute with

ompilation straightforwardly. Nevertheless, it should be possible to show or-

retness pby using another tehnique, suh as ontextual equivalene [18℄, as

Glew proved a similar result in the ontext of objet losure onversion for a

all-by-value objet alulus [7℄.

5 Elaboration

In this setion we formalize the elaboration of user programs. In user programs,

the reeivers of �eld aess or method invoation, the enlosing instanes of

inner lass instantiation, and the quali�ations of type names may be omitted.

For example, a simple name C means an inner lass T.C when it is used in the

diret enlosing lass T. A basi job of elaboration is to �nd where a name f, m,

or C is bound and to reover its reeiver information or absolute path.

In the onventional soping rules of simple blok strutured languages, simple

names are bound to their syntatially nearest delaration. In Java, however,

they an be bound to delarations in superlasses, or even in superlasses of

enlosing lasses. For example, in the lass below, f in the method m is bound

to the �eld f of the enlosing lass C unless D has a �eld f.

lass C extends Objet {

Objet f; ...

lass D extends Objet { ...

Objet m () { return f; }

}

}

Similarly, f in the method m is bound to the �eld f of its superlass B (when

neither C nor D has �eld f) in the following lasses.

lass B extends Objet { Objet f; ... }

lass C extends Objet { ...

lass D extends B { ...

Objet m () { return f; }

}

}

In general, beginning with the urrent lass where the �eld/method name is

used, the searh algorithm looks for the de�nition in superlasses; if there is no

de�nition in any superlass, it looks in the diret enlosing lass and its super-

lasses, and then in the seond diret enlosing lass and its super lasses, and so

on. One the delaration where a name is bound is known, it is easy to reover

the appropriate quali�ation. In the examples above, f beomes C.this.f and

D.this.f, respetively.

Suppose the algorithm above �nds the de�nition of the �eld/method in one

of the superlasses of the urrent lass. Then, a �eld/method of the same name

must not be de�ned in any of the enlosing lasses. Similarly, if the �eld/method

de�nition is found in a superlass of an enlosing lass C, a �eld/method of the

same name must not be de�ned in any of C's enlosing lasses. In the example

above, if both B and C delared a �eld f (and D did not), then elaboration would

fail as f in m is ambiguous; the user must write C.this.f or D.this.f, speifying

the enlosing instane expliitly. This rule also has one signi�ant exeption: it

is not onsidered ambiguous if the de�nition found in a superlass is also the

syntatially nearest de�nition in enlosing lasses. This situation ours when

an inner lass extends one of its enlosing lasses. For example, suppose E does

not delare the �eld f in the lass de�nition below.

lass C extends Objet {

Objet f; ...

lass D extends Objet { ...

lass E extends C { ...

Objet m () { return f; }

}

}

}

The referene to f in m is not ambiguous unless D delares the �eld f. (The

algorithm �nds the de�nition f in a superlass of E.)

Simple type names obey similar elaboration rules. For example, D ourring

in C is elaborated to C.D. However, unlike �eld names and method names, pre-

elaborated type names themselves an be quali�ed. In suh a ase the head

simple name is elaborated �rst, then it looks up the de�nitions of the following

names in a manner similar to �eld lookup. For example, onsider the following

lass delarations:

lass A extends Objet { ...

lass B extends Objet { ... }

}

lass C extends Objet { ...

lass D extends A { ... }

}

lass E extends C { D.B f; ... }

The type D.B of f is elaborated to A.B as follows:

1. The �rst name D is elaborated to C.D.

2. It is heked whether C.D.B makes sense; in this ase, it does not, sine the

inner lass D does not have the delaration of B. The elaborator replaes C.D

with its superlass A and elaborates A.B in the ontext of C.

3. Sine A is not delared in C, it denotes the top-level lass A.

4. Finally, sine B is delared in the top-level lass A, A.B is the elaborated type

for D.B in the ontext of E.

Last, we desribe how a onstrutor invoation new T(e) is elaborated. A-

tually, it is slightly more involved than others sine it requires both elaboration

of the type and reovering of an enlosing instane (when it turns out to be

instantiation of an inner lass). First of all, the pre-elaborated type name T is

elaborated to T

0

. If T

0

is a simple name C, then the onstrutor invoation does

not need an enlosing instane. On the other hand, if T

0

is U.C, then we have to

make up an enlosing instane D.this, whose type is subtype of U, by heking

whih enlosing lass is a sublass of U. Finally, among suh enlosing lasses, the

innermost one is hosen and new T(e) is elaborated to D.this.new<U> C(...).

The annotation <U> is important to speify whih inner lass is instantiated,

sine there might be more than one inner lass C de�ned in lasses between D

and U. Consider the following lasses and the expression new A.B() inside the

lass D.E:

lass A extends Objet { ...

lass B extends Objet { ... }

}

lass C extends A { ...

lass B extends Objet { ... }

}

lass D extends C { ...

lass E extends C { ...

Objet m () { ... new A.B() ...}

}

}

First, A.B is elaborated to itself. Now, we need to �nd out whih enlosing lass

(inluding the urrent lass) is a sublass of A. In this ase, both D and D.E

are; then, the innermost one, D.E, is hosen, and new A.B() is elaborated to

E.this.new<A> B(). The annotation <A> is important sine we have to remem-

ber that the lass A.B is to be instantiated (not C.B).

For brevity, we omit the formal rules of elaboration, whih losely follow

the algorithm desribed above; interested readers are referred to a ompanion

tehnial report [11℄.

6 Interpretations of the Inner Class Spei�ation

Through this work, we have experimented a few Java ompilers, inluding Sun's

JDK (for Solaris), JDK for linux, and guava. Besides �nding a few bugs related

to inner lasses (mostly already known to the developers), we observed some

interesting variations in behavior orresponding to an underspei�ation in the

urrently available Inner Classes Spei�ation [12℄, onerning the meaning of

the C.this expression. Consider the following Java program:

lass C {

void who () {

System.out.println("I'm a C objet");

}

lass D extends C {

void m () { C.this.who(); }

void who () {

System.out.println("I'm a C.D objet");

}}

publi stati void main (String[℄ args) {

new C().new D().m();

}

}

Surprisingly, this program prints out I

0

m a C.D objet when ompiled with

JDK 1.1.7a, but I

0

m a C objet under JDK 1.2. In the old JDK, the meaning

of C.this is exatly the same as D.this or this when C is a superlass of the

inner lass C.D; thus, C.this is bound to the reeiver new C().new D (). In

JDK 1.2, on the other hand, C.this is always bound to the enlosing objet of

the reeiver regardless of superlass.

7 Related Work

Nested lasses in Beta. Beta [15℄ also allows nested lass de�nitions (as an in-

stane of nested patterns , the only abstration mehanism in Beta, whih uni�es

lasses and proedures). There are two signi�ant di�erenes from inner lasses.

First, inner lasses are ovariantly speialized in a sublass: for example, if C <

:

D

and both C and D have the delaration of an inner lass of name E, then C.E

must extend D.E. Seond, nested lasses are virtual [14℄, in the sense that it de-

pends on run-time type of the enlosing instane whih onstrutor is invoked.

A onstrutor invoation e.new E(e) instantiates an objet of lass C.E when

the run-time type of e is C while it instantiates an objet of lass D.E when that

of e is D.

Madsen has reently desribed the algorithm of elaboration (they all seman-

ti analysis) used in the Mj�lner Beta ompiler [13℄. The algorithm is very lose

to the rules presented in Setion 5, in a sense that the searh order is the same

as ours, although the presene of virtual lasses ompliates the algorithm.

Spei�ation of inner lasses. In the urrently available Inner Classes Spei�a-

tion [12℄, semantis of inner lasses is given as a translation from inner lasses to

top-level lasses. It also explains how inner lasses a�et other language aspets,

suh as synhronization, aess restrition and binary ompatibility. However,

desription is rather informal and sometimes vague, resulting in di�erent imple-

mentations with di�erent semantis, as explained in the previous setion.

Objet losure onversion. Reently, Glew [7℄ has studied losure onversion in

the ontext of a all-by-value objet alulus (without lasses) and shown orret-

ness of onversion based on ontextual equivalene. Our translation semantis

an also be viewed as losure onversion of lass de�nitions. Sine his alulus

does not have lasses, semanti aount of interation between inheritane and

nested lasses is not given.

Mirosoft's delegates. Mirosoft has proposed delegates [16℄ as an alternative to

inner lasses. The basi idea of delegates resembles the funtion pointers found

in C and C++. Programmers an reate a delegate with an expression of the

form e.m (without parameters) and pass it elsewhere; later, the method m an be

invoked through the delegate. We believe it would be possible to model delegates

in an extension of FJ, as we have done here for inner lasses. On the one hand,

the formalization would be simpler than inner lasses due to the absene of

interation with inheritane. On the other hand, it would be hard to model

the implementation sheme of delegates, sine it depends on Java's reetion

features.

Other ore aluli for Java. There have been proposed several aluli [5, 19, 17, 6℄

to study formal properties and extensions of Java; none of them, however, treats

inner lasses, although we don't see any inherent diÆulty to integrate inner

lasses into their aluli.

8 Conlusions and Future Work

We have formalized two styles of semantis for inner lasses: a diret style and

a translation style, where semantis is given by ompilation to a low-level lan-

guage without inner lasses, following Java's Inner Classes Spei�ation. We

have proved that the two styles orrespond, in the sense that the translation

ommutes with the high-level redution relation in the diret semantis. Besides

deepening our own understanding of inner lasses, this work has unovered a

signi�ant underspei�ation in the oÆial spei�ation.

For future work, the interation between inner lasses and aess restritions

in Java is learly worth investigating. We also hope to be able to model Java's

other forms of inner lasses: anonymous lasses and loal lasses, whih an be

delared in method bodies; these are slightly more ompliated, sine method

arguments (not just �elds) an our in them as free variables, but we expet

they an be aptured by a variant of FJI.

Aknowledgments

This work was supported by the University of Pennsylvania and the National

Siene Foundation under grant CCR-9701826, Prinipled Foundations for Pro-

gramming with Objets. Igarashi is a researh fellow of the Japan Soiety of the

Promotion of Siene.

We would like to thank bug parade in Java Developer Connetion (http://

developer.java.sun.om/developer/bugParade/index.html) for providing use-

ful information. Comments from the anonymous referees of POPL'99, FOOL7,

and ECOOP2000 helped us improve the �nal presentation.

Referenes

[1℄ Mart��n Abadi. Protetion in programming-language translations. In Proeedings

of the 25th International Colloquium on Automata, Languages and Programming

(ICALP'98), pages 868{883. Springer-Verlag, July 1998. also appeared as DEC

SRC Researh Report 154 (April 1998).

[2℄ Anasua Bhowmik and William Pugh. A seure implementation of Java inner

lasses. Handout from PLDI '99 Poster Session. Available through http://

www.s.umd.edu/~pugh/java.

[3℄ Gilad Braha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the

future safe for the past: Adding generiity to the Java programming language. In

Craig Chambers, editor, Objet Oriented Programming: Systems, Languages, and

Appliations (OOPSLA), ACM SIGPLAN Noties volume 33 number 10, pages

183{200, Vanouver, BC, Otober 1998.

[4℄ Patrik Chan and Rosanna Lee. The Java Class Libraries, volume 2. Addison-

Wesley, Reading, MA, seond edition, Otober 1997.

[5℄ S. Drossopoulou, S. Eisenbah, and S. Khurshid. Is the Java Type System Sound?

Theory and Pratie of Objet Systems, 7(1):3{24, 1999. Preliminary version in

ECOOP '97.

[6℄ Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mix-

ins. In ACM Symposium on Priniples of Programming Languages (POPL), San

Diego, January 1998. ACM.

[7℄ Neal Glew. Objet losure onversion. In Andrew Gordon and Andrew Pitts,

editors, Proeedings of the 3rd International Workshop on Higher Order Opera-

tional Tehniques in Semantis (HOOTS'99), volume 26 of Eletroni Notes in

Theoretial Computer Siene, Paris, Frane, September 1999. Elsevier. Available

through http://www.elsevier.nl/loate/ents/volume26.html.

[8℄ Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Imple-

mentation. Addison-Wesley, Reading, MA, 1983.

[9℄ James Gosling, Bill Joy, and Guy Steele. The Java Language Spei�ation. Addi-

son Wesley, 1996.

[10℄ Atsushi Igarashi, Benjamin Piere, and Philip Wadler. Featherweight Java: A

minimal ore alulus for Java and GJ. In Linda M. Northrop, editor, Objet

Oriented Programming: Systems, Languages, and Appliations (OOPSLA), ACM

SIGPLAN Noties, volume 34, number 10, pages 132{146. ACM Press, Otober

1999.

[11℄ Atsushi Igarashi and Benjamin C. Piere. On inner lasses. Tehnial Report MS-

CIS-99-23, University of Pennsylvania, Philadelphia, PA, November 1999. Avail-

able through http://web.yl.is.s.u-tokyo.a.jp/~igarashi/papers.html.

[12℄ JavaSoft. Inner lasses spei�ation, February 1997. Available through http://

java.sun.om/produts/JDK/1.1/.

[13℄ Ole Lehrmann Madsen. Semanti analysis of virtual lasses and nested lasses. In

Linda M. Northrop, editor, Objet Oriented Programming: Systems, Languages,

and Appliations (OOPSLA), ACM SIGPLAN Noties, volume 34, number 10,

pages 114{131, Denver, CO, Otober 1999. ACM Press.

[14℄ Ole Lehrmann Madsen and Birger M�ller-Pedersen. Virtual lasses: A powerful

mehanism in objet-oriented programming. In Objet Oriented Programming:

Systems, Languages, and Appliations (OOPSLA), 1989.

[15℄ Ole Lehrmann Madsen, Birger M�ller-Pedersen, and Kristen Nygaard. Objet-

Oriented Programming in the Beta Programming Language. Addison-Wesley, 1993.

[16℄ Mirosoft. Mirosoft Java SDK 3.2 doumentation. Available online through

http://www.mirosoft.om/Java/sdk/32/, 1999.

[17℄ Tobias Nipkow and David von Oheimb. Java

light

is type-safe | de�nitely. In ACM

Symposium on Priniples of Programming Languages (POPL), pages 161{170, San

Diego, January 1998. ACM.

[18℄ G. D. Plotkin. LCF onsidered as a programming language. Theoretial Computer

Siene, 5:223{255, 1977.

[19℄ Don Syme. Proving Java type soundness. Tehnial Report 427, Computer Lab-

oratory, University of Cambridge, June 1997.

Syntax:

L ::= lass C /C {C f; K M}

K ::= C(C f)

{super(f); this.f = f;}

M ::= C m(C x) {"e;}

e ::= x j e.f j e.m(e) j new C(e)

Computation:

�elds(C) = C f

(new C(e)).f

i

�! e

i

mbody(m;C) = (
x
; e

0

)

(new C(e)).m(d)

�! [d=x; new C(e)=this℄e

0

Subtyping:

C <

:

C

C <

:

D D <

:

E

C <

:

E

CT (C) = lass C /D {...}

C <

:

D

Expression typing:

� ` x 2 �(x)

� ` e

0

2 C

0

�elds(C

0

) = C f

� ` e

0

.f

i

2 C

i

� ` e

0

2 C

0

mtype(m;C

0

) = D!C

� ` e 2 C C <

:

D

� ` e

0

.m(e) 2 C

�elds(C) =
D f

� `
e
2
C C

<

:

D

� ` new C(e) 2 C

Method typing:

x : C; this : C ` e

0

2 E

0

E

0

<

:

C

0

CT (C) = lass C /D {...}

if mtype(m;D) = D!D

0

;

then C = D and C

0

= D

0

C

0

m (C x) {"e

0

;} OK IN C

Class typing:

K =

C(D g, C f)

{super(g); this.f = f;}

�elds(D) = D g M OK IN C

lass C /D {C f; K M} OK

Field lookup:

�elds(Objet) = �

CT (C) = lass C /D {C f; K M}

�elds(D) = D g

�elds(C) = D g; C f

Method type lookup:

CT (C) = lass C /D {C f; K M}

B m (B x) {"e;} 2 M

mtype(m;C) = B!B

CT (C) = lass C /D {C f; K M}

m is not de�ned in M

mtype(m;C) = mtype(m; D)

Method body lookup:

CT (C) = lass C /D {C f; K M}

B m (B x) {"e;} 2 M

mbody(m;C) = (
x
;e)

m is not de�ned in M

CT (C) = lass C /D {C f; K M}

mbody(m;C) = mbody(m;D)

Fig. 4. FJ De�nitions

