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Abstra
t. Inner 
lasses in obje
t-oriented languages play a role similar

to nested fun
tion de�nitions in fun
tional languages, allowing an ob-

je
t to export other obje
ts with dire
t a

ess to its own methods and

instan
e variables. However, the similarity is de
eptive: a 
lose look at

inner 
lasses reveals signi�
ant subtleties arising from their intera
tions

with inheritan
e.

The goal of this work is a pre
ise understanding of the essential features

of inner 
lasses; our obje
t of study is a fragment of Java with inner


lasses and inheritan
e (and almost nothing else). We begin by giving a

dire
t redu
tion semanti
s for this language. We then give an alternative

semanti
s by translation into a yet smaller language with only top-level


lasses, 
losely following Java's Inner Classes Spe
i�
ation. We prove

that the two semanti
s 
oin
ide, in the sense that translation 
ommutes

with redu
tion, and that both are type-safe.

1 Introdu
tion

It has often been observed that the gap between obje
t-oriented and fun
tional

programming styles is not as large as it might �rst appear; in essen
e, an obje
t

is just a re
ord of fun
tion 
losures. However, there are di�eren
es as well as

similarities. On the one hand, obje
ts and 
lasses in
orporate important me
h-

anisms not present in fun
tions (stati
 members, inheritan
e, obje
t identity,

a

ess prote
tion, et
.). On the other hand, fun
tional languages usually allow

nested de�nitions of fun
tions, giving inner fun
tions dire
t a

ess to the lo
al

variables of their en
losing de�nitions.

A few obje
t-oriented languages do support this sort of nesting. For example,

Smalltalk [8℄ has spe
ial syntax for \blo
k" obje
ts, similar to anonymous fun
-

tions. Beta [15℄ provides patterns, unifying 
lasses and fun
tions, that 
an be

nested arbitrarily. More re
ently, inner 
lasses have been popularized by their

in
lusion in Java 1.1 [9, 12℄.

Inner 
lasses are useful when an obje
t needs to send another obje
t a 
hunk

of 
ode that 
an manipulate the �rst obje
t's methods and/or instan
e variables.

?
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Su
h situations are typi
al in user-interfa
e programming: for example, Java's

Abstra
t Window Toolkit [4℄ allows a listener obje
t to be registered with a

user-interfa
e 
omponent su
h as a button; when the button is pressed, the

a
tionPerformed method of the listener is invoked. For example, suppose we

want to in
rement a 
ounter when a button is pressed. We begin by de�ning a


lass Counter with an inner 
lass Listener:


lass Counter {

int x;


lass Listener implements A
tionListner {

publi
 void a
tionPerformed(A
tionEvent e) { x++; }

}

void listenTo(Button b) {

b.addA
tionListener(new Listener());

}

}

In the de�nition of the method a
tionPerformed, the �eld x of the en
losing

Counter obje
t is 
hanged. The method listenTo 
reates a new listener obje
t

and sends it to the given Button. Now we 
an write

Counter 
 = new Counter();

Button b = new Button("In
rement");


.listenTo(b);

gui.add(b);

to 
reate and display a button that in
rements a 
ounter every time it is pressed.

1

Inner 
lasses are a powerful abstra
tion me
hanism, allowing programs like

the one above to be expressed mu
h more 
onveniently and transparently than

would be possible using only top-level 
lasses. However, this power 
omes at a

signi�
ant 
ost in 
omplexity: inner 
lasses intera
t with other features of obje
t-

oriented programming|espe
ially inheritan
e|in some quite subtle ways. For

example, a 
losure in a fun
tional language has a simple lexi
al environment,

in
luding all the bindings in whose s
ope it appears. An inner 
lass, on the

other hand, has a

ess, via methods inherited from super
lasses, to a 
hain of

environments|in
luding not only the lexi
al environment in whi
h it appears,

but also the lexi
al environment of ea
h super
lass. Conversely, the presen
e of

inner 
lasses 
ompli
ates our intuitions about inheritan
e. What should it mean,

for example, for an inner 
lass to inherit from its en
losing 
lass? What happens

if a top-level 
lass inherits from an inner 
lass de�ned in a di�erent top-level


lass?

JavaSoft's Inner Classes Spe
i�
ation [12℄ provides one answer to these ques-

tions by showing how to translate a program with inner 
lasses into one using

only top-level 
lasses, adding to ea
h inner 
lass an extra �eld that points to

an instan
e of the en
losing 
lass. This spe
i�
ation gives 
lear basi
 intuitions

1

Stri
tly speaking, the in
rement of x should be syn
hronized with the listener's own


ounter, written Counter.this: listener methods are generally triggered in a thread

di�erent from the 
onstru
tor thread of the 
urrent obje
t.



about the behavior of inner 
lasses, but it falls short of a 
ompletely satisfying

a

ount. First, the style is indire
t: it for
es programmers to reason about their


ode by �rst passing it through a rather heavy transformation. Se
ond, the do
u-

ment itself is somewhat impre
ise, 
onsisting only of examples and English prose.

Di�erent 
ompilers (even di�erent versions of Sun's JDK) have interpreted the

spe
i�
ation di�erently in some signi�
ant ways (
f. Se
tion 6).

The goal of this work is a pre
ise understanding of the essential features of

inner 
lasses. Our main 
ontributions are threefold:

{ First, we give a dire
t operational semanti
s and typing rules for a small

language with inner 
lasses and inheritan
e. The typing rules are shown

to be sound for the operational semanti
s in the standard sense. To our

knowledge, this dire
t style of semanti
s is formalized for the �rst time.

To keep the model as simple as possible, we fo
us on the most basi
 form of

inner 
lasses in Java, omitting the related me
hanisms of anonymous 
lasses,

lo
al 
lasses within blo
ks, and stati
 nested 
lasses. Also, we do not deal with

the (important) intera
tions between a

ess annotations (publi
/private/et
.)

and inner 
lasses (
f. [12, 2, 1℄).

{ Next, we give a translation from the language with inner 
lasses to an even

smaller language with only top-level 
lasses, formalizing the translation se-

manti
s of the Java Inner Classes Spe
i�
ation. We show that the translation

preserves typing.

{ Finally, we prove that the two semanti
s de�ne the same behavior for in-

ner 
lasses, in the sense that the translation 
ommutes with the high-level

redu
tion relation in the dire
t semanti
s. This property, together with the

property of preservation of typing, guarantees 
orre
tness of the translation

semanti
s with respe
t to the dire
t semanti
s, for the 
ase where whole

programs are being translated.

The 
ase where some translated 
lasses are linked with 
lasses written di-

re
tly in the target language is more subtle, and we do not handle it here.

The main desired theorem in this 
ase would be full abstra
tion, whi
h states

that translated expressions that 
an be distinguished by a target language


ontext 
an also be distinguished in the sour
e language. Unfortunately, our

translation is not fully abstra
t, be
ause our modeling language does not

in
lude private �elds, whi
h are used by the real translation to prevent ob-

servers from dire
tly a

essing the �eld of an inner 
lass instan
e that holds

a pointer to its 
ontaining obje
t. (The question of full abstra
tion for full-

s
ale inner 
lass translations has been 
onsidered by Abadi [1℄ and Pugh [2℄.)

Re
ently, Glew [7℄ has studied 
losure 
onversion in the 
ontext of an obje
t


al
ulus without 
lasses; our translation semanti
s 
an be viewed as 
losure


onversion of 
lass de�nitions. However, sin
e his 
al
ulus does not have 
lasses,

a semanti
 a

ount of intera
tion between inheritan
e and nested 
lasses has not

been given.

The basis of our work is a 
ore 
al
ulus 
alled Featherweight Java, or FJ.

This 
al
ulus was originally proposed in the 
ontext of a formal study [10℄ of

GJ [3℄, an extension of Java with parameterized 
lasses. It was designed to omit



as many features of Java as possible (even assignment), while maintaining the

essential 
avor of the language and its type system. Its de�nition �ts 
omfort-

ably on a page, and its basi
 properties 
an be proved with no more diÆ
ulty

than, say, those of the simply typed lambda-
al
ulus with subtyping. This ex-

treme simpli
ity makes it an ideal vehi
le for the rigorous study of new language

features su
h as parameterized 
lasses and inner 
lasses.

The remainder of the paper is organized as follows. Se
tion 2 brie
y reviews

Featherweight Java. Se
tion 3 de�nes FJI, an extension of FJ with inner 
lasses,

giving its syntax, typing rules, and redu
tion rules, and stating standard type

soundness results. Se
tion 4 de�nes a 
ompilation from FJI to FJ, modeling

the translation semanti
s of the Inner Classes Spe
i�
ation, and proves its 
or-

re
tness with respe
t to the dire
t semanti
s in the previous se
tion. Se
tion 5

dis
usses the elaboration pro
ess from user programs to FJI, whi
h is 
onsidered

an intermediate language to de�ne semanti
s. Se
tion 6 examines some behav-

ioral di�eren
es between 
ompilers resulting from in
onsisten
ies in the existing

spe
i�
ation, Se
tion 7 dis
usses related work, and Se
tion 8 o�ers 
on
luding

remarks.

For brevity, proofs of theorems are omitted; they appear in a 
ompanion

te
hni
al report [11℄.

2 Featherweight Java

We begin by reviewing the basi
 de�nitions of Featherweight Java [10℄. FJ is

a tiny fragment of Java, in
luding only top-level 
lass de�nitions, obje
t in-

stantiation, �eld a

ess, and method invo
ation. (The original version of FJ also

in
luded type
asts, whi
h are required to model the 
ompilation of GJ into Java.

They are omitted from this paper, sin
e they do not intera
t with inner 
lasses in

any signi�
ant way.) Our main goal in designing FJ was to make a proof of type

soundness (\well-typed programs don't get stu
k") as 
on
ise as possible, while

still 
apturing the essen
e of the soundness argument for the full Java language.

Any language feature that made the soundness proof longer without making it

signi�
antly di�erent was a 
andidate for omission. Even assignments are omit-

ted from FJ, as well as advan
ed features su
h as re
e
tion and 
on
urren
y.

Sin
e FJ is a sublanguage of the extension de�ned in Se
tion 3, we just show

its syntax and an example of program exe
ution here. The rest of the de�nition


an be found in Figure 4.

The abstra
t syntax of FJ 
lass de
larations, 
onstru
tor de
larations, method

de
larations, and expressions is given as follows:

L ::= 
lass C extends C {C f; K M}

K ::= C(C f) {super(f); this.f = f;}

M ::= C m(C x) {return e;}

e ::= x j e.f j e.m(e) j new C(e)

The metavariables A, B, C, D, and E range over 
lass names; f and g range

over �eld names; m ranges over method names; x ranges over parameter names;




, d and e range over expressions; L ranges over 
lass de
larations; K ranges

over 
onstru
tor de
larations; and M ranges over method de
larations. We write

f as shorthand for f

1

,. . . ,f

n

(and similarly for C, x, e, et
.) and write M

as shorthand for M

1

. . .M

n

(with no 
ommas). We write the empty sequen
e

as � and denote 
on
atenation of sequen
es using a 
omma. The length of a

sequen
e x is written #(x). We abbreviate operations on pairs of sequen
es

in the obvious way, writing \C f" as shorthand for \C

1

f

1

,. . . ,C

n

f

n

" and

\C f;" as shorthand for \C

1

f

1

;. . . C

n

f

n

;" and \this.f=f;" as shorthand for

\this.f

1

=f

1

;. . . this.f

n

=f

n

;". For the sake of 
on
iseness, we often abbreviate

the keyword extends to the symbol extends and the keyword return to the

symbol return. Sequen
es of �eld de
larations, parameter names, and method

de
larations are assumed to 
ontain no dupli
ate names.

A key simpli�
ation in FJ is the omission of assignment, making FJ purely

fun
tional. It is realized by assuming that all �elds and method parameters are

impli
itly marked final. (Of 
ourse, most useful examples of programming in

Java do involve its side-e�e
ting features, and inner 
lasses do intera
t with as-

signment: in parti
ular, if inner 
lasses may appear inside method de�nitions,

then lo
al variables of the en
losing method must be marked final if they are

mentioned in an inner 
lass. To handle this feature, our model would need to

be extended with assignment. However, we do not need it for the present mod-

eling task, and, by omitting assignment from FJ and FJI, we obtain a mu
h

simpler model that o�ers just as mu
h insight into inner 
lasses.) An obje
t's

�elds are initialized by its 
onstru
tor and never 
hanged afterwards. More-

over, a 
onstru
tor has a stylized syntax su
h that there is one parameter for

ea
h �eld, with the same name as the �eld; the super 
onstru
tor is invoked

on the �elds of the supertype; and the remaining �elds are initialized to the


orresponding parameters. (These 
onstraints are enfor
ed by the typing rules.)

This stylized syntax makes the operational semanti
s simple: a �eld a

ess ex-

pression new C(e).f

i

just redu
es to the 
orresponding 
onstru
tor argument

e

i

. Also, sin
e FJ does not have assignment statements, a method body always


onsists of a single return statement: all the 
omputation in the language goes

on in the expressions following these returns. A method invo
ation expression

new C(e).m(d) is redu
ed by looking up the expression e

0

following the return

of method m in 
lass C in the 
lass table, and redu
ing to the instan
e of e

0

in

whi
h d and the re
eiver obje
t (new C(e)) are substituted for formal arguments

and the spe
ial variable this, respe
tively. Figure 4 states these redu
tion rules

pre
isely.

A program in FJ is a pair of a 
lass table (a set of 
lass de�nitions) and an

expression (
orresponding to the mainmethod in a Java program). The redu
tion

relation is of the form e �! e

0

, read \expression e redu
es to expression e

0

in

one step."

For example, given the 
lass de�nitions


lass A extends Obje
t {

A() { super(); }

}




lass B extends Obje
t {

B() { super(); }

}


lass Pair extends Obje
t {

Obje
t fst;

Obje
t snd;

Pair(Obje
t fst, Obje
t snd) {

super(); this.fst=fst; this.snd=snd;

}

Pair setfst(Obje
t newfst) {

return new Pair(newfst, this.snd);

}

}

the expression new Pair(new A(), new B()).setfst(new B()) redu
es to

new Pair(new B(), new B()) as follows

new Pair(new A(), new B()).setfst(new B())

�! new Pair(new B(), new Pair(new A(), new B()).snd)

�! new Pair(new B(), new B())

where the underlined subexpressions are the ones being redu
ed at ea
h step.

3 FJ with Inner Classes

We now de�ne the language FJI by extending FJ with inner 
lasses. Like FJ,

FJI imposes some synta
ti
 restri
tions to simplify its operational semanti
s: (1)

re
eivers of �eld a

ess, method invo
ation, or inner 
lass 
onstru
tor invo
ation

must be expli
itly spe
i�ed (no impli
it this); (2) type names are always abso-

lute paths to the 
lasses they denote (no short abbreviations); and (3) an inner


lass instantiation expression e

0

.new C(e) is annotated with the stati
 type T

of e

0

, written e

0

.new<T> C(e).

Be
ause of 
onditions (2) and (3), FJI is not quite a subset of Java (whereas

FJ is); instead, we view FJI as an intermediate language, to whi
h the user's

programs are translated by a pro
ess of elaboration. We des
ribe the elaboration

pro
ess only informally in this paper (in Se
tion 5), sin
e it is rather 
omplex but

not espe
ially deep, 
onsisting mainly of a large number of rules for abbreviating

long quali�ed names; a detailed treatment is given in the 
ompanion te
hni
al

report [11℄. We begin with a brief dis
ussion of the key idea of en
losing instan
es.

3.1 En
losing Instan
es

Consider the following FJI 
lass de
laration:




lass Outer extends Obje
t {

Pair p;

Outer(Pair p) {super(); this.p = p;}


lass Inner extends Obje
t {

Inner() {super();}

Obje
t snd_p { return Outer.this.p.snd; }

}

Outer.Inner make_inner () { return this.new<Outer> Inner(); }

}

Con
eptually, ea
h instan
e o of the 
lass Outer 
ontains a spe
ialized version of

the Inner 
lass, whi
h, when instantiated, yields instan
es of Outer.Inner that

refer to o's instan
e variable p. The obje
t o is 
alled the en
losing instan
e of

these Outer.Inner obje
ts.

This en
losing instan
e 
an be named expli
itly by a \quali�ed this" ex-

pression (found in both Java and FJI), 
onsisting of the simple name of the

en
losing 
lass followed by \.this". In general, the 
lass C

1

. � � �.C

n


an refer to

n�1 en
losing instan
es, C

1

.this to C

n�1

.this, as well as the usual this, whi
h


an also be written C

n

.this. To avoid ambiguity of the meaning of C.this, the

name of an inner 
lass must be di�erent from any of its super
lasses.

In FJI, an obje
t of an inner 
lass is instantiated by an expression of the form

e

0

.new<T> C(e), where e

0

is the en
losing instan
e and T is the stati
 type of

e

0

. The result of e

0

.new<T> C(e) is always an instan
e of T.C, regardless of

the run-time type of e

0

. (We avoid a notation like e

0

.new T.C(e) be
ause it

is not in the Java syntax. Java allows only the notation new T.C(e) (without

a pre�x), whi
h roughly means an instantiation from the 
lass T.C with an

en
losing instan
e T.this; see Se
tion 5 for more details.) This rigidity re
e
ts

the stati
 nature of Java's translation semanti
s for inner 
lasses. The expli
it

annotation <T> is used in FJI to \remember" the stati
 type of e

0

. (By 
ontrast,

inner 
lasses in Beta are virtual [14℄, i.e., di�erent 
onstru
tors may be invoked

depending on the run-time type of the en
losing instan
e; for example, if there

were a sub
lass Outer

0

of the 
lass Outer that also had an inner 
lass Inner, then

o.new Inner()might build an instan
e of either Outer.Inner or Outer

0

.Inner,

depending on the dynami
 type of o.)

The elaboration pro
ess allows type names to be abbreviated in Java pro-

grams. For example, the FJI program above 
an be written


lass Outer extends Obje
t {

Pair p;

Outer(Pair p) {super(); this.p = p;}


lass Inner extends Obje
t {

Inner() {super();}

Obje
t snd_p () { return p.snd; }

}

Inner make_inner () { return new Inner(); }

}

in Java. Here, the return type Inner of the make_inner method denotes the

nearest Inner de
laration. Also, in Java, en
losing instan
es 
an be omitted



when they are this or a quali�ed this. Thus, this.new<Outer> Inner() from

the original example is written new Inner() here.

3.2 Sub
lassing and Inner Classes

Almost any form of inheritan
e involving inner 
lasses is allowed in Java: a top-

level 
lass 
an extend an inner 
lass of another top-level 
lass, or an inner 
lass


an extend another inner 
lass from a 
ompletely di�erent top-level 
lass. An

inner 
lass 
an even extend its own en
losing 
lass. (Only one 
ase is disallowed:

a 
lass 
annot extend its own inner 
lass. We dis
uss the restri
tion later.) This

liberality, however, introdu
es signi�
ant 
omplexity be
ause a method inherited

from a super
lass must be exe
uted in a \lexi
al environment" di�erent from the

sub
lass's. Figure 1 shows a situation where three inner 
lasses, A1.A2.A3 and

B1.B2.B3 and C1.C2.C3, are in a sub
lass hierar
hy. Ea
h white oval represents

an en
losing instan
e and the three shaded ovals indi
ate the regions of the

program where the methods of a C1.C2.C3 obje
t may have been de�ned. A

method inherited from A1.A2.A3 is exe
uted under the environment 
onsisting

of en
losing instan
es A1.this and A2.this and may a

ess members of en
los-

ing 
lasses via A1.this and A2.this; similarly for B1.B2.B3 and C1.C2.C3. In

general, when a 
lass has n super
lasses whi
h are inner, n di�erent environ-

ments may be a

essed by its methods. Moreover, ea
h environment may 
onsist

of more than one en
losing instan
e; six en
losing instan
es are required for all

the methods of C1.C2.C3 to work in the example above.

A1.this.a1

B2.this.b2

T1 a1;

T2 b2;

A1 A1.A2 A1.A2.A3

B1 B1.B2
B1.B2.B3

C1 C1.C2
C1.C2.C3

extends

extends

class A1 ... {

  T1 a1; ...

  class A2 ... { ...

    class A3 ... { ...

}}}

class B1 ... { ...

  class B2 ... { ...

    T2 b2; ...

    class B3 extends A1.A2.A3 {

    ...

}}}

class C1 ... { ...

  class C2 ... { ...

    class C3 extends B1.B2.B3 {

    ...

}}}

Fig. 1. A 
hain of environments



From the foregoing, we see that we will have to provide, in some way, six

en
losing instan
es to instantiate a C1.C2.C3 obje
t. Re
all that, when an obje
t

of an inner 
lass is instantiated, the en
losing obje
t is provided by a pre�x

e

0

of the new expression. For example, a C1.C2.C3 obje
t is instantiated by

writing e

0

.new<C1.C2> C3(e), where e

0

is the en
losing instan
e 
orresponding

to C2.this. Where do the other en
losing instan
es 
ome from?

First, en
losing instan
es from en
losing 
lasses other than the immediately

en
losing 
lass, su
h as C1.this, do not have to be supplied to a new expres-

sion expli
itly, be
ause they 
an be rea
hed via the dire
t en
losing instan
e|

for example, the en
losing instan
e e

0

in e

0

.new<C1.C2> C3(e) has the form

new C1(
).new<C1> C2(d), whi
h in
ludes the en
losing instan
e new C1(
)

that 
orresponds to C1.this.

Se
ond, the en
losing instan
es of super
lasses are determined by the 
on-

stru
tor of a sub
lass. Taking a simple example, suppose we extend the inner


lass Outer.Inner. An en
losing instan
e 
orresponding to Outer.this is re-

quired to make an instan
e of the sub
lass. Here is an example of a sub
lass of

Outer.Inner:


lass RefinedInner extends Outer.Inner {

Obje
t 
;

RefinedInner(Outer this$Outer$Inner, Obje
t 
) {

this$Outer$Inner.super(); this.
=
;

}}

In the de
laration of the RefinedInner 
onstru
tor, the ordinary argument

this$Outer$Inner be
omes the en
losing instan
e pre�x for the super 
on-

stru
tor invo
ation, providing the value of Outer.this referred to in the inher-

ited method snd_p. Similarly, in the C1.C2.C3 example, the sub
lass B1.B2.B3

is written as follows (we assume A1.A2.A3 has a �eld a3 of type Obje
t):


lass B1 extends ... { ...


lass B2 extends ... { ...


lass B3 extends A1.A2.A3 {

Obje
t b3;

B3(Obje
t a3, A1.A2 this$A1$A2$A3, Obje
t b3) {

this$A1$A2$A3.super(a3); this.b3 = b3; }

}}}

Note that, sin
e an en
losing instan
e 
orresponding to A1.this is in
luded in

an en
losing instan
e 
orresponding to A2.this, the B3 
onstru
tor takes only

one extra argument for en
losing instan
es. Here is C1.C2.C3 
lass:


lass C1 extends ... { ...


lass C2 extends ... { ...


lass C3 extends B1.B2.B3 {

Obje
t 
3;

C3(Obje
t a3, A1.A2 this$A1$A2$A3,

Obje
t b3, B1.B2 this$B1$B2$B3, Obje
t 
3) {

this$B1$B2$B3.super(a3, this$A1$A2$A3, b3); this.
3 = 
3; }

}}}



Sin
e the 
onstru
tor of a super
lass B1.B2.B3 initializes A2.this, the 
onstru
-

tor C3 initializes only B2.this by qualifying the super invo
ation; the argument

this$A1$A2$A3 is just passed to super as an ordinary argument.

In FJI, we restri
t the quali�
ation of super to be a 
onstru
tor argument,

whereas Java allows any expression for the quali�
ation. This permits the same


lean de�nition of operational semanti
s we saw in FJ, sin
e all the state infor-

mation (in
luding �elds and en
losing instan
es) of an obje
t appears in its new

expression. Moreover, for te
hni
al reasons 
onne
ted with the name mangling

involved in the translation semanti
s, we require that a 
onstru
tor argument

used for quali�
ation of super be named this$C

1

$ � � � $C

n

, where C

1

. � � �.C

n

is

the (dire
t) super
lass, as in the example above.

Lastly, we 
an now explain why it is not allowed for a 
lass to extend one

of its (dire
t or indire
t) inner 
lasses. It is be
ause there is no sensible way to

make an instan
e of su
h a 
lass. Suppose we 
ould de�ne the 
lass below:


lass Foo extends Foo.Bar {

Foo (Foo f) { f.super(); }


lass Bar { ... } }

Sin
e Foo extends Foo.Bar, the 
onstru
tor Foo will need an instan
e of Foo

as an argument, making it impossible to make an instan
e of Foo. (Perhaps one


ould use null as the en
losing instan
e in this 
ase, but this would not be useful,

sin
e inner 
lasses are usually supposed to make use of en
losing instan
es.)

3.3 Syntax

Now, we pro
eed to the formal de�nitions of FJI. The abstra
t syntax of the

language is shown at the top left of Figure 2. We use the same notational 
on-

ventions as in the previous se
tion. The metavariables S, T, and U ranges over

types, whi
h are quali�ed 
lass names (a sequen
e of simple names C

1

,. . . ,C

n


on
atenated by periods). For 
ompa
tness in the de�nitions, we introdu
e the

notation ? for a \null quali�
ation" and identify ?:C with C. The metavariable

P ranges over types (T) and ?. We write C 2 P if P = C

1

. � � �.C

n

and C = C

i

for

some i.

A 
lass de
laration L in
ludes de
larations of its simple name C, super
lass

T, �elds T f, 
onstru
tor K, inner 
lasses L, and methods M. There are two kinds

of 
onstru
tor de
laration, depending on whether the super
lass is inner or top-

level: when the super
lass is inner, the sub
lass 
onstru
tor must 
all the super


onstru
tor with a quali�
ation \f." to provide the en
losing instan
e visible

from the super
lass's methods. As we will see in typing rules, 
onstru
tor ar-

guments should be arranged in the following order: (1) the super
lass's �elds,

initialized by super(f) (or f.super(f)); (2) the en
losing instan
e of the su-

per
lass (if needed); and (3) the �elds of the 
lass to be de�ned, initialized by

this.f=f. Like FJ, the body of a method just returns an expression, whi
h is

a variable, �eld a

ess, method invo
ation, or obje
t instantiation. We assume

that the set of variables in
ludes the spe
ial variables this and C.this for every

C, and that these variables are never used as the names of arguments to methods.



Syntax:

T ::= C

1

. � � �.C

n

L ::= 
lass C /T {T f; K L M}

K ::= C(T f) {

super(f); this.f = f;}

j C(T f) {

f.super(f); this.f = f;}

M ::= T m (T x) {"e;}

e ::= x j e.f j e.m(e)

j new C(e) j e.new<T> C(e)

Computation:

�elds(C) = T f

new C(e).f

i

�! e

i

�elds(T.C) = T f

e

0

.new<T> C(
e
).f

i

�! e

i

mbody(m;C) = (x;d

0

; C

1

. � � �.C

n

)




n

def

= new C(e)




i

def

= en
l

C

1

.���.C

i+1

(


i+1

)

i21:::n�1

new C(e).m(d)

�!

�

d=x; 


n

=this;




i

=C

i

.this

i21:::n

�

d

0

mbody(m;T.C) = (x;d

0

;C

1

. � � �.C

n

)




n

def

= e

0

.new<T> C(e)




i

def

= en
l

C

1

.���.C

i+1

(


i+1

)

i21:::n�1

e

0

.new<T> C(e).m(d)

�!

�

d=x; 


n

=this;




i

=C

i

.this

i21:::n

�

d

0

Subtyping:

T <

:

T

S <

:

T T <

:

U

S <

:

U

CT (S) = 
lass C /T {...}

S <

:

T

Expression typing:

�(x) = T

� ` x 2 T

� ` e

0

2 T

0

�elds(T

0

) = T f

� ` e

0

.f

i

2 T

i

� ` e

0

2 T

0

mtype(m;T

0

) = U!U

0

� ` e 2 S S <

:

U

� ` e

0

.m(
e
) 2 U

0

�elds(C) = T f � ` e 2 S S <

:

T

� ` new C(e) 2 C

� ` e

0

2 S � ` e 2 S

�elds(T.C) = T f S <

:

T S <

:

T

� ` e

0

.new<T> C(e) 2 T.C

Method typing:

x : T; this : C

1

. � � �.C

n

;

C

i

.this : C

1

. � � �.C

i

i21:::n

` e

0

2 S

0

CT (C

1

. � � �.C

n

) = 
lass C

n

/ S {...}

S

0

<

:

T

0

if mtype(m;S) = U!U

0

;

then U = T and U

0

= T

0

T

0

m(T x) {"e

0

;} OK IN C

1

. � � �.C

n

Class typing:

K =

C(S g, T f){

super(g); this.f = f;}

�elds(D) = S g C 62 P

M OK in P.C L OK in P.C


lass C /D {T f; K L M} OK IN P

K =

C(S g, T g

0

, T f){

g

0

.super(g); this.f = f;}

�elds(T.D) = S g C 62 P

M OK in P.C L OK in P.C


lass C /T.D{T f; K L M} OK IN P

Fig. 2. FJI: Main De�nitions



A program is a pair of a 
lass table CT (a mapping from types T to 
lass

de
larations L) and an expression e. Obje
t is treated exa
tly in the same way

as in FJ. From the 
lass table, we 
an read o� the subtype relation between


lasses. We write S <

:

T when S is a subtype of T|the re
exive and transitive


losure of the immediate sub
lass relation given by the extends 
lauses in CT .

This relation is de�ned formally at the bottom left Figure 2.

We impose the following sanity 
onditions on the 
lass table: (1) CT (P.C) =


lass C ... for every P.C 2 dom(CT ). (2) If CT (P.C) has an inner 
lass

de
laration L of name D, then CT (P.C.D) = L. (3) Obje
t 62 dom(CT ). (4) For

every type T (ex
ept Obje
t) appearing anywhere in CT , we have T 2 dom(CT ).

(5) For every e

0

.new<T> C(e) (and new C(e), resp.) appearing anywhere in CT ,

we have T.C 2 dom(CT ) (and C 2 dom(CT ), resp.). (6) There are no 
y
les in

the subtyping relation. (7) T 6<

:

T.U, for any two types T and T.U. By 
onditions

(1) and (2), a 
lass table of FJI 
an be identi�ed with a set of top-level 
lasses.

Condition (7) prohibits a 
lass from extending one of its inner 
lasses.

3.4 Auxiliary Fun
tions

For the typing and redu
tion rules, we need a few auxiliary de�nitions, given

in Figure 3. The �elds of a 
lass T, written �elds(T), is a sequen
e T f pairing

the 
lass of ea
h �eld with its name, for all the �elds de
lared in 
lass T and all

of its super
lasses. In addition, �elds(T) 
olle
ts the types of (dire
t) en
losing

instan
es of all the super
lasses of T. For example, �elds(C1.C2.C3) returns the

following sequen
e:

�elds(C1.C2.C3) = Obje
t a3, (�eld from A1.A2.A3)

A1.A2 this$A1$A2$A3, (en
losing instan
e A2.this)

Obje
t b3, (�eld from B1.B2.B3)

B1.B2 this$B1$B2$B2, (en
losing instan
e B2.this)

Obje
t 
3 (�eld from C1.C2.C3)

The third rule in the de�nition inserts en
losing instan
e information between

the �elds S g of the super
lass U.D and the �elds T f of the 
urrent 
lass. In a

well-typed program, �elds(T) will always agree with the 
onstru
tor argument

list of T.

The type of the method m in 
lass T, written mtype(m; T), is a pair, written

S!S, of a sequen
e of argument types S and a result type S. Similarly, the body

of the method m in 
lass T, written mbody(m; T), is a triple, written (x; e; T), of

a sequen
e of parameters x, an expression e, and a 
lass T where the method is

de�ned.

The fun
tion en
l

T

(e) plays a 
ru
ial role in the semanti
s of FJI. Intuitively,

when e is a top-level or inner 
lass instantiation, en
l

T

(e) returns the dire
t

en
losing instan
e of e that is visible from 
lass T (i.e., the en
losing instan
e

that provides the 
orre
t lexi
al environment for methods inherited from T). The

�rst rule is the simplest 
ase: sin
e the type of an expression e

0

.new<T> C(e)

agrees with the subs
ript T.C, it just returns the (dire
t) en
losing instan
e



Field lookup:

�elds(Obje
t) = �

CT (T) = 
lass C /D {T f; K L M}

�elds(D) = S g

�elds(T) =
S g

;
T f

CT (T) = 
lass C /U.D {T f; K L M}

�elds(U.D) = S g

U = C

1

. � � �.C

n

f

0

= this$C

1

$ � � �$C

n

$D

�elds(T) = S g; U f

0

; T f

Method type lookup:

CT (T) = 
lass C /S {S f; K L M}

U

0

m (U x) {"e;} 2 M

mtype(m;T) = U!U

0

CT (T) = 
lass C /S {S f; K L M}

m is not de�ned in M

mtype(m;T) = mtype(m;S)

Method body lookup:

CT (T) = 
lass C /S {S f; K L M}

U

0

m (U x) {"e;} 2 M

mbody(m; T) = (
x
;e;T)

CT (T) = 
lass C /S {S f; K L M}

m is not de�ned in M

mbody(m;T) = mbody(m;S)

En
losing instan
e lookup:

en
l

T.C

(e

0

.new<T> C(
e
)) = e

0

CT (C) = 
lass C /D {S f;...}

#(f) = #(e)

en
l

T

(new C(d, e))

= en
l

T

(new D(d))

CT (C) = 
lass C /U.D {S f;...}

#(f) = #(e)

en
l

T

(new C(d, d

0

, e))

= en
l

T

(d

0

.new<U> D(d))

CT (S.C) = 
lass C /D {S f;...}

#(f) = #(e) T 6= S.C

en
l

T

(e

0

.new<S> C(d, e))

= en
l

T

(new D(d))

CT (S.C) = 
lass C /U.D {S f;...}

#(f) = #(e) T 6= S.C

en
l

T

(e

0

.new<S> C(d, d

0

, e))

= en
l

T

(d

0

.new<U> D(d))

Fig. 3. FJI: Auxiliary de�nitions

e

0

. The other rules follow a 
ommon pattern; we explain the �fth rule as a

representative. Sin
e the subs
ripted type T is di�erent from the type of the

argument e

0

.new<S> C(d, d

0

, e), the en
losing instan
e e

0

is not the 
orre
t

answer. We therefore make a re
ursive 
all with an obje
t d

0

.new<U> D(d) of

the super
lass obtained by dropping e

0

and as many arguments e as the �elds

f of the 
lass S.C. We keep going like this until, �nally, the argument be
omes

an instan
e of T and we mat
h the �rst rule. For example:

en
l

A1.A2.A3

(e

0

.new<C1.C2> C3(a, e

1

, b, e

2

, 
))

= en
l

A1.A2.A3

(e

2

.new<B1.B2> B3(a, e

1

,b))

= en
l

A1.A2.A3

(e

1

.new<A1.A2> A3(a))

= new A1().new<A1> A2()

where e

1

= new A1().new<A1> A2() and e

2

= new B1().new<B1> B2().



Note that the en
l fun
tion outputs only the dire
t en
losing instan
e. To ob-

tain outer en
losing instan
es, su
h as A1.this, en
l 
an be used repeatedly:

en
l

A1.A2

(en
l

A1.A2.A3

(e)).

3.5 Computation

As in FJ, the redu
tion relation of FJI has the form e �! e

0

. We write �!

�

for

the re
exive and transitive 
losure of �!. The redu
tion rules are given in the

middle of the left 
olumn of Figure 2. There are four redu
tion rules, two for �eld

a

ess and two for method invo
ation. The �eld a

ess expression new C(e).f

i

looks up the �eld names f of C using �elds(C) and yields the 
onstru
tor argu-

ment e

i

in the position 
orresponding to f

i

in the �eld list; e

0

.new<T> C(e).f

i

behaves similarly. The method invo
ation expression new C(e).m(d) �rst 
alls

mbody(m; C) to obtain a triple of the sequen
e of formal arguments x, the method

body e, and the 
lass C

1

. � � � .C

n

where m is de�ned; it yields a substitution in-

stan
e of the method body in whi
h the x are repla
ed with the a
tual arguments

d, the spe
ial variables this and C

n

.this with the re
eiver obje
t new C(e), and

ea
h C

i

.this (for i < n) with the 
orresponding en
losing instan
e 


i

, obtained

from en
l . Sin
e the method to be invoked is de�ned in C

1

. � � � .C

n

, the dire
t

en
losing instan
e C

n�1

.this is obtained by en
l

C

1

.���.C

n

(e), where e is the re-


eiver obje
t; similarly, C

n�2

.this is obtained by en
l

C

1

.���.C

n�1

(en
l

C

1

.���.C

n

(e)),

and so on. The redu
tion rules may be applied at any point in an expression, so

we also need the obvious 
ongruen
e rules (if e �! e

0

then e.f �! e

0

.f, and

the like), whi
h we omit here.

For example, if the 
lass table in
ludes Outer, RefinedInner, Pair, A, and

B, then

new RefinedInner(

new Outer(new Pair(new A(), new B())), new Obje
t()).snd_p()

redu
es to new B() as follows:

new RefinedInner(

new Outer(new Pair(new A(), new B())), new Obje
t()).snd_p()

�! new Outer(new Pair(new A(), new B())).p.snd

�! new Pair(new A(), new B()).snd

�! new B()

3.6 Typing Rules

The typing rules for expressions, method de
larations, and 
lass de
larations are

given in the right 
olumn of Figure 2. An environment � is a �nite mapping

from variables to types, written x:T. The typing judgment for expressions has

the form � ` e 2 T, read \in the environment �, expression e has type T." The

typing rules are syntax dire
ted, with one rule for ea
h form of expression. The

typing rules for obje
t instantiations and method invo
ations 
he
k that ea
h

a
tual parameter has a type whi
h is a subtype of the 
orresponding formal



parameter type obtained by �elds or mtype; the en
losing obje
t must have a

type whi
h is a subtype of the annotated type T in new<T>.

The typing judgment for method de
larations has the form M OK IN C

1

. � � � .C

n

,

read \method de
laration M is ok if it is de
lared in 
lass C

1

. � � � .C

n

." The body

of the method is typed under the 
ontext in whi
h the formal parameters of the

method have their de
lared types and ea
h C

i

.this has the type C

1

. � � � .C

i

. If a

method with the same name is de
lared in the super
lass then it must have the

same type in the sub
lass.

The typing judgment for 
lass de
larations has the form L OK IN P, read

\
lass de
laration L is ok if it is de
lared in P." If P is a type T, the 
lass

de
laration L is an inner 
lass; otherwise, L is a top-level 
lass. The typing rules


he
k that the 
onstru
tor applies super to the �elds of the super
lass and

initializes the �elds de
lared in this 
lass, and that ea
h method de
laration and

inner 
lass de
laration in the 
lass is ok. The 
ondition C 62 P ensures that the

(simple) 
lass name to be de�ned is not also a simple name of one of the en
losing


lasses, so as to avoid ambiguity of the meaning of C.this.

3.7 Properties

As well as FJ programs, FJI programs also enjoy standard subje
t redu
tion and

progress properties, whi
h together guarantee that well-typed programs never get

stu
k on �eld a

esses or method invo
ations.

Theorem 1 (Subje
t Redu
tion). If � ` e 2 T and e �! e

0

, then � ` e

0

2 T

0

for some T

0

su
h that T

0

<

:

T.

Theorem 2 (Progress). Suppose e is a well-typed expression.

(1) If e in
ludes new C

0

(e).f as a subexpression, then �elds(C

0

) = T f and

f 2 f. Similarly, if e in
ludes e

0

.new<T

0

> C(e).f as a subexpression, then

�elds(T

0

.C) = T f and f 2 f.

(2) If e in
ludes new C

0

(e).m(d) as a subexpression, then mbody(m; C

0

) =

(x; e

0

; C

1

. � � � .C

n

) and #(x) = #(d), and 


1

; : : : ; 


n

appearing in the third


omputation rule are well de�ned.

Similarly, if e in
ludes e

0

.new<T

0

> C(e).m(d) as a subexpression, then

mbody(m; T

0

.C) = (x; d

0

; C

1

. � � �.C

n

) and #(x) = #(d) and 


1

; : : : ; 


n

ap-

pearing in the fourth 
omputation rule are well de�ned.

4 Translation Semanti
s

In this se
tion we 
onsider the other style of semanti
s: translation from FJI

to FJ. Every inner 
lass is 
ompiled to a top-level 
lass with one additional

�eld holding a referen
e to the dire
t en
losing instan
e; o

urren
es of quali-

�ed this are translated into a

esses to this �eld. For example, the Outer and

RefinedInner 
lasses in the previous se
tion are 
ompiled to the following three

FJ 
lasses.




lass Outer extends Obje
t {

Pair p;

Outer(Pair p) { super(); this.p = p; }

Outer$Inner make_inner () { return new Outer$Inner(this); }

}


lass Outer$Inner extends Obje
t {

Outer this$Outer$Inner;

Outer$Inner(Outer this$Outer$Inner) {

super(); this.this$Outer$Inner = this$Outer$Inner; }

Obje
t snd_p { return this.this$Outer$Inner.p.snd; }

}


lass RefinedInner extends Outer$Inner {

Obje
t 
;

RefinedInner(Outer this$Outer$Inner, Obje
t 
) {

super(this$Outer$Inner); this.
 = 
;

}

}

The inner 
lass Outer.Inner is 
ompiled to the top-level 
lass Outer$Inner; the

�eld this$Outer$Inner holds an Outer obje
t, whi
h 
orresponds to the dire
t

en
losing instan
e Outer.this in the original FJI program; thus, Outer.this is


ompiled to the �eld a

ess expression this.this$Outer$Inner.

We give a 
ompilation fun
tion j � j for ea
h synta
ti
 
ategory. Ex
ept for

types, the 
ompilation fun
tions take as their se
ond argument the FJI 
lass

name (or, ?) where the entity being translated is de�ned, written j � j

T

(or j � j

?

).

4.1 Types, Expressions and Methods

Every quali�ed 
lass name is translated to a simple name obtained by synta
ti


repla
ement of . with $.

jC

1

. � � � .C

n

j = C

1

$ � � � $C

n

The 
ompilation of expressions, written jej

T

, is given below. We write jej

T

as

shorthand for je

1

j

T

; : : : ; je

n

j

T

(and similarly for

�

�

T

�

�

,

�

�

M

�

�

T

and

�

�

L

�

�

P

).

jxj

T

= x

je

0

.fj

T

= je

0

j

T

:f

je

0

.m(e)j

T

= je

0

j

T

.m( jej

T

)

jnew D(e)j

T

= new D( jej

T

)

je

0

.new<T> D(e)j

T

= new jT.Dj ( jej

T

, je

0

j

T

)

jthisj

T

= this

jC

n

.thisj

C

1

.���.C

n

= this

jC

i

.thisj

C

1

.���.C

n

= jC

i+1

.thisj

C

1

.���.C

n

.this$C

1

$ � � �$C

i+1

(1 � i � n� 1)

As we saw above, a 
ompiled inner 
lass has one additional �eld, 
alled this$ jTj,

where T is the original 
lass name. C

i

.this in the 
lass C

1

. � � � .C

n

be
omes an



expression that follows referen
es to the dire
t en
losing instan
e in sequen
e

until it rea
hes the desired one. An en
losing instan
e e

0

of e

0

.new<T> C(e)

will be
ome the last argument of the 
ompiled 
onstru
tor invo
ation.

Compilation of methods, written jMj

T

, is straightforward. We use the notation

�

�

T

�

�

x for jT

1

j x

1

; : : : ; jT

n

j x

n

.

�

�

T

0

m (T x) { return e; }

�

�

T

= jT

0

j m(

�

�

T

�

�

x) { return jej

T

; }

4.2 Constru
tors and Classes

Compilation of 
onstru
tors, written jKj

T

, is given below.

�

�

�

�

C(S g, T f)

{ super(g); this.f = f; }

�

�

�

�

C

=

C(

�

�

S

�

�

g,

�

�

T

�

�

f)

{super(g); this.f=f;}

�

�

�

�

C(S g, S

0

g

0

, T f)

{ g

0

.super(g); this.f = f; }

�

�

�

�

C

=

C(

�

�

S

�

�

g, jS

0

j g

0

,

�

�

T

�

�

f)

{super(g, g

0

); this.f=f;}

�

�

�

�

C(S g, T f)

{ super(g); this.f = f; }

�

�

�

�

T.C

=

jT.Cj (

�

�

S

�

�

g,

�

�

T

�

�

f,

jTj this$ jT.Cj )

{super(g); this.f = f;

this.this$ jT.Cj=this$ jT.Cj;}

�

�

�

�

C(S g, S

0

g

0

, T f)

{ g

0

.super(g); this.f = f; }

�

�

�

�

T.C

=

jT.Cj (

�

�

S

�

�

g, jS

0

j g

0

,

�

�

T

�

�

f,

jTj this$ jT.Cj )

{super(g, g

0

); this.f = f;

this.this$ jT.Cj=this$ jT.Cj;}

It has four 
ases, depending on whether the 
urrent 
lass is a top-level 
lass or

an inner 
lass and whether its super
lass is a top-level 
lass or an inner 
lass.

When the 
urrent 
lass is an inner 
lass, one more argument 
orresponding to

the en
losing instan
e is added to the argument list; the name of the 
onstru
tor

be
omes jT.Cj, the translation of the quali�ed name of the 
lass. When the super-


lass is inner (the third and fourth 
ases), the argument used for the quali�
ation

of f.super(f) be
omes the last argument of the super() invo
ation.

Finally, the 
ompilation of 
lasses, written jLj

P

, is as follows:

�

�


lass C /S {T f; K L M}

�

�

?

=


lass C / jSj {

�

�

T

�

�

f; jKj

C

�

�

M

�

�

C

}

�

�

L

�

�

C

�

�


lass C /S {T f; K L M}

�

�

T

=


lass jT.Cj / jSj {

�

�

T

�

�

f; jTj this$ jT.Cj ; jKj

T.C

�

�

M

�

�

T.C

}

�

�

L

�

�

T.C

The 
onstru
tor, inner 
lasses, and methods of 
lass C de�ned in P are 
ompiled

with auxiliary argument P.C. Inner 
lasses L be
ome top-level 
lasses. As in


onstru
tor 
ompilation, when the 
ompiled 
lass is inner, its name 
hanges

to jT.Cj and the �eld this$ jT.Cj, holding an en
losing instan
e, is added. The


ompilation of the 
lass table, written jCT j, is a
hieved by 
ompiling all top-level


lasses L in CT (i.e.,

�

�

L

�

�

?

).



4.3 Properties of Translation Semanti
s

We develop three theorems here. First, the translation semanti
s preserves typ-

ing, in the sense that a well-typed FJI program is 
ompiled to a well-typed FJ

program (Theorem 3). Se
ond, we show that the behavior of a 
ompiled program

exa
tly re
e
ts the behavior of the original program in FJI: for every step of re-

du
tion of a well-typed FJI program, the 
ompiled program takes one or more

steps and rea
hes a 
orresponding state (Theorem 4) and vi
e versa (Theorem 5).

Theorem 3 (Compilation preserves typing). When � = x : T, we write j�j

for x :

�

�

T

�

�

. If an FJI 
lass table CT is ok and x : T; this : C

1

. � � � .C

n

; C

i

.this :

C

1

. � � � .C

i

i21:::n

`

FJI

e 2 T with respe
t to CT, then jCT j is ok and x :

�

�

T

�

�

; this : jC

1

. � � �.C

n

j `

FJ

jej

C

1

.���.C

n

2 jTj with respe
t to jCT j.

Theorem 4 (Compilation 
ommutes with redu
tion). If � `

FJI

e 2 T

where dom(�) does not in
lude this or C.this for any C, and e�!

FJI

e

0

, then

jej

?

�!

FJ

+

je

0

j

?

.

Theorem 5 (Compilation preserves termination). If � `

FJI

e 2 T where

dom(�) does not in
lude this or C.this, and jej

?

�!

FJ

e

0

, then e�!

FJI

e

00

and

e

0

�!

FJ

�

je

00

j

?

for some e

00

.

Unfortunately, Theorems 4 and 5 would not hold for a 
all-by-value ver-

sion of FJI, sin
e their properties depend on our non-deterministi
 redu
tion

strategy. An intuitive reason is as follows. In FJI, after method invo
ation,

C.this is dire
tly repla
ed with the 
orresponding en
losing instan
e. On the

other hand, in the 
ompiled FJ program, C.this is translated to an expression

this.f

1

.f

2

. � � �.f

n

, where ea
h f

i

is a mangled �eld name, and its evaluation

may be guarded by its 
ontext. Therefore, redu
tion steps do not 
ommute with


ompilation straightforwardly. Nevertheless, it should be possible to show 
or-

re
tness pby using another te
hnique, su
h as 
ontextual equivalen
e [18℄, as

Glew proved a similar result in the 
ontext of obje
t 
losure 
onversion for a


all-by-value obje
t 
al
ulus [7℄.

5 Elaboration

In this se
tion we formalize the elaboration of user programs. In user programs,

the re
eivers of �eld a

ess or method invo
ation, the en
losing instan
es of

inner 
lass instantiation, and the quali�
ations of type names may be omitted.

For example, a simple name C means an inner 
lass T.C when it is used in the

dire
t en
losing 
lass T. A basi
 job of elaboration is to �nd where a name f, m,

or C is bound and to re
over its re
eiver information or absolute path.

In the 
onventional s
oping rules of simple blo
k stru
tured languages, simple

names are bound to their synta
ti
ally nearest de
laration. In Java, however,

they 
an be bound to de
larations in super
lasses, or even in super
lasses of

en
losing 
lasses. For example, in the 
lass below, f in the method m is bound

to the �eld f of the en
losing 
lass C unless D has a �eld f.




lass C extends Obje
t {

Obje
t f; ...


lass D extends Obje
t { ...

Obje
t m () { return f; }

}

}

Similarly, f in the method m is bound to the �eld f of its super
lass B (when

neither C nor D has �eld f) in the following 
lasses.


lass B extends Obje
t { Obje
t f; ... }


lass C extends Obje
t { ...


lass D extends B { ...

Obje
t m () { return f; }

}

}

In general, beginning with the 
urrent 
lass where the �eld/method name is

used, the sear
h algorithm looks for the de�nition in super
lasses; if there is no

de�nition in any super
lass, it looks in the dire
t en
losing 
lass and its super-


lasses, and then in the se
ond dire
t en
losing 
lass and its super 
lasses, and so

on. On
e the de
laration where a name is bound is known, it is easy to re
over

the appropriate quali�
ation. In the examples above, f be
omes C.this.f and

D.this.f, respe
tively.

Suppose the algorithm above �nds the de�nition of the �eld/method in one

of the super
lasses of the 
urrent 
lass. Then, a �eld/method of the same name

must not be de�ned in any of the en
losing 
lasses. Similarly, if the �eld/method

de�nition is found in a super
lass of an en
losing 
lass C, a �eld/method of the

same name must not be de�ned in any of C's en
losing 
lasses. In the example

above, if both B and C de
lared a �eld f (and D did not), then elaboration would

fail as f in m is ambiguous; the user must write C.this.f or D.this.f, spe
ifying

the en
losing instan
e expli
itly. This rule also has one signi�
ant ex
eption: it

is not 
onsidered ambiguous if the de�nition found in a super
lass is also the

synta
ti
ally nearest de�nition in en
losing 
lasses. This situation o

urs when

an inner 
lass extends one of its en
losing 
lasses. For example, suppose E does

not de
lare the �eld f in the 
lass de�nition below.


lass C extends Obje
t {

Obje
t f; ...


lass D extends Obje
t { ...


lass E extends C { ...

Obje
t m () { return f; }

}

}

}

The referen
e to f in m is not ambiguous unless D de
lares the �eld f. (The

algorithm �nds the de�nition f in a super
lass of E.)



Simple type names obey similar elaboration rules. For example, D o

urring

in C is elaborated to C.D. However, unlike �eld names and method names, pre-

elaborated type names themselves 
an be quali�ed. In su
h a 
ase the head

simple name is elaborated �rst, then it looks up the de�nitions of the following

names in a manner similar to �eld lookup. For example, 
onsider the following


lass de
larations:


lass A extends Obje
t { ...


lass B extends Obje
t { ... }

}


lass C extends Obje
t { ...


lass D extends A { ... }

}


lass E extends C { D.B f; ... }

The type D.B of f is elaborated to A.B as follows:

1. The �rst name D is elaborated to C.D.

2. It is 
he
ked whether C.D.B makes sense; in this 
ase, it does not, sin
e the

inner 
lass D does not have the de
laration of B. The elaborator repla
es C.D

with its super
lass A and elaborates A.B in the 
ontext of C.

3. Sin
e A is not de
lared in C, it denotes the top-level 
lass A.

4. Finally, sin
e B is de
lared in the top-level 
lass A, A.B is the elaborated type

for D.B in the 
ontext of E.

Last, we des
ribe how a 
onstru
tor invo
ation new T(e) is elaborated. A
-

tually, it is slightly more involved than others sin
e it requires both elaboration

of the type and re
overing of an en
losing instan
e (when it turns out to be

instantiation of an inner 
lass). First of all, the pre-elaborated type name T is

elaborated to T

0

. If T

0

is a simple name C, then the 
onstru
tor invo
ation does

not need an en
losing instan
e. On the other hand, if T

0

is U.C, then we have to

make up an en
losing instan
e D.this, whose type is subtype of U, by 
he
king

whi
h en
losing 
lass is a sub
lass of U. Finally, among su
h en
losing 
lasses, the

innermost one is 
hosen and new T(e) is elaborated to D.this.new<U> C(...).

The annotation <U> is important to spe
ify whi
h inner 
lass is instantiated,

sin
e there might be more than one inner 
lass C de�ned in 
lasses between D

and U. Consider the following 
lasses and the expression new A.B() inside the


lass D.E:


lass A extends Obje
t { ...


lass B extends Obje
t { ... }

}


lass C extends A { ...


lass B extends Obje
t { ... }

}


lass D extends C { ...


lass E extends C { ...

Obje
t m () { ... new A.B() ...}

}

}



First, A.B is elaborated to itself. Now, we need to �nd out whi
h en
losing 
lass

(in
luding the 
urrent 
lass) is a sub
lass of A. In this 
ase, both D and D.E

are; then, the innermost one, D.E, is 
hosen, and new A.B() is elaborated to

E.this.new<A> B(). The annotation <A> is important sin
e we have to remem-

ber that the 
lass A.B is to be instantiated (not C.B).

For brevity, we omit the formal rules of elaboration, whi
h 
losely follow

the algorithm des
ribed above; interested readers are referred to a 
ompanion

te
hni
al report [11℄.

6 Interpretations of the Inner Class Spe
i�
ation

Through this work, we have experimented a few Java 
ompilers, in
luding Sun's

JDK (for Solaris), JDK for linux, and guava
. Besides �nding a few bugs related

to inner 
lasses (mostly already known to the developers), we observed some

interesting variations in behavior 
orresponding to an underspe
i�
ation in the


urrently available Inner Classes Spe
i�
ation [12℄, 
on
erning the meaning of

the C.this expression. Consider the following Java program:


lass C {

void who () {

System.out.println("I'm a C obje
t");

}


lass D extends C {

void m () { C.this.who(); }

void who () {

System.out.println("I'm a C.D obje
t");

}}

publi
 stati
 void main (String[℄ args) {

new C().new D().m();

}

}

Surprisingly, this program prints out I

0

m a C.D obje
t when 
ompiled with

JDK 1.1.7a, but I

0

m a C obje
t under JDK 1.2. In the old JDK, the meaning

of C.this is exa
tly the same as D.this or this when C is a super
lass of the

inner 
lass C.D; thus, C.this is bound to the re
eiver new C().new D (). In

JDK 1.2, on the other hand, C.this is always bound to the en
losing obje
t of

the re
eiver regardless of super
lass.

7 Related Work

Nested 
lasses in Beta. Beta [15℄ also allows nested 
lass de�nitions (as an in-

stan
e of nested patterns , the only abstra
tion me
hanism in Beta, whi
h uni�es


lasses and pro
edures). There are two signi�
ant di�eren
es from inner 
lasses.

First, inner 
lasses are 
ovariantly spe
ialized in a sub
lass: for example, if C <

:

D



and both C and D have the de
laration of an inner 
lass of name E, then C.E

must extend D.E. Se
ond, nested 
lasses are virtual [14℄, in the sense that it de-

pends on run-time type of the en
losing instan
e whi
h 
onstru
tor is invoked.

A 
onstru
tor invo
ation e.new E(e) instantiates an obje
t of 
lass C.E when

the run-time type of e is C while it instantiates an obje
t of 
lass D.E when that

of e is D.

Madsen has re
ently des
ribed the algorithm of elaboration (they 
all seman-

ti
 analysis) used in the Mj�lner Beta 
ompiler [13℄. The algorithm is very 
lose

to the rules presented in Se
tion 5, in a sense that the sear
h order is the same

as ours, although the presen
e of virtual 
lasses 
ompli
ates the algorithm.

Spe
i�
ation of inner 
lasses. In the 
urrently available Inner Classes Spe
i�
a-

tion [12℄, semanti
s of inner 
lasses is given as a translation from inner 
lasses to

top-level 
lasses. It also explains how inner 
lasses a�e
t other language aspe
ts,

su
h as syn
hronization, a

ess restri
tion and binary 
ompatibility. However,

des
ription is rather informal and sometimes vague, resulting in di�erent imple-

mentations with di�erent semanti
s, as explained in the previous se
tion.

Obje
t 
losure 
onversion. Re
ently, Glew [7℄ has studied 
losure 
onversion in

the 
ontext of a 
all-by-value obje
t 
al
ulus (without 
lasses) and shown 
orre
t-

ness of 
onversion based on 
ontextual equivalen
e. Our translation semanti
s


an also be viewed as 
losure 
onversion of 
lass de�nitions. Sin
e his 
al
ulus

does not have 
lasses, semanti
 a

ount of intera
tion between inheritan
e and

nested 
lasses is not given.

Mi
rosoft's delegates. Mi
rosoft has proposed delegates [16℄ as an alternative to

inner 
lasses. The basi
 idea of delegates resembles the fun
tion pointers found

in C and C++. Programmers 
an 
reate a delegate with an expression of the

form e.m (without parameters) and pass it elsewhere; later, the method m 
an be

invoked through the delegate. We believe it would be possible to model delegates

in an extension of FJ, as we have done here for inner 
lasses. On the one hand,

the formalization would be simpler than inner 
lasses due to the absen
e of

intera
tion with inheritan
e. On the other hand, it would be hard to model

the implementation s
heme of delegates, sin
e it depends on Java's re
e
tion

features.

Other 
ore 
al
uli for Java. There have been proposed several 
al
uli [5, 19, 17, 6℄

to study formal properties and extensions of Java; none of them, however, treats

inner 
lasses, although we don't see any inherent diÆ
ulty to integrate inner


lasses into their 
al
uli.

8 Con
lusions and Future Work

We have formalized two styles of semanti
s for inner 
lasses: a dire
t style and

a translation style, where semanti
s is given by 
ompilation to a low-level lan-

guage without inner 
lasses, following Java's Inner Classes Spe
i�
ation. We



have proved that the two styles 
orrespond, in the sense that the translation


ommutes with the high-level redu
tion relation in the dire
t semanti
s. Besides

deepening our own understanding of inner 
lasses, this work has un
overed a

signi�
ant underspe
i�
ation in the oÆ
ial spe
i�
ation.

For future work, the intera
tion between inner 
lasses and a

ess restri
tions

in Java is 
learly worth investigating. We also hope to be able to model Java's

other forms of inner 
lasses: anonymous 
lasses and lo
al 
lasses, whi
h 
an be

de
lared in method bodies; these are slightly more 
ompli
ated, sin
e method

arguments (not just �elds) 
an o

ur in them as free variables, but we expe
t

they 
an be 
aptured by a variant of FJI.
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Syntax:

L ::= 
lass C /C {C f; K M}

K ::= C(C f)

{super(f); this.f = f;}

M ::= C m(C x) {"e;}

e ::= x j e.f j e.m(e) j new C(e)

Computation:

�elds(C) = C f

(new C(e)).f

i

�! e

i

mbody(m;C) = (
x
; e

0

)

(new C(e)).m(d)

�! [d=x; new C(e)=this℄e

0

Subtyping:

C <

:

C

C <

:

D D <

:

E

C <

:

E

CT (C) = 
lass C /D {...}

C <

:

D

Expression typing:

� ` x 2 �(x)

� ` e

0

2 C

0

�elds(C

0

) = C f

� ` e

0

.f

i

2 C

i

� ` e

0

2 C

0

mtype(m;C

0

) = D!C

� ` e 2 C C <

:

D

� ` e

0

.m(e) 2 C

�elds(C) =
D f

� `
e
2
C C

<

:

D

� ` new C(e) 2 C

Method typing:

x : C; this : C ` e

0

2 E

0

E

0

<

:

C

0

CT (C) = 
lass C /D {...}

if mtype(m;D) = D!D

0

;

then C = D and C

0

= D

0

C

0

m (C x) {"e

0

;} OK IN C

Class typing:

K =

C(D g, C f)

{super(g); this.f = f;}

�elds(D) = D g M OK IN C


lass C /D {C f; K M} OK

Field lookup:

�elds(Obje
t) = �

CT (C) = 
lass C /D {C f; K M}

�elds(D) = D g

�elds(C) = D g; C f

Method type lookup:

CT (C) = 
lass C /D {C f; K M}

B m (B x) {"e;} 2 M

mtype(m;C) = B!B

CT (C) = 
lass C /D {C f; K M}

m is not de�ned in M

mtype(m;C) = mtype(m; D)

Method body lookup:

CT (C) = 
lass C /D {C f; K M}

B m (B x) {"e;} 2 M

mbody(m;C) = (
x
;e)

m is not de�ned in M

CT (C) = 
lass C /D {C f; K M}

mbody(m;C) = mbody(m;D)

Fig. 4. FJ De�nitions


