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Abstract
Multi-level generating extensions, studied by Gl̈uck and Jørgensen,
are generalization of (two-level) program generators, such as parser
generators, to arbitrary many levels. By this generalization, the
notion ofpersistent code—a quoted code fragment that can be used
for different stages—naturally arises.

In this paper we propose a typed lambda calculusλ©¤, based
on linear-time temporal logic, as a basis of programming languages
for multi-level generating extensions with persistent code. The key
idea of the type system is correspondence of (1) linearly ordered
times in the logic to computation stages; (2) a formula©A (next
A) to a type of code that runs at the next stage; and (3) a formula
¤ A (alwaysA) to a type of persistent code executable at and after
the current stage. After formalizingλ©¤, we prove its key property
of time-ordered normalizationthat a well-typed program can never
go back to a previous stagein a “time-ordered” execution, as well
as basic properties such as subject reduction, confluence and strong
normalization. Commuting conversion plays an important role for
time-ordered normalization to hold.

Categories and Subject DescriptorsD.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; F.3.3 [Logics and Meanings of Programs]: Studies of
Program Constructs—Type structure; F.4.1 [Theory of Computa-
tion]: Mathematical Logic and Formal Languages—Computational
Logic, Lambda Calculus and Related Systems, Temporal Logic;
F.3.2 [Logics and Meanings of Programs]: Semantics of Program-
ming Languages—Partial Evaluation

General Terms Languages, Theory

Keywords Curry-Howard isomorphism, Meta-programming,
Modal logic, Temporal logic, Time-ordered normalization, Type
systems

1. Introduction
1.1 Background

Program generation and related techniques such as partial evalu-
ation [12] have been drawing much attention as computation in a
program can often be “staged” and a program specialized with re-
spect to earlier inputs can be much faster than a general-purpose
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program taking all inputs at once. A good example of program
generators is parser generators such as yacc, which aretwo-level
program generators. Glück and Jørgensen [9] generalized two-level
program generators into multi-level ones, calledmulti-level gen-
erating extensions, which, given an input, generates another pro-
gram generator as an output. They showed that an ordinary program
can be translated to a multi-level generating extension by exploit-
ing multi-level binding time analysis—a natural generalization of
binding-time analysis, used in off-line partial evaluation [12].

Davies [5] developed a typedλ-calculusλ© and argued that a
type system for the multi-level binding-time analysis corresponds
to a proof system of (intuitionistic) linear-time temporal logic with
modality “next” via the Curry-Howard isomorphism. The key idea
is correspondence between the notion of time in the logic and
binding-time, between a formula©A, meaning “A holds at the
next time,” and a typeA at the next binding-time. Moreover, term
constructorsnext andprev to introduce and eliminate©A, re-
spectively, are considered quasi-quote and unquote, respectively,à
la Lisp. So, terms ofλ© themselves can be considered multi-level
generating extensions, which generate quoted code when executed.

Although one of the original motivations of Glück and
Jørgensen’s work wasautomatic generationof multi-level gen-
erating extensions, Davies and Pfenning [6, 5] and Taha and
Sheard [25] argued that it would be worth studying language sup-
port for (manually written) multi-level programs. Taha et al. ex-
tendedλ© with features of run-time code generation andpersistent
code—code fragment that can be used in any future stage. Persis-
tent code, which is useful as it enables reuse of specialized code
over multiple stages, naturally arises when more than two stages
are taken into account. A series of type systems [25, 18, 3, 24, 4]
has been developed to ensure safety of such features.

1.2 Our Goal and Approach

Similarly to the previous work, our goal is to develop a theoretical
foundation for statically typed programming languages for multi-
level programs. We approach the goal by making use of the Curry-
Howard isomorphism—a principle which has proven to be useful to
design new type systems—as much as possible, as Davies and Pfen-
ning [6, 5] did. More concretely, starting fromλ© (or, equivalently
linear-time temporal logic with “next”), we introduce persistent
code by augmenting the corresponding logic with a new modality
“always”. Just as a formula©A corresponds to a type of code of
the next level, a formula¤ A (read “alwaysA”) will correspond to
a type ofpersistentcode that can be used at the current or any later
stages. The distinction between the two kinds of code mostly cor-
responds to that between open and closed code [18], whose combi-
nation has been studied already. As far as we know, however, their
combination in the type system based a proof system of a temporal
logic is new. Although the type system presented in this paper does
not seem to subsume the previous type systems [25, 18, 3], we be-



lieve a logically motivated foundation will shed a new light on the
design of type systems for multi-level programs.

1.3 Contributions

Our technical contributions are summarized as follows:

• We develop a typed calculusλ©¤, corresponding to linear-time
temporal logic with two modalities “next” and “always” and
give its formal definition consisting of syntax, a type system,
and operational semantics;

• We prove thatλ©¤ enjoys basic properties such as subject
reduction, confluence, strong normalization; and

• We also prove the property oftime-ordered normalization, first
formulated and proved by Davies [5] forλ©.

Intuitively, time-ordered normalization states that, in staged execu-
tion of a well-typed program, earlier stage execution never requires
that of future stages. So, this property can be considered one of the
most important correctness criteria of type systems for multi-level
programs, as well as standard ones such as type safety.

Davies and Pfenning [6] studied the Curry-Howard isomor-
phism for modal logic S4 (with necessity) by developing another
typedλ-calculusλ¤, and discussed its connection with run-time
code generation. Our calculusλ©¤ is not a straightforward com-
bination of two calculiλ© and λ¤—it turns out that non-trivial
extensions are required for time-ordered normalization, a crucial
property as a calculus for multi-level programs, to hold.

1.4 The Rest of This Paper

First, we show an overview of the calculusλ©¤ with program-
ming examples in Section 2. We give its formal definition in Sec-
tion 3 with proofs of its properties including time-ordered normal-
ization; then, we develop Mini-ML©¤ by extendingλ©¤ with ba-
sic data types and recursion and give its call-by-value semantics
in Section 4. Finally, after discussing related work in Section 5,
we conclude in Sect. 6. We omit most of proofs here; a full version
is available athttp//www.sato.kuis.kyoto-u.ac.jp/~yuse/
papers/.

2. Overview ofλ©¤

In this section, we first describe how a proof system of linear-time
temporal logic can evolve to a typed calculusλ©¤ and then explain
how the term constructors related to the modalities can be consid-
ered as program constructs that manipulate code expressions. The
key ideas for relating this kind of logic with a calculus are the fol-
lowing three correspondences:

• the linearly ordered times in the logic to computation stages in
the calculus,

• formula©A to the type ofephemeral code(of typeA), that is,
code which will be executed only at the next stage, and

• formula¤ A to the type ofpersistent code(of typeA), which
can be executed at the current and any later stage.

Finally, we informally discuss time-ordered normalization inλ©¤

with some technical subtleties.

2.1 A Proof System of Linear-time Temporal Logic

We first consider a proof system for linear-time temporal logic
with two modalities—©A, which means “A at the next time,” and
¤ A, which means “alwaysA from now on.” The proof system is
partially inspired by Pfenning and Davies’s formalization of modal
logic [20], based on the notion of judgments [15]. The basic idea
is to consider two kinds of judgments “A holds at timen” and

“A holds at timen and any later.” Accordingly, a hypothetical
judgment has two kinds of assumption sets and takes the following
form:

An1
1 , . . . , A

nk
k ; Bm1

1 , . . . , B
m`
` `n C

which means “C holds at timen under the assumption that each
Ai holds at timeni and any later and that eachBj holds (only) at
time mj .” Then, the former kind of assumptions can be used only
when the current time is later than their time, while the latter can
be used only when the current time and their time agree, resulting
in the following two rules:

ni ≤ m
. . . , Ani

i , . . . ; Γ `m Ai ∆; . . . , Bm
i , . . . `m Bi

Usual connectives are formulated in a standard manner, except the
form of hypothetical judgments. For example, the introduction and
elimination rules for implication are as follows:

∆;Γ, An `n B
∆;Γ `n A → B

∆;Γ `n A → B ∆;Γ `n A
∆;Γ `n B

Note that the times attached to judgments have to agree.
Considering the intuitive meaning of a hypothetical judgment,

we can easily give the introduction and elimination rules for modal-
ity ©:

∆;Γ `n+1 A
∆;Γ `n ©A

∆;Γ `n ©A

∆;Γ `n+1 A

Modality ¤ is expressed by a hypothetical judgment with zero
assumptions of the form “A holds at timen”. The introduction
rule for modality¤ amounts to internalizing such a (hypothetical)
judgment, and the elimination rule turns “¤ A holds at timen” into
“A holds at timen and any later”:

∆; · `n A
∆;Γ `n ¤ A

∆;Γ `n+i ¤ A ∆, An+i; Γ `n B
∆; Γ `n B

(Here, · denotes the empty assumption set.) We allow the elimi-
nation of¤ A at a time different from the conclusion for reasons
discussed later.

2.2 Proof Terms for Code Manipulation

By the Curry-Howard isomorphism, judgments of a proof system
corresponds to type judgments of a calculus, by augmenting with
variables and terms. Since the hypothetical judgment form include
two assumption sets, a type judgment naturally takes the following
form:

u1::
n1A1, . . . , uk::nkAk; x1:

m1B1, . . . , x`:
m`B` `n M : C

with two kinds of variablesui andxj . We call the formerpersistent
variablesas they are bound to persistent code and the latterordi-
nary variables. Intuitively, the type judgment means that termM
is given typeC at timen under the condition that each persistent
variableui of type Ai can be used at timeni or later, and each
ordinary variablexj has typeBj atmj .

Proof rules in a logic correspond to typing rules in a calculus.
So, we obtain the following rules from introduction/elimination
rules for©:

∆;Γ `n+1 M : A
∆;Γ `n nextM : ©A

∆;Γ `n M : ©A

∆;Γ `n+1 prevM : A
.

Since proof steps in which an introduction rule is followed by an
elimination rule correspond to a redex, we also obtain the reduc-
tion rule prev(nextM) −→ M . From a computational point of
view, next andprev are considered Lisp’s quasi-quotation (‘) and



unquote (,), respectively. Thus, the following reduction sequence

(λz. next(x + prev z)) (next 1)

−→β next(x + prev next 1)

−→© next(x + 1)

can be seen as the evaluation of((lambda (z) ‘(+ x ,z)) ’1)
to ’(+ x 1).

Similarly, from the proof rules for¤ A, we obtain

∆; · `n M : A
∆;Γ `n boxM : ¤ A

∆;Γ `n+i M : ¤ A ∆, u::n+iA; Γ `n N : B
∆;Γ `n let boxu =i M in N : B

as typing rules andlet boxu =i boxM in N −→ [M/u]N as
a reduction rule. (Here,[M/u] is substitution ofM for a persis-
tent variableu.) From a computational viewpoint,boxM con-
structs persistent code. Since persistent code may be executed at
different stages,M should not contain free ordinary variables,
which are available only at a certain stage. Roughly speaking,
let boxu =i M in N first evaluatesM to obtain persistent code
boxM ′, bindsu to M ′ by removingbox, and evaluatesN . For
example, the following reduction sequence demonstrates how per-
sistent code can be useful:

let boxu =0 box(λx.x + 1) in (u 2, next(u 3, nextu 4))

−→¤ ((λx.x + 1) 2, next((λx.x + 1) 3, next(λx.x + 1) 4))

−→β (2 + 1, next((λx.x + 1) 3, next(λx.x + 1) 4))

Notice that the persistent codeλx.x+1 is embedded into the code
of different stages; furthermore, we can view embedding persistent
code into the current stage (as inu 2) as run-time code generation,
because it runs at the same stage as it is constructed.

2.3 Commuting Conversions for Time-Ordered
Normalization

Since aλ©¤ term is a staged program, the reduction relation is
augmented with information onwhenor at which stagereduction
occurs: for example,(λx.x)y

0−→β y whilenext((λx.x)y)
1−→β

next y, as execution inside quotationnext happens at the next
stage. Time-ordered normalization roughly states that a normal
form of a given well-typed term can be obtained by reducing in
the (increasing) order of stages. In other words, after reduction at a
certain stage finishes, there will be no need to go back to this stage.
For example, the reduction stages of the following sequence is in
the increasing order of stages:

(λx. next((prevx) y)) nextλz. z

0−→β next((prev nextλz. z) y)

0−→© next((λz. z) y)

1−→β next y

This property is thus an evidence that the type system correctly
captures computation stages.

Unfortunately, the reduction rules described above are not suf-
ficient for time ordered normalization to hold:

(let boxu =1 (λx.x) box v in λy. y) z

1−→β (let boxu =1 box v in λy. y) z

1−→¤ (λy. y) z

0−→β z

Here, the first reduction belongs to the stage 1 sincelet box tries
to destruct persistent code of the next stage (notice that=1). The
problem is thatlet box for a future stage blocks aβ-redex of the
current stage.

In order to solve this problem, we adopt commuting conver-
sions [8], which are often found in calculi with sum types and case
expressions:

(let boxu =i P in Q) R
0−→com let boxu =i P in (Q R)

This rule, which expands the scope ofu of let box, may reveal a
hidden redexQ R (whenQ is aλ-abstraction). Then, the problem
above disappears as follows:

(let boxu =1 (λx.x) box v in λy. y) z

0−→com let boxu =1 (λx.x) box v in (λy. y) z

0−→β let boxu =1 (λx.x) box v in z

1−→β let boxu =1 box v in z

1−→¤ z .

Similar observations have been made by Lawall and Thie-
mann [14] and Hatcliff and Davies [11], who used (an extension
of) Moggi’s computational lambda-calculus [17] as a formal frame-
work of partial evaluation.

2.4 Programming in Mini-ML ©¤

Now, we extendλ©¤ with familiar programming constructs such
as the Boolean type and recusive definitions to Mini-ML©¤and
demonstrate simple examples of programming to compare different
modalities. As in Davies and Pfenning [5, 6], we take the standard
example of the recursively defined power functionxn, and com-
pare several programs to generate specialized code with respect to
the exponentn given as an input. Although the presentation here is
rather informal—for example, we often omit obvious type declara-
tions in favor of readability—we will give the definition of Mini-
ML©¤ in Section 4 with its call-by-value reduction semantics.

Taking the meaning ofnext andbox as quotation into account,
we assume that a term inside a quotation never reduces unless it is
escaped withprev.

We begin with an ordinary definition ofpower without staging
(here,Ã∗ is the call-by-value reduction relation defined later):

power : int → int → int

≡ fix p:int→int→int. λn:int.

if n = 0 then λx:int. 1

else let q = p (n− 1) in λx:int. x ∗ (q x)

power 2 Ã∗ λx. x ∗ ((λx. x ∗ ((λx. 1) x)) x)

Note that, under a usual language implementation, the result of
power 2 is a function value, which does not have a symbolic
representation. Now, we augment the function body above with
next, prev, box and let box to obtain functions, which return a
specialized program as quoted code.

First, we showpower b, which uses onlybox andlet box as in
Davies and Pfenning [6]:

power b : int → ¤(int → int)

≡ fix p:int→¤(int→int).

λn:int. if n = 0 then box(λx:int. 1)

else let box u = p (n− 1)

in box(λx:int. x ∗ (u x))

power b 2 Ã∗ box(λx. x ∗ ((λx. x ∗ ((λx. 1) x)) x))



The residual code generated bypower b, however, still contains
redundant redices, like(λx. 1) x, and thus is not such an efficient
one. (Note that reduction underbox does not occur.)

Davies [5] showed that those redundant redices can be elimi-
nated withλ©, thanks to the ability to manipulate code that con-
tains free variables:

power c : int →©(int → int)

≡ λn:int. next(λx:int. prev(

(fix p:int→©int. λm:int.

if m = 0 then next 1

else next(x ∗ prev(p (m− 1))))

n))

power c 2 Ã∗ next(λx. x ∗ (x ∗ 1))

The key idea in this definition is to useprev inside the
scope of λ-abstracted variablex, compute code of the form
next(x ∗ x ∗ · · · ∗ x| {z }

n

∗1) of type© int, and embed it into the body

of the specialized function. Notice thatfix is moved deep inside
of the whole function body.power c provides more efficient code
thanpower b, but the code itself is restricted in reuse: it can be ex-
ecuted only at the next stage. Thus, if one wants to use specialized
power functions two stages later, he or she also has to write another,
very similar version with typeint →©©(int → int).

One of our goals is to combine the flexibility ofnext code
and portability ofbox code. Now that our calculus allows both©
and¤ in one program, we can define new functionpower cb as
follows:

power cb : ¤ int →©¤(int → int)

≡ λn′:¤int. let boxu = n′ in next box λx:int. prev(

(fix p:int→©int. λm:int.

if m = 0 then next 1

else next(x ∗ prev(p (m− 1))))

u)

power cb (box 2) Ã∗ next box(λx. x ∗ (x ∗ 1))

As seen above, the resulting code is as efficient as inpower c.
Moreover, the code has type©¤(int → int) and so can be used
at the next and any later stage: for example, the next term shows
that a specialized cube function is used at multiple stages.

let boxu =1 prev(power cb(box 3))

in next(· · ·u 5 · · · next(· · ·u 9 · · · ) · · · )
The type of this function, however, is not quite what may have

been expected: it takes¤ int, not int, as an argument and returns
©¤(int → int), not ¤(int → int), which could be used even
at the current stage by run-time code generation. The first problem
stems from the fact that, unlikepower b, the argument has to be
used insidebox, due to the move offix. We do not think this is
a significant problem because constants of base types (such as 2,
true etc.) are actually available at any stage and so we can assume
that they always have an box type (such as¤ int, ¤ bool etc.). The
second problem in the return type from the fact that the only way to
escape from quotation is to useprev, which refers to the previous
stage. If we omittednext beforebox, the variableu could not be
referred to insideprev, becausebox does not change the stage at
which a term is typed. It is left for future work to solve this problem
with a type system that corresponds to logic via the Curry-Howard
isomorphism.

3. λ©¤

In this section, we give a formal definition ofλ©¤ with its syntax
(Section 3.1), type system (Section 3.2), and operational semantics

(Section 3.3). Finally, we discuss some properties ofλ©¤ in Sec-
tion 3.4.

3.1 Syntax

Let OVars and PVars be countably infinite sets ofordinary
variables, ranged over byx andy, andpersistent variables, ranged
over byu andv, respectively. We assumeOVars andPVars are
disjoint. We also assume the setBTypes of base types, ranged
over byb.

DEFINITION 1 (Types and Terms).The sets oftypes, ranged over
by A andB, and terms, ranged over byM andN , are defined by
the following grammar:

types A, B ::= b | A → B | ©A | ¤ A

terms M, N ::= x | u | λx:A.M |M N | nextM | prevM
| boxM | let boxu =i M in N

wherei is a natural number.

The persistent variableu of let boxu =i N in M and the or-
dinary variablex of λx:A.M are bound inM . In what follows, we
assume tacit renaming of bound variables so that no bound variable
has the same name as any other bound variable or free variable.
The type constructors© and¤ connect tighter than→, so, for ex-
ample,©A → B means(©A) → B. let box andλ extends to
the right as much as possible: for example,let boxu =i M in x y
meanslet boxu =i M in (x y). The indexi in let box is often
omitted when it is 0.

We writeFPV(M) for the set of free persistent variables and
FOV(M) for the set of free ordinary variables, both of which
are defined in the standard manner. We write[M/x] and [M/u]
for the standard capture-avoiding substitution ofM for x andu,
respectively.

3.2 Type System

As discussed in the previous section, the form of the type judgments
is ∆;Γ `n M : A, read “termM is given typeA at time (stage)
n under persistent context∆ and ordinary contextΓ.” Here, n is
a natural number. Persistent and ordinary contexts are formally
defined as follows:

persistent context ∆ ::= · |∆, u::nA
ordinary context Γ ::= · | Γ, x:nA

We assume that no variables are declared more than once in one
context.

The typing rules to derive type judgments are shown in Fig-
ure 1. Each rule is obtained by augmenting each inference rule in
the previous section with term constructors. The rulesT-OVAR and
T-PVAR correspond to the proof rules for truth and valid assump-
tions, respectively. Notice that a declarationu::nA in a persistent
context can be referred to at any time equal to or later thann. The
rulesT-OVAR, T-ABS, andT-APP for variables, abstractions, and
applications, respectively, are essentially the same as ones in the
simply typedλ calculus. Notice that the times of type judgments in
the premises and conclusions must be the same.

An intuitive meaning of the other rules, related to code types
©A and¤ A, are explained in the previous section. As already
mentioned,T-LETBOX allows to unquote persistent codeM of
time n + i (i ≥ 0), which can be later than the time of the body
N . Allowing i > 0 seems necessary to “prove” both©¤ A →
¤©A and¤©A →©¤ A for anyA. The next example shows
such usage ofT-LETBOX.

EXAMPLE 1 (¤©A ↔©¤ A).
LetM1 ≡ λx:¤©A. let boxu =0 x in next box prevu and
M2 ≡ λx:©¤ A. let boxu =1 prevx in box nextu. Then, we



(x:nA ∈ Γ)

∆; Γ `n x : A
(T-OVAR)

(u::mA ∈ ∆ n ≥ m)

∆; Γ `n u : A
(T-PVAR)

∆;Γ, x:nA `n M : B

∆;Γ `n λx:A.M : A → B
(T-ABS)

∆;Γ `n M : A → B ∆;Γ `n N : A

∆;Γ `n M N : B
(T-APP)

∆;Γ `n+1 M : A

∆;Γ `n nextM : ©A
(T-NEXT)

∆;Γ `n M : ©A

∆;Γ `n+1 prevM : A
(T-PREV)

∆; · `n M : A

∆;Γ `n boxM : ¤ A
(T-BOX)

∆;Γ `n+i M : ¤ A
∆, u::n+iA; Γ `n N : B (i ≥ 0)

∆; Γ `n let boxu =i M in N : B
(T-LETBOX)

Figure 1. Typing rules

have typing derivations·; · `0 M1 : ¤©A →©¤ A and
·; · `0 M2 : ©¤ A → ¤©A as shown in Figure 2. Note that in
the latter case theT-LETBOX rule allows the box code to be used
at a time different from that of the code itself.

Closed terms of these types, together with those of types¤ A → A
and ¤ A → ¤ ¤ A (they are axioms of S4 modal logic) for
any A, make it possible to convert any code typeF1 · · ·FnA,
whereFi stands for either© or ¤, to a “normalized” code type
©· · ·©¤ A or©· · ·©A—which concisely expresses at which
time code is available—and back.

3.3 Operational Semantics

We define the operational semantics ofλ©¤ with the (ternary)

reduction relationM
k−→ M ′, read “termM reduces toM ′ in

one stepk stages later.” The indexk can be negative. The reduction
rules are shown in Figure 3. We simply writeM −→ M ′ if

M
k−→ M ′ for somek and−→∗ for the reflexive and transitive

closure of−→.
The ruleR-BETA is for the standardβ-reduction. TheR-PREV

is for unquoting of (ephemeral) code expression. Note that the in-
dex is−1 since the redex is typically under another quotation of
the previous stage and unquoting happens during the execution of
the previous stage. The ruleR-LETBOX is for embedding persis-
tent code expression; ifu appears not underbox, the quoted code
N will run during the execution of the current stage. The rules
R-APPC, R-PREVC, and LETBOXC are for commuting conver-
sions, we mentioned in the previous section. We provide congru-
ence rules,RC-ABS etc., for each term constructors, as we as-
sume a full reduction system here. Note that some term construc-
tors change the time of the term, so the indexk should be changed
accordingly.

EXAMPLE 2. LetM ≡ prev(let boxu =2 boxP in Q). Then,

M
1−→ prev([P/u]Q) by R-LETBOX, RC-PREV and

M
−1−→ let boxu =1 boxP in prevQ by R-PREVC.

3.4 Properties ofλ©¤

The calculusλ©¤ enjoys basic properties such assubject reduc-
tion, confluenceandstrong normalization, which are proved in a
fairly standard manner.

THEOREM 1 (Subject Reduction).If ∆;Γ `n M : A andM −→
M ′, then∆;Γ `n M ′ : A.

THEOREM 2 (Confluence).For any termM , if M −→∗ M1 and
M −→∗ M2, then there exists some termN such thatM1 −→∗ N
andM2 −→∗ N .

THEOREM 3 (Strong Normalization).If ∆;Γ `n M : A, then
there exists no infinite reduction sequence such thatM −→
M1 −→ · · · −→ Mn −→ · · ·.

Now, we give a rigorous formalization and proof fortime-
ordered normalization. The intuitive meaning of time-ordered nor-
malization is that, in staged execution of a well-typed program, ear-
lier stage execution never requires that of future stages. In other
words, having finished its execution at stagen, program execution
nevergoes back to this finished stage. This property is stronger than
the property such as “suitably defined call-by-value evaluation can
realizes staged computation,” which we will prove in the next sec-
tion, because, here, a reduction strategy within a stage is arbitrary
(as long as normal forms can be obtained with it).

Time-ordered normalization is first introduced by Davies and
proved for λ© [5], which is a subset ofλ©¤. His formulation
(statement and proof), however, was somewhat informal and even
limited to β-reduction: he showed that the time ofβ-redices can
be ordered, assumingR-PREV is applied to all redices of the form
prev nextM between twoβ-reductions. In contrast, we state that
property in a more formal and general manner, taking all kinds of
reduction includingR-BETA, R-PREV, andR-LETBOX and even
commuting conversions.

To make a formal statement, we introduce the relation⇓n M ,
read “termM is a normal form w.r.t. the times less thann,” together
with an auxiliary judgment5n M , read “termM is neutral w.r.t.
the times less thann,” which are defined by rules in Figure 4.⇓n M
means that there exists noM ′ such thatM

m−→ M ′ for anym < n,
M ′ and,5n M that sustitutingM for a variable in any (well-typed)
term does not yield a new redex at an earlier time. Note thatlet box
is not neutral, since substitutinglet box for x in, say,x N yields a
new redex due to commuting conversion.

Then, the time-ordered normalization theorem can be stated as
below. We writeM /

k−→ if there exists noM ′ such thatM
k−→

M ′.

THEOREM 4 (Time-Ordered Normalization).If ∆;Γ `n M : A
and ⇓k M , then for any series of reductions at timek such that

M
k−→ M ′ k−→ · · · k−→ N /

k−→, it holds that⇓k+1 N .



·; Γ1 `0 x : ¤©A

∆1; · `0 u : ©A

∆1; · `1 prevu : A

∆1; Γ1 `1 box prevu : ¤ A

∆1; Γ1 `0 next box prevu : ©¤ A

·; Γ1 `0 let boxu =0 x in next box prevu : ©¤ A

·; · `0 M1 : ¤©A →©¤ A

M1 ≡ λx:¤©A. let boxu =0 x in next box prevu
∆1 ≡ u::0©A
Γ1 ≡ x:0 ¤©A

·; Γ2 `0 x : ©¤ A

·; Γ2 `1 prevx : ¤ A

∆2; · `1 u : A

∆2; · `0 nextu : ©A

∆2; Γ2 `0 box nextu : ¤©A

·; Γ2 `0 let boxu =1 prevx in box nextu : ¤©A

·; · `0 M2 : ©¤ A → ¤©A

M2 ≡ λx:©¤ A. let boxu =1 prevx in box nextu
∆2 ≡ u::1A
Γ2 ≡ x:0©¤ A

Figure 2. Examples of type derivations

(λx:A.M) N
0−→ [N/x]M (R-BETA)

prev(nextM)
−1−→ M (R-PREV)

let boxu =i boxM in N
i−→ [M/u]N (R-LETBOX)

(i > 0 andu 6∈ FPV(N))

(let boxu =i L in M) N
0−→ let boxu =i L in (M N)

(R-APPC)

prev(let boxu =i+1 L in M)
−1−→ let boxu =i L in (prevM)

(R-PREVC)

(j > 0 andu 6∈ FPV(N))

let box t =i (let boxu =j L in M) in N
i−→

let boxu =i+j L in (let box t =i M in N)
(R-LETBOXC)

M
k−→ M ′

λx:A.M
k−→ λx:A.M ′

(RC-ABS)

M
k−→ M ′

M N
k−→ M ′ N

(RC-APP1)

N
k−→ N ′

M N
k−→ M N ′

(RC-APP2)

M
k−→ M ′

nextM
k+1−→ nextM ′

(RC-NEXT)

M
k−→ M ′

prevM
k−1−→ prevM ′

(RC-PREV)

M
k−→ M ′

boxM
k−→ boxM ′

(RC-BOX)

M
k−→ M ′

let boxu =i M in N
k+i−→ let boxu =i M ′ in N

(RC-LETBOX1)

N
k−→ N ′

let boxu =i M in N
k−→ let boxu =i M in N ′

(RC-LETBOX2)

Figure 3. Reduction rules



Neutral terms:

(k ≤ 0)

5k M
(N-NEUT0)

(M : x, u, P Q, prevP )

5k M
(N-NEUT1)

Normal forms:

⇓k x (N-OVAR)

⇓k u (N-PVAR)

⇓k P

⇓k(λx:A.P )
(N-ABS)

⇓k P 5k P ⇓k Q

⇓k(P Q)
(N-APP)

⇓k−1 P

⇓k(nextP )
(N-NEXT)

⇓k+1 P 5k+1 P

⇓k(prevP )
(N-PREV)

⇓k P

⇓k(boxP )
(N-BOX)

⇓k−i P 5k−i P ⇓k Q

⇓k(let boxu =i P in Q)
(N-LETBOX)

Figure 4. Neutral terms and normal forms

To prove this theorem, we need to show the property that any
reduction at timek for M (such that⇓k M ) does not yield a new
redex at an earlier time, or formally:

If ∆;Γ `n M : A and⇓k M andM
k−→ M ′, then⇓k M ′.

This property, unfortunately, as it is cannot be proved by induction

on M
k−→ M ′. A problematic case is whenM ≡ P Q

k−→
P ′ Q ≡ M ′ is derived fromP

k−→ P ′. It must not happen that

P ′ is aλ-abstraction andk > 0 (otherwiseP ′ Q
0−→ R for some

R), but the induction hypothesis would not give such a guarantee.
So we should take neutral terms into account and strengthen the
statement to get Theorem 5 below, which we can now prove by

straightforward induction onM
k−→ M ′. Theorem 4 follows from

Theorem 5 as a corollary.

THEOREM 5 (Reduction Preserves Normality and Neutrality).If

∆;Γ `n M : A and⇓k M and M
k−→ M ′, then⇓k M ′ holds

and5k M implies5k M ′.

Proof. By induction on the derivation ofM
k−→ M ′, with a case

analysis of the last rule used. Similarly to subject reduction, we
need a lemma that substitution preserves normality and neutrality:

1. If ∆;Γ, x:m+iB `m M : A and⇓k M and∆;Γ `m+i N : B
and⇓k−i N andk ≤ i, then,⇓k([N/x]M) holds and5k M
implies5k([N/x]M).

2. If ∆, u::m+iB; Γ `m M : A and⇓k M and∆; · `m+i N : B
and⇓k−i N andk ≤ i, then,⇓k([N/u]M) holds and5k M
implies5k([N/u]M).

Both (1) and (2) are proved by induction on the structure ofM .
Now, we show a few representative cases:
Case M ≡ let boxu =i boxP in Q reduces toM ′ ≡

[P/u]Q by R-LETBOX: (Then, k must be equal toi.) By
T-LETBOX andT-BOX, there exists typeB s.t.∆; · `n+i P : B
and∆, u::n+iB; Γ `n Q : A. By ⇓k M andN-LETBOX, we have
⇓k−i P , 5k−i P and⇓k Q. Applying the lemma above, we have

⇓k M ′. If k ≤ 0, it is trivial that5k M implies5k M ′; otherwise,
it vacuously holds, sinceM is not neutral, then.

Case M ≡ P Q reduces toM ′ ≡ P ′ Q, with P
k−→ P ′

by a congruence rule: By T-APP, there exists some typeB s.t.,
∆;Γ `n P : B → A and∆;Γ `n Q : B. By ⇓k M andN-APP,
we have⇓k P , 5k P and⇓k Q. By the induction hypothesis, we
have⇓k P ′ and5k P ′. Therefore byN-APP, we have⇓k(P ′ Q),
i.e.,⇓k M ′. Moreover, we have5k M ′(≡ P ′ Q). ut

4. Mini-ML ©¤

In this section, we extendλ©¤ with some basic types, conditional
expressions, local definitions, and recursion to obtain Mini-ML©¤,
in which examples shown in Section 2.4 are expressible, and give
its call-by-value reduction semantics.

4.1 Syntax

We choose our small language to have: (1) Boolean typebool and
its literal valuestrue, false, as well asif–then–else construct; (2)
integer typeint and its literal values. . . ,−1, 0, 1, 2, . . ., as well
as arithmetic operations of subtraction, multiplication and equality
comparison; (3)fix operator for recursive function definitions; and
(4) let construct for local definitions. The definition of types and
additional terms is shown below.

types A, B ::= bool | int | A → B | ©A | ¤ A

terms L, M, N ::= · · · | true | false | if L then M else N
| n |M −N |M ∗N |M = N
| fixx:A.M | let x = M in N

4.2 Typing Rules

The typing rules for the additional part of our language are quite
standard:

∆;Γ `n true : bool (T-TRUE)

∆;Γ `n false : bool (T-FALSE)



∆;Γ `n m : int (T-INT)

∆;Γ `n L : bool
∆;Γ `n M : A ∆;Γ `n N : A

∆;Γ `n if L then M else N : A
(T-IF)

∆;Γ `n M : int ∆;Γ `n N : int

∆;Γ `n M −N : int
(T-M INUS)

∆;Γ `n M : int ∆;Γ `n N : int

∆;Γ `n M ∗N : int
(T-MULT)

∆;Γ `n M : int ∆;Γ `n N : int

∆;Γ `n M = N : bool
(T-EQ)

∆;Γ, x:nA `n M : A

∆;Γ `n fixx:A.M : A
(T-FIX )

∆;Γ `n M : A ∆;Γ, x:nA `n N : B

∆;Γ `n let x = M in N : B
(T-LET)

4.3 Call-By-Value Reduction Semantics

Now, we define the call-by-value reduction semantics of Mini-
ML©¤ in a standard manner using evaluation contexts [7]. Here,
formalized is program execution at stage 0, but as we will show
this definition suffices: if a program is of type©A, the resulting
quoted code, after unquoting, can run as a new program at stage 0.

First we define the notion ofvalues, taking the meaning of code
expressions into account, and then proceed to the definition of the
evaluation contexts and call-by-value reduction relation.

4.3.1 Values

The definition of valuesV (0) is given by the following grammar:

DEFINITION 2 (Values).

V (0), W (0) ::= true | false | n | λx:A.P | nextV (1) | boxP

| let boxu =n+1 V (n+1) in W (0)

V (k), W (k) (k ≥ 1)
::= true | false | n | x | u | λx:A.V (k) | V (k) W (k)

| if U (k) then V (k) else W (k)

| V (k) −W (k) | V (k) ∗W (k) | V (k) = W (k)

| fixx:A.V (k) | let x = V (k) in W (k)

| nextV (k+1) | prevV (k−1) (k ≥ 2) | boxV (k)

| let boxu =n V (k+n) in W (k)

Values are constants, function values, or code values (nextV (1)

andboxP ). Note thatV (k) (k ≥ 1), which represents a quoted
code fragment at stagek, is not subject to execution at stage0,
thus every term constructor is included. The value of the form
let boxu =n+1 V (n+1) in W (0), which may appear unfamiliar,
can be seen as a code value with an environment which bindsu
to an expressionV (n+1), whose execution is delayed until stage
n + 1. Also note thatV (1) doesnot includeprevV (0); otherwise
prev nextW (1), which should be reduced at stage 0 (cf.R-PREV),
would be a value.

4.3.2 Evaluation Contexts

An evaluation context is a pseudo term that has ahole [·], which
indicates the place where the reduction should be happen. In Mini-
ML©¤, the hole can be at not only stage 0 as is expected but also

stage 1, due to the possible redex of the formprev next · · · inside
next. So, we introduce two kinds of holes—[·], a hole at stage 0,
which expects redices forR-BETA, R-LETBOX etc. in it, and{·},
a hole at stage 1, which expects those forR-PREV etc. in it. Then,
left-to-write, call-by-value evaluation contextsE(n) at stagen are
defined as follows:

DEFINITION 3 (Evaluation Contexts).Evaluation contextsE(n)

are defined as follows, whereop stands for−, ∗, or =:

E(0) ::= [·] | E(0) P | V (0) E(0) | nextE(1)

| let boxu =n E(n) in P

| let boxu =n+1 V (n+1) in E(0)

| E(0) op P | V (0) op E(0)

| if E(0) then P else Q | let x = E(0) in P

E(k) (k ≥ 1)
::= {·} (k = 1) | λx:A.E(k) | E(k) P | V (k) E(k)

| nextE(k+1) | prevE(k−1) | boxE(k)

| let boxu =n E(k+n) in P

| let boxu =n V (k+n) in E(k)

| E(k) op P | V (k) op E(k) | fixx:A.E(k)

| if E(k) then P else Q

| if V (k) then E(k) else Q

| if V (k) then W (k) else E(k)

| let E(k) = in P | let V (k) = in E(k)

Notice the side condition(k = 1) for {·}.
4.3.3 Evaluation Rules

The evaluation rules are shown in Figure 5.P Ã P ′ means “term
P CBV-reduces toP ′,” while the auxiliary judgmentR Bk R′

means “redexR reduces toR′ at relative stagek.”

EXAMPLE 3. We showpower cb in Section 2.4 again.

power cb : ¤ int →©¤(int → int)

≡ λn′:¤int. let boxu = n′ in next box λx:int. prev(

(fix p:int→©int. λm:int.

if m = 0 then next 1

else next(x ∗ prev(p (m− 1))))

u)

The evaluation ofpower cb (box 2) proceeds in the following
way, wherep′ is an abbreviation of the part(fix p. . . .) in the
definition ofpower cb, and underlines indicate the place of holes
in the evaluation contexts:

power cb (box 2)

Ã let box u = box 2 in next box λx. prev(p′ u)

Ã next box λx. prev(p′ 2)

Ã next box λx. prev((λm. if m = 0 then next 1

else next(x ∗ prev(p′ (m− 1)))) 2)

Ã∗ next box λx. prev next(x ∗ prev(p′ 1))

Ã∗ next box λx. prev next(x ∗ prev next(x ∗ prev next 1))

Ã next box λx. prev next(x ∗ prev next(x ∗ 1))

Ã next box λx. prev next(x ∗ (x ∗ 1))

Ã next box λx. x ∗ (x ∗ 1)

4.4 Properties

The call-by-value reduction defined above is indeed reduction at
time 0 in the following sense:

THEOREM 6. If ∆;Γ `0 P : A andP Ã P ′ thenP
0−→ P ′ .



Axioms:

(λx:A.P ) V (0) B0 [V (0)/x]P (E-BETA)

let boxu =0 boxP in Q B0 [P/u]Q (E-LETBOX)

(let boxu =n+1 U (n+1) in V (0)) W (0)

B0 let boxu =n+1 U (n+1) in (V (0) W (0))
(E-APPC)

let box v =0 (let boxu =n+1 U (n+1) in V (0)) in R

B0 let boxu =n+1 U (n+1) in let box v =0 V (0) in R
(E-LETBOXC)

prev(nextV (1)) B−1 V (1) (E-PREV)

prev(let boxu =n+1 U (n+1) in V (0))

B−1 let boxu =n U (n+1) in (prevV (0))
(E-PREVC)

if true then P else Q B0 P (E-IF-TRUE)

if false then P else Q B0 Q (E-IF-FALSE)

m− n B0 m− n (E-MINUS)

m ∗ n B0 m× n (E-MULT)

n = n B0 true (E-COMP-EQ)

m = n B0 false (m 6= n) (E-COMP-NEQ)

fixx:A.P B0 [(fixx:A.P )/x]P (E-FIX )

let x = V (0) in Q B0 [V (0)/x]Q (E-LET)

Rules:

R B0 R′

E(n)[R] Ã E(n)[R′]
(E-0)

R B−1 R′

E(n){R} Ã E(n){R′} (E-1)

Figure 5. Call-by-value reduction rules

Moreover, if the given program is well typed, reduction never
get stuck and results in a unique value when it terminates.

THEOREM 7 (Progress).If ·; · `0 P : A, then either

1. P is a valueV (0), or,
2. there exists uniqueP ′ such thatP Ã P ′ .

By combining the theorems above and Theorem 1, we can fi-
nally show the theorem ofbinding-time correctness[5] that exe-
cuting a program of type©A yields another program that can be
typed at stage 0 (if it terminates). Here, we abbreviate a sequence
of let box bindings with a vector notation and, for example,

let box ~u =~n+1
~V (~n+1) in

means

let boxu1 =n1+1 V
(~n1+1)
1 in

...
let boxum =nm+1 V

(~nm+1)
m in .

THEOREM 8. If ·; · `0 P : ©A and P Ã∗ V (0), then
V (0) ≡ let box ~u =~n+1

~V (~n+1) in nextV (1) and ·; · `0

let box ~u =~n
~V (~n+1) in V (1) : A .

Notice that indices attached tolet box is decreased by 1 after
removingnext.

5. Related Work
5.1 Typed Calculi based on Modal Logic

As already mentioned, Davies [5] developed a typed calculusλ©,
whose type system corresponds to linear-time temporal logic only
with©. The basic idea is that formula©A in the logic should cor-
respond to the type of code which will be executed at the next stage.
The property of time-ordered normalization is first introduced here,

even though its formulation is somewhat informal and limited (as
discussed in Section 3.4.) The notion of persistent code was, how-
ever, not considered there.

Davies and Pfenning [6] developed a typed calculusλ¤, by
extending the Curry-Howard isomorphism to the modal logic S4,
where formula¤ A in the logic is interpreted as the type of code
which has no free variable in it. As seen in Section 2.4, although
λ¤ is equipped with a mechanism for run-time code generation, it
cannot manipulate code containing free variables and so generated
code is not as efficient as that ofλ©.

Our calculusλ©¤, which includes both of the calculiλ© and
λ¤ as its subsets can handle© and¤ in a single system, by means
of extending the Curry-Howard isomorphism to the linear-time
temporal logic with modality¤. However, supporting convertibil-
ity between types¤©A and©¤ A and time-ordered normaliza-
tion property required non-trivial extensions including commuting
conversions.

Miyamoto and Igarashi’s calculusλ¤
s [16], equipped with a se-

curity type system forinformation flow analysis[29], is based on
the modal logic oflocal validity—¤` A is read “A holds in any
possible world reachable from world̀.” A computational interpre-
tation of such a locally valid proposition is the type of the expres-
sion of typeA which is accessible at the security level` or any
higher level. A type¤` A in λ¤

s and a type©· · ·©¤ A in λ©¤

are very similar to each other, in the sense that both express the
type of the terms which are available at a particular or any higher
level. Furthermore,noninterference, one of the most important cor-
rectness properties ofλ¤

s , stating that “a program input at a higher
security level does not affect the program output at a lower level”,
which can be said, in other words, low level computation can be
performed without any high level computation. Relations between
multi-level programs and information flow analysis have been stud-
ied elsewhere [1, 2], though they do not use modal logic very ex-
plicitly.



Murphy et al. [28, 27] developed typed lambda calculi as type-
theoretic foundations for distributed programming; they are based
on modal logic S5 (with¤ A and3A), in which the underlying
reachability relation is an equivalence relation. They extend the
Curry-Howard isomorphism to this logic, by interpreting possible
worlds as network nodes, and formulas¤ A and3A as the types
of mobile code (of typeA), which can be executed at any node,
and addresses of remote values (of typeA), respectively. Thus,
the resulting systems handle both mobility of code and locality
of resources in a single framework. Both their calculi andλ©¤

interpret¤ A as the type of code which isportable to any reachable
worlds (network nodes or computation stages), but the two calculi
differ from each other in reachability of such worlds. The former
takes equivalence relations to describe a network in which all nodes
are fully connected and can communicate with each other equally.
On the other hand, the latter takes partial (linear) orders to describe
staged program execution, in which computation goes on in one
direction and never goes back.

5.2 Other Type Systems for Staged Programs

There have been much work on type systems for safe staged pro-
grams, based onλ© andλ¤.

MetaML [25], developed by Taha and Sheard, is an extension
of λ©, and has open code types〈A〉, which corresponds to type
©A of λ©, as well as a constructrun for code execution. The
resulting type system, however, is not strong enough to ensure that
a code expression containing free variables is neverrun. Moggi et
al. [18] added closed code types[A] to MetaML, resulting in AIM
(An Idealized MetaML), a simpler type system with the ability of
safe code execution. Benaissa et al. [3] later developedλBN with
further refinement of AIM. They interpret the type[A] as a closed
value type (not limited to code type) and unify the two kinds of
code types; in this system, the closed code type which has been
separately categorized is now handled as a special case of open
code. Those type systems allow to build efficient code (as inλ© or
λ©¤), which is persistent and immediately runnable by run-time
code generation.

Some aspects of those type systems can be explained in terms
of λ©¤. For example, a type judgmentΓ ` e : An in AIM
roughly corresponds to aλ©¤ type judgmentΓ; · `n e : A
where the ordinary context is empty. Thus, every variable in AIM
is a persistent variable inλ©¤, naturally supporting cross-stage
persistence. (Function abstractions in AIM can be represented by
the combination ofλ andlet box.) So, AIM could be decomposed
to λ©¤ and some pragmatically motivated extensions, for example,
to allow a construct (run) to remove the type constructor©without
moving to the next computation stage. Although AIM andλBN

seem to have stronger expressiveness for staged programs than
λ©¤, as far as we know,λ©¤ seems to be the first one that
combinesλ© and λ¤ by taking into account the Curry-Howard
isomorphism, which is useful to give a foundational account for
type systems for multi-level programs.

More recently, environment classifiers [24, 4] have been pro-
posed as a typing mechanism for staged programs. Here, compu-
tation stages are generalized from (totally ordered) natural num-
bers, as in AIM andλ©¤, to a sequence of environment classifiers,
which gives tree-structured stages. Although bothλ© andλ¤ can
be represented by using environment classifiers, it is not clear that
λ©¤ is also representable with environment classifiers—in partic-
ular, we suspect commutativity of the two modalities© and ¤
would be lost due to the lack of totality in the order of stages.

Nanevski [19] started withλ¤ and introduced a new notion
callednames, similar to the symbols in Lisp, to develop the calculus
ν¤. The calculus allows thebox code expression ofλ¤ to include

free appearances of newly generated names (not variables), so that
manipulation of code can be carried out symbolically. As a result,
it is made possible to generate code that is as efficient as inλ©.

Kim, Yi, and Calcagno [13] developed another type system for
staged programs based on (the implicit version [6] of)λ¤. Their
language uses textual substitution, rather than capture-avoiding,
for manipulation of code fragments and realizes capture-avoiding
substitution by combining with a construct for name generation.
The type system is in fact closer to those of context calculi [22, 21,
10].

6. Concluding Remarks
We have presented a typed calculusλ©¤, whose type system is
based on a proof system for (intuitionistic) linear-time temporal
logic, as a foundation of programming languages for multi-level
generating extensions with persistent code. The calculus enjoys not
only basic properties such as subject reduction, confluence, and
strong normalization but also time-ordered normalization. Com-
muting conversions play an important role for time-ordered nor-
malization to hold.

Our calculus, as mentioned in the previous section, includes
bothλ¤ andλ© as its subsets and handle both kind of code, per-
sistent one and ephemeral one; it in particular can express runtime
code generation using persistent code, just as inλ¤, or eval-like
construct in Lisp, and furthermore enables combination of the fea-
tures of both kind of code, as shown in Section 2.4, although some
limitation remains as yet.

From a logical point of view, our proof system, extracted from
the type system ofλ©¤, is interesting. A proof system for (clas-
sical) temporal logic is often formalized in the Hilbert style with
axioms and rules for each modalities. A common set of axioms and
rules of linear-time temporal logic, due to Stirling [23], is as fol-
lows:

axioms: L1 classical tautologies
L2 ¤(A → B) → (¤ A → ¤ B),
L3 ©¬A ↔ ¬©A,
L4 ©(A → B) → (©A →©B),
L5 ¤ A → A ∧©¤ A,
L6 ¤(A →©A) → (A → ¤ A),

rules: MP ifA → B andA, thenB,
RG if A, then¤ A.

Although we can prove L2, L4 and L5 and both rules MP and RG
are expressed in terms ofT-APP and T-BOX, our proof system
lacks axioms L3, which is related to¬ (the type constructor that
does not exist inλ©¤), and L6, which realizes the principle of
mathematical induction on time.

Thus, it is interesting to add the power of the induction axiom to
λ©¤ since such an extension would enable us to writenon-uniform
persistent code, which results in different code depending on which
stage it is used. By a straightforward extension of the Brouwer-
Heyting-Kolmogorov interpretation [26], the proof of¤ A can be
thought as a function that takes a time (or stage) as an argument and
returns the proof ofA at that time. Inλ©¤, the proof termboxM
of ¤ A is always a constant function: no matter which stage it is
used (bylet box), the obtained proof ofA is M (seeR-LETBOX).
In the presence of the induction axiom, however, the proof term of
¤ A as a function would return different proof terms depending on
which stage it is used. In fact, we have been working on such an
extension but have found that it would require significant changes
to the calculus.

While our proof system is weaker than a familiar logic, it seems
stronger than an axiomatic system obtained by removing the axiom
L6, since, by counter-model construction, it can be shown that
neither©¤ A → ¤©A nor ¤©A → ©¤ A is provable



in such a proof system. We conjecture that our proof system is
intermediate and equivalent to the following axiomatic system in
the sense that we can derive·; · `0 A in our system iffA is provable
in the axiomatic system below:

axioms: (A → B → C) → (A → B) → (A → C),
A → B → A,
¤(A → B) → (¤ A → ¤ B),
©(A → B) → (©A →©B),
(©A →©B) →©(A → B),
¤ A → A,
¤ A → ¤ ¤ A,
¤ A →©A,
¤©A →©¤ A,
©¤ A → ¤©A

rules: ifA → B andA, thenB,
if A, then¤ A.

The first two axioms are usual axioms for implication. The fifth
axiom, theconverseof the K axiom of modality©, enforces times
to be linearly ordered. In the Stirling’s formalization it is expressed
in the right-to-left direction of axiom L3. To our knowledge, this
kind of logic has not been considered previously. It is easy to prove
those axioms and rules are admissible inλ©¤ but it is left for future
work to prove the converse.

Finally, it is also left for interesting future work to design
and implement a full-fledged programming language based on
λ©¤. The present call-by-value reduction semantics, unfortunately,
does not seem to suggest efficient implementation, especially be-
cause of the presence of commuting conversions (E-LETBOXC and
E-PREVC). Designing a suitable abstract machine with environ-
ments would be a first step.
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