A Modal Type System for Multi-Level Generating Extensions
with Persistent Code

Yosihiro Yuse Atsushi Igarashi

Graduate School of Informatics, Kyoto University
{yuse,igarashi}@kuis.kyoto-u.ac.jp

Abstract program taking all inputs at once. A good example of program
generators is parser generators such as yacc, whictwartevel
jprogram generators. @tk and Jgrgensen [9] generalized two-level
program generators into multi-level ones, calledlti-level gen-
erating extensionswhich, given an input, generates another pro-
gram generator as an output. They showed that an ordinary program
can be translated to a multi-level generating extension by exploit-
ing multi-level binding time analysis—a natural generalization of
binding-time analysis, used in off-line partial evaluation [12].
Davies [5] developed a typeki-calculus)® and argued that a
type system for the multi-level binding-time analysis corresponds
to a proof system of (intuitionistic) linear-time temporal logic with
modality “next” via the Curry-Howard isomorphism. The key idea
is correspondence between the notion of time in the logic and
binding-time, between a formul@) A, meaning ‘A holds at the
next time,” and a typed at the next binding-time. Moreover, term
onstructormext and prev to introduce and eliminaté) A, re-
pectively, are considered quasi-quote and unquote, respeciively,
la Lisp. So, terms ofC themselves can be considered multi-level
generating extensions, which generate quoted code when executed.
Categories and Subject DescriptorsD.3.2 [Programming Lan- Although one of the original motivations of Gtk and
guage§ Language Classifications—Applicative (functional) lan- Jgrgensen’s work wasutomatic generatiorof multi-level gen-
guages; F.3.3logics and Meanings of PrografsStudies of erating extensions, Davies and Pfenning [6, 5] and Taha and
Program Constructs—Type structure; F.4Th¢ory of Computa- Sheard [25] argued that it would be worth studying language sup-
tion]: Mathematical Logic and Formal Languages—Computational port for (manually written) multi-level programs. Taha et al. ex-
Logic, Lambda Calculus and Related Systems, Temporal Logic; tended\ with features of run-time code generation quadsistent
F.3.2 [Logics and Meanings of PrografasSemantics of Program- code—code fragment that can be used in any future stage. Persis-
ming Languages—~Partial Evaluation tent code, which is useful as it enables reuse of specialized code
over multiple stages, naturally arises when more than two stages
are taken into account. A series of type systems [25, 18, 3, 24, 4]
Keywords Curry-Howard isomorphism, Meta-programming, has been developed to ensure safety of such features.
Modal logic, Temporal logic, Time-ordered normalization, Type

Multi-level generating extensionstudied by Glick and Jgrgensen,
are generalization of (two-level) program generators, such as parse
generators, to arbitrary many levels. By this generalization, the
notion ofpersistent code-a quoted code fragment that can be used
for different stages—naturally arises.

In this paper we propose a typed lambda calcWd5', based
on linear-time temporal logic, as a basis of programming languages
for multi-level generating extensions with persistent code. The key
idea of the type system is correspondence of (1) linearly ordered
times in the logic to computation stages; (2) a form@jad (next
A) to a type of code that runs at the next stage; and (3) a formula
0 A (alwaysA) to a type of persistent code executable at and after
the current stage. After formalizin§”", we prove its key property
of time-ordered normalizatiothat a well-typed program can never
go back to a previous stage a “time-ordered” execution, as well
as basic properties such as subject reduction, confluence and stron
normalization. Commuting conversion plays an important role for
time-ordered normalization to hold.

General Terms Languages, Theory

systems 1.2 Our Goal and Approach
) Similarly to the previous work, our goal is to develop a theoretical
1. Introduction foundation for statically typed programming languages for multi-

level programs. We approach the goal by making use of the Curry-
1.1 Background . . o .
))) Howard isomorphism—a principle which has proven to be useful to

Program generation and related techniques such as partial evalugesign new type systems—as much as possible, as Davies and Pfen-
ation [12] have been drawing much attention as computation in a ning [6, 5] did. More concretely, starting froX® (or, equivalently
program can often be “staged” and a program specialized with re- jinear-time temporal logic with “next”), we introduce persistent
spect to earlier inputs can be much faster than a general-purpose;ode by augmenting the corresponding logic with a new modality

“always”. Just as a formul&) A corresponds to a type of code of

the next level, a formula) A (read “alwaysA”) will correspond to

a type ofpersistentode that can be used at the current or any later
Permission to make digital or hard copies of all or part of this work for personal or stages. The distinction between the two kinds of code mostly cor-
classroom use is granted without fee provided that copies are not made or distributed responds to that between open and closed code [18] whose combi-
for profit or commercial advantage and that copies bear this notice and the full citation ! . ! .
on the first page. To copy otherwise, to republish, to post on servers or to redistribute natloq ha§ be.en studied already- As far as we know, however, their
to lists, requires prior specific permission and/or a fee. combination in the type system based a proof system of a temporal
PPDP'06 July 10-12, 2006, Venice, Italy. logic is new. Although the type system presented in this paper does
Copyright(© 2006 ACM 1-59593-388-3/06/0007... . $5.00. not seem to subsume the previous type systems [25, 18, 3], we be-

lieve a logically motivated foundation will shed a new light on the
design of type systems for multi-level programs.

“A holds at timen and any later.” Accordingly, a hypothetical
judgment has two kinds of assumption sets and takes the following

form:
1.3 Contributions

AT ARk B B " C
. _— . e ; s
Our technical contributions are summarized as follows:

which means €' holds at timen under the assumption that each
A; holds at timen; and any later and that eady holds (only) at
time m;.” Then, the former kind of assumptions can be used only
when the current time is later than their time, while the latter can
be used only when the current time and their time agree, resulting
in the following two rules:

* We develop a typed calculu§’Z, corresponding to linear-time
temporal logic with two modalities “next” and “always” and
give its formal definition consisting of syntax, a type system,
and operational semantics;

e We prove that\®C enjoys basic properties such as subject

reduction, confluence, strong normalization; and ni <m

AT T4

¢ We also prove the property tifne-ordered normalizatigrfirst
formulated and proved by Davies [5] faF .

A,... B, .. F"B;

Usual connectives are formulated in a standard manner, except the
Intuitively, time-ordered normalization states that, in staged execu- form of hypothetical judgments. For example, the introduction and
tion of a well-typed program, earlier stage execution never requires elimination rules for implication are as follows:
that of future stages. So, this property can be considered one of the) nin nn

most important correctness criteria of type systems for multi-level A; F’f " B AlF" A= B _
programs, as well as standard ones such as type safety. ATHF'A—B AT HE" B

A;TE" A

Davies and Pfenning [6] studied the Curry-Howard isomor-
phism for modal logic S4 (with necessity) by developing another
typed A-calculus X7, and discussed its connection with run-time
code generation. Our calculu&C is not a straightforward com-
bination of two calculiX® and X2—it turns out that non-trivial

extensions are required for time-ordered normalization, a crucial

property as a calculus for multi-level programs, to hold.

1.4 The Rest of This Paper

First, we show an overview of the calculu&= with program-
ming examples in Section 2. We give its formal definition in Sec-
tion 3 with proofs of its properties including time-ordered normal-
ization; then, we develop Mini-MEC by extending\®" with ba-

sic data types and recursion and give its call-by-value semantics

in Section 4. Finally, after discussing related work in Section 5,
we conclude in Sect. 6. We omit most of proofs here; a full version
is available ahttp//www.sato.kuis.kyoto-u.ac.jp/ yuse/
papers/.

2. Overview of \OO

In this section, we first describe how a proof system of linear-time
temporal logic can evolve to a typed calcuhi3™ and then explain

how the term constructors related to the modalities can be consid-
ered as program constructs that manipulate code expressions. Th

key ideas for relating this kind of logic with a calculus are the fol-
lowing three correspondences:

e the linearly ordered times in the logic to computation stages in
the calculus,

o formula(A to the type oephemeral codéof type A), that is,
code which will be executed only at the next stage, and

e formulad A to the type ofpersistent codéof type A), which
can be executed at the current and any later stage.

Finally, we informally discuss time-ordered normalizatiomA®
with some technical subtleties.

2.1 A Proof System of Linear-time Temporal Logic

We first consider a proof system for linear-time temporal logic
with two modalities—) A, which means 4 at the next time,” and

O A, which means “always! from now on.” The proof system is
partially inspired by Pfenning and Davies'’s formalization of modal
logic [20], based on the notion of judgments [15]. The basic idea
is to consider two kinds of judgmentsA“holds at timen” and

Note that the times attached to judgments have to agree.
Considering the intuitive meaning of a hypothetical judgment,
we can easily give the introduction and elimination rules for modal-
ity O:
AT A
ATHEPOA

ATHEPOA
A;THE'TE A

Modality [J is expressed by a hypothetical judgment with zero
assumptions of the formA holds at timen”. The introduction
rule for modality[] amounts to internalizing such a (hypothetical)

judgment, and the elimination rule turng“A holds at timen” into
“ A holds at timen and any later”:

A" A ATHEYOA AATTHE'B
A;TETOA A;TH' B

(Here, - denotes the empty assumption set.) We allow the elimi-
nation of[J] A at a time different from the conclusion for reasons
discussed later.

2.2 Proof Terms for Code Manipulation

By the Curry-Howard isomorphism, judgments of a proof system
corresponds to type judgments of a calculus, by augmenting with
variables and terms. Since the hypothetical judgment form include

0 assumption sets, a type judgment naturally takes the following
form:

urn" A uks P A ™ By, e B T M C

with two kinds of variables; andz ;. We call the formepersistent
variablesas they are bound to persistent code and the lattr
nary variables Intuitively, the type judgment means that teih
is given typeC at timen under the condition that each persistent
variableu; of type A; can be used at time; or later, and each
ordinary variabler; has typeB; atm;.

Proof rules in a logic correspond to typing rules in a calculus.
So, we obtain the following rules from introduction/elimination
rules for(:

AT M A
A;THF"nextM : O A

ATHM:OA
AT H P prev : A

Since proof steps in which an introduction rule is followed by an
elimination rule correspond to a redex, we also obtain the reduc-
tion rule prev(next M) — M. From a computational point of
view, next andprev are considered Lisp’s quasi-quotatidr) and

unquote (), respectively. Thus, the following reduction sequence
(Az. next(z + prev z)) (next1)

— g next(x + prev next 1)

— 0 next(z + 1)

can be seen as the evaluation(@iambda (z) ‘(+ x ,z)) ’1)
to’(+ x 1).
Similarly, from the proof rules for] A, we obtain

A;-FP M A
A;THF box M :OA
AT Frti MO A A,u::"'HA;F F*N:B
A;TH" let boxu=; MinN : B

as typing rules andet boxu =; box M in N — [M/u]N as

a reduction rule. (Herd,M /u] is substitution ofM for a persis-
tent variableuw.) From a computational viewpoinhox M con-
structs persistent code. Since persistent code may be executed
different stagesM should not contain free ordinary variables,
which are available only at a certain stage. Roughly speaking,
let boxu =; M in N first evaluatesV/ to obtain persistent code
box M’, bindswu to M’ by removingbox, and evaluatesV. For

Here, the first reduction belongs to the stage 1 slatédbox tries
to destruct persistent code of the next stage (notice=that The
problem is thatet box for a future stage blocks &-redex of the
current stage.

In order to solve this problem, we adopt commuting conver-
sions [8], which are often found in calculi with sum types and case
expressions:

(let boxu =; Pin Q) R —>__let boxu =; Pin (Q R)

com

This rule, which expands the scopewbf let box, may reveal a
hidden redexQ) R (whenQ is a\-abstraction). Then, the problem
above disappears as follows:

(let boxu =1 (Az.z) boxvin Ay.y) z

0
—
com

let boxu =1 (Az.z) boxvin (\y.y) 2

L’B let boxu =1 (A\z.z) boxwvin z
at

1 .
—5 let boxu =1 boxvin z

1
—

DZ'

Similar observations have been made by Lawall and Thie-

example, the following reduction sequence demonstrates how per-mann [14] and Hatcliff and Davies [11], who used (an extension

sistent code can be useful:

let boxu =¢ box(Az.z + 1) in (u 2, next(u 3, nextu 4))
—g (Az.z 4+ 1) 2, next((Az.z + 1) 3, next(Az. z + 1) 4))
—3 (2+ 1,next((A\z.z + 1) 3, next(Az.z + 1) 4))

Notice that the persistent code. = + 1 is embedded into the code

of) Moggi’s computational lambda-calculus [17] as a formal frame-
work of partial evaluation.

2.4 Programming in Mini-ML ©OJ

Now, we extend\°" with familiar programming constructs such
as the Boolean type and recusive definitions to MiniNfand

of different stages; furthermore, we can view embedding persistent gemonstrate simple examples of programming to compare different

code into the current stage (asur2) as run-time code generation,
because it runs at the same stage as it is constructed.

2.3 Commuting Conversions for Time-Ordered
Normalization

Since a)X®B term is a staged program, the reduction relation is
augmented with information owhenor at which stageeduction
occurs: for example\z. z)y —— ; y while next((Az. z)y) —
nexty, as execution inside quotatiamext happens at the next
stage. Time-ordered normalization roughly states that a norma
form of a given well-typed term can be obtained by reducing in

the (increasing) order of stages. In other words, after reduction at a
certain stage finishes, there will be no need to go back to this stage.
For example, the reduction stages of the following sequence is in

the increasing order of stages:
(Az. next((prevz) y)) next Az.z

Lﬁ next((prev next \z. z) y)

2,
o

1
— 5 nexty

next((\z. z) y)

modalities. As in Davies and Pfenning [5, 6], we take the standard
example of the recursively defined power functioh, and com-
pare several programs to generate specialized code with respect to
the exponent given as an input. Although the presentation here is
rather informal—for example, we often omit obvious type declara-
tions in favor of readability—we will give the definition of Mini-
ML ©U in Section 4 with its call-by-value reduction semantics.
Taking the meaning afext andbox as quotation into account,
we assume that a term inside a quotation never reduces unless it is
| escaped witlprev.
We begin with an ordinary definition glower without staging
(here,~* is the call-by-value reduction relation defined later):

power : int — int — int
= fix p:int—int—int. An:int.
if n = 0 then Az:int. 1
else let g =p (n — 1) in Aztint. z * (¢ x)
power 2 ~>* Az.z x (Az.z * (A\z. 1) z)) z)

Note that, under a usual language implementation, the result of
power 2 is a function value, which does not have a symbolic
representation. Now, we augment the function body above with
next, prev, box andlet box to obtain functions, which return a

This property is thus an evidence that the type system correctly specialized program as quoted code.

captures computation stages.

First, we showpower_b, which uses onlpox andlet box as in

Unfortunately, the reduction rules described above are not suf- Davies and Pfenning [6]:

ficient for time ordered normalization to hold:
(let boxu =1 (Az.x) boxvin \y.y) z

Lﬁ (let boxu =1 boxvin \y.y) z

— (y.y) 2
o,

BZ

power_b : int — [J(int — int)
= fix piint—(int—int).
Anzint. if n = 0 then box(Az:int. 1)
else let boxu =p (n —1)
in box(Az:int. z * (u x))
power b 2 ~~* box(Az. x * (Az.z * (Az.1) z)) z))

The residual code generated pywer b, however, still contains
redundant redices, liké\z. 1) z, and thus is not such an efficient
one. (Note that reduction undeox does not occur.)

(Section 3.3). Finally, we discuss some properties®f in Sec-
tion 3.4.

Davies [5] showed that those redundant redices can be elimi- 3.1 Syntax
nated with)X©, thanks to the ability to manipulate code that con- | et OVars and PVars be countably infinite sets odrdinary

tains free variables:

power_c : int — O(int — int)
= Aniint. next(Az:int. prev(
(fix piint—Qint. Amzint.
if m = 0 then next 1
else next(z x prev(p (m — 1))))

n))

power_c 2 ~~* next(Az.z x (x x 1))

The key idea in this definition is to userev inside the

scope of A-abstracted variabler, compute code of the form

next(z x x x - -- x 1) of type(O int, and embed it into the body
N —’

of the specinalized function. Notice théik is moved deep inside
of the whole function bodypower_c provides more efficient code

variables ranged over by andy, andpersistent variablegsanged
over byu andv, respectively. We assun@Vars andP Vars are
disjoint. We also assume the €BfT'ypes of base typesranged
over byb.

DEFINITION 1 (Types and Terms)The sets ofypes ranged over
by A and B, andterms ranged over by\/ and N, are defined by
the following grammar:

types A,B:=b|A—B| QA|OA

terms M, N :=z |u|Az:A.M | M N | next M | prev M
| box M | let boxu =; M in N

wheres is a natural number.

The persistent variable of let boxu =; N in M and the or-
dinary variabler of Az:A. M are bound inV/. In what follows, we

thanpower_b, but the code itself is restricted in reuse: it can be ex- 3ssume tacit renaming of bound variables so that no bound variable
ecuted only at the next stage. Thus, if one wants to use specializeths the same name as any other bound variable or free variable.
power functions two stages later, he or she also has to write another;tpe type constructor§) and] connect tighter thar-, so, for ex-

very similar version with typént — O O(int — int).

One of our goals is to combine the flexibility efext code
and portability ofbox code. Now that our calculus allows bagh
and[J in one program, we can define new functiptwer_cb as
follows:

power_cb : (Jint — O [(int — int)
= An/:0int. let boxu = n’ in next box Az:int. prev(
(fix p:int—Qint. Amzint.
if m = O then next 1
else next(z x prev(p (m — 1))))
w)
power_cb (box 2) ~~* nextbox(Az.z * (x * 1))

As seen above, the resulting code is as efficient agoirer c.
Moreover, the code has tyge [(int — int) and so can be used

ample,O A — B meansg(O A) — B. let box and) extends to
the right as much as possible: for exampég, box v =; M inzy

meanslet boxu =; M in (z y). The index: in let box is often
omitted when it is 0.

We write FPV (M) for the set of free persistent variables and
FOV(M) for the set of free ordinary variables, both of which
are defined in the standard manner. We wit¢/z] and [M /u]
for the standard capture-avoiding substitution)dffor andw,
respectively.

3.2 Type System

As discussed in the previous section, the form of the type judgments
isA;T F™" M : A, read “termM is given typeA at time (stage)
n under persistent context and ordinary context'.” Here, n is

a natural number. Persistent and ordinary contexts are formally

at the next and any later stage: for example, the next term showsdefined as follows:

that a specialized cube function is used at multiple stages.
let boxu =; prev(power_cb(box 3))
in next(u5next(u9))

The type of this function, however, is not quite what may have

been expected: it takgsint, notint, as an argument and returns
OO(int — int), notO(int — int), which could be used even

persistent context A ::=
ordinary context I' :=

) Ajus"A
S T,x™A

We assume that no variables are declared more than once in one

context.

The typing rules to derive type judgments are shown in Fig-
ure 1. Each rule is obtained by augmenting each inference rule in
the previous section with term constructors. The rdlg3VAR and

at the current stage by run-time code generation. The first problem 1_pyar correspond to the proof rules for truth and valid assump-

stems from the fact that, unlikgower b, the argument has to be
used insidebox, due to the move ofix. We do not think this is

tions, respectively. Notice that a declaration™ A in a persistent
context can be referred to at any time equal to or later tharhe

a significant problem because constants of base types (such as ZylesT-OVAR, T-ABs, andT-ApPPfor variables, abstractions, and
true etc.) are actually available at any stage and so we can assumeypplications, respectively, are essentially the same as ones in the

that they always have an box type (suchasat, (1 bool etc.). The

simply typed\ calculus. Notice that the times of type judgments in

second problem in the return type from the fact that the only way to the premises and conclusions must be the same.

escape from quotation is to upeev, which refers to the previous
stage. If we omittedhext beforebox, the variableu could not be
referred to insidgrev, becausdox does not change the stage at
which atermis typed. Itis left for future work to solve this problem

An intuitive meaning of the other rules, related to code types
(O A and[d A, are explained in the previous section. As already
mentioned, T-LETBOX allows to unquote persistent code of
timen + ¢ (¢ > 0), which can be later than the time of the body

with a type system that corresponds to logic via the Curry-Howard xAllowing i > 0 seems necessary to “prove” bafh(J A —

isomorphism.

3.)OO

In this section, we give a formal definition af7 with its syntax

OO AandO0 (O A — OO A for any A. The next example shows
such usage of-LETBOX.

ExampLE 1 (DO A <~ OQOA).
Let My = Az:0 (O A. let boxu =¢ x in next box prevu and

(Section 3.1), type system (Section 3.2), and operational semanticsMs = Az:() [0 A. let boxu =; prev z in box next u. Then, we

(xz:"Ael)
ATF z:4 (T-OVAR)
(um"A €A n>m)
AT HF u: A (T-PVAR)
AT x:"AF" M : B (T-ABS)
AT AeiA.M : A— B
A;THF*M:A— B ATEPNGA

(T-ApPP)

A;THF*M N B

ATHEYLAM A

AT F next M:0OA (T-NExT)
ATEPM QA
- O (T-PREV)
AT prev M : A
A-FPM A (T-Box)
A;TH'box M : DA
_A;F Frtipr O A
Ajuz"T AT N : B (1 >0)
(T-LETBOX)

A;TF" let boxu=; MinN :B

Figure 1. Typing rules

have typing derivations - F° M, : 0 QA — QOO Aand

- FO M, : OOA — 00 A as shown in Figure 2. Note that in
the latter case th&-LETBOX rule allows the box code to be used
at a time different from that of the code itself.

Closed terms of these types, together with those of typds— A
andJA — [OOA (they are axioms of S4 modal logic) for
any A, make it possible to convert any code tyge - - - %, A4,
where; stands for eithe() or [J, to a “normalized” code type
O---OOAhAor(--- (O A—which concisely expresses at which
time code is available—and back.

3.3 Operational Semantics

We define the operational semantics 5f= with the (ternary)

reduction relationd —- M’, read “termM reduces taM’ in
one stepk stages later.” The indei can be negative. The reduction
rules are shown in Figure 3. We simply wriftef — M’ if

M £ M’ for somek and —* for the reflexive and transitive

closure of—.
The ruleR-BETA is for the standarg-reduction. TheR-PrREV

is for unquoting of (ephemeral) code expression. Note that the in-
dex is —1 since the redex is typically under another quotation of
the previous stage and unquoting happens during the execution o

the previous stage. The ruR-LETBOX is for embedding persis-
tent code expression; if appears not unddyox, the quoted code

N will run during the execution of the current stage. The rules

R-APPC, R-PREVC, andLETBOXC are for commuting conver-

sions, we mentioned in the previous section. We provide congru-
ence rulesRC-ABS etc., for each term constructors, as we as-
sume a full reduction system here. Note that some term construc-

tors change the time of the term, so the indeshould be changed
accordingly.

EXAMPLE 2. Let M = prev(let boxu =2 box P in Q). Then,

M - prev([P/u]Q) by R-LETBOX, RC-PREV and

M =% let boxu =, box P in prev Q by R-PREVC.

3.4 Properties of \°U

The calculusX®® enjoys basic properties such sisbject reduc-
tion, confluenceand strong normalizationwhich are proved in a
fairly standard manner.

THEOREM1 (Subject Reduction)if A;T'+" M : AandM —
M’ thenA;T " M’ : A.

THEOREM 2 (Confluence)For any termM, if M —™* M; and
M —* M>, then there exists some tefshsuch that\/; —* N
and M, —* N.

THEOREM 3 (Strong Normalization)If A;T" ™ M : A, then
there exists no infinite reduction sequence such that —
My —s -

Now, we give a rigorous formalization and proof ftime-
ordered normalizationThe intuitive meaning of time-ordered nor-
malization is that, in staged execution of a well-typed program, ear-
lier stage execution never requires that of future stages. In other
words, having finished its execution at stageprogram execution
nevergoes back to this finished stagéis property is stronger than
the property such as “suitably defined call-by-value evaluation can
realizes staged computation,” which we will prove in the next sec-
tion, because, here, a reduction strategy within a stage is arbitrary
(as long as normal forms can be obtained with it).

Time-ordered normalization is first introduced by Davies and
proved for X© [5], which is a subset op®S. His formulation

f(statement and proof), however, was somewhat informal and even

limited to B-reduction: he showed that the time @fredices can

be ordered, assumirlg-PrREV is applied to all redices of the form
prev next M between twg3-reductions. In contrast, we state that
property in a more formal and general manner, taking all kinds of
reduction includingR-BETA, R-PREV, andR-LETBOX and even
commuting conversions.

To make a formal statement, we introduce the relatjén\/,
read “term)M is a normal form w.r.t. the times less thayitogether
with an auxiliary judgment;™ M, read “termM is neutral w.r.t.
the times less than,” which are defined by rules in Figure 4™ M
means that there exists Ad’ such thatV/ -~ M’ for anym < n,

M’ and,sy™ M that sustitutingV/ for a variable in any (well-typed)
term does not yield a new redex at an earlier time. Notelétdiox
is not neutral, since substitutinigt box for x in, say,z N yields a
new redex due to commuting conversion.

Then, the time-ordered normalization theorem can be stated as

below. We writeM —4 if there exists naV/’ such thatM —
M.

THEOREM4 (Time-Ordered Normalization)f A;T" " M : A
and |* M, then for any series of reductions at tirkesuch that

M ok .i»Nﬁké, it holds that|."*** N.

A1;~F0u:OA
Ap;-Foprevu: A
AT H boxprevu : JA
TRl z:00A AT FC nextboxprevu : OO A
T1 FO let boxu =¢ z in nextboxprevu : OO A
-;-|—0M1:DOA—>O|:|A
= Az:0 QO A.let boxu =¢ x in next box prev u
uw:QA
I :x:ODQA

e
IR

Ao - Flau: A
-;Fgl—Ox:ODA Ag;-}—onextu:QA
sToFlpreve : A Ao Ty Foboxnextu: O A
B Y FO let boxu =1 prevz in boxnextu : OO A
-;-I—O M, : OOA—-D0OQA

My = Az:(O O A. let boxu = prevz in box nextu
Ao =uitA
FQ = ZOODA

Figure 2. Examples of type derivations

(Az:A. M) N -2 [N/a]M (R-BETA)

prev(next M) M (R-PREV)

let boxu =; box M in N —— [M/u]N (R-LETBOX)
(¢ > 0andu € FPV(N))

(let boxu =; Lin M) N % let boxu =; L in (M N)
(R-APFC)

prev(let boxu =;11 Lin M) —L let boxu =; Lin (prev M)

(R-PrREVC)

(j > 0andu ¢ FPV(N))

let boxt =; (let boxu =; Lin M) in N =
let boxu =;1; Lin (let boxt =; M in N)
(R-LETBOXC)

k

M —= M’
- (RC-ABS)
A:A. M — \x:A. M’
M 5
—_ (RC-APPL)
MN — M'N

N £, N

MN — M N’

M E M

T (RC-NEXT)
next M = next M’

M 5 M
(RC-PREV)

prev M “=3 prev M’

M 5 M
box M —* box M’

(RC-Box)

k

M = M’

let boxu =; M in N % let boxu =; M’ in N

(RC-LETBOX1)

N £ N

let boxu =; M in N —= let boxu =; M in N’
(RC-LETBOX?2)

Figure 3. Reduction rules

Neutral terms:

(k kﬁj\j) (N-NEUTO) (M: z, u, .I:]Cj[prev P) (N-NEUTY)
\Y4 \Y4
Normal forms:
Ve (N-OVAR) SRS S A (N-PREV)
IILEY (N-PVAR) U (prev P)
WP
V¥ (Aa:A. P) (N-A89) *p (N-Box)
V(P Q) (N-APP)
k—1 k—1i k—i k
LA (N-NEXT) yr v_'P - LQ (N-LETBOX)
¥ (next P) IJ*(let boxu =; Pin Q)

Figure 4. Neutral terms and normal forms

To prove this theorem, we need to show the property that any {}* M’. If k < 0, itis trivial thatsy* M impliess/* M’; otherwise,
reduction at timek for M (such that|}* M) does not yield a new it vacuously holds, sinc@/ is not neutral, then.

redex at an earlier time, or formally: Case M = P Q reduces taM’ = P’ Q, with P k., p
N i & , P by a congruence ruleBy T-APP, there exists some typB s.t.,
It AT E" M : Aandy” M andM — M’, then™ M". A;TH® P: B — AandA;T " Q : B. By ||* M andN-APP,

n We havel* P, v* P and|/* Q. By the induction hypothesis, we
havell* P’ and/* P’. Therefore byN-APp, we havell* (P’ Q),
i.e., ¥ M'. Moreover, we havey® M'(= P’ Q). O

This property, unfortunately, as it is cannot be proved by inductio
on M %5 M’. A problematic case is whep! = P Q —
P’ Q = M’ is derived fromP %~ P’. It must not happen that

P’ is a)-abstraction and > 0 (otherwiseP’ Q — R for some 4. Mini-ML ©O
s (,) . ini

R), but the induction hypothesis would not give such a guarantee.) . 200 wi . .

So we should take neutral terms into account and strengthen the!n this section, we extend~= with some basic types, conditional

statement to get Theorem 5 below, which we can now prove by €xpressions, local definitions, and recursion to obtain MinicRL,

. . . k , in which examples shown in Section 2.4 are expressible, and give
straightforward induction od/ — M'. Theorem 4 follows from its call-by-value reduction semantics.
Theorem 5 as a corollary.

) .) 4.1 Syntax
THEOREM 5 (Reductlolzl Preserves Nkormalllty and Nkeut/ralltv). We choose our small language to have: (1) Boolean byl and
A;I'E" M Aand " MandM — M, theny” M holds its literal valuegtrue, false, as well asf-then—else construct; (2)
andv* M implies<7” M. integer typeint and its literal values..,—1,0,1,2,..., as well

as arithmetic operations of subtraction, multiplication and equality
Proof. By induction on the derivation af/ LN M', with a case comparison; (3fix operator for recursive function definitions; and
analysis of the last rule used. Similarly to subject reduction, we (4) let construct for local definitions. The definition of types and
need a lemma that substitution preserves normality and neutrality: additional terms is shown below.

LA T, 2™ BE™ M : Aand|* M andA;T =™ N : B
and|})*~* N andk < i, then,||*([N/z]M) holds andy/* M
implies/* ([N/x]M). terms L, M, N

2. f A ux™TB; D ™ M : Aand* M andA;- " N : B
and|}*~* N andk < 1, then,|*([N/u] M) holds ands/* M
implies 7 * ([N/u] M). 4.2 Typing Rules

The typing rules for the additional part of our language are quite

standard:

types A,B bool |int | A— B| OA|OA

-+- | true | false | if L then M else N
A|M—-N|M+N|M=N
fixz:A. M |letx = M in N

Both (1) and (2) are proved by induction on the structurdbf

Now, we show a few representative cases:

Case M = let boxu =; box Pin Q reduces toM’ =
[P/u]@Q by R-LETBOX: (Then, & must be equal toi.) By
T-LETBOX andT-Box, there exists typd3 s.t. A;- F*+* P : B A;I' =" true : bool (T-TRUE)
andA, w1t B; T F" Q : A. By |¥ M andN-LETBOX, we have
Yt P, v** P and|}* Q. Applying the lemma above, we have A;T " false : bool (T-FALSE)

AT H" o int (T-INT) stage 1, due to the possible redex of the fqmev next - - - inside
next. So, we introduce two kinds of holesH a hole at stage O,

A;T " L : bool which expects redices fdR-BETA, R-LETBOX etc. in it, and{-},
ATH'M: A ATHFPN: A a hole at stage 1, which expects thoseRePREV etc. in it. Then,
AT " ifLthen Melse N - A4 (T-1F) left-to-write, call-by-value evaluation contexi&™ at stagen are
' ’ defined as follows:
A;THY M :int A;TH' N :int M DEFINITION 3 (Evaluation Contexts)Evaluation contextsE(™
A;THF* M — N :int (T-Minus) are defined as follows, wheep stands for—, x, or =:
EO =[] ED P|V® E® | next EW
A;THE™ M :int A;THE™ N :int | let boxu =, EM™inP

T-MuULT
A;TH M+ N :int () |let boxu =, 11 V" in B©
| E©®opPp ‘ V© op E©

A DE"M:int A;TE" N dint |if E©) then Pelse Q |letz = E© in P

A.TF" M =N : bool (T-EQ)
E® (k>1)
AT, 2" A" M : A s={} (k=1)| A.E® | E® p vk gk
AT fixzid. M : A (T-Fix) | next E**Y | prev E*~1 | box B
’ |let boxu =, E**™) in P
ATF M:A AT, z"AF"N:B [let boxu =, V"™ in B
AT letz= MinN:B (T-LED | E® op P|V®) op E® | fixa:A. E®
' | if E® then P else Q
4.3 Call-By-Value Reduction Semantics |if V®) then E®) else Q

if (k) (k) (k)
Now, we define the call-by-value reduction semantics of Mini- |:f VE<k)tlfn.WP Iels?/%;) — inE®
ML U in a standard manner using evaluation contexts [7]. Here, | et = inP|let =m
formalized is program execution at stage 0, but as we will show Notice the side conditiotk = 1) for {-}.
this definition suffices: if a program is of tyge A, the resulting
quoted code, after unquoting, can run as a new program at stage 04.3.3 Evaluation Rules
First we define the notion ((xjafalhues taking tjhe mﬁaréln? of COd? h The evaluation rules are shown in Figuref5~ P’ means “term
explrests_lons |n:o f;lCCOLént, zﬁnb t eln procaeet_ to tl flst_e inition of the 1 ~p\/reduces toP’” while the auxiliary judgment? >* R’
evaluation contexts and call-by-value reduction relation. means “redex? reduces tak’ at relative stagé.”

4.3.1 Values EXAMPLE 3. We showpower_cb in Section 2.4 again.

] (0)
The definition of valued ™ is given by the following grammar: power cb : [int — O CJ(int — int)

DEFINITION 2 (Values). = An/:[int.let boxu = n’ in next box \z:int. prev(
VO WO .= true | false | 7 | \z:A. P | next V) | box P (fix print—Qint. Amuint.
| let boxu =1 VOt jn W © if m = 0 then next 1
else next(z = prev(p (m — 1))))
v w® (k> 1) u)
== true | false |7 | x| u | Az:A. V) |) k)
| if fi() ther}: v):Ise W(k) . . The evaluation opower_cb (box 2) proceeds in the following
|V —w® v ® g ®) k) = k) way, wherep’ is an abbreviation of the parffixp. ...) in the
[fixz:A.V® [letz = V) in W ® definition ofpower_cb, and underlines indicate the place of holes
[next VEFD | prev VE—D (k> 2) | box V) in the evaluation contexts:
k+n) = k
[let boxu =, V™ in 7 power_cb (box 2)
Values are constants, function values, or code valuest(l’ ") ~> let boxu = box 2 in next box Az. prev(p’ u)
andbox P). Note thatV () (k > 1), which represents a quoted ~> nextbox\z. prev(p’ 2)
code fragment at stagl, is not subject to execution at stage ~ nextbox Az. prev((Am.if m = 0 then next 1
thus every term constructor is included. The value of the form else next(z * prev(p’ (m — 1)))) 2)

* nextbox \z. prev next(z * prev(p’ 1))

* next box \x. prev next(x * prevnext(x * prevnext 1))
next box \z. prev next(x * prevnext(z * 1))

let boxu =n.1 VO in W, which may appear unfamiliar,
can be seen as a code value with an environment which hinds
to an expressio’**t1) whose execution is delayed until stage
n + 1. Also note that’ ") doesnot includeprev V(?); otherwise
prev next W), which should be reduced at stage 0 RfPREV),
would be a value.

next box \z. prev next(z * (x * 1))
nextbox A\z. z * (z * 1)

888

4.4 Properties

The call-by-value reduction defined above is indeed reduction at
An evaluation context is a pseudo term that hawke [-], which time 0 in the following sense:
indicates the place where the reduction should be happen. In Mini-
ML ©E, the hole can be at not only stage 0 as is expected but alsoTHEOREM6. If A;T'+H° P : AandP ~» P’ thenP 2, p.

4.3.2 Evaluation Contexts

Axioms:

(Az:A. P) VO 0 [v© /g p (E-BETA) if true then P else Q >° P (E-1F-TRUE)

let boxu =¢ box Pin Q >° [P/u]Q (E-LETBOX) if false then P else Q >° Q (E-IF-FALSE)
- (n+1) i 7O 7@ m-n>’m—n E-MiINUS

(let boxu =p41 U in V%) w (E-APFC) ()

>0 let boxu =11 UMY in (V@ W)

mxn> mxn (E-MuLT)

let boxv = (let boxu =,11 U™ inV®)in R o

>0 let boxu =n41 U™ inlet boxv = V® in R n=mnl" true (E-Comp-EQ)
(E-LETBOXC)

m=mno"false (m #n) (E-ComP-NEQ)
prev(next V1) =1 () (E-PREV)
fixz:A. P >0 [(fixx:A. P)/x]P (E-Fix)
prev(let boxu =, 11 UMY in V() i
> let boxu =, U™+ in (prev V() (E-PREVC) letz = V@ inQ > [V /2]Q (E-LET)
Rules:
R R R>"'R
(E-0) (E-1)

E(n)[R] — E(n)[R/} E(n){R} — E(n){R/}

Figure 5. Call-by-value reduction rules

Moreover, if the given program is well typed, reduction never even though its formulation is somewhat informal and limited (as

get stuck and results in a unique value when it terminates. discussed in Section 3.4.) The notion of persistent code was, how-
o . ever, not considered there.
THEOREM7 (Progress)lf -;- =7 P : A, then either Davies and Pfenning [6] developed a typed calculds by

extending the Curry-Howard isomorphism to the modal logic S4,

where formulad A in the logic is interpreted as the type of code

which has no free variable in it. As seen in Section 2.4, although
By combining the theorems above and Theorem 1, we can fi- A~ is equipped with a mechanism for run-time code generation, it

nally show the theorem dfinding-time correctnesfb] that exe- cannot manipulate code containing free variables and so generated

cuting a program of typ€) A yields another program that can be code is not as efficient as that &P

typed at stage O (if it terminates). Here, we abbreviate a sequence _ Our calculusX®™, which includes both of the calcui® and

1. Pis avalueV®, or,
2. there exists uniqug”’ such thatP ~ P’ .

of let box bindings with a vector notation and, for example,) as its subsets can handlg and(] in a single system, by means
. S (A1) . of extending the Curry-Howard isomorphism to the linear-time

let box @ =11 V n temporal logic with modality. However, supporting convertibil-

means ity between types] O A and(O A and time-ordered normaliza-
(1) 4 tion property required non-trivial extensions including commuting

let boxu; = V i
1 =ni+1 Vg conversions.

Miyamoto and Igarashi’s calculug; [16], equipped with a se-
curity type system fomformation flow analysi$29], is based on

let box wm =n,,+1 V& in. . 1al . < .
™ the modal logic oflocal validity—1, A is read “A holds in any

THEOREMS.If - F* P : OAd and P ~* V©, then possible world reachable from world’ A computational interpre-
VO = et boxi =741 V™ in nextV® and - F° tation of such a locally valid proposition is the type of the expres-
let box @ == V@D in v @D . 4 ’ sion of type A which is accessible at the security levebr any

_ L _ higher level. A typel, A in AY and a typg)--- OO A in X°0
Notice that indices attached fet box is decreased by 1 after are very similar to each other, in the sense that both express the

removingnext. type of the terms which are available at a particular or any higher
level. Furthermorenoninterferenceone of the most important cor-
5. Related Work rectness properties of, stating that “a program input at a higher

security level does not affect the program output at a lower level”,

5.1 Typed Calculi based on Modal Logic which can be said, in other words, low level computation can be

As already mentioned, Davies [5] developed a typed calcifiis performed without any high level computation. Relations between
whose type system corresponds to linear-time temporal logic only multi-level programs and information flow analysis have been stud-
with O. The basic idea is that formuf@ A in the logic should cor- ied elsewhere [1, 2], though they do not use modal logic very ex-

respond to the type of code which will be executed at the next stage. plicitly.
The property of time-ordered normalization is first introduced here,

Murphy et al. [28, 27] developed typed lambda calculi as type- free appearances of newly generated names (not variables), so that
theoretic foundations for distributed programming; they are based manipulation of code can be carried out symbolically. As a result,
on modal logic S5 (with] A and ¢ A), in which the underlying it is made possible to generate code that is as efficient 43 in
reachability relation is an equivalence relation. They extend the Kim, Yi, and Calcagno [13] developed another type system for
Curry-Howard isomorphism to this logic, by interpreting possible staged programs based on (the implicit version [6]6f) Their
worlds as network nodes, and formutasA and< A as the types language uses textual substitution, rather than capture-avoiding,
of mobile code (of typed), which can be executed at any node, for manipulation of code fragments and realizes capture-avoiding
and addresses of remote values (of typg respectively. Thus, substitution by combining with a construct for name generation.
the resulting systems handle both mobility of code and locality The type system is in fact closer to those of context calculi [22, 21,
of resources in a single framework. Both their calculi axief” 10].
interpret] A as the type of code which rtable to any reachable
worlds (network nodes or computation stages), but the two calculi g, Concluding Remarks
differ from each other in reachability of such worlds. The former
takes equivalence relations to describe a network in which all nodes S X
are fully connected and can communicate with each other equally, Pas€d on a proof system for (intuitionistic) linear-time temporal
On the other hand, the latter takes partial (linear) orders to describe!09iC; as a foundation of programming languages for multi-level

staged program execution, in which computation goes on in one generatir)g extensipns with persistept code. Th.e calculus enjoys not
direction and never goes back. only basic properties such as subject reduction, confluence, and

strong normalization but also time-ordered normalization. Com-
muting conversions play an important role for time-ordered nor-

We have presented a typed calculis®, whose type system is

5.2 Other Type Systems for Staged Programs malization to hold.
There have been much work on type systems for safe staged pro- Our calculus, as mentioned in the previous section, includes
grams, based oN° and)®. both)& and X© as its subsets and handle both kind of code, per-

MetaML [25], developed by Taha and Sheard, is an extension Sistent one and ephemeral one; it in particular can express runtime
of X°, and has open code typéd), which corresponds to type ~ code generation using persistent code, just a¥’inor eval-like
O A of XO, as well as a construeun for code execution. The ~ constructin Lisp, and furthermore enables combination of the fea-

resulting type system, however, is not strong enough to ensure thattures of both kind of code, as shown in Section 2.4, although some

a code expression containing free variables is newer Moggi et limitation remains as yet.

al. [18] added closed code typgs$] to MetaML, resulting in AIM From a logical point of view, our proof system, extracted from
(An Idealized MetaML), a simpler type system with the ability of ~the type system ok~ is interesting. A proof system for (clas-

safe code execution. Benaissa et al. [3] later develogedwith sical) temporal logic is often formalized in the Hilbert style with

further refinement of AIM. They interpret the typd] as a closed axioms and rules for each modalities. A common set of axioms and
valuetype (not limited to code type) and unify the two kinds of rules of linear-time temporal logic, due to Stirling [23], is as fol-
code types; in this system, the closed code type which has beenlOWs:

separately categorized is now handled as a special case of open axioms: L1 classical tautologies

code. Those type systems allow to build efficient code (a§-iror L2 0O(A—-B)— (O0A—0OB),

XO8), which is persistent and immediately runnable by run-time L3 O-A<-0A4,

code generation. L4 OAd—B)—(OA—0OB),
Some aspects of those type systems can be explained in terms LS OA—AANQDOA,

of X°Y. For example, a type judgmetit - e : A™ in AIM L6 OA—-04) —A—-04),

roughly corresponds to a©C type judgmentT;- " e : A rules: MP ifA — BandA, thenB,

where the ordinary context is empty. Thus, every variable in AIM RG if A, thenO A.

is a persistent variable in®", naturally supporting cross-stage Although we can prove L2, L4 and L5 and both rules MP and RG
persistence. (Function abstractions in AIM can be represented byare expressed in terms @EApPp and T-Box, our proof system
the combination of andlet box.) So, AIM could be decomposed |acks axioms L3, which is related te (the type constructor that
to \°F and some pragmatically motivated extensions, for example, does not exist im®F), and L6, which realizes the principle of
to allow a constructrun) to remove the type construct@p without mathematical induction on time.
moving to the next computation stage. Although AIM ah@ Thus, itis interesting to add the power of the induction axiom to
seem to have stronger expressiveness for staged programs than©U since such an extension would enable us to write-uniform
XOB, as far as we know)°Y seems to be the first one that persistent code, which results in different code depending on which
combinesX® and A~ by taking into account the Curry-Howard stage it is used. By a straightforward extension of the Brouwer-
isomorphism, which is useful to give a foundational account for Heyting-Kolmogorov interpretation [26], the proof of A can be
type systems for multi-level programs. thought as a function that takes a time (or stage) as an argument and
More recently, environment classifiers [24, 4] have been pro- returns the proof ofd at that time. IN©U, the proof termbox M
posed as a typing mechanism for staged programs. Here, compuof] A4 is always a constant function: no matter which stage it is
tation stages are generalized from (totally ordered) natural num- ysed (bylet box), the obtained proof ofl is M (seeR-LETBOX).
bers, as in AIM and“", to a sequence of environment classifiers, In the presence of the induction axiom, however, the proof term of
which gives tree-structured stages. Although bithand \© can 1 A as a function would return different proof terms depending on
be represented by using environment classifiers, it is not clear thatwhich stage it is used. In fact, we have been working on such an
XU is also representable with environment classifiers—in partic- extension but have found that it would require significant changes
ular, we suspect commutativity of the two modaliti€s and O to the calculus.
would be lost due to the lack of totality in the order of stages. While our proof system is weaker than a familiar logic, it seems
Nanevski [19] started witl™ and introduced a new notion stronger than an axiomatic system obtained by removing the axiom
callednamessimilar to the symbols in Lisp, to develop the calculus L6, since, by counter-model construction, it can be shown that
vH. The calculus allows thbox code expression of? to include neitherOO0A — OQOAnor0(OQA — (OOA is provable

in such a proof system. We conjecture that our proof system is
intermediate and equivalent to the following axiomatic system in
the sense that we can derive-° A in our system iffA is provable

in the axiomatic system below:

(A= B—C)—(A— B) —(A— (),
A— B — A,

04— B)— (0DA—0OB),
O(A — B) - (OA— OB),
(OA—QOB)—OA— B),
OA — A,

OA—-0O0OA4,

OA—0OA4,
OO0OA—QODA4,
OoA—-o00A

if A — B andA, thenB,

if A, thenO A.

The first two axioms are usual axioms for implication. The fifth
axiom, theconversenf the K axiom of modality0), enforces times
to be linearly ordered. In the Stirling’s formalization it is expressed
in the right-to-left direction of axiom L3. To our knowledge, this
kind of logic has not been considered previously. It is easy to prove
those axioms and rules are admissiblaG¥ but it is left for future
work to prove the converse.

Finally, it is also left for interesting future work to design
and implement a full-fledged programming language based on
XO8 . The present call-by-value reduction semantics, unfortunately,

axioms:

rules:

does not seem to suggest efficient implementation, especially be-

cause of the presence of commuting conversi@kETBoxC and
E-PrReVC). Designing a suitable abstract machine with environ-
ments would be a first step.

Acknowledgments

We thank Hidehiko Masuhara and anonymous referees for com-

ments to improve presentation. This work was supported in part
by Grant-in-Aid for Scientific Research on Priority Areas Research
No. 18049044 from MEXT of Japan.

References

[1] Martin Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke.
A core calculus of dependency. Rroceedings of ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Langugusses
147-160, San Antonio, TX, January 1999.

Gilles Barthe and Bernard P. Serpette. Partial evaluation and
non-interference for object calculi. IRroceedings of 4th Fuiji
International Symposium on Functional and Logic Programming
(FLOPS’99) volume 1722 ofLecture Notes on Computer Science
pages 53-67, Tsukuba, Japan, 1999.

Zine El-Abidine Benaissa, Eugenio Moggi, Walid Taha, and Tim
Sheard. Logical modalities and multi-stage programming. In
Proceedings of Workshop on Intuitionistic Modal Logics and
Applications (IMLA'99) Trento, Italy, July 1999. Available from
http://www.disi.unige.it/person/MoggiE/publications.
html.

[2

—

3

—_

[4

fla.aer

Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In David Schmidt, editBroceedings of
European Symposium on Programming (ESOP’'04)ume 2986 of
Lecture Notes on Computer Scienpages 79-93, Barcelona, Spain,
March/April 2004. Springer Verlag.

Rowan Davies. A temporal-logic approach to binding-time analysis.
In Proceedings of 11th Annual Symposium on Logic in Computer
Science (LICS'96)pages 184-195, 1996.

[6] Rowan Davies and Frank Pfenning. A modal analysis of staged
computationJournal of the ACM48(3):555-604, 2001.

(5]

[7] Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and
Bruce F. Duba. A syntactic theory of sequential contfidieoretical
Computer Scien¢&2:205-237, 1987.

[8] Jean-Yves Girard, Yves Lafont, and Paul TaylBroofs and Types
Cambridge University Press, 1989.

[9] Robert Glick and Jesper Jgrgensen. Efficient multi-level generating
extensions for program specialization. Rroceedings of Program-
ming Languages, Implementations, Logics and Programs (PLILP’95)
LNCS 982, pages 259-278, 1995.

[10] Masatomo Hashimoto and Atsushi Ohori. A typed context calculus.
Theoretical Computer Scienc266(1-2):249-272, 2001.

[11] John Hatcliff and Olivier Danvy. A computational formalization for
partial evaluation. Mathematical Structure in Computer Science
7:507-541, 1997. Special issue containing selected papers presented
at the 1995 Workshop on Logic, Domains, and Programming
LanguagesDarmstadt, Germany.

Neil D. Jones, Carsten K. Gomard, and Peter Sest&furtial
Evaluation and Automatic Program GeneratidPrentice-Hall, 1993.

(12]
(13]

Ik-Soon Kim, Kwangkeun Yi, and Cristiano Calcagno. A polymor-
phic modal type system for Lisp-like multi-staged languages. In
Proceedings of ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL'Q§)ages 257-268, Charleston,

SC, January 2006.

[14] Julia L. Lawall and Peter Thiemann. Sound specialization in the
presence of computational effects. Pmoceedings of International
Symposium on Theoretical Aspects of Computer Software (TACS'97)
volume 1281 ot ecture Notes on Computer Scienpages 165-190,
Sendai, Japan, September 1997. Springer Verlag.

[15] Per Martin-Lbf. On the meanings of the logical constants and the
justifications of the logical lawsNordic Journal of Philosophical
Logic, 1(1), 1996.

[16] Kenji Miyamoto and Atsushi Igarashi. A modal foundation for secure
information flow. InProceedings of Workshop on Foundations of
Computer Security (FCS’'04pages 187—-203, 2004.

[17] Eugenio Moggi. Notions of computation and monati§ormation
and Computation1991.

[18] Eugenio Moggi, Walid Taha, Zine El-Abidine Benaissa, and Tim
Sheard. An idealized MetaML: Simpler, and more expressive. In
Proceedings of European Symposium on Programming (ESOP’99)
volume 1576 oLNCS pages 193-207, 1999.

[19] Aleksandar Nanevski. Meta-programming with names and neces-
sity. In Proceedings of the seventh ACM SIGPLAN International
Conference on Functional Programming (ICFP’0Pages 206-217,
2002. See alsattp://www-2.cs.cmu.edu/ aleks/papers/
necessity/techrep2.ps.

[20] Frank Pfenning and Rowan Davies. A judgmental reconstruction
of modal logic. Mathematical Structures in Computer Science

11(4):511-540, 2001.

Masahiko Sato, Takafumi Sakurai, and Yukiyoshi Kameyama. A
simply typed context calculus with first-class environments. In
Proceedings of Fifth International Symposium on Functional and
Logic Programming (FLOPS 2001yolume 2024 olecture Notes

on Computer Sciengpages 359-374, Tokyo, Japan, 2001. Springer
Verlag.

(21]

[22] Masahiko Sato, Takafumi Sakurai, and Yukiyoshi Kameyama. A
simply typed context calculus with first-class environmedtsurnal

of Functional and Logic Programmin@002(4):1-41, 2002.

[23] Colin Stirling. Modal and temporal logics. IHandbook of Logic
in Computer Sciencevolume 2, pages 477-563. Oxford University
Press, 1992.

[24] Walid Taha and Michael Florentin Nielsen. Environment classifiers.
In Proceedings of ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL'Q3)ages 26—37, New Orleans,
LA, January 2003.

[25] Walid Taha and Tim Sheard. Multi-stage programming with
explicit annotations. IrProceedings of Partial Evaluation and
Semantics-Based Program Manipulation (PEPM’9Fages 203—
217, Amsterdam, The Netherlands, June 1997. ACM Press.

[26] Anne Sjerp Troelstra and Dirk van DalenConstructivism in
Mathematics: An Introductigrvolume 1. North-Holland, 1988.

[27] Tom Murphy VII, Karl Crary, and Robert Harper. Distributed control
flow with classical modal logic. IfProceedings of Conference of the
European Association for Computer Science Logic (CSL.\¢&ume
3634 ofLecture Notes on Computer Scienpages 51-69, Oxford,
UK, August 2005. Springer Verlag.

[28] Tom Murphy VII, Karl Crary, Robert Harper, and Frank Pfenning.
A symmetric modal lambda calculus for distributed computing.
In Proceedings of 19th Annual Symposium on Logic in Computer
Science (LICS'04)pages 286—-295, 2004.

[29] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type
system for secure flow analysislournal of Computer Security
4(3):1-21, 1996.

