
Lightweight Family Polymorphism

Atsushi Igarashi1, Chieri Saito1, and Mirko Viroli2

1 Kyoto University, Japan, {igarashi,saito}@kuis.kyoto-u.ac.jp
2 Alma Mater Studiorum, Università di Bologna a Cesena, Italy,

mviroli@deis.unibo.it

Abstract. Family polymorphism has been proposed for object-oriented
languages as a solution to supporting reusable yet type-safe mutually
recursive classes. A key idea of family polymorphism is the notion of
families, which are used to group mutually recursive classes. In the orig-
inal proposal, due to the design decision that families are represented
by objects, dependent types had to be introduced, resulting in a rather
complex type system. In this paper, we propose a simpler solution of
lightweight family polymorphism, based on the idea that families are
represented by classes rather than objects. This change makes the type
system significantly simpler without losing much expressibility of the
language. Moreover, “family-polymorphic” methods now take a form of
parametric methods; thus it is easy to apply the Java-style type infer-
ence. To rigorously show that our approach is safe, we formalize the set
of language features on top of Featherweight Java and prove the type
system is sound. An algorithm of type inference for family-polymorphic
method invocations is also formalized and proved to be correct.

1 Introduction

Mismatch between Mutually Recursive Classes and Simple Inheritance. It is
fairly well-known that, in object-oriented languages with simple name-based
type systems such as C++ or Java, mutually recursive class definitions and
extension by inheritance do not fit very well. Since classes are usually closed
entities in a program, mutually recursive classes here really mean a set of classes
whose method signatures refer to each other by their names. Thus, different sets
of mutually recursive classes necessarily have different signatures, even though
their structures are similar. On the other hand, in C++ or Java, it is not al-
lowed to inherit a method from the superclass with a different signature (in fact,
it is not safe in general to allow covariant change of method parameter types).
As a result, deriving subclasses of mutually recursive classes yields another set
of classes that do not refer to each other and, worse, this mismatch is often re-
solved by typecasting, which is a potentially unsafe operation (not to say unsafe,
an exception may be raised). A lot of studies [6, 8, 11, 14, 16, 19, 3, 18] have
been recently done to develop a language mechanism with a static type system
that allows “right” extension of mutually recursive classes without resorting to
typecasting or other unsafe features.

Family Polymorphism. Erik Ernst [11] has recently coined the term “family
polymorphism” for a particular programming style using virtual classes [15] of
gbeta [10] and applied it to solve the above-mentioned problem of mutually
recursive classes.

In his proposal, mutually recursive classes are programmed as nested class
members of another (top-level) class. Those member classes are virtual in the
same sense as virtual methods—a reference to a class member is resolved at run-
time. Thus, the meaning of mutual references to class names will change when
a subclass of the enclosing class is derived and those member classes are inher-
ited. This late-binding of class names makes it possible to reuse implementation
without the mismatch described above. The term family refers to such a set of
mutually recursive classes grouped inside another class. He has also shown how
a method that can uniformly work for different families can be written in a safe
way: such “family-polymorphic” methods take as arguments not only instances
of mutually recursive classes but also the family that they belong to, so that
semantical analysis (or a static type checker) can check if those instances really
belong to the same family.

Although family polymorphism seems very powerful, we feel that there may
be a simpler solution to the present problem. In particular, in gbeta, nested
classes really are members (or, more precisely, attributes) of an object, so types
for mutually recursive classes include as part object references, which serve as
identifiers of families. As a result, the semantical analysis of gbeta essentially
involves a dependent type system [1, 18], which is rather complex (especially in
the presence of side effects).

Contributions of the Paper. We identify a minimal, lightweight set of language
features to solve the problem of typing mutually recursive classes, rather than
introduce a new advanced mechanism. As done in elsewhere [14], we adopt what
we call the “classes-as-families” principle, in which families are identified with
classes, which are static entities, rather than objects, which are dynamic. Al-
though it loses some expressibility, a similar style of programming is still possi-
ble. Moreover, we take the approach that inheritance is not subtyping, for type
safety reasons, and also avoid exact types [6], which are often deemed important
in this context. These decisions simplify the type system a lot, making much
easier a type soundness argument and application to practical languages such
as Java. As a byproduct, we can view family polymorphic methods as a kind of
parametric methods found e.g. in Java generics and find that the technique of
type argument synthesis as in GJ and Java 5.0 [2, 17] can be extended to our
proposal as well.

Other technical contributions of the present paper can be summarized as
follows:

– Simplification of the type system for family polymorphism with the support
for family-polymorphic methods;

– A rigorous discussion of the safety issues by developing a formal model called
.FJ (read “dot FJ”) of lightweight polymorphism, on top of Featherweight

Java [13] by Igarashi, Pierce, and Wadler, and a correctness theorem of the
type system; and

– An algorithm of type argument synthesis for family-polymorphic methods
and its correctness theorem.

The Rest of This Paper. After Section 2 presents the overview of our language
constructs through the standard example of graphs, in Section 3, we formalize
those mechanisms as the calculus .FJ and discuss its type safety. Then, Section 4
presents a type inference algorithm for family-polymorphic method invocations
and discuss its correctness. Section 5 discusses related work, and Section 6 con-
cludes. For brevity, we omit proofs of theorems; they will appear in a full version,
which will be available at http://www.sato.kuis.kyoto-u.ac.jp/~igarashi/
papers/.

2 Programming Lightweight Family Polymorphism

We start by informally describing the main aspects of the language constructs
we study in this paper, used to support lightweight family polymorphism. To
this end, we consider as a reference the example in [11], properly adapted to fit
our “classes-as-families” principle.

This example features a family (or group) Graph, containing the classes Node
and Edge, which are the members of the family, and are used as components to
build graph instances. As typically happens, members of the same family can
mutually refer to each other: in our example for instance, each node holds a
reference to connected edges, while each edge holds a reference to its source
and destination nodes. Now suppose we are interested in defining a new fam-
ily ColorWeightGraph, used to define graphs with colored nodes and weighted
edges—nodes and edges with the new properties called color and weight,
respectively—such that the weight of an edge depends on the color of its source
and destination nodes. Note that in this way the the members of the family
Graph are not compatible with those of family ColorWeightGraph. To achieve
reuse, we would like to define the family ColorWeightGraph as an extension of
the family Graph, and declare a member Node which automatically inherits all
the properties (fields and methods) of Node in Graph, and similarly for member
Edge. Moreover, as advocated by the family polymorphism idea, we would like
classes Node and Edge in ColorWeightGraph to mutually refer to each other auto-
matically, as opposed to those solutions exploiting single class-inheritance where
e.g. class Node of ColorWeightGraph would simply refer to Edge of Graph—thus
requiring an extensive use of type-casts.

2.1 Nested Classes, Relative Path Types, and Extension of Families

This graph example can be programmed using our lightweight family polymor-
phism solution as reported at the top of Figure 1, whose code adheres to a

class Graph {
static class Node {

.Edge[] es=new .Edge[10]; int i=0;
void add(.Edge e) { es[i++] = e; }}

static class Edge {
.Node src, dst;
void connect(.Node s, .Node d) {

src = s; dst = d; s.add(this); d.add(this); }}}

class ColorWeightGraph extends Graph {
static class Node {

Color color; }
static class Edge {

int weight;
void connect(.Node s, .Node d) {

weight = f(s.color, d.color); super.connect(s, d); }}}

Graph.Edge e; Graph.Node n1, n2;
ColorWeightGraph.Edge we; ColorWeightGraph.Node cn1, cn2;
e.connect(n1, n2); // 1: OK
we.connect(cn1, cn2); // 2: OK
we.connect(n1, cn2); // 3: compile-time error
e.connect(n1, cn2); // 4: compile-time error

<G extends Graph>
void connectAll(G.Edge[] es, G.Node n1, G.Node n2){

for (int i: es) es[i].connect(n1,n2); }

Graph.Edge[] ges; Graph.Node gn1,gn2;
ColorWeightGraph.Edge[] ces; ColorWeightGraph.Node cn1,cn2;
connectAll(ges, gn1, gn2); // G as Graph
connectAll(ces, cn1, cn2); // G as ColorWeightGraph
connectAll(ces, gn1, gn2); // compile-time error

Fig. 1. Graph and ColorWeightGraph Classes

Java-like syntax—which is also the basis for the syntax of the calculus .FJ we
introduce in Section 3.

The first idea is to represent families as (top-level) classes, and their mem-
bers as nested classes. Note that in particular we relied on the syntax of Java
static member classes, which provide a grouping mechanism suitable to define
a family—in spite of this similarity, we shall in the following give a different
semantics to that member classes, in order to support family polymorphism.
The types of nodes and edges of class(-family) Graph are denoted by notations
Graph.Node and Graph.Edge which we call fully qualified types. Whereas such
types are useful outside the family to declare variables and to create instances
of such member classes, we do not use them to specify mutual references of fam-
ily members. The notations .Node and .Graph are instead introduced to this
purpose, meaning “member Node in the current family” and “member Edge in
the current family”. We call such types relative path types: this terminology is
justified by noting that while the notation for a type C1.C2 resembles an absolute
directory path /d1/d2, notation .C2 resembles the relative directory path ../d2.

The importance of relative path types becomes clear when introducing the
concept of family extension. To define the new family ColorWeightGraph, a new
class ColorWeightGraph is declared to extend Graph and providing the mem-
ber classes Node and Edge. Such new members, identified outside their family by
the fully qualified types ColorWeightGraph.Node and ColorWeightGraph.Edge,
will inherit all the properties of classes Graph.Node and Graph.Edge, respec-
tively. In particular, ColorWeightGraph.Edge will inherit method connect()
from Graph.Edge, and can therefore override it as shown in the reference code,
and even redirect calls by the super.connect() invocation. However, connect
is declared to accept two arguments of type .Node, and for the particular seman-
tics we give to relative path types, it will accept a Graph.Node when invoked
through a Graph.Edge, and a ColorWeightGraph.Node when invoked through
a ColorWeightGraph.Edge. Relative path types are necessary to realize family
polymorphism, as they guarantee members of the extended family to mutually
refer to each other, and not to refer to a different family.

2.2 Inheritance is not Subtyping for Member Classes

This covariance schema for relative path types—they change as we move from a
family to a subfamily—resembles and extends the ThisType construct [5], used
to make classes self-referencing themselves covariantly through inheritance hier-
archies. As well known, however, such a covariance schema prevents inheritance
and substitutability from correctly working together as happens instead in single
class-inheritance of most common object-oriented languages. In particular, when
relative path types are used as argument type to a method in a family member,
as in method connect() of class Edge, they prevent its instances from being sub-
stituted for those in the superfamily, even though the proper inheritance relation
is supported. The following code fragment reveals this problem:

// If ColoredWeightGraph.Edge were substitutable for Graph.Edge
Graph.Edge e=new ColoredWeightGraph.Edge();
Graph.Node n1=new Graph.Node();
Graph.Node n2=new Graph.Node();
e.connect(n1,n2); // Unsafe!!

If class ColorWeightGraph.Edge could be substituted for Graph.Edge, then it
could happen to invoke connect() on a ColorWeightGraph.Edge passing some
Graph.Node as elements. Such an invocation would lead to the attempt of ac-
cessing field color on an object of class Graph.Node, which does not have a
definition for it!

To prevent this form of unsoundness, our lightweight family polymorphism
solution proposes to prevent such substitutability by adopting an “inheritance
without subtyping” approach for family members. Applied to our graph ex-
ample, it means that while ColorWeightGraph.Node inherits all the properties
of Graph.Node (for ColorWeightGraph extends Graph), we do not have that
ColorWeightGraph.Node is a subtype of Graph.Node. As a result of this choice,
we are able to correctly check for the invocation of methods in members. In the
client code of Figure 1 (third box), the first two invocations are correct for node

arguments belong to the same family of the receiving edge, the third and fourth
are (statically) incorrect, as we are passing as argument a node belonging to a
different family than the receiving edge, thus incompatible with the expected
node—as Graph.Node and ColorWeightGraph.Node are not in the subtype re-
lation.

2.3 Family-Polymorphic Methods as Parametric Methods

To fully exploit the benefits of family polymorphism it should be possible to
write so-called family-polymorphic methods, that is, methods that can work over
different families, and where a single invocation is specific to the family of the
elements passed as argument. As an example, it should be possible to write a
method connectAll taking as input an array of edges and two nodes, connecting
each edge to the two nodes, and ensuring the edges and nodes of the same family
are used. In our language this is realized through parametric methods as shown
in the bottom of Figure 1. Method connectAll is defined as parametric in a type
G with upper-bound Graph: G represents the family used for a specific invocation,
and correspondingly the arguments are of type G.Edge[], G.Node and G.Node
respectively. As a result, in the first invocation of the example code, by passing
edges and nodes of family Graph the compiler would infer for G the type Graph,
and similarly in the second invocation infers ColorGraphWeight. Finally, in the
third invocation no type can be inferred for G, since for no G we have that G.Edge
and G.Node match types ColorWeightGraph.Edge and Graph.Node.

3 .FJ: A Formal Model of Lightweight Family
Polymorphism

In this section, we formalize the ideas described in the previous section, namely,
nested classes with simultaneous extension, relative path types and family-
polymorphic methods as a small calculus named .FJ based on Featherweight
Java [13], a functional core of class-based object-oriented languages. After for-
mally defining the syntax (Section 3.1), type system (Sections 3.2 and 3.3), and
operational semantics (Section 3.4) of .FJ, we show a type soundness result
(Section 3.5).

For simplicity, we deal with a single level of nesting, as opposed to Java, which
allows arbitrary levels of nesting. Although they are easy to add, typecasts—
which appear in Featherweight Java—are dropped since one of our aims here is to
show programming in the previous section is possible without typecasts. In .FJ,
every parametric method invocation has to provide its type arguments—type
inference will be discussed in Section 4.

3.1 Syntax

The abstract syntax of top-level/nested class declarations, constructor declara-
tions, method declarations, and expressions of the extended system is given in

P,Q ::= C | X family names
A,B ::= C | C.C fully qualified class names

S,T,U ::= P | P.C | .C types

L ::= class C/C {T f; K M N} top class declarations

K ::= C(T f){super(f); this.f=f} constructor declarations

M ::= <X/C>T m(T x){ return e; } method declarations

N ::= class C {T f; K M} nested class declarations

d,e ::= x | e.f | e.m<P>(e) | new A(e) expressions
v ::= new A(v) values

Fig. 2. .FJ: Syntax

Figure 2. Here, the metavariables C, D, and E range over (simple) class names; X
and Y range over type variable names; f and g range over field names; m ranges
over method names; x ranges over variables.

We put an over-line for a possibly empty sequence. Furthermore, we abbre-
viate pairs of sequences in a similar way, writing “C f” for “C1 f1,. . . ,Cn fn”,
where n is the length of C and f, and “this.f=f;” as shorthand for
“this.f1=f1;. . . ;this.fn=fn;” and so on. Sequences of type variables, field
declarations, parameter names, and method declarations are assumed to contain
no duplicate names. We write the empty sequence as • and denote concatenation
of sequences using a comma.

A family name, used as a type argument to family-polymorphic methods, is
either a top-level class name or a type variable. Fully qualified class names can
be used to instantiate objects, so they play the role of run-time types of objects.
A type can be a family name, a fully qualified class name, X.C, or a relative
path type .C. A top-level class declaration consists of its name, its superclass,
field declarations, a constructor, methods, and nested classes. The symbol / is
read extends. On the other hand, nested classes does not have an extends
clause since the class from which it inherits is implicitly determined. We have
dropped the keyword static, used in the previous section, for conciseness. As
in Featherweight Java, a constructor is given in a stylized syntax and just takes
initial (and final) values for the fields and assigns them to corresponding fields.
A method declaration can be parameterized by type variables, whose bounds are
top-level class (i.e., family) names. Since the language is functional, the body
of a method is a single return statement. An expression is either a variable,
field access, method invocation, or object creation. We assume that the set of
variables includes the special variable this, which cannot be used as the name
of a parameter to a method.

A class table CT is a mapping from fully qualified class names A to (top-
level or nested) class declarations. A program is a pair (CT , e) of a class table
and an expression. To lighten the notation in what follows, we always assume a

Field Lookup:

fields(Object) = •

class C / D {T f;...}
fields(D) = U g

fields(C) = U g, T f

fields(Object.C) = •

class C / D {...N}
class E {T f;...} ∈ N

fields(D.E) = U g

fields(C.E) = U g, T f

class C / D {...N}
E 6∈ N fields(D.E) = U g

fields(C.E) = U g

Method Type Lookup:

class C / D {...M}
<X/C>T0 m(T x){ return e; } ∈ M

mtype(m, C) = <X / C>T→T0

class C / D {...M...} m 6∈ M

mtype(m, C) = mtype(m, D)

class C / D {...N}
class E {...M} ∈ N

<X/C>T0 m(T x){ return e; } ∈ M

mtype(m, C.E) = <X / C>T→T0

class C / D {...N}
class E {...M} ∈ N m 6∈ M

mtype(m, C.E) = mtype(m, D.E)

class C / D {...N} E 6∈ N

mtype(m, C.E) = mtype(m, D.E)

Fig. 3. .FJ: Auxiliary lookup functions

fixed class table CT . As in Featherweight Java, we assume that Object has no
members and its definition does not appear in the class table.

3.2 Lookup Functions

Before proceeding to the type system, we give functions to lookup field or method
definitions. The function fields(A) returns a sequence T f of field names of the
class A with their types. The function mtype(m, A) takes a method name and a
class name as input and returns the corresponding method signature of the form
<X/C>T→T0, in which X are bound. They are defined by the rules in Figure 3.
Here, m 6∈ M (and E 6∈ N) mean the method of name m (and the nested class of
name E, respectively) do not exist in M (and N, respectively).

As mentioned before, Object do not have any fields, methods, or nested
classes, so fields(Object) = fields(Object.C) = • for any C, and mtype(m, Object)
and mtype(m, Object.C) are undefined. The definitions are straightforward ex-
tensions of the ones in Featherweight Java. Interesting rules are the last rules:
when a nested class C.E does not exist, it looks up the nested class of the same
name E in the superclass of the enclosing class C.

Subtyping:

∆ ` T <: T ∆ ` X <: ∆(X)

∆ ` T <: Object

∆ ` S <: T ∆ ` T <: U

∆ ` S <: U

class C / D {...}

∆ ` C <: D

Type Well-formedness:

∆ ` Object ok in A

A ∈ dom(CT)

∆ ` A ok in B

class C / D{...N} E 6∈ N
∆ ` D.E ok in A

∆ ` C.E ok in A

∆ ` ∆(X) ok in A

∆ ` X ok in A

∆ ` ∆(X).C ok in A

∆ ` X.C ok in A

∆ ` C.E ok in C.D

∆ ` .E ok in C.D

Fig. 4. .FJ: Subtyping and type well-formedness

3.3 Type System

The main judgments of the type system consist of one for subtyping ∆ ` S <: T,
one for type well-formedness ∆ ` T ok in A, and one for typing ∆; Γ ` e : T in A.
Here, Γ is a type environment, which is a finite mapping from variables to types,
written x:T; ∆ is a bound environment, which is a finite mapping from type
variables to their bounds, written X<:C. Since we are not concerned with more
general forms of bounded polymorphism, upper bounds are always top-level class
names. We abbreviate a sequence of judgments in the obvious way: ∆ ` S1 <: T1,
. . . , ∆ ` Sn <: Tn to ∆ ` S <: T; ∆ ` T1 ok in A, . . . , ∆ ` Tn ok in A to
∆ ` T ok in A; and ∆; Γ ` e1:T1 in A, . . . , ∆; Γ ` en:Tn in A to ∆; Γ ` e:T in A.

Subtyping. The subtyping judgment ∆ ` S <: T, read as “S is subtype of T under
∆,” is defined in Figure 4. This relation is the reflexive and transitive closure of
the extends relation with Object being the top type. Note that a nested class,
which does not have the extends clause, has only a trivial super/subtype, which
is itself, even if some members are inherited from another (nested) class.

Type Well-formedness. The type well-formedness judgment ∆ ` T ok in A, read
as “T is a well formed type in (the body of) class A under ∆.” The rules for well-
formed types appear also in Figure 4. Object and class names in the domain of
the class table are well formed. Moreover, a nested class C.E is well formed if E
is inherited from C’s superclass D. Type X (possibly with a suffix) is well formed
if its upper bound (with the suffix) is well formed. Finally, a relative path type
.E is well formed in a nested class C.D if C.E is well formed.

Typing. We first introduce a few more auxiliary definitions, required for ex-
pression typing. We write bound∆(T) for the upper bound of T in ∆, defined
by:

bound∆(A) = A bound∆(X) = ∆(X) bound∆(X.C) = ∆(X).C.

This notation is used to replace a type variable with its upper bound. We never
ask the upper bound of a relative path type, so bound∆(.C) is undefined. The
resolution T@S of T in S, which intuitively denotes the class name that T refers
to in a given class S, is defined by:

.D@P.C = P.D .D@.C = .D P@T = P P.C@T = P.C.

The only interesting case is the first clause: It means that a relative path type
.D in P.C refers to P.D—it resembles the command cd of UNIX shells: cd ../D
changes the current directory from P/C to P/D. For example, .Edge@Graph.Node =
Graph.Edge. Note that .D@C is undefined since a relative path type is not al-
lowed to appear in top-level classes.

The typing judgment for expressions is of the form ∆;Γ ` e:T in A, read as
“under bound environment ∆ and type environment Γ , expression e has type
T in class A.” Typing rules are given in Figure 5. Interesting rules are T-Field
and T-Invk, although the basic idea is as usual—for example, in T-Field, the
field types are retrieved from the receiver’s type T0, and the corresponding type
of the accessed field is the type of the whole expression. We need some tricks
to deal with relative path types (and type variables): if the receiver’s type T0

is a relative path type, it has to be resolved in A, the class in which e appears;
a type variable is taken to its upper bound by bound∆(). Moreover, if the field
type is a relative path type, it is resolved in the receiver’s type. For example, if
fields(CWGraph.Node) = .Edge edg and Γ = x:CWGraph.Node, y:.Node, then

∆; Γ ` x.edg : CWGraph.Edge in CWGraph.Node and
∆; Γ ` y.edg : .Edge in CWGraph.Node.

In this way, accessing a field of relative path type gives a relative path type only
when the receiver is also given a relative path type. Similarly, in T-Invk, the
method type is retrieved from the receiver’s type; then, it is checked whether
the given type arguments are subtypes of bounds C of formal type parameters
and the types of actual value arguments are subtypes of those of formal pa-
rameters, where type arguments are substituted for variables. For example, if
mtype(connectAll, C) = <G/Graph>(G.Node,G.Edge)→void, then

∆; x:C, n:CWGraph.Node, e:CWGraph.Edge `
x.connectAll<CWGraph>(n,e) : void in A.

Judgments for method typing are written M ok in A, and derived by T-Method.
Here, thistype(A) and superclass(A) are defined by:

thistype(C) = C superclass(C) = D
thistype(C.E) = .E superclass(C.E) = D.E

Expression Typing:

∆; Γ ` x:Γ (x) in A (T-Var)

∆; Γ ` e0:T0 in A fields(bound∆(T0@A)) = T f

∆; Γ ` e0.fi:Ti@T0 in A
(T-Field)

∆; Γ ` e0 : T0 in A mtype(m, bound∆(T0@A)) = <X / C>U→U
∆ ` P <: C ∆; Γ ` e:T in A ∆ ` T <:([P/X]U)@T0

∆; Γ ` e0.m<P>(e) : ([P/X]U)@T0 in A
(T-Invk)

fields(A0) = T f ∆; Γ ` e : U in A ∆ ` U <:T@A0

∆; Γ ` new A0(e) : A0 in A
(T-New)

Method and Class Typing:

∆ = X <: C ∆;x:T, this:thistype(A) ` e0:U0 in A
∆ ` U0 <: T0 ∆ ` T0,T,C ok in A

if mtype(m, superclass(A)) = <Y / D>S→S0 then C = D and T,T0 = [X/Y](S,S0)

<X / C>T0 m(T x){ return e0; } ok in A
(T-Method)

K = E(U g, T f){super(g); this.f=f}
fields(superclass(C).E) = U g M ok in C.E ∅ ` T ok in C.E

class E{T f; K M} ok in C
(T-NClass)

K = C(U g, T f){super(g); this.f=f;}
fields(D) = U g M ok in C N ok in C ∅ ` T,D ok in C

class C / D{T f; K M N} ok
(T-TClass)

Fig. 5. .FJ: Typing

fields(A) = T f
new A(e).fi −→ ei

mbody(m<P>, A) = x.e0

new A(e).m<P>(d) −→ [d/x, new A(e)/this]e0

Fig. 6. .FJ: Reduction

where class C/D{...}. It checks that the body of the method is well typed
under the bound and type environments obtained from the definition. Note that
this of a nested class is given a relative path type, as the meaning of this
changes in subclasses. The last conditional premise checks that m correctly over-
rides (if it does) the method of the same name in the superclass with the same
signature (modulo renaming of type variables). Note that a relative path type
is, literally, not changed by overriding but its meaning is changing.

There are two class typing rules, one for top-level classes and one for nested
classes. Both of them are essentially the same: they check that field types and
constructor argument types are the same, and that methods are ok in the class.
The rule T-TClass for top-level classes also checks that nested classes are ok.

3.4 Operational Semantics

The operational semantics is given by the reduction relation of the form e −→ e′,
read “expression e reduces to e′ in one step.” We require another lookup function
mbody(m, A), of which we omitted its obvious definition, for the method body with
formal parameters, written x.e, of given method and class names.

The reduction rules are given in Figure 6. We write [d/x, e/y]e0 for the
expression obtained from e0 by replacing x1 with d1, . . . , xn with dn, and y
with e. There are two reduction rules, one for field access and one for method
invocation, which are straightforward. The reduction rules may be applied at any
point in an expression, so we also need the obvious congruence rules (if e −→ e′

then e.f −→ e′.f, and the like), omitted here. We write −→∗ for the reflexive
and transitive closure of −→.

3.5 Type Soundness

The type system is sound with respect to the operational semantics, as expected.
Type soundness is proved in the standard manner via subject reduction and
progress [21, 13].

Lemma 1 (Subject Reduction). If ∆; Γ ` e:T in A and e −→ e′, then
∆;Γ ` e′:T′ in A, for some T′ such that ∆ ` T′<:T.

Lemma 2 (Progress). If ∅; ∅ ` e:A in B and e is not a value, then e −→ e′,
for some e′.

Theorem 1 (Type Soundness). If ∅; ∅ ` e:A in B and e −→∗ e′ with e′ a
normal form, then e′ is a value v with ∅; ∅ ` v:A′ in B and ∅ ` A′<:A.

Infer∆
X

(∅) = []

Infer∆
X

(S′] {P.C<:Xi.C}) = [Xi 7→ P] ◦ Infer∆
X

([P/Xi]S
′)

Infer∆
X

(S′] {T1<:Xi}] {T2<:Xi}) = Infer∆
X

(S′] {(T1 t∆ T2)<:Xi})

Infer∆
X

(S′] {T<:Xi,Xi<:Ci}) =

¡

[Xi 7→ T] ◦ Infer∆
X

(S′) if ∆ ` T<:Ci and Xi 6∈ S′

fail otherwise

Infer∆
X

(S′] {Xi<:Ci}) =

¡

[Xi 7→ Ci] ◦ Infer∆
X

(S′) if Xi 6∈ S′

fail otherwise

Infer∆
X

(S′] {T1<:T2}) =

¡

Infer∆
X

(S′) if ∆ ` T1<:T2

fail otherwise

Fig. 7. Algorithm for Type Argument Synthesis

4 Type Inference for Parametric Method Invocations

The language .FJ in the previous section is considered an intermediate language
in which every type argument to parametric methods is made explicit. In this
section, we briefly discuss how type arguments can be recovered, give an algo-
rithm for type argument inference, and show its correctness theorem.

The basic idea of type inference is the same as Java 5.01: Given a method
invocation expression e0.m(e) that appears in class A without specifying type
arguments, we can at least compute the type T0 of e0, the signature <X/C>U→U0

of the method m, and the types T of (value) arguments. Then, it is easy to
see from the rule T-Invk that it suffices to find P that satisfies P <: C and
T <:([P/X]U)@T0. In other words, the goal of type inference is to solve the set
{X<:C,T<:(U@T0)} of inequalities with respect to X.

We formalize this constraint solving process as function Infer∆
X (S). It takes

as input a set of inequalities of the form either X<:C or T1<:T2 where T1 does not
contain Xi, and returns a mapping from X to types. ∆ records other variables’
bounds, so X and the domain of ∆ are assumed to be disjoint. The definition
of Infer∆

X (S) is shown in Figure 7. Here, T1 t∆ T2 is the least upper bound of
T1 and T2 (the least upper bound of given two types always exist since we do
not have interfaces, which can extend more than one interface.) We assume that
each clause is applied in the order shown—thus, for example, the fourth clause
will not be applied until there is only one inequation of the form T<:Xi.

The algorithm is explained as follows. The second clause is the case where
a formal argument type is Xi.C and the corresponding actual is P.C: since P.C
has only a trivial supertype (namely, itself), Xi must be P. The third clause is
the case where a type variable has more than one lower bound: we replace two
inequalities by one using the least upper bound. The following two clauses are

1 We should note that the flaw, found by Alan Jeffrey, in the original GJ type inference
does not apply since our setting is much simpler.

applied when no other constraints on Xi appear elsewhere; it checks whether the
constraint is satisfiable.

Now, we state the theorem of correctness of type inference. It means that, if
type inference succeeds, it gives the least type arguments.

Theorem 2 (Type Inference Correctness). If ∆; Γ ` e0:T0 in A
and mtype(m, bound∆(T0)@A) = <X/C>U→U0 and ∆;Γ ` e:T in A and
Infer∆

X ({X<:C,T<:(U@T0)}) returns σ = [X 7→ P], then ∆; Γ ` e0.m<σX>(e) :
(σU0)@T0 in A. Moreover, σ is the least solution if every Xi occurs in U in the
sense that for any σ′ such that ∆; Γ ` e0.m<σ′X>(e) : (σ′U0)@T0 in A, it holds
that ∆ ` σ(Xi) <: σ′(Xi) for any Xi.

5 Related Work

As we have already mentioned, in the original formulation of family polymor-
phism [11] nested classes are members (or attributes) of an object of their en-
closing class. Thus, to create node or edge objects, one first has to instantiate
Graph and then to invoke new on that object. It would be written as

Graph g = new Graph();
g.Node n = new g.Node(...); g.Edge e = new g.Edge(...);

Notice that the types of nodes and edges would include a reference g to the
Graph object. Relative path types .Node and .Edge would respectively become
this.Node and this.Edge, where the meaning of types changes as the meaning
of this changes due to usual late-binding. Finally, connectAll would take four
value arguments instead of one type and three value arguments as:

void connectAll(Graph g,
g.Edge[] es, g.Node n1, g.Node n2){ ... }

Notice that the first argument appears as part of types of the following argu-
ments; it is required for a type system to guarantee that es, n1, and n2 belong
to the same graph. As a result, a type system is equipped with dependent types,
such as g.Edge, which can be quite tricky (especially in the presence of side-
effects). We deliberately avoid such types by identifying families with classes. As
a byproduct, as shown in the previous section, we have discovered that GJ-style
type inference is easy to extend to this setting. Although complex, the original
approach has one apparent advantage: one can instantiate arbitrary number of
Graph objects and distinguish nodes and edges of different graphs by static types.
Scala [18] and JX [16] also support family polymorphism, based on dependent
types.

Historically, the mismatching problem of recursive class definitions has been
studied in the context of binary methods [4], which take an object of the same
class as the receiver, hence the interface is recursive. In particular, Bruce’s series
of work [7, 5] introduced the notion of MyType (or sometimes called ThisType),
which is the type of this and changes its meaning along the inheritance chain,
just as our relative path types. Later, he extended the idea to mutually recur-
sive type/class definitions [6, 8, 3] by introducing constructs to group mutually

recursive definitions, and the notion of MyGroup, which is a straightforward
extension of MyType to the mutually recursive setting. Jolly et al. [14] has de-
signed the language called Concord by following this approach and has applied
to a Java-like language with a name-based type system. The core type system
has been proven sound. Our approach is similar to them in the sense that depen-
dent types are not used. However, in these work, family-polymorphic methods
are not taken into account very seriously, although a similar idea is mentioned
in Bruce et al. [6] and it can be considered a generalization of match-bound
polymorphic methods in the language LOOM [7]. In Bruce et al. [6], inheri-
tance is considered subtyping, so ColorWeightGraph.Node <: Graph.Node, for
example. To ensure type safety, they introduced the notion of exact types and
allow to invoke a method that take an argument of the same family only when
the receiver’s family is exactly known. We have avoided them by viewing every
(nested-class) type as exact.

In Concord, gbeta, Scala, and JX, an inheritance relation between nested
classes can be introduced. For example, C.F can be a subclass of C.E and, in a
subclass D of C, the relationship is preserved while members can be added to both
E and F. Although useful, we have carefully avoided this feature, too, which is not
strongly required by family polymorphism, since there is a semantic complication
as in languages with multiple inheritance: D.F may inherit conflicting members
of the same name from C.F and D.E.

Finally, we should note that programming described in Section 2 could be
carried out in Java 5.0 proper, which is equipped with generics [2] and F-bounded
polymorphism [9], by using the technique [20] used to solve the “expression prob-
lem”. It requires, however, a lot of boilerplate code for type parameterization,
which makes programs less easy to grasp.

6 Concluding Remarks

We have identified a minimal set of language features to solve the problem of
mismatching between mutually recursive classes and inheritance. Our proposal
is lightweight in the sense that the type system, which avoids (value) dependent
types, is much simpler than the original formulation of family polymorphism and
easy to apply to mainstream languages such as Java and C#. We have shown
type safety of the language mechanism by proving a type soundness theorem
for the formalized core language .FJ. We have also formalized an algorithm for
type argument inference for family polymorphic methods with its correctness
theorem. Although .FJ is not equipped with generics, we believe it can be easily
integrated into the ordinary type argument inference algorithm.

We feel that the principle of classes-as-families is worth pursuing. There
have been much work based on object-based families, such as higher-order hi-
erarchies [12], nested inheritance [16], and so on. It is interesting to investigate
whether the principle can be applied to those advanced ideas.

Acknowledgements

The first author would like to thank members of the Kumiki project for fruitful
discussions on this subject. This work was supported in part by Grant-in-Aid
for Scientific Research on Priority Areas Research No. 13224013 from MEXT of
Japan (Igarashi), and from the Italian PRIN 2004 Project “Extensible Object
Systems” (Viroli).

References

[1] David Aspinall and Martin Hofmann. Dependent types. In Benjamin C. Pierce,
editor, Advanced Topics in Types and Programming Languages, chapter 2, pages
45–86. The MIT Press, 2005.

[2] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the
future safe for the past: Adding genericity to the Java programming language. In
Proceedings of ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA’98), pages 183–200, Vancouver, BC, October
1998.

[3] Kim B. Bruce. Some challenging typing issues in object-oriented languages.
In Proceedings of Workshop on Object-Oriented Development (WOOD’03), vol-
ume 82 of Electronic Notes in Theoretical Computer Science, 2003.

[4] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Objects Group,
Gary T. Leavens, and Benjamin Pierce. On binary method. Theory and Practice
of Object Systems, 1(3):221–242, 1996.

[5] Kim B. Bruce and J. Nathan Foster. LOOJ: Weaving LOOM into Java. In Proceed-
ings of European Conference on Object-Oriented Programming (ECOOP2004),
volume 3086 of Lecture Notes on Computer Science, Oslo, Norway, June 2004.
Springer Verlag.

[6] Kim B. Bruce, Martin Odersky, and Philip Wadler. A statically safe alternative
to virtual types. In Proceedings of 12th European Conference on Object-Oriented
Programming (ECOOP’98), volume 1445 of Lecture Notes on Computer Science,
pages 523–549, Brussels, Belgium, July 1998. Springer Verlag.

[7] Kim B. Bruce, Leaf Petersen, and Adrian Fiech. Subtyping is not a good “match”
for object-oriented languages. In Proceedings of 11th European Conference on
Object-Oriented Programming (ECOOP’97), volume 1241 of Lecture Notes on
Computer Science, pages 104–127, Jyväskylä, Finland, June 1997. Springer Ver-
lag.

[8] Kim B. Bruce and Joseph C. Vanderwaart. Semantics-driven language design:
Statically type-safe virtual types in object-oriented languages. In Proceedings
of 15th Conference on the Mathematical Foundations of Programming Semantics
(MFPS XV), volume 20 of Electronic Notes in Theoretical Computer Science, New
Orleans, LA, April 1999. Elsevier. Available through http://www.elsevier.nl/

locate/entcs/volume20.html.

[9] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C. Mitchell.
F-bounded polymorphism for object-oriented programming. In Proceedings
of ACM Conference on Functional Programming and Computer Architecture
(FPCA’89), pages 273–280, London, England, September 1989. ACM Press.

[10] Erik Ernst. gbeta – A Language with Virtual Attributes, Block Structure, and
Propagating, Dynamic Inheritance. PhD thesis, Department of Computer Science,
University of Aarhus, Aarhus, Denmark, June 1999.

[11] Erik Ernst. Family polymorphism. In Proceedings of European Conference on
Object-Oriented Programming (ECOOP2001), volume 2072 of Lecture Notes on
Computer Science, pages 303–326, 2001.

[12] Erik Ernst. Higher-order hierarchies. In Proceedings of European Conference
on Object-Oriented Programming (ECOOP2003), volume 2743 of Lecture Notes
on Computer Science, pages 303–328, Darmstadt, Germany, July 2003. Springer
Verlag.

[13] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java:
A minimal core calculus for Java and GJ. ACM Transactions on Programming
Languages and Systems, 23(3):396–450, May 2001. A preliminary summary ap-
peared in Proceedings of the ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’99), ACM SIGPLAN Notices,
volume 34, number 10, pages 132–146, Denver, CO, October 1999.

[14] Paul Jolly, Sophia Drossopoulou, Christopher Anderson, and Klaus Ostermann.
Simple dependent types: Concord. In Proceedings of 6th ECOOP Workshop on
Formal Techniques for Java-like Programs (FTfJP2004), June 2004.

[15] Ole Lehrmann Madsen and Birger Møller-Pedersen. Virtual classes: A powerful
mechanism in object-oriented programming. In Proceedings of ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’89), pages 397–406, October 1989.

[16] Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable extensibility
via nested inheritance. In Proceedings of ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’04), Vancouver,
BC, October 2004.

[17] Martin Odersky. Inferred type instantiation for GJ. Available at http://lampwww.
epfl.ch/~odersky/papers/localti02.html, January 2002.

[18] Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger. A nom-
inal theory of objects with dependent types. In Luca Cardelli, editor, Proceedings
of European Conference on Object-Oriented Programming (ECOOP’03), volume
2743 of Lecture Notes on Computer Science, pages 201–224, Darmstadt, Germany,
July 2003. Springer Verlag.

[19] Kresten Krab Thorup and Mads Torgersen. Unifying genericity: Combining the
benefits of virtual types and parameterized classes. In Proceedings of 13th Euro-
pean Conference on Object-Oriented Programming (ECOOP’99), volume 1628 of
Lecture Notes on Computer Science, pages 186–204, Lisbon, Portugal, June 1999.
Springer Verlag.

[20] Mads Torgersen. The expression problem revisited: Four new solutions using
generics. In Proceedings of European Conference on Object-Oriented Programming
(ECOOP2004), volume 3086 of Lecture Notes on Computer Science, pages 123–
146, Oslo, Norway, June 2004.

[21] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115(1):38–94, November 1994.

