
Under consideration for publication in J. Functional Programming 1

Lightweight Family Polymorphism∗
CHIERI SAITO, ATSUSHI IGARASHI

Kyoto University, Japan
(e-mail: {saito,igarashi}@kuis.kyoto-u.ac.jp)

MIRKO VIROLI
Alma Mater Studiorum – Università di Bologna a Cesena, Italy

(e-mail: mirko.viroli@unibo.it)

Abstract

Family polymorphism has been proposed for object-oriented languages as a solution to
supporting reusable yet type-safe mutually recursive classes. A key idea of family poly-
morphism is the notion of families, which are used to group mutually recursive classes. In
the original proposal, due to the design decision that families are represented by objects,
dependent types had to be introduced, resulting in a rather complex type system.

In this article, we propose a simpler solution of lightweight family polymorphism, based
on the idea that families are represented by classes rather than objects. This change makes
the type system significantly simpler without losing much expressive power of the language.
Moreover, “family-polymorphic” methods now take a form of parametric methods; thus it
is easy to apply method type argument inference as in Java 5.0. To rigorously show that
our approach is safe, we formalize the set of language features on top of Featherweight
Java and prove the type system is sound. An algorithm for type inference for family-
polymorphic method invocations is also formalized and proved to be correct. Finally, a
formal translation by erasure to Featherweight Java is presented; it is proved to preserve
typing and execution results, showing that our new language features can be implemented
in Java by simply extending the compiler.

Contents

1 Introduction 2
2 Programming Lightweight Family Polymorphism 4

2.1 Nested Classes, Relative Path Types, and Extension of Families 5
2.2 Member Class Inheritance is not Subtyping 6
2.3 Family-Polymorphic Methods as Parametric Methods 7

3 .FJ: A Formal Model of Lightweight Family Polymorphism 8
3.1 Syntax 8
3.2 Lookup Functions 9
3.3 Type System 10

∗ A preliminary summary appeared in the proceedings of the third Asian Symposium on Pro-
gramming Languages and Systems (APLAS2005), volume 3780 of Lecture Notes in Computer
Science, pages 161–177, Tsukuba, Japan, November, 2005. Springer-Verlag.

2 C. Saito, A. Igarashi, M. Viroli

3.4 Operational Semantics 14
3.5 Type Soundness 16
3.6 Type Inference for Parametric Method Invocations 17

4 Translating .FJ to Featherweight Java 18
4.1 Featherweight Java 20
4.2 Erasure of Types and Expressions 21
4.3 Erasure of Methods, Constructors, and Classes 23
4.4 Properties of the Translation 25

5 Related Work 27
6 Concluding Remarks 29
A Proof of Subject Reduction Theorem 29
B Proof of Theorem 4.1 34
C Proof of Theorems 4.2, 4.3, and 4.4 37
References 45

1 Introduction

Mismatch between Mutually Recursive Classes and Simple Inheritance. It is fairly
well-known that, in object-oriented languages with simple name-based type systems
such as C++ or Java, mutually recursive class definitions and extension by inher-
itance do not fit very well. Since classes are usually closed entities in a program,
mutually recursive classes here really mean a set of classes whose method signa-
tures refer to each other by their names. Thus, different sets of mutually recursive
classes necessarily have different signatures, even though their structures are simi-
lar. On the other hand, in C++ or Java, it is not allowed to inherit a method from
the superclass with a different signature (in fact, it is not safe in general to allow
covariant change of method parameter types). As a result, deriving subclasses of
mutually recursive classes yields another set of classes that do not refer to each
other and, worse, this mismatch is often resolved by typecasting, which is a poten-
tially unsafe operation (not to say unsafe, an exception may be raised). A lot of
studies (Bruce et al., 1998; Bruce & Vanderwaart, 1999; Ernst, 2001; Jolly et al.,
2004; Nystrom et al., 2004; Thorup & Torgersen, 1999; Bruce, 2003; Odersky et al.,
2003; Ernst et al., 2006) have been recently done to develop a language mechanism
with a static type system that allows “right” extension of mutually recursive classes
without resorting to typecasting or other unsafe features.

Family Polymorphism. Erik Ernst (2001) has recently coined the term “family poly-
morphism” for a particular programming style using virtual classes (Madsen &
Møller-Pedersen, 1989) of gbeta (Ernst, 1999) and applied it to solve the above-
mentioned problem of mutually recursive classes.

In his proposal, mutually recursive classes are programmed as nested class mem-
bers of another (top-level) class. Those member classes are virtual in the same sense
as virtual methods—a reference to a class member is resolved at run-time. Thus,
the meaning of mutual references to class names will change when a subclass of the

Lightweight Family Polymorphism 3

enclosing class is derived and those member classes are inherited. This late-binding
of class names makes it possible to reuse implementation without the mismatch de-
scribed above. The term “family” refers to such a set of mutually recursive classes
grouped inside another class. He has also shown how a method that can uniformly
work for different families can be written in a safe way: such “family-polymorphic”
methods take as arguments not only instances of mutually recursive classes but
also the identity of the family that they belong to, so that semantical analysis (or
a static type checker) can check if those instances really belong to the same family.

Although family polymorphism seems very powerful, we feel that there may be a
simpler solution to the present problem. In particular, in gbeta, nested classes re-
ally are members (or, more precisely, attributes) of an object, so types for mutually
recursive classes include as part object references, which serve as identifiers of fam-
ilies. As a result, the semantical analysis of gbeta essentially involves a dependent
type system (Aspinall & Hofmann, 2005; Odersky et al., 2003; Ernst et al., 2006),
which is rather complex (especially in the presence of side effects).

Contributions of This Article. We identify a minimal, lightweight set of language
features to solve the problem of typing mutually recursive classes, rather than intro-
duce a new advanced mechanism. As done elsewhere (Jolly et al., 2004), we adopt
what we call the “classes-as-families” principle, in which families are identified with
classes, which are static entities, rather than objects, which are dynamic. Although
it loses some expressive power, programming extensible mutually recursive classes
is still possible. Moreover, for type safety reasons, we take the approach that in-
heritance is not subtyping and regard all types for nested classes as exact, in the
sense of (Bruce et al., 1998), while admitting subtyping for top-level types. These
decisions simplify the type system a lot, making much easier a type soundness ar-
gument and application to practical languages such as Java. As a byproduct, we
can view family polymorphic methods as a kind of parametric methods found, e.g.
in Java generics and find that the technique of type argument synthesis as in GJ
and Java 5.0 (Bracha et al., 1998; Odersky, 2002) can be extended to our proposal
as well.

Other technical contributions of the present article can be summarized as follows:

• simplification of the type system for family polymorphism with the support
for family-polymorphic methods;

• a rigorous discussion of the safety issues by the development of a formal
model called .FJ (read “dot FJ”) of lightweight family polymorphism, on top
of Featherweight Java (FJ) (Igarashi et al., 2001) with a correctness theorem
of the type system;

• an algorithm of type argument synthesis for family-polymorphic methods and
its correctness theorem; and

• a formal translation of .FJ to FJ, which is proved to preserve typing and
semantics.

This article adds the formal translation and its correctness proof as a new contri-
bution to the conference version (Igarashi et al., 2005).

4 C. Saito, A. Igarashi, M. Viroli

We would like to emphasize that one of our main aims is to identify a minimal
set of features to describe typical examples of family polymorphism, rather than
to solve a wider range of problems, as tackled in (Ernst, 1999; Odersky et al.,
2003; Jolly et al., 2004). As a result, our language has several restrictions not found
in those proposals. Most restrictions, however, have been relaxed in succeeding
work (Igarashi & Viroli, 2007), which will be mentioned in Section 6.

The Rest of This Article. After Section 2 presents the overview of our language
constructs through the standard example of graphs, Section 3 formalizes those
mechanisms as the calculus .FJ and discuss its type safety. Then, Section 4 formal-
izes the translation of .FJ into FJ as a model of erasure compilation of lightweight
family polymorphism to Java with correctness theorems. After Section 5, which
discusses related work, Section 6 concludes.

2 Programming Lightweight Family Polymorphism

We start by informally describing the main aspects of the language constructs we
study in this article, used to support lightweight family polymorphism. To this end,
we consider as a reference the example in (Ernst, 2001), properly adapted to fit our
“classes-as-families” principle.

This example features a family (or group) Graph, containing the classes Node

and Edge, which are the members of the family, and are used as components to
build graph instances. As typically happens, members of the same family can mu-
tually refer to each other: in our example for instance, each node holds a reference
to (an array of) connected edges, while each edge holds references to its source
and destination nodes. Now suppose we are interested in defining a new family
ColorWeightGraph, used to define graphs with colored nodes and weighted edges—
nodes and edges with the new fields called color and weight, respectively—with
the property that the weight of an edge depends on the color of its source and
destination nodes. Note that in this way the members of the family Graph are not
compatible with those of family ColorWeightGraph in the sense that an edge of a
ColorWeightGraph cannot be used in a plain Graph. Nevertheless, to achieve code
reuse, we would like to define the family ColorWeightGraph as an extension of
the family Graph, and declare a member Node which automatically inherits all the
attributes (fields and methods) of Node in Graph, and similarly for member Edge.
Moreover, as advocated by the family polymorphism idea, we would like classes
Node and Edge in ColorWeightGraph to mutually refer to each other automati-
cally, as opposed to those solutions exploiting simple inheritance where class Node
of ColorWeightGraph would refer to Edge of Graph—thus requiring extensive uses
of typecasts.

Lightweight Family Polymorphism 5

class Graph {

static class Node {

.Edge[] es=new .Edge[10]; int i=0;

void add(.Edge e) { es[i++] = e; }}

static class Edge {

.Node src, dst;

void connect(.Node s, .Node d) {

src = s; dst = d; s.add(this); d.add(this);

}

}

}

class ColorWeightGraph extends Graph {

static class Node { Color color; }

static class Edge {

int weight;

void connect(.Node s, .Node d) {

weight = colorToWeight(s.color, d.color);

super.connect(s, d);

}

}

}

Graph.Edge e; Graph.Node n1, n2;

ColorWeightGraph.Edge we; ColorWeightGraph.Node cn1, cn2;

e.connect(n1, n2); // 1: OK

we.connect(cn1, cn2); // 2: OK

we.connect(n1, cn2); // 3: compile-time error

e.connect(n1, cn2); // 4: compile-time error

<G extends Graph>

void connectAll(G.Edge[] es, G.Node n1, G.Node n2){

for (int i: es) es[i].connect(n1,n2);

}

Graph.Edge[] ges; Graph.Node gn1,gn2;

ColorWeightGraph.Edge[] ces; ColorWeightGraph.Node cn1,cn2;

connectAll(ges, gn1, gn2); // G as Graph

connectAll(ces, cn1, cn2); // G as ColorWeightGraph

connectAll(ces, gn1, gn2); // compile-time error

Fig. 1. Graph and ColorWeightGraph Classes.

2.1 Nested Classes, Relative Path Types, and Extension of Families

This graph example can be programmed using our lightweight family polymorphism
solution as reported in Figure 1, whose code adheres to a Java-like syntax—which
is also the basis for the syntax of the calculus .FJ we introduce in Section 3.

The first idea is to represent families as (top-level) classes, and their members
as nested classes. Note that in particular we relied on the syntax of Java static

6 C. Saito, A. Igarashi, M. Viroli

member classes, which provide a grouping mechanism suitable to define a family. In
spite of this similarity, however, we shall give a different semantics to those member
classes, in order to support family polymorphism. The types of nodes and edges of
class (family) Graph are denoted by notations Graph.Node and Graph.Edge, which
we call absolute path types. Although such types are useful outside the family to
declare variables and to create instances of such member classes, we do not use them
to specify mutual references of family members. The notations .Node and .Edge are
instead introduced for this purpose, meaning “member Node in the current family”
and “member Edge in the current family,” respectively. We call such types relative
path types. A similar distinction between absolute and relative is found, for example,
in UNIX file systems.

The importance of relative path types becomes clear when introducing the con-
cept of family extension. To define a new family ColorWeightGraph, the new class
ColorWeightGraph is declared to extend Graph and provide the member classes
Node and Edge. Such new members, identified outside their family by the abso-
lute path types ColorWeightGraph.Node and ColorWeightGraph.Edge, will inherit
all the attributes of classes Graph.Node and Graph.Edge, respectively. In partic-
ular, ColorWeightGraph.Edge will inherit method connect() from Graph.Edge,
and can therefore override it as shown in the reference code, and even redirect
calls by the invocation super.connect(). However, since connect() is declared
to accept two arguments of relative path type .Node, it will accept a Graph.Node

when invoked on a Graph.Edge, and a ColorWeightGraph.Node when invoked on
a ColorWeightGraph.Edge. Notice that relative path types are essential to real-
ize family polymorphism, as they guarantee members of the extended family to
mutually refer to each other, and not to refer to a different (that is, super) family.

2.2 Member Class Inheritance is not Subtyping

This covariance schema for relative path types—they change as we move from a
family to a subfamily—resembles and extends the construct of ThisType (Bruce
& Foster, 2004), used to make method signatures of self-referencing classes change
covariantly through inheritance hierarchies. As well known, however, such a co-
variance schema prevents inheritance and substitutability from correctly working
together as happens in most of common object-oriented languages. In particular,
when a relative path type is used as an argument type to a method in a family
member, as in method connect() of class Edge, they prevent its instances from
being substituted for those in the superfamily, even though the proper inheritance
relation is supported. The following code fragment reveals this problem:

// If ColorWeightGraph.Edge were substitutable for Graph.Edge

Graph.Edge e = new ColorWeightGraph.Edge();

Graph.Node n1 = new Graph.Node();

Graph.Node n2 = new Graph.Node();

e.connect(n1,n2); // Unsafe!!

If class ColorWeightGraph.Edge could be substituted for Graph.Edge, then connect()

would be invoked on the object (e) of ColorWeightGraph.Edge with the objects

Lightweight Family Polymorphism 7

(n1 and n2) of Graph.Node as arguments. This invocation would lead to an attempt
to access field color on n1 and n2, which do not have such a field!

To prevent this form of unsoundness, our lightweight family polymorphism solu-
tion disallows such substitutability by adopting an “inheritance-without-subtyping”
approach for family members. (Subtyping between top-level classes is retained as
usual.) Applied to our graph example, it means that while ColorWeightGraph.Node
inherits all the attributes of Graph.Node (for ColorWeightGraph extends Graph),
ColorWeightGraph.Node is not a subtype of Graph.Node. In other words, Graph.Node
and Graph.Edge (as well as ColorWeightGraph.Node and ColorWeightGraph.Edge)
are exact types (Bruce et al., 1998). As a result, we can correctly typecheck the
invocation of methods in member classes. In the client code in the middle of Fig-
ure 1, the first two invocations are correct as node arguments belong to the same
family of the receiver edge, but the third and fourth are (statically) rejected, as
we are passing as an argument a node belonging to a family different from the
receiver edge: in other words, Graph.Node and ColorWeightGraph.Node are not in
the subtype relation.

2.3 Family-Polymorphic Methods as Parametric Methods

To fully exploit the benefits of family polymorphism it should be possible to write so-
called family-polymorphic methods—methods that can work uniformly over different
families. As an example, we consider the method connectAll() that takes as input
an array of edges and two nodes of any family and connects each edge to the two
nodes. In our language this is realized through parametric methods as shown at
the bottom of Figure 1. Method connectAll() is defined as parametric in a type
G—which represents the family used for each invocation—with upper-bound Graph

and correspondingly the arguments are of type G.Edge[], G.Node and G.Node,
respectively. As a result, in the first invocation of the example code, by passing
edges and nodes of family Graph the compiler would infer the type Graph for G, and
similarly in the second invocation infers ColorWeightGraph. Finally, in the third
invocation no type can be inferred for G, since types G.Edge and G.Node do not
match ColorWeightGraph.Edge and Graph.Node, respectively, for any G.

It may be worth noting that we do not allow relative path types to appear directly
in a top-level class: for instance, .Node cannot appear in Graph or ColorWeightGraph.
This is because allowing both subtyping, which is used to realize family-polymorphic
methods, and relative path types in a top-level class would lead also to unsoundness,
as the following code fragment, which is similar to the previous one, shows:

// If Graph had a field f of type .Edge

Graph g = new ColorWeightGraph();

Graph.Edge e = g.f;

Graph.Node n1 = new Graph.Node();

Graph.Node n2 = new Graph.Node();

e.connect(n1,n2); // Unsafe!!

8 C. Saito, A. Igarashi, M. Viroli

3 .FJ: A Formal Model of Lightweight Family Polymorphism

In this section, we formalize the ideas described in the previous section, namely,
nested classes with simultaneous extension, relative path types, and family-poly-
morphic methods. This is realized through a small calculus named .FJ based on
Featherweight Java (Igarashi et al., 2001), a functional core calculus of class-based
object-oriented languages. After formally defining the syntax (Section 3.1), type
system (Sections 3.2 and 3.3), and operational semantics (Section 3.4) of .FJ, we
show a type soundness result (Section 3.5). Finally, we present an algorithm of type
inference for polymorphic methods and show its soundness (Section 3.6).

For simplicity, we deal with only a single level of class nesting, as opposed to
Java, which allows arbitrary levels of nesting. We believe that, for programming
family polymorphism, little expressiveness is lost by this restriction. In succeeding
work (Igarashi & Viroli, 2007), this restriction is lifted and arbitrarily deep nesting is
allowed. Although they are easy to add, typecasts—which appear in Featherweight
Java and are essential to discuss erasure compilation of generics—are dropped since
one of our aims here is to show that programming as in the previous section is pos-
sible without typecasts. In .FJ, every parametric method invocation has to provide
its type arguments—type inference will be discussed in Section 3.6. Method in-
vocation on super is also omitted since directly formalizing super would require
several global changes to the calculus, due to the fact that super invocation is not
virtual (Flatt et al., 1998) and, more importantly, it does not really pose a new typ-
ing challenge. Invocations on super work for much the same reason for invocations
of inherited methods on this to work. One may criticize that the formal model is
functional unlike the models presented elsewhere (Ernst et al., 2006; Odersky et al.,
2003; Jolly et al., 2004; Nystrom et al., 2004) and doubt the safety in the presence
of imperative features such as assignments. We believe that a functional model is
sufficient to catch most of the typing issues and that imperative features do not
harm to type safety (we do not claim that type soundness of an imperative model
has been proved, of course).

3.1 Syntax

The abstract syntax of top-level/nested class declarations, constructor declarations,
method declarations, and expressions of .FJ is given in Figure 2. Here, the metavari-
ables C, D, and E range over (simple) class names; X and Y range over type variable
names; f and g range over field names; m ranges over method names; x and y range
over variables.

We put an over-line for a possibly empty sequence and denote the length of
a sequence by #(·). Furthermore, we abbreviate pairs of sequences in a simi-
lar way, writing “T f” for “T1 f1,. . . ,Tn fn”, where n is the length of T and
f, and “this.f=f;” as shorthand for “this.f1=f1;. . . ;this.fn=fn;” and so on.
Sequences of type variables, field declarations, parameter names, and method dec-
larations are assumed to contain no duplicate names. We write the empty sequence
as • and denote concatenation of sequences using a comma.

Lightweight Family Polymorphism 9

P,Q ::= C | X family names
A,B ::= C | C.C absolute class names

S,T,U ::= P | P.C | .C types

L ::= class C / C {T f; K M N} top class declarations

K ::= C(T f){super(f); this.f=f;} constructor declarations

M ::= <X / C>T m(T x){ return e; } method declarations

N ::= class C {T f; K M} nested class declarations

d,e ::= x | e.f | e.<P>m(e) | new A(e) expressions
v ::= new A(v) values

Fig. 2. .FJ: Syntax.

A family name P, used as a type argument to family-polymorphic methods, is
either a top-level class name or a type variable. Absolute class names can be used
to instantiate objects, so they play the role of run-time types of objects. A type
can be an absolute path type P or P.C, or a relative path type .C. A top-level class
declaration consists of its name, its superclass, field declarations, a constructor,
methods, and nested classes. The symbol / is read extends. On the other hand, a
nested class does not have an extends clause since the class from which it inherits
is implicitly determined. We have dropped the keyword static, used in the pre-
vious section, for conciseness. As in Featherweight Java, a constructor is given in
a stylized syntax and just takes initial (and final) values for the fields and assigns
them to corresponding fields. A method declaration can be parameterized by type
variables, whose bounds are top-level class (i.e., family) names. Since the language
is functional, the body of a method is a single return statement. An expression
is either a variable, field access, method invocation, or object creation. We assume
that the set of variables includes the special variable this, which cannot be used
as the name of a parameter to a method.

A class table CT is a mapping from top-level class names C to top-level class
declarations. A program is a pair (CT, e) of a class table and an expression. To
lighten the notation in what follows, we always assume a fixed class table CT. As
in Featherweight Java, we assume that Object has no members and its definition
does not appear in the class table. We also assume some other sanity conditions on
CT: (1) CT(C) = class C .. for every C ∈ dom(CT); (2) for every class name C

(except Object) appearing anywhere in CT, we have C ∈ dom(CT); and (3) there
are no cycles in the transitive closure of extends relation. Given these conditions,
we can identify a class table with a sequence of class declarations in an obvious way.
Thus, in what follows, we write simply class C .. to mean CT(C) = class C .. .

3.2 Lookup Functions

Before proceeding to the type system, we give functions to look up field or method
definitions. The function fields(A) returns a sequence T f of field names of the class

10 C. Saito, A. Igarashi, M. Viroli

A with their types. The function mtype(m, A) takes a method name and a class name
as inputs and returns the corresponding method signature of the form <X/C>T→T0,
in which X are bound in T and T0. They are defined by the rules in Figure 3. Here,
m 6∈ M (and E 6∈ N) means the method of name m (and the nested class of name E,
respectively) does not exist in M (and N, respectively). In what follows, we identify
method signatures modulo renaming of bound type variables.

As mentioned before, Object does not have any fields, methods, or nested classes,
so fields(Object) = •, and mtype(m, Object) and mtype(m, Object.C) are undefined
for any C. The definitions are straightforward extensions of the ones in Feather-
weight Java. Interesting rules are the last rules: when a nested class C.E does not
exist, lookup proceeds in the nested class of the same name E in the superclass of
the enclosing class C. When the method definition is found in a superclass, relative
path types—whose meaning depends on the type of the receiver—in the method
signature remain unchanged; they are resolved in typing rules. Note that we allow
Object.C to be an argument of fields(·) for technical convenience, contrary to the
fact that Object has no nested classes, to define fields(C.D) concisely. Moreover,
fields(C.D) is defined for any D if C ∈ dom(CT). It does no harm since we never
ask fields of such non-existing classes, which will be rejected as ill-formed types
(see the definition of type well-formedness below). We also think it would clutter
the presentation to give a definition in which fields(C.D) is undefined when C or its
superclasses do not have D.

3.3 Type System

The main judgments of the type system consist of one for subtyping ∆ ` S <: T,
one for type well-formedness ∆; A ` T ok, and one for typing ∆; Γ; A ` e : T. Here,
∆ is a bound environment, which is a finite mapping from type variables to their
bounds, written X<:C, and Γ is a type environment, which is a finite mapping from
variables to types, written x:T. Since we are not concerned with more general forms
of bounded polymorphism, upper bounds are always top-level class names. We write
∆̂(T) for the upper bound of T with respect to ∆, defined by: ∆̂(A) = A, ∆̂(X) = ∆(X)
and ∆̂(X.C) = ∆(X).C. We never ask the upper bound of a relative path type, so
∆̂(.C) is undefined. We abbreviate a sequence of judgments in the obvious way:
∆ ` S1 <: T1, . . . , ∆ ` Sn <: Tn to ∆ ` S <: T; and ∆; A ` T1 ok, . . . , ∆; A ` Tn ok
to ∆; A ` T ok; and ∆; Γ; A ` e1:T1, . . . , ∆; Γ; A ` en:Tn to ∆; Γ; A ` e:T.

Subtyping. The subtyping judgment ∆ ` S <: T, read as “S is subtype of T under
∆,” is defined in Figure 4. This relation is the reflexive and transitive closure of the
extends relation with Object being the top type. Note that a nested class, which
does not have the extends clause, has only a trivial proper supertype, which is
Object, even if some members are inherited from another (nested) class.

Type Well-formedness. The type well-formedness judgment ∆; A ` T ok, read as “T
is a well formed type in (the body of) class A under ∆.” The rules for well formed
types appear also in Figure 4. Object and class names in the domain of the class

Lightweight Family Polymorphism 11

Field Lookup

fields(Object) = • (F-TObject)

class C / D{T f;.. } fields(D) = U g

fields(C) = U g, T f
(F-TClass)

fields(Object.C) = • (F-NObject)

class C / D{.. class E{T f;.. }.. } fields(D.E) = U g

fields(C.E) = U g, T f
(F-NClass)

class C / D {.. N} E 6∈ N fields(D.E) = U g

fields(C.E) = U g
(F-NSuper)

Method Type Lookup

class C / D {.. M}
<X/C>T0 m(T x){ return e; } ∈ M

mtype(m, C) = <X / C>T→T0

(MT-TClass)

class C / D {.. M.. } m 6∈ M
mtype(m, D) = <X / C>T→T0

mtype(m, C) = <X / C>T→T0

(MT-TSuper)

class C / D {.. class E {.. M}.. }
<X/C>T0 m(T x){ return e; } ∈ M

mtype(m, C.E) = <X / C>T→T0

(MT-NClass)

class C / D {.. class E {.. M}.. }
m 6∈ M mtype(m, D.E) = <X / C>T→T0

mtype(m, C.E) = <X / C>T→T0

(MT-NSuper1)

class C / D {.. N} E 6∈ N
mtype(m, D.E) = <X / C>T→T0

mtype(m, C.E) = <X / C>T→T0

(MT-NSuper2)

Fig. 3. .FJ: Lookup functions.

table are well formed. Moreover, a nested class name C.E is well formed if E is
inherited from C’s superclass D. Type X (possibly with a suffix) is well formed if its
upper bound (with the suffix) is well formed. Finally, a relative path type .E is well
formed in a nested class C.D if C.E is well formed.

12 C. Saito, A. Igarashi, M. Viroli

Subtyping

∆ ` T <: T (S-Refl)

∆ ` X <: ∆(X) (S-Var)

∆ ` T <: Object (S-Object)

class C / D {.. }

∆ ` C <: D
(S-Class)

∆ ` S <: T ∆ ` T <: U

∆ ` S <: U
(S-Trans)

Type Well-formedness

∆;A ` Object ok (WF-Object)

b∆(P) ∈ dom(CT)

∆;A ` P ok
(WF-Abs)

C = b∆(P) class C / D{.. class E {.. } .. }

∆;A ` P.E ok
(WF-NClass)

C = b∆(P) class C / D{.. N}
E 6∈ N ∆;A ` D.E ok

∆;A ` P.E ok
(WF-NClassSup)

∆;C.D ` C.E ok

∆;C.D ` .E ok
(WF-Rel)

Fig. 4. .FJ: Subtyping and type well-formedness.

Typing. Typing requires another auxiliary (but important) definition. The resolu-
tion T@S of T at S intuitively denotes the class name that T refers to in a given
class S. One use of the resolution is to determine which class to look up for fields or
methods, when a receiver’s type is relative: fields and mtype require absolute path
types as arguments. The definition is:

.D@P.C = P.D .D@.C = .D P@T = P P.C@T = P.C.

The only interesting case is the first clause: it means that a relative path type .D

in P.C refers to P.D. For example, .Edge@Graph.Node = Graph.Edge. Note that
.D@C and .D@X are undefined since we never resolve a relative path type with
respect to a family name.

Lightweight Family Polymorphism 13

Expression Typing

∆; Γ;A ` x : Γ(x) (T-Var)

∆; Γ;A ` e0 : T0 fields(b∆(T0@A)) = T f

∆; Γ;A ` e0.fi : Ti@T0

(T-Field)

∆; Γ;A ` e0 : T0 mtype(m, b∆(T0@A)) = <X / C>U→U0

∆;A ` P ok ∆ ` P <: C ∆; Γ;A ` e : T ∆ ` T <: ([P/X]U)@T0

∆; Γ;A ` e0.<P>m(e) : ([P/X]U0)@T0

(T-Invk)

∆;A ` A0 ok fields(A0) = T f ∆; Γ;A ` e : U ∆ ` U <: (T@A0)

∆; Γ;A ` new A0(e) : A0

(T-New)

Method Typing

∆ = X<:C ∆;x : T, this : thistype(A);A ` e0:U0

∆ ` U0 <: T0 ∆;A ` T0,T,C ok

if mtype(m, superclass(A)) = <Y / D>S→S0, then (X,C,T,T0) = (Y,D,S,S0)

A ` <X / C>T0 m(T x){return e0;} ok
(T-Method)

Class Typing

K = E(U g,T f){super(g);this.f=f;}
fields(superclass(C.E)) = U g C.E ` M ok ∅;C.E ` T ok

C ` class E {T f; K M} ok
(T-NClass)

K = C(U g,T f){super(g);this.f=f;}
fields(D) = U g C ` M ok C ` N ok ∅;C ` T,D ok

` class C / D{T f; K M N} ok
(T-TClass)

Fig. 5. .FJ: Typing.

The typing judgment for expressions is of the form ∆;Γ; A ` e:T, read as “under
bound environment ∆ and type environment Γ, expression e has type T in class
A”, in which we assume that for any x ∈ dom(Γ), ∆; A ` Γ(x) ok. Typing rules are
given in Figure 5. Interesting rules are T-Field and T-Invk, although the basic
idea is as usual—for example, in T-Field, the field types are retrieved from the
receiver’s type T0, and the corresponding type of the accessed field is the type of
the whole expression. We need some tricks to deal with relative path types (and
type variables): if the receiver’s type T0 is a relative path type, it has to be resolved
in A, the class in which e appears; a type variable is taken to its upper bound

14 C. Saito, A. Igarashi, M. Viroli

by ∆̂(·). Moreover, if the field type is a relative path type, it is resolved in the
receiver’s type. For example, if fields(ColorWeightGraph.Node) = .Edge edg and
Γ = x:ColorWeightGraph.Node, y:.Node, then

∆; Γ; ColorWeightGraph.Node ` x.edg : ColorWeightGraph.Edge and
∆; Γ; ColorWeightGraph.Node ` y.edg : .Edge.

In this way, accessing a field of relative path type gives a relative path type if and
only if the receiver is also given a relative path type. Similarly, in T-Invk, the
method type is retrieved from the receiver’s type; then, it is checked whether the
given type arguments are subtypes of bounds C of formal type parameters and the
types of actual value arguments are subtypes of those of formal parameters, where
type arguments are substituted for variables. For example, if mtype(connectAll, C) =
<G/Graph>(G.Node,G.Edge)→void, then

∆; x:C, n:ColorWeightGraph.Node, e:ColorWeightGraph.Edge; A `
x.<ColorWeightGraph>connectAll(n,e) : void.

A judgment for method typing is written A ` M ok, and derived by T-Method.
Here, thistype(A) and superclass(A) are defined by:

thistype(C) = C thistype(C.E) = .E

superclass(C) = D superclass(C.E) = D.E

where class C / D{.. }. It is checked that the body of the method is well typed
under the bound and type environments obtained from the definition. Note that
the type of this in a nested class is relative, as the meaning of this changes in
subclasses. The last conditional premise checks that m correctly overrides (if it does)
the method of the same name in the superclass with the same signature.

There are two class typing rules, one for top-level classes and one for nested
classes. Both of them are essentially the same: they check that field types and
constructor argument types are the same, and that methods are ok in the class.
The rule T-TClass for top-level classes also checks that nested classes are ok.

3.4 Operational Semantics

The operational semantics is given by the reduction relation of the form e −→ e′,
read “expression e reduces to e′ in one step.” We require another lookup function
mbody(m<P>, A), for the method body with formal parameters, written x.e, of given
method and class names. It is defined at the top of Figure 6. Similarly to mtype,
mbody(m<P>, Object) and mbody(m<P>, Object.C) are undefined.

The reduction rules are given in the middle of Figure 6. We write [d/x, e/y]e0

for the expression obtained from e0 by replacing x1 with d1, . . . , xn with dn, and
y with e. There are two reduction rules, one for field access and one for method
invocation, which are straightforward. The reduction rules may be applied at any
point in an expression, so we also need the obvious congruence rules (if e −→ e′

then e.f −→ e′.f, and the like). We write −→∗ for the reflexive and transitive
closure of −→.

Lightweight Family Polymorphism 15

Method body lookup

class C/D{.. M.. }
<X / C>T m(T x){ return e0; } ∈ M

mbody(m<P>, C) = x.[P/X]e0

(MB-TClass)

class C / D {.. M.. } m 6∈ M

mbody(m<P>, C) = mbody(m<P>, D)
(MB-TSuper)

class C / D {.. N} class E {.. M} ∈ N
<X / C>T m(T x){ return e0; } ∈ M

mbody(m<P>, C.E) = x.[P/X]e0

(MB-NClass)

class C / D {.. N} E 6∈ N

mbody(m<P>, C.E) = mbody(m<P>, D.E)
(MB-NSuper1)

class C / D {.. N} class E {.. M} ∈ N m 6∈ M

mbody(m<P>, C.E) = mbody(m<P>, D.E)
(MB-NSuper2)

Computation

fields(A) = T f

new A(e).fi −→ ei

(R-Field)

mbody(m<P>, A) = x.e0

new A(e).<P>m(d) −→ [d/x, new A(e)/this]e0

(R-Invk)

Congruence

e0 −→ e0
′

e0.f −→ e0
′.f

(RC-Field)

e0 −→ e0
′

e0.<P>m(e) −→ e0
′.<P>m(e)

(RC-Invk-Recv)

ei −→ ei
′

e0.<P>m(. . .,ei, . . .) −→ e0.<P>m(. . .,ei
′, . . .)

(RC-Invk-Arg)

ei −→ ei
′

new A(. . .,ei, . . .) −→ new A(. . .,ei
′, . . .)

(RC-New-Arg)

Fig. 6. .FJ: Operational Semantics.

16 C. Saito, A. Igarashi, M. Viroli

3.5 Type Soundness

The type system is sound with respect to the operational semantics, as expected.
Type soundness is proved in the standard manner via subject reduction and progress
(Wright & Felleisen, 1994; Igarashi et al., 2001). (Recall that values are defined by:
v ::= new A(v), where v can be empty.)

Theorem 3.1 (Subject Reduction)
If ∆; Γ; A ` e:T and e −→ e′, then ∆; Γ; A ` e′:T′, for some T′ such that ∆ ` T′<:T.

Proof
See Appendix A.

Theorem 3.2 (Progress)
If ∅; ∅; B ` e:A and e is not a value, then e −→ e′, for some e′.

Proof
By induction on ∅; ∅; B ` e : A with case analysis on the last rule used.

Case T-Var:

Cannot happen.

Case T-Field: ∅; ∅; B ` e0 : A0 fields(∆̂(A0@B)) = T f

If e0 = new A0(v), then, by R-Field, e0−→vi. Otherwise, immediate from the
induction hypothesis and RC-Field.

Case T-Invk: e = e0.<P>m(v)

If there is a non-value subexpression, then the conclusion is immediate from the
induction hypothesis and the rules RC-Inv-Recv and RC-Inv-Arg. Suppose, e0

and e are values v0 and v, respectively. Then, by T-Invk,

∅; ∅; B ` v0 : A0 mtype(m, ∆̂(A0@B)) = <X / C>T→T0

∅; B ` P ok ∅ ` P <: C ∅; ∅; B ` v : A ∅ ` A <: ([P/X]T)@A0

∅; ∅; B ` v0.<P>m(v) : ([P/X]T0)@A0

From premises of the rule, we have #(v) = #(A) = #(T). Since mtype(m, A0) =
<X / C>T→T0, it is easy to show that mbody(m<P>, A0) = x.e0 for some x and e0

with #(T) = #(x). Then, by R-Invk, v0.<P>m(v)−→ [v/x,v0/this]e0.

Case T-New: e = new A(e)

If one of e is not a value, apply the induction hypothesis with the rule T-New-Arg.
Otherwise e is a value.

Theorem 3.3 (Type Soundness)
If ∅; ∅; B ` e : A and e −→∗ e′ with e′ a normal form, then e′ is a value v with
∅; ∅; B ` v : A′ and ∅ ` A′ <: A.

Proof
By easy induction on e −→∗ e′ using Theorems 3.1 and 3.2.

Lightweight Family Polymorphism 17

Infer∆
X

(∅) = []

Infer∆
X

(S′] {P.C<:Xi.C}) = [P/Xi] ◦ Infer∆
X\{Xi}

([P/Xi]S
′)

Infer∆
X

(S′] {T1<:Xi}] {T2<:Xi}) = Infer∆
X

(S′] {(T1 t∆ T2)<:Xi})

Infer∆
X

(S′] {T<:Xi,Xi<:C}) =

8<:
[T/Xi] ◦ Infer∆

X\{Xi}
(S′)

(if ∆ ` T<:C and Xi 6∈ S′)
fail (otherwise)

Infer∆
X

(S′] {Xi<:C}) =


[C/Xi] ◦ Infer∆

X\{Xi}
(S′) (if Xi 6∈ S′)

fail (otherwise)

Infer∆
X

(S′] {T1<:T2}) =


Infer∆

X
(S′) (if ∆ ` T1<:T2)

fail (otherwise)

Fig. 7. Type Inference Algorithm.

3.6 Type Inference for Parametric Method Invocations

The language .FJ is considered an intermediate language in which every type argu-
ment to parametric methods is made explicit. In this section, we briefly discuss how
type arguments can be recovered, give an algorithm for type argument inference,
and prove its correctness theorem.

The basic idea of type inference is the same as Java 5.0: given a method invocation
expression e0.m(e) that appears in class A without specifying type arguments, we
can at least compute the type T0 of e0, the signature <X/C>U→U0 of the method m,
and the types T of (value) arguments. Then, it is easy to see from the rule T-Invk

that it suffices to find P that satisfies P <: C and T <:([P/X]U)@T0. In other words,
the goal of type inference is to solve the set {X<:C,T<:(U@T0)} of inequalities with
respect to X.

We formalize this constraint solving process as function Infer∆X (S). It takes as
input a set S of inequalities of the form either X<:C or T1<:T2 where T1 does not
contain Xi, and returns a mapping from X to types (more precisely, family names).
The auxiliary parameter ∆ records other variables’ bounds, so X and the domain
of ∆ are assumed to be disjoint. The definition of Infer∆X (S) is shown in Figure 7.
Here, S1]S2 is a union of S1 and S2, where S1∩S2 = ∅. T1t∆ T2 is the least upper
bound of T1 and T2 (the least upper bound of two given types always exists since
we do not have interfaces, which can extend more than one interface.) We assume
that each clause is applied in the order shown—thus, for example, the fourth clause
will not be applied until there is only one inequation of the form T<:Xi.

The algorithm is explained as follows. The second clause is the case where a
formal argument type is Xi.C and the corresponding actual is P.C: since P.C has
only a trivial supertype (namely, itself) except Object, Xi must be P. The third
clause is the case where a type variable has more than one lower bound: we replace
two inequalities by one using the least upper bound. The following two clauses are
applied when no other constraints on Xi appear elsewhere; they check whether the
constraint is satisfiable. Note that the fifth clause is applied only when the method
signature contains a type variable that does not appear in parameters types, as in

18 C. Saito, A. Igarashi, M. Viroli

<G/Graph>()→void. In this case, the given upper bound itself is chosen for the
type variable and so the solution will not be least.

Now, we state the theorem of correctness of type inference. It means that, if type
inference succeeds (and every type variable appears in argument types), it gives the
least type arguments.

Theorem 3.4 (Type Inference Correctness)
If ∆; Γ; A ` e0:T0 and mtype(m, ∆̂(T0@A)) = <X/C>U→U0 and ∆; Γ; A ` e:T and
Infer∆X ({X<:C,T<:(U@T0)}) returns σ = [P/X], then ∆; Γ; A ` e0.<σX>m(e) : (σU0)@T0.
Moreover, if every Xi occurs in U, then σ is least in the sense that for any σ′ such
that ∆; Γ; A ` e0.<σ′X>m(e) : (σ′U0)@T0, it holds that ∆ ` σ(Xi) <: σ′(Xi) for any
Xi.

Proof
We show that, if X∩dom(∆) = ∅ and X do not occur in S and Infer∆X ({X<:C, S<:T}) =
σ, then ∆ ` σX <: C and ∆ ` S <: σT and σ is least, by induction on the number
of steps to derive Infer∆X ({X<:C, S<:T}) = σ. (It is easy to show ∆; A ` σ(X) ok from
Lemma B.5.)

Case: Infer∆X ({}) = []

Trivial.

Case: Infer∆X (S′] {P.C<:Xi.C}) = [P/Xi] ◦ Infer∆X\{Xi}([P/Xi]S′)

Let σ′ = Infer∆X\{Xi}([P/Xi]S′). By the induction hypothesis, for each S<:T ∈ [P/Xi]S′,
it holds that ∆ ` σ′(S <: T). Thus, ∆ ` (σ′◦[P/Xi])(S′<:T′) for each S′<:T′ ∈ S′. Since
Xi is not in the range of σ′ and none of X appears in P, it holds that σ′ ◦ [P/Xi] =
[P/Xi] ◦ σ′. Thus, ∆ ` ([P/Xi] ◦ σ′)(S′ <: T′) and ∆ ` ([P/Xi] ◦ σ′)(P.C <: Xi.C).
Leastness is obvious since Xi must be instantiated to P for ∆ ` ([P/Xi] ◦ σ′)(P.C <:

Xi.C) to hold.

Case: Infer∆X (S′] {T1<:Xi}] {T2<:Xi}) = Infer∆X (S′] {(T1 t∆ T2)<:Xi})
Similar. For leastness, recall that T1 t∆ T2 gives the least upper bound of T1 and
T2 (with respect to ∆).

Case: Infer∆X (S′] {T<:Xi, Xi<:C}) = [T/Xi] ◦ Infer∆X\{Xi}(S
′)

∆ ` T<:C Xi 6∈ S′

Similar. Obviously, instantiating Xi with T gives the least solution.

Case: Infer∆X (S′] {Xi<:C}) = [C/Xi] ◦ Infer∆X\{Xi}(S
′) Xi 6∈ S′

Similar. Note that this case does not apply to the leastness proof.

Case: Infer∆X (S′] {T1<:T2}) = Infer∆X (S′) ∆ ` T1<:T2

Similar.

4 Translating .FJ to Featherweight Java

In this section, we discuss a possible implementation of the proposed language
features by erasure translation. The basic idea of erasure translation, which is also
used in the current implementation of Java generics (Bracha et al., 1998), is to erase

Lightweight Family Polymorphism 19

class Graph { }

class Graph$Node {

Graph$Edge[] es=new Graph$Edge[10]; int i=0;

void add(Graph$Edge e) { es[i++] = e; }

}

class Graph$Edge {

Graph$Node src, dst;

void connect(Graph$Node s, Graph$Node d) {

src = s; dst = d; s.add(this); d.add(this);

}

}

class ColorWeightGraph extends Graph { }

class ColorWeightGraph$Node extends Graph$Node { Color color; }

class ColorWeightGraph$Edge extends Graph$Edge {

int weight;

void connect(Graph$Node s, Graph$Node d) {

weight = colorToWeight(((ColorWeightGraph$Node)s).color,

((ColorWeightGraph$Node)d).color);

super.connect(s, d);

}

}

void connectAll(Graph$Edge[] es, Graph$Node n1, Graph$Node n2){

for (int i: es) es[i].connect(n1,n2);

}

Fig. 8. Erased nested classes and family-polymorphic method.

refined type information such as type arguments to generic classes or, here, relative
path types to conventional monomorphic types; since simply erasing some type
information makes the program ill typed, typecasts are inserted where required.
Following (Igarashi et al., 2001), we model erasure translation by presenting formal
translation from .FJ to Featherweight Java (FJ). This is an abstraction of the actual
translation that a real compiler would apply to abstract syntax trees to support
the language extension—features like generics and nested classes are implemented
in javac in this way. Then, we prove that the translation is correct with respect to
typing and reduction.

Before proceeding to the formal definition of the translation, we describe how
classes Graph and ColorWeightGraph and polymorphic method connectAll() would
be translated by erasure in Figure 8. First of all, all nested classes are pulled out
to the top level and fully qualified names are made simple as in Graph$Edge, in
which $ is another character that can be used to form a simple name. As mentioned
above, all relative path types are changed to ordinary types; also, type parameters
to polymorphic methods are erased by replacing the type variable G by its upper
bound Graph. Since method connect() now takes two Graph$Nodes, typecasts to
ColorWeightGraph$Node are inserted where field color is accessed. Another no-

20 C. Saito, A. Igarashi, M. Viroli

Syntax

L ::= class C/C{C f; K M} classes

K ::= C(C f){super(f);this.f=f;} constructors

M ::= C m(C x){ return e; } methods
e ::= . . . | (C)e expressions
v ::= new C(v) values

Typing

Γ ` e0 : D D <: C

Γ ` (C)e0 : C
(T-UCast)

Γ ` e0 : D C <: D C 6= D

Γ ` (C)e0 : C
(T-DCast)

Γ ` e0 : D C 6<: D D 6<: C stupid warning

Γ ` (C)e0 : C
(T-SCast)

Computation

C <: D

(D)(new C(e)) −→ new C(e)
(R-Cast)

Congruence

e −→ e′

(C)e −→ (C)e′
(RC-Cast)

Fig. 9. FJ syntax, and typing and reduction rules for casting.

ticeable change includes extends clauses in nested classes to make all inheritance
relations explicit.

The rest of this section proceeds as follows: we first briefly review Featherweight
Java, the target language of the translation; then, present the formal definition of
translation; and finally prove properties of the erasure translation.

4.1 Featherweight Java

We begin with briefly reviewing Featherweight Java. Since most definitions of .FJ
can be reused, we show only main changes that would be required to make Feather-
weight Java, instead of reintroducing all definitions from scratch. The main changes
consist of addition of type casts and restriction on the syntax. Figure 9 shows the
syntax with typing and semantics for casting.

In the restricted syntax, top-level classes do not contain nested classes; all types
are top-level class names; and methods are monomorphic. (Thus, neither polymor-

Lightweight Family Polymorphism 21

phic method invocation nor instantiation of a nested class appears in a well-typed
program.) Note that, in the formal translation defined below, all nested classes are
translated to top-level classes, as nesting does not play any significant role after
erasure.

In the figure, we abuse the notation by omitting irrelevant information of bound
environment ∆ and enclosing class name A from subtyping and typing judgments.
They are irrelevant in the sense that they cannot affect derivable judgments (modulo
this information) within this restricted language. So, the existing rules could be
simplified by dropping ∆ and A: for example, T-Field for FJ expressions would
be:

Γ ` e0 : C0 fields(C0) = C f

Γ ` e0.fi : Ci

which is exactly the same rule as in the original formulation.
The rules for typecasts are the same as those in original FJ. Although all casts

introduced by translation are downcasts, they will (be proved to) turn into upcasts,
which are removed by R-Cast, during execution. Thus, in fact, stupid casts, which
necessarily fail if ever executed, could be omitted for correctness theorems below.
Here, it is included mainly for consistency (and to make subject reduction hold).

In what follows, we write Γ `FJ e : C for FJ typing judgments and C <:FJ D for
FJ subtyping.

4.2 Erasure of Types and Expressions

Relative path types and type variables are translated to ordinary types by resolving
with the enclosing class in which they appear, and promoting to their upper bounds,
respectively. Since all classes are translated to top-level classes, absolute class names
like C.D will become atomic names. The erasure |T|∆,A of .FJ type T with respect
to bound environment ∆ and class A (in which T appears) is defined as follows:

|P|∆,A = ∆̂(P)
|P.C|∆,A = ∆̂(P)$C
|.E|∆,C.D = C$E

Note that, as mentioned above, C$E is a simple name. We sometimes omit ∆ when
∆ is empty and A when T is not a relative path type.

For the erasure of expressions, we define auxiliary functions fieldsmax(A) and
mtypemax(m, A) to look up types of fields and methods after erasure. These functions
will be used to determine where to insert downcasts, as we will see later.

fieldsmax(A) takes an absolute class name A as an input, and returns a sequence
of pairs of an erased type and a field name for all the fields of A. Since inherited
fields are declared in different classes, types are erased at the very class in which
the corresponding fields are declared. fieldsmax(A) is defined as follows:

fields(C) = T f

fieldsmax(C) = |T| f

22 C. Saito, A. Igarashi, M. Viroli

fieldsmax(Object.C) = •

class C / D { .. class E {T f; .. } .. } fieldsmax(D.E) = C g

fieldsmax(C.E) = C g, |T|C.E f

class C / D { .. N } E 6∈ N fieldsmax(D.E) = C g

fieldsmax(C.E) = C g

The basic structure of fieldsmax is the same as fields. Notice that types are erased
in the class where they are found. Since field types can never be type variables or
relative path types in top-level classes, we can use the result of fields and erase it
at once. We write fieldsmax(A)(fi) = Di where fieldsmax(A) = D f.

mtypemax(m, A) takes a method name m and an absolute class name A as inputs,
and returns the erased signature of m of A. To deal with possible method overriding,
method signatures will be erased with respect to the superclass of A in which m is
first defined so that the signatures of all overriding m will be the same after erasure;
if signatures were erased with respect to the class where the definition is found, the
same relative path type would result in different types, depending on where they
appear, and method overriding will not be preserved in the erased program.1 The
definition of mtypemax is as follows:

mtype(m, C) = <X/C>T→T0 ∆ = X<:C

mtypemax(m, C) = |T|∆→|T0|∆

class C / D { .. class E { .. M} .. } mtype(m, D.E) undefined
<X/C>T0 m(T x){ return e; } ∈ M ∆ = X<:C

mtypemax(m, C.E) = |T|∆,C.E→|T0|∆,C.E

class C / D { .. } mtype(m, D.E) = <X/C>T→T0

mtypemax(m, C.E) = mtypemax(m, D.E)

Now, we define the erasure |e|∆,Γ,A of an expression e with respect to type en-
vironment Γ, bound environment ∆, and enclosing class A, by the following rules
(here, e is assumed to be well typed under ∆,Γ, and A):

|x|∆,Γ,A = x (E-Var)

∆; Γ; A ` e0.f : T ∆; Γ; A ` e0 : T0

fieldsmax(∆̂(T0@A))(f) = |T|∆,A

|e0.f|∆,Γ,A = |e0|∆,Γ,A.f
(E-Field)

1 Another solution to this problem is to introduce bridge methods (Bracha et al., 1998), which
exploits method overloading, not modeled here.

Lightweight Family Polymorphism 23

∆; Γ; A ` e0.f : T ∆; Γ; A ` e0 : T0

fieldsmax(∆̂(T0@A))(f) 6= |T|∆,A

|e0.f|∆,Γ,A = (|T|∆,A)|e0|∆,Γ,A.f
(E-Field-Cast)

∆; Γ; A ` e0.<P>m(e) : T ∆; Γ; A ` e0 : T0

mtypemax(m, ∆̂(T0@A)) = C→C C = |T|∆,A

|e0.<P>m(e)|∆,Γ,A = |e0|∆,Γ,A.m(|e|∆,Γ,A)
(E-Invk)

∆; Γ; A ` e0.<P>m(e) : T ∆; Γ; A ` e0 : T0

mtypemax(m, ∆̂(T0@A)) = C→C C 6= |T|∆,A

|e0.<P>m(e)|∆,Γ,A = (|T|∆,A)|e0|∆,Γ,A.m(|e|∆,Γ,A)
(E-Invk-Cast)

|new A0(e)|Γ,∆,A = new |A0|(|e|∆,Γ,A) (E-New)

There are two rules for field access; the main difference is in whether or not type-
casts are inserted. The rule E-Field-Cast is applied when a field type in the source
program is a relative path type and the field is declared in a (proper) superclass of
A. For example, consider e.src in a method defined in ColorWeightGraph.Edge,
where e is of type .Edge. Then, the type of e.src (in the source program) is
.Node, which becomes ColorWeightGraph$Node after erasure, whereas the field
src declared in Graph.Edge is given type Graph$Node in the erased program. So,
the typecast (ColorWeightGraph$Node) will be required to access new members,
say field color, declared in the subclass. Similarly for method invocations.

4.3 Erasure of Methods, Constructors, and Classes

As mentioned above, family-polymorphic methods are translated to monomorphic
methods by discarding type parameterization and erasing types and the method
body. Although erased methods no longer maintain type variables, they can be
applied to different families, thanks to subtyping between erased nested classes.
The erasure of a method M with respect to class A, written |M|A, is defined as follows:

Γ = x:T, this:thistype(A) ∆ = X<:C

mtypemax(m, A) = D→D ei =

{
xi

′ if Di = |Ti|∆,A

(|Ti|∆,A)xi
′ otherwise

|<X/C>T m(T x){ return e0; }|A = D m(D x′){ return [e/x]|e0|∆,Γ,A; }
(E-Method)

The method body is erased with respect to bound environment ∆ taken from
the parameterization, type environment Γ taken from the formal parameter dec-
larations, and enclosing class A. Note that the signature of the erased method is
obtained by mtypemax(m, A). Downcasts are inserted before each occurrence of the
references to the parameters when the erasure |Ti|∆,A of the parameter type is dif-
ferent from the corresponding argument type from mtypemax. It is required for the
same reason as erasure of field access or method invocation.

24 C. Saito, A. Igarashi, M. Viroli

The erasure |K|A of a constructor K of class A is fairly straightforward:

|C(U g, T f){ super(g); this.f=f; }|A
= |A|(fieldsmax(A)){ super(g); this.f=f; }

(E-Constructor)

Argument types are replaced with erased field types and the name of the constructor
becomes the erasure of A (rather than C, in case K is a constructor of a nested class).

The erasure |N|C of a nested class N in C is also straightforward:

class C / D { .. } ∅; C ` D.E ok

|class E {T f; K M}|C = class CE / DE { |T|C.E f; |K|C.E |M|C.E}
(E-NestedClass1)

class C / D { .. } ∅; C 6` D.E ok

|class E {T f; K M}|C = class C$E / Object { |T|C.E f; |K|C.E |M|C.E}
(E-NestedClass2)

The erasure of a nested class declaration consists of the erasures of its fields, con-
structor and method declarations. Since superclasses are not explicit in the source
program, translation has to recover it. The rule E-NestedClass1 is applied if its
superclass exists (i.e., D.E is a well formed type); the clause “/ D$E” is inserted.
Otherwise, “/ Object” is inserted (E-NestedClass2).

Erasing top-level classes is slightly more involved than one might have expected,
because they may contain inherited nested classes, which do not explicitly appear
in the source program. To collect all nested classes—whether they are explicit or
implicit—we define another auxiliary function nestedclasses(C), defined as follows:

nestedclasses(Object) = •

class C / D { .. N} nestedclasses(D) = N′

N′′ = {class E { E(T f){super(f);}} | E ∈ N′, E 6∈ N,fields(D.E) = T f}
nestedclasses(C) = N, N′′

Here, E represents the name of a class that is inherited from D but not redefined in
C. For such names, the empty class definition (consisting of only its constructor) is
generated.

With the help of nestedclasses, the erasure |L| of a top-level class L is defined as
follows:

N′ = nestedclasses(C)

|class C / D {T f; K M N}| = class C / D { |T|C f; |K|C |M|C} |N′|C
(E-TopClass)

Note that it returns a set of FJ classes since nested classes are pulled out to the
top-level.

Lightweight Family Polymorphism 25

Another possible way to erase nested classes without generating empty classes
for implicitly inherited classes is to erase the name of a nested class, not de-
clared explicitly, to the name of the first superclass that explicitly appears in the
source program. For example, new ColorWeightGraph.Node(..) would be erased
to new Graph$Node(..) if ColorWeightGraph did not have Node. Although this
somewhat optimized compilation scheme would work in this setting, too, we do
not, however, take this approach since it would not always be sensible to change
class names, for example, in the presence of reflection.

We write |CT| for the (FJ) class table consisting of classes obtained by erasing
all top-level classes in CT.

4.4 Properties of the Translation

Now, we investigate correctness of the erasure translation in terms of typing and
reduction. Proofs of the theorems are found in Appendix B. We will distinguish
reduction steps involving R-Cast and other steps (that is, field access and method
invocation) by writing the former as e −→c e′, the latter as e −→n e′. Their union
is written e −→FJ e′.

The following theorem says that a well-typed .FJ program is erased to a well-
typed FJ program, as expected.

Theorem 4.1 (Erasure Preserves Typing)
If a .FJ class table CT is ok and ∆; Γ; A ` e:T, then |CT| is ok using the FJ typing
rules and |Γ|∆,A `FJ |e|∆,Γ,A : |T|∆,A.

Then, we will show that the evaluation of a .FJ program agrees with that of
its erasure, in the sense that, if a .FJ expression e is reduced to a value, then
the erasure of e will be also reduced to the erasure of that value and vice versa.
Unfortunately, however, one step reduction does not really commute with erasure
translation. One obvious reason is that erased execution takes more steps to remove
inserted typecasts. Actually, there is a more subtle reason: one step reduction on
.FJ does not preserve typecasts inserted by erasure. The same kind of problem
is also observed in erasure translation from FGJ to FJ (Igarashi et al., 2001)—to
which interested readers are referred for more detailed analysis of the problem. To
solve the problem, we follow the same approach of using expansions, which relate
two expressions with similar structures but different typecasts.

Suppose Γ `FJ e:C. We call an expression d an expansion of e under Γ, written
Γ ` e

exp=⇒d, if Γ `FJ d:D for some D and d is obtained from e by some combination
of (1) addition of zero or more upcasts, (2) replacement of some casts (D) with (C),
where C is a supertype of D, or (3) removal of some casts.

Example 4.1
Suppose Γ = x:ColorWeightGraph$Node, y:ColorWeightGraph$Edge. Then,

Γ ` x
exp=⇒ (Graph$Node)x

and

Γ ` x
exp=⇒ (Graph$Node)(Object)x

26 C. Saito, A. Igarashi, M. Viroli

e
reduction (.FJ) //

erasure

��

e′

erasure

��
|e′|

expansion

��
|e|

reduction (FJ)
// d′

Fig. 10. Commuting diagram of Theorem 4.2.

e
reduction (.FJ) //

erasure

��

e′

erasure

��
|e|

expansion

��

|e′|

expansion

��
d

R-Cast

∗// d′
reduction (except R-cast)

// d′′

Fig. 11. Commuting diagram of Theorem 4.3.

and

Γ ` y.connect((ColorWeightGraph$Node)x,(ColorWeightGraph$Node)x)
exp=⇒ y.connect(x, x) .

Note that inserted upcasts may become downcasts due to other inserted casts, as
in the second example, where (Object) is inserted after (Graph$Node) is inserted.

Then, first, one step reduction commutes with erasure modulo expansion, as
illustrated in Figure 10 (we assume that CT ok in the following three theorems).

Theorem 4.2 (Erasure Preserves Reduction Modulo Expansion)
If ∆; Γ; A ` e:T and e−→e′, then there exists some FJ expression d′ such that
|Γ|∆,A ` |e′|∆,Γ,A

exp=⇒ d′ and |e|∆,Γ,A −→FJ d′.

Conversely, for the execution of an erased expression, there is a corresponding
execution in the .FJ semantics:

Theorem 4.3 (Erased Program Reflects .FJ Execution)
Suppose that ∆; Γ; A ` e:T and |Γ|∆,A ` |e|∆,Γ,A

exp=⇒ d. If d−→∗
cd

′ and d′−→nd′′,
then e−→e′ for some e′ and |Γ|∆,A ` |e′|∆,Γ,A

exp=⇒ d′′.

Notice that a “real” execution step may be preceded by removal of casts to expose
a redex.

Lightweight Family Polymorphism 27

Finally, the following theorem states that the evaluation result of a .FJ expression
matches that of its erasure.

Theorem 4.4 (Erasure Preserves Execution Results)
If ∆; Γ; A ` e:T and e−→∗v, then |e|∆,Γ,A −→FJ

∗ |v|∆,Γ,A. Similarly, if ∆; Γ; A `
e:T and |e|∆,Γ,A −→FJ

∗ v, then there exists a .FJ value v′ such that e−→∗v′ and
|v′|∆,Γ,A = v.

5 Related Work

As we have already mentioned, in the original formulation of family polymor-
phism (Ernst, 2001) nested classes are members (or attributes) of an object of
their enclosing class. Thus, to create node or edge objects, one first has to instan-
tiate Graph and then to invoke new on a class attribute of that object. It would be
written as

final Graph g = new Graph();

g.Node n = new g.Node(..); g.Edge e = new g.Edge(..);

Notice that the types of nodes and edges would include a reference g to the
Graph object. Relative path types .Node and .Edge would become this.Node and
this.Edge, respectively, where the meaning of types changes as the meaning of
this changes due to usual late-binding. Finally, connectAll() would take four
value arguments instead of one type and three value arguments as:

void connectAll(final Graph g, g.Edge[] es, g.Node n1, g.Node n2){ .. }

Notice that the first argument appears as part of types of the following arguments;
it is required for a type system to guarantee that es, n1, and n2 belong to the same
graph. As a result, a type system is equipped with dependent types, such as g.Edge,
which can be quite tricky (especially in the presence of side-effects). For example,
as the final modifier indicates, the family object g is required to be immutable.
We deliberately avoid such dependent types by identifying families with classes. As
a byproduct, as shown in Section 3.6, we have discovered that it is easy to extend to
this setting the GJ-style type inference, which lessens the burden of programmers
to specify the argument that only represents a family (like g or g.class above).
Although complex, the original approach has one apparent advantage: one can
instantiate an arbitrary number of Graph objects and distinguish nodes and edges
of different graphs by static typing. Formal accounts of such type systems can be
found in (Ernst et al., 2006; Clarke et al., 2007). Scala (Odersky et al., 2003) also
supports family polymorphism, based on dependent types. JX (Nystrom et al.,
2004) also uses final and dependent types, even though it is also based on the
“classes-as-families” principle—in JX, connectAll() would be written

void connectAll(final Graph g,

g.class.Edge[] es, g.class.Node n1, g.class.Node n2){ .. }

where g.class is used for g to denote the run-time class of g.
Historically, the mismatching problem of recursive class definitions has been stud-

ied in the context of binary methods (Bruce et al., 1996), which take an object of

28 C. Saito, A. Igarashi, M. Viroli

the same class as the receiver, hence the interface is (self-)recursive. In particular,
Bruce’s series of work (1997; 2004) introduced the notion of MyType (or sometimes
called ThisType), which is the type of this and changes its meaning along the
inheritance chain, just as our relative path types. Later, he extended the idea to
mutually recursive type/class definitions (Bruce et al., 1998; Bruce & Vanderwaart,
1999; Bruce, 2003) by introducing constructs to group mutually recursive defini-
tions, and the notion of MyGroup, which is a straightforward extension of MyType
to mutually recursion. While Bruce and his colleagues mainly focus on structural
type systems (except for (Bruce et al., 1998)), Jolly et al. (2004) have designed the
language called Concord by applying the notion of groups to a Java-like language
with a name-based type system and have proved that the core type system is sound.
Our approach is similar to them in the sense that dependent types are not used.2

One of our contributions in this work (over the work mentioned above) is (formal)
modeling of family-polymorphic methods, which are absent from Concord, as a spe-
cial form of parametric methods. Note that they can be considered a generalization
of match-bound polymorphic methods in the language LOOM (Bruce et al., 1997)
to mutually recursion—in fact, a similar idea has already been mentioned in (Bruce
et al., 1998) but never formalized.

Another contribution would be in how types are classified into exact types, which
denote instances of one particular class and play a crucial role to achieve type safety
of extensible (mutually) recursive classes, and inexact types, which denote instances
of one class and its subclasses as usual. In Bruce et al. (1998; 1997), one class name is
used for both exact and inexact types, which are distinguished by a special marker.
This approach brings a problem of which kind of types to use as a default—in fact,
in (Bruce et al., 1998), a class name without a marker is used as an inexact types
(for compatibility with Java, on which their work is based) and a class name with
@ is used for the exact type for that class, but, in LOOM, the default is exact and
is used for inexact. Instead of introducing special markers, we have designed our
language such that top-level class names are always inexact and nested class names
are always exact, resulting in a language much easier to understand.

In addition to simultaneous extension of nested classes, Concord, gbeta, and
JX allow inheritance relations between nested classes. For example, C.F can be a
subclass of C.E and, in a subclass D of C, the relationship is preserved while members
can be added to both E and F. Although allowing virtual superclasses is useful to
solve the “expression problem”, we have carefully avoided this feature, too, which
is not strongly required by family polymorphism—there is a semantic complication
as in languages with multiple inheritance: D.F may inherit conflicting members of
the same name from C.F and D.E.

Finally, we should note that programming described in Section 2 could be carried
out in Java 5.0 proper, which is equipped with generics (Bracha et al., 1998) and
F-bounded polymorphism (Canning et al., 1989), by using the technique (Torg-
ersen, 2004) used to solve the “expression problem.” It requires, however, a lot

2 By dependent types, we mean types that are dependent on values; in this sense, Concord does
not use dependent types, contrary to the title of the paper.

Lightweight Family Polymorphism 29

of boilerplate code for type parameterization, which makes programs less easy to
grasp.

6 Concluding Remarks

We have identified a minimal set of language features to solve the problem of
mismatching between mutually recursive classes and inheritance. Our proposal is
lightweight in the sense that the type system, which avoids dependent types, is
much simpler than the original formulation of family polymorphism and easy to
apply to mainstream languages such as Java and C#. We have shown type safety
of the language mechanism by proving a type soundness theorem for the formalized
core language .FJ. We have also developed an algorithm for type argument inference
for family polymorphic methods with its correctness theorem. Although .FJ is not
equipped with generics, we believe they can be easily integrated.

As a possible implementation scheme for lightweight family polymorphism, we
have described erasure translation, formalized it as translation from .FJ to Feath-
erweight Java and proved its correctness. A prototype compiler for the language
features presented is being implemented on top of javac.

Our main aim in this article was to identify a minimal set of language features for
lightweight family polymorphism, based on the the principle of classes-as-families.
We think, however, that it is also an interesting research question to what extent
this principle can be extended to integrate advanced ideas, such as higher-order
hierarchies (Ernst, 2003) and generalized path types (Clarke et al., 2007), found
in the work on object-based families. In fact, the second and third authors have
developed a new type system by lifting .FJ’s restrictions on nesting levels and
inheritance between members of the same family and have proposed for class-based
families the new notions of exact and inexact qualifications to give programmers
expressive subtyping relations over path types (Igarashi & Viroli, 2007).

Acknowledgements. Part of the development of the prototype compiler was done
by Stefano Olivieri and the third author during their visit to Kyoto University in
the summer of 2005. Comments from anonymous referees helped us improve the
final presentation. The second author would like to thank members of the Kumiki
project for fruitful discussions on this subject. This work was supported in part by
Grant-in-Aid for Scientific Research on Priority Areas Research No. 13224013 from
MEXT of Japan (Igarashi), and from the Italian PRIN 2004 Project “Extensible
Object Systems” (Viroli).

A Proof of Subject Reduction Theorem

In this appendix, we detail our proof of Subject Reduction Theorem (Theorem 3.1).
The structure of the proof is similar to those for typed λ-calculi with subtyping and
parametric polymorphism and also Featherweight Java (Igarashi et al., 2001). So,
we first prove various substitution lemmas (Lemmas A.6, A.7, A.8, and A.10). We

30 C. Saito, A. Igarashi, M. Viroli

also prove that resolution preserves typing as Lemma A.9, which amounts to say
that relative path types are polymorphic over types in the inheritance relation.

We begin with developing a number of required lemmas. In what follows, the
metavariables V and W range over types as well as S, T and U.

Lemma A.1 (Weakening)
1. If ∆ ` S <: T, then ∆, X<:C ` S <: T.
2. If ∆; Γ; A ` e : T, then ∆; Γ, x:T; A ` e : T.
3. If ∆; Γ; A ` e : T, then ∆, X<:C; Γ; A ` e : T.

Proof
Straightforward induction on derivations.

Lemma A.2 (Properties of resolution)
1. If ∆ ` S <: T and U@S = V, then U@T = V.
2. If ∆ ` S <: T, then ∆ ` S@A <: T@A.
3. (T@S)@A = T@(S@A).
4. [P/X](T@S) = ([P/X]T)@([P/X]S).

Proof
(1) is immediate since, if S 6= T, then U must be of the form P or P.C, so U@S =
U@T = U. (2) uses the fact that, if S is a relative path type, then either S = T or T
= Object. (3) and (4) are easily shown by case analysis on S and T.

The next two lemmas state that if one class inherits from another, then the
field/method types from both classes indeed agree. We write A <# B if either (1)
A = C, B = D, and ` C <: D, or (2) A = C.E, B = D.E, and ` C <: D.

Lemma A.3
If A <# B and fields(B) = T f, then fields(A) = T f, S g for some S g.

Proof
By induction on ∆ ` C <: D, where C and D are the top-level class name (prefix) of
A and B, respectively.

Lemma A.4
If A <# B and mtype(m, B) = <X / C>U→U0, then mtype(m, A) = <X / C>U→U0.

Proof
Similar to Lemma A.3

Lemma A.5
If ∆; x:A; B ` e0 : T0, then T0 is an absolute class name and ∆; x:A; B′ ` e0 : T0 for
any B′.

Proof
By induction on ∆; x:A; B ` e0 : T0. Note that A@T = A@S for any S and T.

The following lemmas show that type substitution preserves subtyping, type well-
formedness, and typing and that resolution preserves typing. Then, we prove that
substitution of expressions preserves typing.

Lightweight Family Polymorphism 31

Lemma A.6 (Type Substitution Preserves Subtyping)
If ∆, X<:C ` S <: T and ∆; A ` P ok and ∆ ` P<:C, then ∆ ` [P/X]S <: [P/X]T.

Proof
By induction on ∆, X<:C ` S <: T.

Lemma A.7 (Type Substitution Preserves Type Well-Formedness)
If ∆, X<:C; A ` T ok and ∆; A ` P ok and ∆ ` P<:C, then ∆; A ` [P/X]T ok.

Proof
By induction on ∆, X<:C; A ` T ok.

Lemma A.8 (Type Substitution Preserves Typing)
If ∆, X<:C; Γ; A ` e : T, and ∆; A ` P ok and ∆ ` P <: C, then there exists S such
that ∆; [P/X]Γ; A ` [P/X]e : S and ∆ ` S <: [P/X]T.

Proof
By induction on ∆′; Γ; A ` e : T, where we let ∆′ = ∆, X<:C, with case analysis on
the last rule used.

Case T-Var:

Immediate.

Case T-Field: e = e0.fi ∆′; Γ; A ` e0 : T0

fields(∆̂′(T0@A)) = T f T = Ti@T0

By the induction hypothesis, there exists T0
′ such that ∆; [P/X]Γ; A ` [P/X]e0 : T0

′

and ∆ ` T0
′ <: [P/X]T0. By Lemma A.3 and the fact that ∆̂(([P/X]T0)@A) <#

∆̂′(T0@A), we have fields(∆̂(T0
′@A)) = T f, U g for some U g. By Lemma A.2(1),

∆ ` Ti@T0
′ <: Ti@[P/X]T0. Finally, Lemma A.2(4) gives Ti@([P/X]T0) = [P/X](Ti@T0)

(note that Ti does not contain X).

Case T-Invk: e = e0.<Q>m(e) ∆′; Γ; A ` e0 : T0

mtype(m, ∆̂′(T0@A)) = <Y / D>U→U0 ∆′; A ` Q ok
∆′ ` Q <: D ∆′; Γ; A ` e : T
∆′ ` T <: ([Q/Y]U)@T0 T = ([Q/Y]U0)@T0

By the induction hypothesis, there exists T0
′ such that ∆; [P/X]Γ; A ` [P/X]e0 : T0

′

and ∆ ` T0
′ <: [P/X]T0 and there exist T′ such that ∆; [P/X]Γ; A ` [P/X]e:T′ and

∆ ` T′<:[P/X]T. Then, by Lemma A.4, mtype(m, ∆̂(T0
′@A)) = <Y / D>U→U0. By

Lemmas A.6 and A.7 and S-Trans, ∆; A ` [P/X]Q ok and ∆ ` [P/X]Q<:D and

∆ ` T′ <: [P/X](([Q/Y]U)@T0)
= (([[P/X]Q/Y]U)@[P/X]T0) (by Lemma A.2(4))
= (([[P/X]Q/Y]U)@T′0) (by Lemma A.2(1)).

The rule T-Invk finishes the case.

Case T-New: e = new A0(e) fields(A0) = T f ∆′; Γ; A ` e : U
∆′ ` U <: T@A0

By the induction hypothesis, there exist U′ such that ∆; [P/X]Γ; A ` [P/X]e : U′ and
∆ ` U′<:[P/X]U. By Lemmas A.6 and A.2(4), ∆ ` [P/X]U <: [P/X](T@A0) = T@A0.
Finally, S-Trans and T-New finish the case.

32 C. Saito, A. Igarashi, M. Viroli

Lemma A.9 (Resolution Preserves Typing)
If ∆; x:T; B ` e : T and A <# B, then ∆; x : T@A; B ` e : T@A.

Proof
By induction on ∆; x:T; B ` e : T with case analysis on the last rule used.

Case T-Var:

Trivial.

Case T-Field: e = e0.fi ∆; x:T; B ` e0 : T0

fields(∆̂(T0@B)) = S f T = Si@T0

By the induction hypothesis, ∆; x : T@A; B ` e0 : T0@A. By Lemma A.3, fields(∆̂((T0@A)@B)) =
fields(∆̂(T0@A)) = S f, U g for some U g. Then, by T-Field, ∆; x:T@A; B ` e0.fi:Si@(T0@A).
Finally, Lemma A.2(3) gives Si@(T0@A) = (Si@T0)@A.

Case T-Invk: e = e0.<P>m(e) ∆; x:T; B ` e0 : T0

mtype(m, ∆̂(T0@B)) = <X / C>U→U0 ∆; B ` P ok
∆ ` P <: C ∆; x:T; B ` e : S
∆ ` S <: ([P/X]U)@T0 T = ([P/X]U0)@T0

By the induction hypothesis, ∆; x : T@A; B ` e0 : T0@A and ∆; x : T@A; B `
e : S@A. By Lemma A.4, mtype(m, ∆̂((T0@A)@B)) = mtype(m, ∆̂(T0@A)) = <X /

C>U→U0. By Lemmas A.2(2) and A.2(3), ∆ ` S@A <: ([P/X]U)@(T0@A). By T-Invk,
∆; x : T@A; B ` e0.<P>m(e) : ([P/X]U0)@(T0@A). Finally, Lemma A.2(3) gives
([P/X]U0)@(T0@A) = (([P/X]U0)@T0)@A.

Case T-New: e = new A0(e) fields(A0) = T f ∆; x:T; B ` e:U

∆ ` U <: T@A0 T = A0

By the induction hypothesis, ∆; x:T@A; B ` e:U@A. By Lemma A.2(2) and the fact
that (T@A0)@A = T@A0, we have ∆ ` U@A <: T@A0. Finally, since A0@A = A0, by
T-New, ∆; x:T@A; B ` new A0(e):A0.

Lemma A.10 (Expression Substitution Preserves Typing)
If ∆; Γ, x:T; A ` e : T and ∆;Γ; A ` d : S and ∆ ` S <: T, then there exists S such
that ∆; Γ; A ` [d/x]e : S and ∆ ` S <: T.

Proof
By induction on ∆; Γ, x:T; A ` e:T with case analysis on the last rule used.

Case T-Var:

If e = xi, then [d/x]xi = di. By assumption, we have ∆; Γ; A ` di : Si and ∆ ` Si <:

Ti. If e = y ∈ dom(Γ), then [d/x]y = y and we have ∆; Γ; A ` y : Γ(y) by T-Var.

Case T-Field: e = e0.fi ∆; Γ, x:T; A ` e0 : T0

fields(∆̂(T0@A0)) = U f T = Ui@T0

By the induction hypothesis, there exists U0 such that ∆; Γ; A ` [d/x]e0 : U0 and
∆ ` U0 <: T0. By Lemma A.3, we have fields(∆̂(U0@A)) = U f, U′ f′ for some U′ f′.
Then, T-Field and Lemma A.2(1), ∆; Γ; A ` [d/x]e0.fi : Ui@T0(= Ui@U0).

Lightweight Family Polymorphism 33

Case T-Invk: e = e0.<P>m(e) ∆; Γ, x:T; A ` e0 : T0

mtype(∆̂(T0@A)) = <X / C>U→U ∆; A ` P ok
∆ ` P <: C ∆; Γ, x:T; A ` e : V
∆ ` V <: ([P/X]U)@T0 T = ([P/X]U)@T0

By the induction hypothesis, there exist U0 and W such that

∆; Γ; A ` [d/x]e0 : U0 ∆ ` U0 <: T0

∆; Γ; A ` [d/x]e : W ∆ ` W <: V

By Lemma A.4, mtype(m, ∆̂(U0@A)) = <X / C>U→U. By Lemma A.2(1), ∆ ` V <:

([P/X]U)@U0. By S-Trans, ∆ ` W<:([P/X]U)@U0. By T-Invk and Lemma A.2(1),
we have ∆; Γ; A ` [d/x]e0.<P>m([d/x]e) : ([P/X]U)@U0(= ([P/X]U)@T0).

Case T-New: e = new A0(e) fields(A0) = U f ∆; Γ, x:T; A ` e:V

∆ ` V <: (U@A0)

By the induction hypothesis, there exist W such that ∆; Γ; A ` [d/x]e : W and ∆ `
W <: V. By transitivity, ∆ ` W <: (U@A0). By T-New, ∆; Γ; A ` new A0([d/x]e) : A0.

Lemma A.11
If mtype(m, A) = <X/C>S→S0 and mbody(m<P>, A) = x.e and ∆ ` P <: C, then there
exist B and T0 such that A <# B and ∆ ` T0 <: [P/X]S0 and ∆; x : [P/X]S, this :
thistype(B); B ` e : T0.

Proof
By induction on the derivation of mbody(m<P>, A) = x.e with case analysis on the
last rule used.

Case MB-TClass: A = C class C / D {.. M.. }

<X / C>S0 m(S x){ return e0; } ∈ M

By T-Class and T-Method, there exists T′ such that X<:C; x:S, this:C; C ` e : T′

and X<:C ` T′ <: S0. By Lemmas A.8 and A.1, there exists T′′ such that ∆; x :
[P/X]S, this:C; C ` [P/X]e0 : T′′ and ∆ ` T′′ <: [P/X]T′. By Lemma A.6 and
S-Trans, ∆ ` T′′ <: [P/X]S0.

Case MB-TSuper: A = C class C / D {.. M.. } m 6∈ M

mbody(m<P>, D) = x.e

By the induction hypothesis, there exist E and T′ such that ∆ ` D <: E and ∆ `
T′ <: [P/X]S and ∆; x:[P/X]S, this:E; E ` e : T′. By S-Trans, ∆ ` C <: E.

Case MB-NClass: A = C.E class C / D {.. class E {.. M}.. }

<X / C>S0 m(S x){ return e0; } ∈ M

By T-TClass and T-Method, there exists T′ such that X<:C; x:S, this:.E; C.E `
e : T′ and X<:C ` T′ <: S0. By Lemma A.8, there exists T′′ such that ∆; x:[P/X]S,
this:.E; C.E ` [P/X]e0 : T′′ and ∆ ` T′′ <: [P/X]T′. By Lemma A.6 and S-Trans,
∆ ` T′′ <: [P/X]S0.

34 C. Saito, A. Igarashi, M. Viroli

Case MB-NSuper1, MB-NSuper2:

Similar to the case for MB-TSuper above.

Proof of Theorem 3.1
By induction on the derivation of e−→e′ with case analysis on the last rule used.

Case R-Field: e = new A0(e).fi fields(A0) = S f e′ = ei

By the typing rules T-Field and T-New, we also have

T = Si@A0 fields(A0) = S f ∆; Γ; A ` e : U ∆ ` U <: (S@A0)

In particular, we have ∆; Γ; A ` ei : Ui and ∆ ` Ui <: Si@A0.

Case R-Invk: e = new A0(e).<P>m(d) mbody(m<P>, A0) = x.e0

e′ = [d/x, new A0(e)/this]e0

We also have by T-Invk

∆; Γ; A ` new A0(e) : A0 mtype(m, A0) = <X / C>S→S ∆; A ` P ok
∆ ` P <: C ∆; Γ; A ` d : U
∆ ` U <: ([P/X]S)@A0 T = ([P/X]S)@A0

By Lemma A.11, there exist U and B0 such that

A0 <# B0 ∆; x:[P/X]S, this:thistype(B0); B0 ` e0 : U ∆ ` U <: [P/X]S .

Then, by Lemma A.9, ∆; x:([P/X]S)@A0, this:A0; B0 ` e0 : U@A0. By Lemma A.5,
∆; x:([P/X]S)@A0, this:A0; A ` e0 : U@A0. By Lemmas A.10 and A.1, there exists
U′ such that ∆; Γ; A ` [d/x, new A0(e)/this]e0:U′ and ∆ ` U′ <: U@A0. Finally, by
the fact that ∆ ` U <: [P/X]S and Lemma A.2(2), ∆ ` U@A0 <: ([P/X]S)@A0 and, by
S-Trans, ∆ ` U′ <: ([P/X]S)@A0.

Case RC-Field,RC-Inv-Recv,RC-Inv-Arg,RC-New-Arg:

Easy.

B Proof of Theorem 4.1

Throughout the proofs here, we assume the underlying class table is ok. Then, the
erasure of the class table will be well defined; therefore, subtyping <:FJ and the
lookup functions fieldsFJ, mtypeFJ and mbodyFJ will be, too. We write C `FJ M and
`FJ L for FJ typing judgements for methods and classes, respectively.

We begin with proving a number of properties about erasure.

Lemma B.1 (Properties of type erasure)
1. If ∆ ` S <: T and ∆; A ` S, T ok, then |S|∆,A <:FJ |T|∆,A.
2. |S@T|∆,A = |S|∆, b∆(T@A).
3. If class C / D {.. } and ∆; D.E ` T ok, then |T|∆,C.E <:FJ |T|∆,D.E.
4. If ∆; A ` T ok, then |∆̂(T@A)| = |T|∆,A.
5. If ∆; A ` P ok and ∆, X<:C; A ` T ok and ∆ ` P<:C, then |[P/X]T|∆,A <:

|T|(∆,X<:C),A.
6. If A <# B, then |A| <:FJ |B|.

Lightweight Family Polymorphism 35

Proof
(1) is by induction on the derivation of ∆ ` S<:T. (2) is by case analysis on S and
T. (3) is easy. (4) and (5) are by case analysis on T. (6) is easy.

Lemma B.2
If fields(A) = T f, then fieldsmax(A) = C f and |T|A <:FJ C.

Proof
By induction on the derivation of fields(A).

Lemma B.3
If mtype(m, A) = <X/C>T→T0, then mtypemax(m, A) = D→D0, |T|∆,A <:FJ D and
|T0|∆,A <:FJ D0, where ∆ = X<:C.

Proof
By induction on the derivation of mtype(m, A) = <X/C>T→T0.

Lemma B.4
fieldsFJ(|A|) = fieldsmax(A). Similarly, mtypeFJ(m, |A|) = mtypemax(m, A).

Proof
By induction on the derivation of fieldsmax(A) and mtypemax(m, A).

Lemma B.5
If ∆; Γ; A ` e : T, then ∆; A ` T ok.

Proof
By induction on the derivation of ∆; Γ; A ` e:T.

Lemma B.6
If N = nestedclasses(C), then C ` N ok

Proof
By induction of the derivation of nestedclasses(C).

Proof of Theorem 4.1
We prove the theorem in two steps: first it is shown that if ∆; Γ; A ` e:T then
|Γ|∆,A `FJ |e|∆,Γ,A:|T|∆,A; and second, we show |CT| is ok.

The first part is proved by induction on the derivation of ∆; Γ; A ` e:T with a
case analysis on the last rule used.

Case T-Field: e = e0.fi ∆; Γ; A ` e0 : T0 fields(∆̂(T0@A)) = T f

T = Ti@T0

By the induction hypothesis, we have |Γ|∆,A `FJ |e0|∆,Γ,A:|T0|∆,A. By Lemma B.5,
∆; A ` T0 ok. By Lemmas B.1(4), B.2, and B.4,

fieldsFJ(|T0|∆,A) = fieldsmax(∆̂(T0@A)) = C f

|T|b∆(T0@A) <:FJ C .

By the rule T-Field, we have |Γ|∆,A `FJ |e0|∆,Γ,A.fi : Ci.
Since T do not contain any type variables, by Lemma B.1(2),

|T|b∆(T0@A) = |T|∆, b∆(T0@A) = |T@T0|∆,A <:FJ C.

36 C. Saito, A. Igarashi, M. Viroli

If |Ti@T0|∆,A = Ci, then |e0.fi|∆,Γ,A = |e0|∆,Γ,A.fi by E-Field, finishing the case.
On the other hand, if |Ti@T0|∆,A 6= Ci, then

|e0.fi|∆,Γ,A = (|Ti@T0|∆,A)|e0|∆,Γ,A.fi

by the rule E-Field-Cast and |Γ|∆,A `FJ (|Ti@T0|∆,A)|e0|∆,Γ,A.fi:|Ti@T0|∆,A by
the rule T-DCast, finishing the case.

Case T-Invk:

Similar to the case above.

Case T-Var, T-New:

Easy.
The second part (|CT| is ok) follows from the first part with examination of

the rules T-Method, T-NClass and T-TClass. We show that if A ` M ok then
|A| `FJ |M|A ok. Let M = <X/C>T0 m(T x){ return e0; }. Then, by E-Method,
we have

mtypemax(m, A) = D→D0

|M|A = D0 m(D x′){ return e0
′; }

Γ = x:T, this:thistype(A) ∆ = X<:C

ei =
{

xi
′ if Di = |Ti|∆,A

(|Ti|∆,A)xi
′ otherwise

e0
′ = [e/x](|e0|∆,Γ,A) .

By the rule T-Method, we have

∆; A ` T, T0, C ok ∆; Γ; A ` e0 : S ∆ ` S <: T0

if mtype(m, superclass(A)) = <Y/E>U→U0, then (Y, E, U, U0) = (X, C, T, T0) .

We must show that

x′ : D, this : |A| `FJ e0
′ : E0 E0 <:FJ D0

if mtypeFJ(m, |superclass(A)|) = D′→D0
′, then D′ = D and D0

′ = D0

for some E0. By the result of the first part, x : |T|∆,A, this:|thistype(A)|∆,A `FJ

|e0|∆,Γ,A : |S|∆,A. Since, by Lemma B.3, |Ti|∆,A <:FJ Di, we have xi
′:Di `FJ ei:|Ti|∆,A

for any 0 ≤ i ≤ #(x′). By Lemma A.10 and the fact that |thistype(A)|∆,A = |A|, we
have

x′:D, this : |A| `FJ e0
′ : C0

for some C0 where C0 <:FJ |S|∆,A. On the other hand, by Lemma B.3, |T0|∆,A <:FJ D0.
Since |S|∆,A<:|T0|∆,A by Lemma B.1(1), we have C0 <:FJ D0 by S-Trans. Let E0 be
C0. Finally, if mtypemax(m, superclass(A)) is well defined, then it is easy to show that
mtypeFJ(m, |superclass(A)|) is also well defined. By Lemma B.4,

mtypemax(m, superclass(A)) = mtypeFJ(m, |superclass(A)|) = D→D0 .

It is also straightforward to show that if C ` N ok then `FJ |N|C ok, and if ` L ok
then `FJ |L| ok.

Lightweight Family Polymorphism 37

C Proof of Theorems 4.2, 4.3, and 4.4

A first important lemma is Lemma C.5, which gives the correspondence between
the method body in the erased class table and the method body erased under the
context in which the program is running.

Lemma C.1
If Γ, x:C ` e

exp=⇒ e′ and Γ `FJ d:D where D <:FJ C, then Γ ` [d/x]e exp=⇒ [d/x]e′.

Proof
By induction on the derivation of Γ, x:C `FJ e:C.

Lemma C.2
If ∆′, X<:C; Γ; A ` e:T and ∆′ ` P <: C and ∆′; A ` P ok and Γ′ is a type environment
such that dom(Γ′) = dom(Γ) and ∆′ ` Γ′(x) <: ([P/X]Γ(x))@A for all x ∈ dom(Γ),
then |e|(∆′,X<:C),Γ,A is obtained from |[P/X]e|∆′,Γ′,A by some combination of replace-
ments of some synthetic casts (D) with (C) where D <: C, or removals of some
casts.

Proof
By induction on the derivation of ∆; Γ; A ` e:T, in which we let ∆ = ∆′, X<:C, with
case analysis on the last rule used.
Case T-Var:

Trivial.
Case T-Field: e = e0.f ∆; Γ; A ` e0 : T0 fields(∆̂(T0@A)) = T f

T = Ti@T0

By the induction hypothesis, |e0|∆,Γ,A is obtained from |[P/X]e0|∆′,Γ′,A by some
combination of replacements of some casts (D) with (C) where D <:FJ C, or removals
of some casts. By Theorem 4.1, |Γ|∆,A `FJ |e0|∆,Γ,A : |T0|∆,A. By Lemmas B.2
and B.1(2), fieldsmax(∆̂(T0@A)) = D f and |Ti@T0|∆,A = |Ti|∆, b∆(T0@A) <:FJ Di.

We have two subcases.
Subcase: |Ti@T0|∆,A 6= Di

By the rule E-Field-Cast,

|e|∆,Γ,A = (|Ti@T0|∆,A)|e0|∆,Γ,A.fi.

Then, we must show that |[P/X]e|∆′,Γ′,A = (D)|[P/X]e0|∆′,Γ′,A.fi for some D <:FJ

|Ti@T0|∆,A. By Lemmas A.9, A.8 and A.10,

∆′; Γ′; A ` [P/X]e0 : S0 ∆′ ` S0 <: [P/X]T0@A

for some S0. Then, by Lemmas A.3 and A.2(2),

fields(∆̂′(S0@A)) = T f, T′ g

for some T′ g. By Lemmas A.2(1), A.2(3) and A.2(4) and the fact that Ti does not
contain X,

Ti@S0 = Ti@([P/X]T0@A)

= (Ti@([P/X]T0))@A

= ([P/X](Ti@T0))@A

38 C. Saito, A. Igarashi, M. Viroli

and, by Lemmas B.1(2) and B.1(5),

|Ti@S0|∆′,A = |([P/X](Ti@T0))@A|∆′,A = |[P/X](Ti@T0)|∆′,A <:FJ |Ti@T0|∆,A.

On the other hand,

fieldsmax(∆′(S0@A)) = D f, D′ g

for some D′ g. Therefore, by the rule E-Field-Cast,

|[P/X]e|∆′,Γ′,A = (|Ti@S0|∆′,A)|[P/X]e0|∆′,Γ′,A.fi

and taking |Ti@S0|∆′,A as D finishes the case.

Subcase: |Ti@T0|∆,A = Di

Similar to the subcase above.

Case T-Invk: e = e0.<Q>m(e) ∆; Γ; A ` e0 : T0

mtype(m, ∆̂(T0@A)) = <Y/D>U→U0 ∆; A ` Q ok
∆ ` Q <: D ∆; Γ; A ` e : T ∆ ` T <: ([Q/Y]U)@T0

T = ([Q/Y]U0)@T0

By the induction hypothesis, |e|∆,Γ,A are obtained from |[P/X]e|∆′,Γ′,A by some
combination of replacements of some casts (D) with (C) where D <:FJ C, or re-
movals of some casts. By Theorem 4.1, |Γ|∆,A `FJ |e0|∆,Γ,A : |T0|∆,A. Since, by
Lemmas B.1(2), B.1(5) and B.3, mtypemax(m, ∆̂(T0@A)) = E→E0 and |T|∆,A =
|[Q/Y]U0|∆, b∆(T0@A) <:FJ |U0|(∆,Y<:D), b∆(T0@A) <:FJ E0.

Now we have two subcases:

Subcase: |T|∆,A 6= E0

By the rule E-Invk-Cast,

|e|∆,Γ,A = (|T|∆,A)|e0|∆,Γ,A.m(|e|∆,Γ,A)

Now, we must show that

|[P/X]e|∆′,Γ′,A = (D)|[P/X]e0|∆′,Γ′,A.m(|[P/X]e|∆′,Γ′,A)

for some D <:FJ |T|∆,A. By Lemmas A.9, A.8 and A.10,

∆′; Γ′; A ` [P/X]e0:S0 ∆′ ` S0<:[P/X]T0@A .

By Lemma A.4,

mtype(m, ∆̂′(S0@A)) = <Y/D>U→U0

By Lemmas A.2(1), A.2(3) and A.2(4) and the fact that U0 does not contain any
type variables in X,

([[P/X]Q/Y]U0)@S0 = ([[P/X]Q/Y]U0)@([P/X]T0@A)

= (([[P/X]Q/Y]U0)@([P/X]T0))@A

= ([P/X](([Q/Y]U0)@T0))@A.

Then, by Lemmas B.1(2) and B.1(5),

|([[P/X]Q/Y]U0)@S0|∆′,A = |([P/X](([Q/Y]U0)@T0))@A|∆′,A

= |[P/X](([Q/Y]U0)@T0)|∆′,A <:FJ |([Q/Y]U0)@T0|∆,A .

Lightweight Family Polymorphism 39

On the other hand, it is easy to show that

mtypemax(∆̂′(S0@A)) = mtypemax(∆̂(T0@A)) = E→E0 .

Then, by the rule E-Invk-Cast,

|[P/X]e|∆′,Γ′,A = (|([[P/X]Q/Y]U0)@S0|∆′,A)|[P/X]e0|∆′,Γ′,A.m(|[P/X]e|∆′,Γ′,A)

and taking |([[P/X]Q/Y]U0)@S0|∆,A as D finishes the subcase.

Subcase: |T|∆,A = E0

Similar to the subcase above.

Case T-New:

Immediate from the induction hypothesis.

Lemma C.3
If ∆; Γ; D.E ` e : T and ∆ ` C <: D, then ∆; Γ; C.E ` e : T.

Proof
By straightforward induction on ∆; Γ; D.E ` e : T, with Lemmas A.3 and A.4.

Lemma C.4
If ∆; Γ; D.E ` e : T and ∆ ` C <: D, then |Γ|∆,C.E ` |e|∆,Γ,C.E

exp=⇒ |e|∆,Γ,D.E.

Proof
By induction on ∆; Γ; D.E ` e : T. We show only the case for T-Field since the
other cases are either easy or similar to this main case.

Case T-Field: e = e0.fi ∆; Γ; D.E ` e0 : T0 fields(∆̂(T0@D.E)) = T f

T = Ti@T0

By Lemma B.5, ∆; D.E ` T ok. By the induction hypothesis, we have |Γ|∆,C.E `
|e0|∆,Γ,C.E

exp=⇒ |e0|∆,Γ,D.E. By Lemma C.3,

∆; Γ; C.E ` e0 : T0 ∆; Γ; C.E ` e : T .

Let C = fieldsmax(∆̂(T0@C.E))(fi). It is easy to check that ∆̂(T0@C.E) <# ∆̂(T0@D.E)
and fieldsmax(∆̂(T0@D.E))(fi) = C. By Lemmas B.1(3) and B.2, |T|∆,C.E <:FJ

|T|∆,D.E <:FJ C. We have four subcases depending on whether these three types
are equal or not. If |T|∆,C.E 6= |T|∆,D.E 6= C, then

|e|∆,Γ,C.E = (|T|∆,C.E)|e0|∆,Γ,C.E.fi

|e|∆,Γ,D.E = (|T|∆,D.E)|e0|∆,Γ,D.E.fi .

by E-Field-Cast. Thus, |Γ|∆,C.E ` |e|∆,Γ,C.E
exp=⇒ |e|∆,Γ,D.E. The other three sub-

cases are similar.

Lemma C.5
If mbody(m<P>, A) = x.e and mtype(m, A) = <X/C>T→T0 and ∆; B ` P ok and
∆ ` P <: C and ∆ ` U <: ([P/X]T)@A, then mbodyFJ(m, |A|) = x.e′ and |x : U, this :
thistype(A)|∆,A ` |e|∆, (x:U,this:thistype(A)), A

exp=⇒ e′.

Proof
By induction on the derivation of mbody(m<P>, A) with a case analysis on the last
rule used.

40 C. Saito, A. Igarashi, M. Viroli

Case MB-NClass: A = C.E class C/D{ .. class E{ .. M } .. }

<X/C>T0 m(T x){ return e0; } ∈ M e = [P/X]e0

Let ∆′ = X<:C and Γ = x:T, this:.E. By T-Method, we have

∆′; Γ; C.E ` e0 : S0 ∆′ ` S0 <: T0 .

Then, by Lemma C.2, |e0|∆′,Γ,C.E is obtained from |e|∆,(x:U,this:.E),C.E by some com-
bination of replacements of some casts (C) with (D) where C <:FJ D. By Theorem 4.1
and Lemma B.1(1),

|Γ|∆′,C.E `FJ |e0|∆′,Γ,C.E : |S0|∆′,C.E |S0|∆′,C.E <:FJ |T0|∆′,C.E .

Now, by Lemma B.3, mtypemax(m, C.E) = D→D0 for some D and D0, and, by
E-Method, mtypeFJ(m, |C.E|) = x.[e/x](|e0|∆′,Γ,C.E), where

ei =
{

xi if Di = |Ti|∆′,C.E

(|Ti|∆′,C.E)xi otherwise

for i = 1, . . . ,#(x). By Lemmas B.1(1), B.1(2), and B.1(5),

|U|∆,C.E <:FJ |([P/X]T)@C.E|∆,C.E <:FJ |[P/X]T|∆,C.E <:FJ |T|(∆,∆′),C.E = |T|∆′,C.E

Thus, each ei is either a variable or a variable with an upcast under the environment
|x:U, this:.E|∆,C.E. Then, by Lemma A.10, we have

|x:U, this:.E|∆,C.E `FJ [e/x](|e0|∆′,Γ,C.E) : E0

for some E0 such that E0 <:FJ |S0|∆′,C.E. Therefore, we have

|x:U, this:.E|∆,C.E ` |e|∆,(x:U,this:.E),C.E
exp=⇒ [e/x](|e0|∆′,Γ,C.E),

finishing the case.

Case MB-NSuper1: A = C.E class C / D{ .. N} E 6∈ N

mbody(m<P>, D.E) = x.e

It must be the case that mtype(m, D.E) = <X/C>T→T0. By the induction hypothesis
and the definition of erasure, we have mbodyFJ(m, |C.E|) = mbodyFJ(m, |D.E|) = x.e′

and

|x:U, this:.E|∆,A ` |e|∆,(x:U,this:.E),D.E
exp=⇒ e′ .

By Lemma C.4,

|x:U, this:.E|∆,A ` |e|∆,(x:U,this:.E),C.E
exp=⇒ |e|∆,(x:U,this:.E),D.E .

Transitivity of exp=⇒ finishes the case.

Case MB-NSuper2:

Similarly to the case above.

Case MB-TClass, MB-TSuper:

Easy.

Proof of Theorem 4.2
By induction on the derivation of e −→ e′ with a case analysis on the last reduction
rule used.

Lightweight Family Polymorphism 41

Case R-Field: e = new A0(e).fi fields(A0) = T f e′ = ei

We have two subcases depending on the last erasure rule used.

Subcase E-Field-Cast: |e|∆,Γ,A = (D)new |A0|(|e|∆,Γ,A).fi

fieldsmax(A0)(fi) 6= |T|∆,A = D

By Lemma B.4, fieldsFJ(|A0|) = . . . , C fi, . . . for some C, we have |e|∆,Γ,A −→FJ

(D)|ei|∆,Γ,A. On the other hand, by Theorem 3.1, ∆; Γ; A ` ei : Ti such that ∆ `
Ti <: T. By Theorem 4.1, |Γ|∆,A `FJ |ei|∆,Γ,A : |Ti|∆,A. Since |Ti|∆,A <:FJ |T|∆,A by
Lemma B.1(1), (D)|ei|∆,Γ,A is obtained by adding an upcast to |ei|∆,Γ,A.

Subcase E-Field: |e|∆,Γ,A = new |A0|(|e|∆,Γ,A).fi

Similarly to the subcase above.

Case R-Invk: e = new A0(e).<P>m(d) mbody(m<P>, A0) = x.e0

e′ = [d/x, new A0(e)/this]e0

By T-Invk, we have

mtype(m, A0) = <X/C>T→T0 ∆; A ` P ok ∆ ` P <: C

∆; Γ; A ` d : U ∆ ` U <: ([P/X]T)@A0 T = ([P/X]T0)@A0 .

We have two subcases depending on the last erasure rule used.

Subcase E-Invk-Cast: |e|∆,Γ,A = (D)new |A0|(|e|∆,Γ,A).m(|d|∆,Γ,A)

mtypemax(m, A0) = E→E0 E0 6= |T|∆,A = D

Let Γ′ = x:U, this : thistype(A0). Then, by Lemma C.5 and mbodyFJ(m, |A0|) =
x.e0

′,

|Γ′|∆,A0 ` |e0|∆,Γ′,A0
exp=⇒ e0

′

By Lemma C.1 and the fact that |e′|∆,Γ,A = [|d|∆,Γ,A/x, |new A0(e)|∆,Γ,A/this]|e0|∆,Γ′,A0 ,

|Γ|∆,A ` |e′|∆,Γ,A
exp=⇒ [|d|∆,Γ,A/x, |new A0(e)|∆,Γ,A/this]e0

′.

By Theorems 3.1 and 4.1, |Γ|∆,A `FJ |e′|∆,Γ,A : |T′|∆,A for some T′ such that ∆ `
T′ <: T. By Lemma B.1(1), |T′|∆,A <:FJ |T|∆,A = D. Thus,

|Γ|∆,A ` |e′|∆,Γ,A
exp=⇒ (D)|e′|∆,Γ,A.

Finally,

|Γ|∆,A ` |e′|∆,Γ,A
exp=⇒ (D)[|d|∆,Γ,A/x, |new A0(e)|∆,Γ,A/this]e0

′.

Subcase E-Invk:

Similarly to the subcase above.

Now, we prove Theorem 4.3 after the following lemmas. The first lemma shows
how one execution step in FJ is reflected in .FJ and the next shows expansion and
FJ reduction can commute. Then, Theorem 4.3 is an easy corollary of them.

Lemma C.6
Suppose ∆; Γ; A ` e : T. If |e|∆,Γ,A−→FJd, then e −→ e′ for some e′ and |Γ|∆,A `
|e′|∆,Γ,A

exp=⇒ d. In other words, the diagram in Figure C 1 commutes.

42 C. Saito, A. Igarashi, M. Viroli

e
reduction (.FJ) //

erasure

��

e′

erasure

��
|e′|

expansion

��
|e|

reduction (FJ)
// d

Fig. C 1. Commuting diagram of Lemma C.6.

Proof
By induction on the derivation of |e|∆,Γ,A −→FJ d with a case analysis by the last
rule used. We show only a few main cases.

Case RC-Cast: |e|∆,Γ,A = (C)e0 e0 −→FJ d0 d = (C)d0

Both e and e0 must be either a field access or a method invocation. We have
another case analysis with the last reduction rule for the derivation of e0 −→FJ d0.
The cases for RC-Field, RC-Invk-Recv, and RC-Invk-Arg are omitted, since
the conclusion easily follows from the induction hypothesis.

Subcase R-Field: e0 = new D(e).fi fieldsFJ(D) = C f d0 = ei

By inspecting the derivation of |e|∆,Γ,A, it must be the case that

e = new B(e′).fi |B| = D |e′|∆,Γ,A = e fieldsmax(B) = C f

|T|∆,A = C 6= Ci .

By Theorems 3.2 and 3.1 and Lemma B.4, we have e −→ ei
′ and ∆; Γ; A ` ei

′:S

and ∆ ` S <: T. By Theorem 4.1, |Γ|∆,A `FJ |ei
′|∆,Γ,A : |S|∆,A. By Lemma B.1(1),

|S|∆,A <:FJ |T|∆,A. Then, |Γ|∆,A ` ei
exp=⇒ (|T|∆,A)ei, finishing the case.

Subcase R-Invk: e0 = new D(d).m(e) mbodyFJ(m, D) = x.em

d0 = [e/x, new D(d)/this]em

By inspecting the derivation of |e|∆,Γ,A, it must be the case that

e = new B(d′).<P>m(e′) |B| = D |d′|∆,Γ,A = d

|e′|∆,Γ,A = e mtype(m, B) = <X/C>U→U0 [P/X]U0@B = T

mtypemax(m, B) = E→E0 |T|∆,A = C 6= E0 .

By Theorems 3.2 and 3.1, for some S,

mbody(m<P>, B) = x.em
′ e −→ [e′/x, new B(d′)/this]em

′

∆; Γ; A ` [e′/x, new B(d′)/this]em
′:S ∆ ` S <: T .

By Theorem 4.1 and the fact that

|[e′/x, new B(d′)/this]em
′|∆,Γ,A = [e/x, new D(d)/this]|em

′|∆,(x:S,this:thistype(B)),B

Lightweight Family Polymorphism 43

where S are the types of e′, we have

|Γ|∆,A `FJ [e/x, new D(d)/this]|em
′|∆,(x:S,this:thistype(B)),B : |S|∆,A .

Since |S|∆,A <:FJ |T|∆,A by Lemma B.1(1),

|Γ|∆,A ` [e/x, new D(d)/this]|em
′|∆,(x:S,this:thistype(B)),B

exp=⇒ (|T|∆,A)[e/x, new D(d)/this]|em
′|∆,(x:S,this:thistype(B)),B .

On the other hand, since ∆ ` S<:[P/X]U@B, by Lemma C.5,

|x:S, this:thistype(B)|∆,B ` |em
′|∆,(x:S,this:thistype(B)),B

exp=⇒ em .

By Lemma C.1,

|Γ|∆,A ` [e/x, new D(d)/this]|em
′|∆,(x:S,this:thistype(B)),B

exp=⇒ [e/x, new D(d)/this]em .

Then,

|Γ|∆,A ` (|T|∆,A)[e/x, new D(d)/this]|em
′|∆,(x:S,this:thistype(B)),B

exp=⇒ (|T|∆,A)[e/x, new D(d)/this]em .

Finally, by the fact that C = |T|∆,A and transitivity of the expansion relation, we
have

|Γ|∆,A ` |[e′/x, new B(d′)/this]em
′|∆,Γ,A

exp=⇒ (C)[e/x, new D(d)/this]em .

Case R-Cast:

Cannot happen since no casts are inserted before new expressions by erasure.

Case R-Field:

Similar to the subcase for R-Field in the case for RC-Cast above.

Case R-Invk:

Similar to the subcase for R-Invk in the case for RC-Cast above. The case for
R-Cast and the other cases for induction steps are straightforward.

Lemma C.7
Suppose ∆; Γ; A ` e:T and |Γ|∆,A ` |e|∆,Γ,A

exp=⇒ d. If d −→∗
c d′ and d′ −→n d′′, then

|e|∆,Γ,A −→FJ e′ and |Γ|∆,A ` e′
exp=⇒ d′′. In other words, the diagram in Figure C 2

commutes.

Proof
By induction on the derivation of the last reduction step with a case analysis by
the last rule used. Refer to (Igarashi et al., 2001) for details.

Proof of Theorem 4.3
Follows from Lemmas C.6 and C.7. See Figure C 3.

Finally, Theorem 4.4 is proved after the following lemma.

Lemma C.8

44 C. Saito, A. Igarashi, M. Viroli

|e|
reduction (FJ) //

expansion

��

e′

expansion

��
d

R-Cast

∗// d′
reduction (except R-Cast)

// d′′

Fig. C 2. Commuting diagram of Lemma C.7.

e
reduction (.FJ) //

erasure

��

e′

erasure

��
|e′|

expansion

��|e|
reduction (FJ) //

expansion

��
expansion

��
d

R-Cast

∗// d′
reduction (except R-Cast)

// d′′

Fig. C 3. Commuting diagram of Theorem 4.3.

If Γ `FJ e:C and e −→FJ e′ and Γ ` e
exp=⇒ d, then there exists some FJ expression

d′ such that Γ ` e′
exp=⇒ d′ and d −→FJ

∗ d′. In other words, the diagram shown in
Figure C 4 commutes.

Proof
By induction on the derivation of e −→FJ e′ with a case analysis on the last
reduction rule used. See (Igarashi et al., 2001) for details.

Proof of Theorem 4.4
For the first part, we first show that, if ∆; Γ; A ` e:T and e−→∗e′, then there exists
some FJ expression d′ such that |Γ|∆,A ` |e′|∆,Γ,A

exp=⇒ d′ and |e|∆,Γ,A −→FJ
∗ d′, by

e
reduction (FJ) //

expansion

��

e′

expansion

��
d

reduction (FJ)

∗// d′

Fig. C 4. Commuting diagram of Lemma C.8.

Lightweight Family Polymorphism 45

e
reduction (.FJ) //

erasure

��

(1)

e′
reduction (.FJ) ∗//

erasure

��

e′′

erasure

��
(2) |e′′|

expansion

��
|e′|

reduction (FJ) ∗//

expansion

��

(3)

d′

expansion

��
|e|

reduction (FJ)
// d

reduction (FJ)

∗// d′′

Fig. C 5. Commuting diagram in the proof of Theorem 4.4.

induction on the length n of reduction sequence e −→∗ e′. The base case is trivial.
As for the induction step, we have the commuting diagram shown in Figure C 5, in
which commutation (1) is proved by Theorem 4.2, (2) by the induction hypothesis
and (3) by Lemma C.8.

When e′ is a value, |e′|∆,Γ,A is also a value and d′ is obtained only by inserting
some upcasts to |e′|∆,Γ,A. So, |e′|∆,Γ,A −→FJ

∗ d′.
The second part is proved as follows. First, |e|∆,Γ,A −→FJ

∗ v can be rewritten as

|e|∆,Γ,A−→∗
c−→n−→∗

c · · · −→ne′′−→∗
cv .

By repeatedly applying Theorem 4.3, there exists a .FJ expression e′ such that
e−→∗e′ and |Γ|∆,A ` |e′|∆,Γ,A

exp=⇒ e′′. By the fact that e′′ is an expansion (of
|e′|∆,Γ,A) and is obtained from v by inserting upcasts, e′ must be a .FJ value v′ and
|e′|∆,Γ,A is necessarily equal to v.

References

Aspinall, David, & Hofmann, Martin. (2005). Dependent types. Chap. 2, pages 45–86 of:
Pierce, Benjamin C. (ed), Advanced Topics in Types and Programming Languages. The
MIT Press.

Bracha, Gilad, Odersky, Martin, Stoutamire, David, & Wadler, Philip. 1998 (October).
Making the future safe for the past: Adding genericity to the Java programming lan-
guage. Pages 183–200 of: Proceedings of ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’98).

Bruce, Kim B. (2003). Some challenging typing issues in object-oriented languages. Pro-
ceedings of Workshop on Object-Oriented Development (WOOD’03). Electronic Notes
in Theoretical Computer Science, vol. 82, no. 8.

Bruce, Kim B., & Foster, J. Nathan. (2004). LOOJ: Weaving LOOM into Java. Proceed-
ings of European Conference on Object-Oriented Programming (ECOOP2004). Lecture
Notes on Computer Science, vol. 3086. Oslo, Norway: Springer Verlag.

46 C. Saito, A. Igarashi, M. Viroli

Bruce, Kim B., & Vanderwaart, Joseph C. (1999). Semantics-driven language design: Stati-
cally type-safe virtual types in object-oriented languages. Proceedings of 15th Conference
on the Mathematical Foundations of Programming Semantics (MFPS XV). Electronic
Notes in Theoretical Computer Science, vol. 20. New Orleans, LA: Elsevier. Available
through http://www.elsevier.nl/locate/entcs/volume20.html.

Bruce, Kim B., Cardelli, Luca, Castagna, Giuseppe, Group, The Hopkins Objects, Leavens,
Gary T., & Pierce, Benjamin. (1996). On binary method. Theory and Practice of Object
Systems, 1(3), 221–242.

Bruce, Kim B., Petersen, Leaf, & Fiech, Adrian. (1997). Subtyping is not a good “match”
for object-oriented languages. Pages 104–127 of: Proceedings of 11th European Con-
ference on Object-Oriented Programming (ECOOP’97). Lecture Notes on Computer
Science, vol. 1241. Jyväskylä, Finland: Springer Verlag.

Bruce, Kim B., Odersky, Martin, & Wadler, Philip. (1998). A statically safe alternative to
virtual types. Pages 523–549 of: Proceedings of 12th European Conference on Object-
Oriented Programming (ECOOP’98). Lecture Notes on Computer Science, vol. 1445.
Brussels, Belgium: Springer Verlag.

Canning, Peter, Cook, William, Hill, Walter, Olthoff, Walter, & Mitchell, John C. (1989).
F-bounded polymorphism for object-oriented programming. Pages 273–280 of: Pro-
ceedings of ACM Conference on Functional Programming and Computer Architecture
(FPCA’89). London, England: ACM Press.

Clarke, Dave, Drossopoulou, Sophia, Noble, James, & Wrigstad, Tobias. 2007 (March).
Tribe: A simple virtual class calculus. Pages 121–134 of: Proceedings of International
Conference on Aspect-Oriented Software Design (AOSD’07).

Ernst, Erik. 1999 (June). gbeta – A Language with Virtual Attributes, Block Structure,
and Propagating, Dynamic Inheritance. Ph.D. thesis, Department of Computer Science,
University of Aarhus, Aarhus, Denmark.

Ernst, Erik. (2001). Family polymorphism. Pages 303–326 of: Proceedings of European
Conference on Object-Oriented Programming (ECOOP2001). Lecture Notes on Com-
puter Science, vol. 2072. Budapest, Hungary: Springer Verlag.

Ernst, Erik. (2003). Higher-order hierarchies. Pages 303–328 of: Proceedings of Euro-
pean Conference on Object-Oriented Programming (ECOOP2003). Lecture Notes on
Computer Science, vol. 2743. Darmstadt, Germany: Springer Verlag.

Ernst, Erik, Ostermann, Klaus, & Cook, William R. 2006 (January). A virtual class
calculus. Pages 270–282 of: Proceedings of ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL2006).

Flatt, Matthew, Krishnamurthi, Shriram, & Felleisen, Matthias. 1998 (January). Classes
and mixins. Pages 171–183 of: Proceedings of ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’98).

Igarashi, Atsushi, & Viroli, Mirko. 2007 (January). Variant path types for scalable
extensibility. Proceedings of the International Workshop on Foundations and De-
velopments of Object-Oriented Languages (FOOL/WOOD 2007). Available through
http://foolwood07.cs.uchicago.edu/.

Igarashi, Atsushi, Pierce, Benjamin C., & Wadler, Philip. (2001). Featherweight Java: A
minimal core calculus for Java and GJ. Acm transactions on programming languages and
systems, 23(3), 396–450. A preliminary summary appeared in Proceedings of the ACM
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’99), ACM SIGPLAN Notices, volume 34, number 10, pages 132–146, October
1999.

Igarashi, Atsushi, Saito, Chieri, & Viroli, Mirko. (2005). Lightweight family polymor-
phism. Pages 161–177 of: Yi, Kwangkeun (ed), Proceedings of the 3rd Asian Symposium

Lightweight Family Polymorphism 47

on Programming Languages and Systems (APLAS2005). Lecture Notes in Computer
Science, vol. 3780. Tsukuba, Japan: Springer-Verlag.

Jolly, Paul, Drossopoulou, Sophia, Anderson, Christopher, & Ostermann, Klaus. 2004
(June). Simple dependent types: Concord. Proceedings of 6th ECOOP Workshop on
Formal Techniques for Java-like Programs (FTfJP2004).

Madsen, Ole Lehrmann, & Møller-Pedersen, Birger. 1989 (October). Virtual classes: A
powerful mechanism in object-oriented programming. Pages 397–406 of: Proceedings of
ACM Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA’89).

Nystrom, Nathaniel, Chong, Stephen, & Myers, Andrew C. 2004 (October). Scalable
extensibility via nested inheritance. Proceedings of ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’04).

Odersky, Martin. 2002 (January). Inferred type instantiation for GJ. Available at http:

//lampwww.epfl.ch/∼odersky/papers/localti02.html.

Odersky, Martin, Cremet, Vincent, Röckl, Christine, & Zenger, Matthias. (2003). A nom-
inal theory of objects with dependent types. Pages 201–224 of: Cardelli, Luca (ed),
Proceedings of European Conference on Object-Oriented Programming (ECOOP’03).
Lecture Notes on Computer Science, vol. 2743. Darmstadt, Germany: Springer Verlag.

Thorup, Kresten Krab, & Torgersen, Mads. (1999). Unifying genericity: Combining the
benefits of virtual types and parameterized classes. Pages 186–204 of: Proceedings
of 13th European Conference on Object-Oriented Programming (ECOOP’99). Lecture
Notes on Computer Science, vol. 1628. Lisbon, Portugal: Springer Verlag.

Torgersen, Mads. 2004 (June). The expression problem revisited: Four new solutions using
generics. Pages 123–146 of: Proceedings of European Conference on Object-Oriented
Programming (ECOOP2004). Lecture Notes on Computer Science, vol. 3086.

Wright, Andrew K., & Felleisen, Matthias. (1994). A syntactic approach to type soundness.
Information and Computation, 115(1), 38–94.

