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Abstract

Powerful concurrency primitives in recent concurrent languages and thread libraries pro-
vide great flexibility about implementation of high-level features like concurrent objects.
However, they are so low-level that they often make it difficult to check global correctness
of programs or to perform non-trivial code optimization, such as elimination of redundant
communication. In order to overcome those problems, advanced type systems for input-
only/output-only channels and linear (use-once) channels have been recently studied, but
the type reconstruction problem for those type systems remained open, and therefore, their
applications to concurrent programming languages have been limited. In this paper, we de-
velop type reconstruction algorithms for variants of Kobayashi, Pierce, and Turner’s linear
channel type system with Pierce and Sangiorgi’s subtyping based on input-only/output-only
channel types, and prove correctness of the algorithms. To our knowledge, no complete type
reconstruction algorithm has been previously known for those type systems. We have im-
plemented one of the algorithms and incorporated it into the compiler of the concurrent
language HACL. This paper also shows some experimental results on the algorithm and its
application to compile-time optimizations.

keywords: linear type, linear channel, static analysis, concurrent language

1 Introduction

1.1 Background

Advantages and Disadvantages of Low-level Concurrency Primitives. Many recent
concurrent languages and thread libraries provide programmers with powerful but rather low-
level concurrency primitives: dynamic creation of processes and first-class communication chan-
nels. The major advantages of providing those primitives are: (1) complex communication
mechanisms can be easily implemented and modified; (2) their semantics can be obtained uni-
formly in terms of the semantics of those primitives; and (3) implementation of concurrent
languages can be substantially simplified. However, such advantages are not free: when low-
level primitives are used for implementing high-level features like concurrent objects, useful
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information about their behavior may be lost, and as a result, it is difficult to check global
correctness of programs or to perform non-trivial code optimization, such as elimination of
redundant communication.

Type Systems for Process Calculi. In order to overcome the above problems, a number
of type systems [Gay93, VH93, PS93, KPT96, Kob98, PS97] have been studied through process
calculi. Among them, Pierce and Sangiorgi’s input-only/output-only channel type system with
subtyping [PS93] and Kobayashi, Pierce, and Turner’s linear type system [KPT96] come up with
refined process equivalence theories, thus making it easier to reason about program behavior
and enabling non-trivial code optimizations.

In order to illustrate the ideas, we consider the following asynchronous process calculus:

P ::= P1 |P2 (parallel execution of P1 and P2)
| (νx)P (creates a channel x and executes P )
| x![y1, . . . , yn] (sends y1, . . . , yn along the channel x)
| x?[y1, . . . , yn].P (receives values v1, . . . , vn along x

and executes [v1/y1, . . . , vn/yn]P )
| x?∗[y1, . . . , yn].P (replication of x?[y1, . . . , yn].P )
| 0 (inaction)

For example, the process x?[z]. y![z] receives a value along the channel x and then forwards
it to the channel y. The process x?∗[z].y![z] represents an infinite number of parallel copies
of x?[z]. y![z], so that it repeatedly forwards values received along x to y. Earlier type sys-
tems [Gay93, VH93] for concurrent languages (including CML [Rep91]) were only concerned
with the types of values transmitted along channels; so both f?[x]. x![1] and f?[x]. x?[n].0 are
well typed under the type environment f : [[Int ]], where [τ ] denotes the type of channels used
for transmitting values of type τ .

The idea of the input-only/output-only channel type system is to annotate channel types
with information about operations (input and/or output) allowed for channels. Let us write
[τ ](ω, 0) for the type of channels used for receiving (input of) values of type τ , [τ ](0, ω) for the
type of channels used for sending (output of) values of type τ , and [τ ](ω, ω) for the type of
channels used for both receiving and sending values of type τ . Then, f : [[Int ](0, ω)](ω, 0) `
f?[x]. x![1] is a valid type judgment but f : [[Int ](0, ω)](ω, 0) ` f?[x]. x?[n].0 is not. Furthermore,
the distinction between input/output capabilities naturally leads to a subtyping relation: an
input-only channel type [τ ](ω, 0) is covariant in τ , while an output-only channel type [τ ](0, ω)

is contravariant in τ and an input-output channel type [τ ](ω, ω) is invariant. This refined type
system admits a coarser process equivalence: for example, if f has type [Int , [Int ](0, ω)](ω, ω),
the process (νr) (f ![n, r] | r?∗[m].r′![m]) is equivalent to the more efficient process f ![n, r′] with
respect to an appropriate typed barbed congruence [PS93, KPT96], which is not the case in the
usual untyped process equivalence [Mil93].

The linear type system further refines channel types by adding information on how often
channels can be used for input or output. Throughout the paper, a phrase like ‘a channel being
used for input or output’ means that a process tries to receive or send a value along the channel,
rather than that a process succeeds in receiving or sending a value by finding its communication
partner. For example, the type environment f : [[Int ](0, 1)](ω, 0) means that f can be used many
times for receiving a channel and the received channel can then be used for sending an integer
at most once. So, f?[x]. x![1] is well typed under that environment but f?[x]. (x![1] |x![2]) is not.
By using such type information, we can safely replace the process (νr) (f ![n, r] | r?[m]. r′![m])
with the more efficient process f ![n, r′]. As we have argued elsewhere [KNY95, KPT96], this
optimization corresponds to tail-call optimization of functions.
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The previous papers on the input/output channel type system [PS93] and the linear type
system [KPT96] have been only concerned with type checking, and therefore, their applications
to concurrent programming languages have been limited. (Pict [PT97] has an input/output
channel type system, but does not have a linear channel type system.) The major difficulty in
type reconstruction is that those type systems have no principal typing property. For example,
there are many possible typings for the process f ![1, r] | r?[ ]. r′![ ]:

f : [Int , [ ](0, 1)](0, 1), r: [ ](1, 1), r′: [ ](0, 1) ` f ![1, r] | r?[ ]. r′![ ]
f : [Int , [ ](1, 0)](0, 1), r: [ ](ω, 0), r′: [ ](0, 1) ` f ![1, r] | r?[ ]. r′![ ]

...

There is no general typing which represents all the candidates.

1.2 Our Goal and Approach

The main goal of this paper is to develop type reconstruction algorithms both for a variant of
the above linear type system [KPT96] and for its extension with subtyping, so that those type
systems can be applied to concurrent programming languages without putting an additional
burden on programmers.

Our Approach. The key idea of our reconstruction algorithm is to introduce use variables,
and constraints on them, so that partial information on channel usage can be expressed. In our
new type system, the above process is typed as follows:

f : [Int , [ ](j1, k1)](j3, k3), r : [ ](j2, k2), r′ : [ ](j4, k4); {j2 ≥ j1 + 1, k2 ≥ k1, k3 ≥ 1, k4 ≥ 1}
` f ![1, r] | r?[ ]. r′![ ]

Here, r may be used for input once by r?[ ]. r′![ ] and j1 times by a receiver of f ![1, r]; so,
the total number j2 of allowed inputs on r should be at least j1 + 1. It is expressed by the
constraint j2 ≥ j1 + 1. By instantiating use variables j1, k1, . . . , j4, k4 to elements in {0, 1, ω}
so that the constraint is satisfied, we can obtain all the possible typings. Similarly, the process
f ![r] | r?[x]. x![ ] is typed as (we allow structural subtyping here; without it, the constraint is
much simpler):

f : [[[ ](j1, k1)](j2, k2)](j3, k3), r : [[ ](j4, k4)](j5, k5);
{k3 ≥ 1, j5 ≥ j2 + 1, k5 ≥ k2, k4 ≥ 1,
j2 ≥ 1 ⇒ (j4 ≥ j1 ∧ k4 ≥ k1), k2 ≥ 1 ⇒ (j1 ≥ j4 ∧ k1 ≥ k4)}

` f ![r] | r?[x]. x![ ]

The constraint k2 ≥ 1 ⇒ (j1 ≥ j4∧k1 ≥ k4) above expresses the condition that if a receiver on f
uses r for sending a channel (i.e., if k2 ≥ 1), then the type of the sent channel should be what is
expected by a receiver on r (i.e., [ ](j1, k1) is a subtype of [ ](j4, k4)). In general, the constraint on
use variables is fairly simple, so that it can be solved by a simple method. Especially, without
structural subtyping, our type reconstruction algorithm runs in time polynomial in the size of
a process expression.

Applications. Our algorithm can fully recover type information from an unannotated pro-
gram. So, a programmer needs to put type information only in those places where he or she
wants a compiler to check channel usage. Therefore, the algorithm is applicable to ML-style,
implicitly-typed concurrent languages such as CML [Rep91] and HACL [KY95].
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In addition to the check of correct channel usage, type information recovered by our algo-
rithm (especially, information about use-once channels, which we call linear channels) is useful
for the following optimization of concurrent programs.

(1) Elimination of redundant communication and channel creation: as mentioned above, usage
information can be used for tail-call optimization of functions and methods of concurrent
objects.

(2) Reduction of the cost of communication: we can optimize run-time representation of a
linear channel and also reduce run-time check of its state (and sometimes we can allocate
it on a register).

(3) Improvement of memory utilization: the memory space for a linear channel can be re-
claimed immediately after it is used for communication.

The amount of performance improvement of course depends on how often linear channels are
used in actual concurrent programs. (Informal) profiling of programs written in CML [Rep91],
Pict [PT97], and HACL [KY95] indicates that linear channels are very frequently used: it is
because at least one of the two channels used in a typical function or method call is linear.

Contributions. The main contributions of the present work are: (1) formalization of the
type system mentioned above and a proof of the existence of principal typing, (2) development
of algorithms to infer usage information, which consists of an algorithm to compute a principal
typing and algorithms to solve the derived constraint, and (3) evaluation of performance im-
provement gained by our type system via simple benchmarks. For clarity and brevity, we use
here a pure process calculus as the target language; however, we believe that our technique is
applicable to many other concurrent languages [Rep91, YT87, Yon90, PT97, KY95]: in fact,
we have already incorporated our type reconstruction algorithm into the compiler of HACL
(which has functions, records, and a polymorphic type system) and given a formal proof of the
correctness of our analysis for HACL (please refer to Igarashi’s master thesis [Iga97]).

1.3 Structure of the Paper

The rest of this paper is organized as follows. Section 2 introduces a basic linear channel type
system with subtyping, and Section 3 shows its correctness. Section 4 and Section 5 are the main
part of this paper: in Section 4, we first modify the basic type system by introducing use and
type variables and subtyping constraints. The refined type system is shown to have a principal
typing property, and an algorithm to compute a principal typing is presented. In Section 5,
we show how to reduce the subtyping constraint in the principal typing to a constraint on use
variables and solve them. Section 6 reports experimental results of applying our analysis to
compile-time optimizations of concurrent programs. After discussing related work in Section 7,
we conclude in Section 8.

2 Linear Pi-Calculus with Subtyping

In this section, we introduce the syntax and type system of a process calculus with linear
channels, for which we will present a type reconstruction algorithm later in Section 4 and 5.
The calculus can be considered an asynchronous fragment of the polyadic π-calculus [Mil93],
and it is close to the core languages of HACL [KY95] and Pict [PT97]. It is similar to the
original linear π-calculus [KPT96], except that it allows subtyping as in [PS93] (but recursive
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types are not treated here) and that unlimited channels (channels that can be used many times)
can be coerced into linear channels.

2.1 Types with Uses

As sketched in Section 1, each instance of the channel type constructor is annotated with usage
information, called uses given below.

2.1.1 Definition: A use is 0, 1, or ω.

The use 0 means that channels can never be used, 1 means that channels can be used at
most once, and ω means that channels can be used an arbitrary number of times. We use
metavariables κ, κ1, κ2, . . . for uses.

The syntax of types is defined as follows.

2.1.2 Definition: The set of bare types, ranged over by ρ, and the set of types, ranged over by
τ , are given by the following syntax:

ρ ::= [τ1, . . . , τn]
τ ::= ρ(κ1, κ2)

A bare type [τ1, . . . , τn] (n may be 0), often abbreviated to [τ̃ ], denotes the type of channels
via which a tuple of values of types τ1, . . . , τn is transmitted. The superscripted use κ1 (κ2,
resp.), often called input use (output use, resp.), denotes how often the channel is used for input
(output, resp.).

2.1.3 Example: A channel type [τ ](0, 1) denotes the type of channels used for sending a value
of type τ at most once and not used for receiving at all.

We introduce a countably infinite set of variables, ranged over by metavariables x, y, z, . . .
to define type environments.

2.1.4 Definition: A type environment Γ is a mapping from a finite set of variables to the set
of types.

We write dom(Γ) for the domain of Γ. We write x1: τ1, . . . , xn: τn, abbreviated to x̃: τ̃ , for
the type environment Γ such that dom(Γ) = {x1, . . . , xn} and Γ(xi) = τi for each i ∈ {1, . . . , n}.
When x 6∈ dom(Γ), we write Γ, x: τ for the type environment Γ′ such that dom(Γ′) = dom(Γ) ∪
{x}, Γ′(x) = τ and Γ′(y) = Γ(y) if x 6= y.

Several operations on uses, types, and type environments are defined below.

2.1.5 Definition: The binary relation ≥ between uses is the total order defined by ω ≥ 1 ≥ 0.

2.1.6 Definition: The summation of two uses, written κ1 + κ2, is the commutative and asso-
ciative operation that satisfies 0+0 = 0, 1+0 = 1, and 1+1 = ω +0 = ω +1 = ω +ω = ω. The
summation of two types, written τ1 + τ2, is defined only when their bare types are identical:
ρ(κ1, κ2) + ρ(κ3, κ4) = ρ(κ1+κ3, κ2+κ4).

2.1.7 Example: [[ ](0, 1)](1, 0) + [[ ](0, 1)](1, ω) = [[ ](0, 1)](ω, ω).

The operation ‘+’ on types is pointwise extended to type environments.

5



2.1.8 Definition: The summation Γ1 + Γ2 of two type environments is defined as follows:

dom(Γ1 + Γ2) = dom(Γ1) ∪ dom(Γ2)

(Γ1 + Γ2)(x) =




Γ1(x) + Γ2(x) if x ∈ dom(Γ1) ∩ dom(Γ2)
Γ1(x) if x ∈ dom(Γ1) \ dom(Γ2)
Γ2(x) if x ∈ dom(Γ2) \ dom(Γ1)

2.1.9 Example: (x: [ ](0, 1), y: [ ](1, 1)) + (x: [ ](1, 1), y: [ ](0, 0)) = x: [ ](1, ω), y: [ ](1, 1)

2.1.10 Definition: The product of two uses, written κ1 ·κ2, is the commutative and associative
operation that satisfies 0 · 0 = 0 · 1 = 0 · ω = 0, 1 · 1 = 1, and 1 · ω = ω · ω = ω. The product is
extended to an operation on uses and types by κ · ρ(κ1, κ2) = ρ(κ·κ1, κ·κ2). It is further extended
to an operation on uses and type environments by κ ·(x1: τ1, . . . , xn: τn) = x1:κ ·τ1, . . . , xn:κ ·τn.

2.1.11 Example: ω · [[ ](0, 1)](0, 1) = [[ ](0, 1)](0, ω).

2.1.12 Example: ω · (x: [ ](0, 1), y: [[ ](1, 1)](1, 1)) = x: [ ](0, ω), y: [[ ](1, 1)](ω, ω).

2.1.13 Example: 0 · (x: [[ ](1, ω)](ω, 1)) = x: [[ ](1, ω)](0, 0).

2.2 Process Expressions

The syntax of process expressions differs slightly from the one used in Section 1: we introduce
new syntax for choice and process definitions (def x[y1, . . . , yn]: τ = P1 in P2 end, which corre-
sponds to (νx: τ) (x?∗[y1, . . . , yn].P1 |P2)), and attach type annotations (which will be recovered
by our type reconstruction algorithm) to variables in ν-prefix and process definitions.

2.2.1 Definition: The set of process expressions, ranged over by P and Q, is defined by:

P ::= P1 |P2 (parallel composition)
| (νx: τ)P (channel creation)
| x![y1, . . . , yn] (output atom)
| x1?[y1, . . . , yn1].P1 + · · ·

· · · + xm?[y1, . . . , ynm ].Pm (guarded choice of input prefixes)
| def x[y1, . . . , yn]: ρ(ω, κ) = P1 in P2 end (local process definition)

The bound variables of a process expression are defined in a customary fashion, i.e., (1) a
variable x is bound in P of (νx: τ)P and in both P1 and P2 of def x[y1, . . . , yn]: τ = P1 in P2

end and, (2) variables y1, . . . , yn are bound in P of x?[y1, . . . , yn].P and def x[y1, . . . , yn]: τ = P
in P2 end. A variable that is not bound will be called a free variable. We define α-conversions
of bound variables in a customary manner and assume that implicit α-conversions make all
the bound variables in a process expression different from the other bound variables and free
variables.

2.2.2 Notation: A sequence of variables y1, . . . , yn (n may be 0) is often written as ỹ. We
write [y1/x1, . . . , yn/xn]P , abbreviated to [ỹ/x̃]P , for a process expression obtained from P by
replacing the free variables x1, . . . , xn with y1, . . . , yn. We often write 0 for (νx: [ ](0, 1))x![ ]. We
give (νx: τ) and x?[ỹ]. a higher precedence than | ; for example, x?[z].y![z] | (νw: τ)P1 |P2 means
(x?[z].y![z]) | ((νw: τ)P1) |P2. We omit type annotations when they are not important.
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The intuitive meanings of the expressions which were not introduced in Section 1 are as
follows. A guarded choice of input prefixes x1?[y1, . . . , yn1].P1 + · · ·+xm?[y1, . . . , ynm ].Pm waits
for a value to arrive on one of the channels x1, . . . , xm: when it receives z1, . . . , zni from the
channel xi, it behaves like [z1/y1, . . . , zni/yni ]Pi. The local process definition def x[ỹ]: ρ(ω, κ) =
P1 in P2 end first creates a fresh channel x and spawns a process that repeatedly receives values
z̃ from the channel x and spawns [z̃/ỹ]P1; it then executes the process P2. Thus, x[ỹ] = P1 can
be regarded as a process definition in the sense that x![z̃] is always reduced to [z̃/ỹ]P1. The
output use κ represents how often x can be used for output, i.e., how often the process definition
can be expanded. Since a process definition is used exactly κ times, we do not have to count
the input and output uses separately. Therefore, the input use is set to ω just for technical
convenience for presenting a type reconstruction algorithm.

We give several examples of process expressions. (A formal definition of the reduction
relation is given in Section 3.)

2.2.3 Example: A process x![ ] | y![ ] | (x?[ ]. P1 + y?[ ]. P2) is reduced either to y![ ] |P1 by com-
munication on x, or to x![ ] |P2 by communication on y.

2.2.4 Example: A process def x[y]: [[ ](0, 1)](ω, ω) = y![ ] in x![z] |x![w] end is reduced to
def x[y]: [[ ](0, 1)](ω, ω) = y![ ] in z![ ] |w![ ] end.

2.2.5 Example: Let P be a process

def fact [n, r] =
if n = 0 then r![1] else (νr′)(fact ![n − 1, r′] | r′?[k]. r![k × n])

in fact ![2, x] end.

It computes the factorial of 2 and outputs the result to x. (For simplicity, we assume that we
have integers, booleans and several primitives such as ×,=, and if.) P is reduced as follows:

P → def fact [n, r] = · · · in (νr′)(fact ![1, r′] | r′?[k]. x![k × 2]) end

→ (νr′)def fact [n, r] = · · · in (νr′′)(fact ![0, r′′] | r′′?[k′]. r′![k′ × 1] | r′?[k]. x![k × 2]) end

→ (νr′)(νr′′)def fact [n, r] = · · · inr′′![1] | r′′?[k′]. r′![k′ × 1] | r′?[k]. x![k × 2] end

→ (νr′)(νr′′)def fact [n, r] = · · · in r′![1] | r′?[k]. x![k × 2] end

→ (νr′)(νr′′)def fact [n, r] = · · · in x![2] end

2.3 Typing

A type judgment is of the form Γ ` P , read as “P is well-typed under the type environment Γ.”
It means not only that P is well-typed in the ordinary sense, but also that each channel in P is
used according to the uses of its type in Γ or P ; for example, the type judgment Γ, x: [τ ](1, 0) ` P
means that P uses x for receiving a value of the type τ at most once, and it never uses x for
sending a value. The rules for deriving a type judgment are given below.

Since type environments are concerned with uses of variables, we need to take special care
in merging type environments. For example, if Γ1, x: [τ ](0, 1) ` P1 and Γ2, x: [τ ](1, 0) ` P2, then
x is totally used for output once and for input once in P1 |P2. Therefore, the total use of a
variable in P1 |P2 should be obtained by adding the uses in two type environments. Thus, the
rule for parallel composition is:

Γ1 ` P1 Γ2 ` P2

Γ1 + Γ2 ` P1 |P2
(T-Par)
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On the other hand, in a choice P1 + · · ·+ Pn (where each Pi is an input prefix), only one of
P1, . . . , Pn is executed. So, each expression should be typed under the same type environment.
Thus, the rule for choice is:

Γ ` P1 · · · Γ ` Pn

Γ ` P1 + · · · + Pn
(T-Choice)

The rule for an output atom is given as follows.

x: [τ1, . . . , τn](0, 1) + y1: τ1 + · · · + yn: τn ` x![ỹ] (T-Out)

Here, x: [τ1, . . . , τn](0, 1) expresses the fact that x must be a channel that can be used at least
for output, and y1: τ1 + · · · + yn: τn takes into account the usage of y1, . . . , yn by a receiver.

Similarly, the rule for an input prefix is given as follows.

Γ, ỹ: τ̃ ` P

Γ + x: [τ̃ ](1, 0) ` x?[ỹ].P
(T-In)

The typing rule for a local process definition is:

Γ1, x: [τ1, . . . , τn](0, κ1), y1: τ1, . . . , yn: τn ` P1

Γ2, x: [τ1, . . . , τn](0, κ2) ` P2

(κ2 · (κ1 + 1) · Γ1) + Γ2 ` def x[y1, . . . , yn]: [τ1, . . . , τn](ω, κ2·(κ1+1)) = P1 in P2 end
(T-Def)

Note that unlike the case for an input prefix, P1 of def x[ỹ] = P1 in P2 end may be executed
more than once: since the first premise Γ1, x: [τ1, . . . , τn](0, κ1), y1: τ1, . . . , yn: τn ` P1 means that
type environment Γ1 is necessary for one copy of P1, Γ1 should be multiplied by an upper bound
κ2·(κ1+1) of the number of spawned P1s. The reason why the upper bound is given as κ2·(κ1+1)
is as follows. The first premise of the rule indicates that x may be used at most κ1 times for
output in the process P1. Therefore, each time x is used for output in P2, P1 is invoked and x
may be used κ1 times for output; moreover, each use of x in P1 again spawns P1 and causes x to
be used κ1 times; thus, each use of x for output in P2 may cause P1 to be spawned 1+κ1+κ2

1+· · ·
times. Since the second premise of the rule indicates that x may be used at most κ2 times for
output in P2, the total number of spawned P1s is bound by κ2 · (1+κ1 +κ2

1 + · · ·) = κ2 · (1+κ1).
For example, in the expression def x[ ] = (x![ ] |x![ ]) in x![ ] end, x![ ] produces two more copies
of x![ ], each of which again produces two copies; thus, the total number of messages sent to x
is 1 + 2 + 22 + · · · = ω.

The rule for channel creation moves the corresponding binding from the type environment
to the ν-prefix.

Γ, x: τ ` P

Γ ` (νx: τ)P
(T-New)

The last two rules T-Sub and T-Weak below are standard rules for subsumption and
weakening. � denotes a subtyping relation introduced in the next subsection.

Γ, x: τ ′ ` P τ � τ ′

Γ, x: τ ` P
(T-Sub)

Γ ` P

Γ, x: τ ` P
(T-Weak)
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2.4 Subtyping Relation

A channel of some type may be used as that of another type. For example, since a channel of type
[τ ](ω, ω) can be used an arbitrary number of times for both input and output, it may be used as
a channel of type [τ ](κ1, κ2) for any κ1 and κ2. In order to formalize such a type coercion, we give
two kinds of subtyping relations: a non-structural subtyping relation �NonStr and a structural
subtyping relation �Str. The former relation allows only the outermost uses to be changed:
for example, [τ ](0, ω) �NonStr [τ ′](0, 1) holds only if τ = τ ′. (Thus, the resulting type system is
the same as the one presented in [IK97].) The latter relation, based on input-only/output-only
channel types [PS93], allows more general type coercion: for example, [τ ](0, ω) �Str [τ ′](0, 1)

holds if τ ′ � τ (since a value of type τ ′ can be coerced into that of type τ , it is safe to send
a value of type τ ′ along a channel on which a value of type τ is expected). While the former
relation enables a faster analysis of how often channels are used, the latter relation enables a
more precise analysis (see Examples 2.4.6 and 2.4.7 given later).

2.4.1 Definition: The binary relation �NonStr on types is defined by: ρ
(κ11, κ12)
1 �NonStr ρ

(κ21, κ22)
2

iff ρ1 = ρ2 and κ11 ≥ κ21 and κ12 ≥ κ22.

2.4.2 Example: [[ ](0, 1)](ω, ω) �NonStr [[ ](0, 1)](1, 1).

2.4.3 Definition: The binary relation �Str between types is defined as the least relation closed
under the following rule:1

Match(τi, τ
′
i) for i ∈ {1, . . . , n}

κ1 ≥ κ′
1 κ2 ≥ κ′

2

κ′
1 ≥ 1 ⇒ (τ1 �Str τ ′

1 ∧ · · · ∧ τn �Str τ ′
n) κ′

2 ≥ 1 ⇒ (τ ′
1 �Str τ1 ∧ · · · ∧ τ ′

n �Str τn)

[τ1, . . . , τn](κ1, κ2) �Str [τ ′
1, . . . , τ

′
n](κ

′
1, κ′

2)

(S-Chan2)

where the relation Match(τ1, τ2) between types is defined by

Match([τ1, . . . , τn](κ11, κ12), [τ ′
1, . . . , τ

′
m](κ21, κ22)) iff n = m and Match(τi, τ

′
i) for i ∈

{1, . . . , n}.

2.4.4 Example: [[ ](0, 1)](1, 1) �Str [[ ](0, ω)](0, 1).

By definition, �Str and �NonStr are partial orders.
With respect to �Str, an output-only channel type [τ̃ ](0, κ) is contravariant in the argument

types τ1, . . . , τn, an input-only channel type is covariant, and an input-output channel type is
invariant. It means that a sender can put a value of any subtype of τ into a channel of bare
type [τ ], while a receiver can use a value extracted from x as a value of any supertype τ ′. A
type of the form [τ̃ ](0, 0) is a supertype of any type τ ′ as far as [τ̃ ](0, 0) and τ ′ have the same
shape (i.e., if they differ only in uses), because a value of type [τ̃ ](0, 0) cannot be used at all.

When we write Γ ` P below, we always assume that it has been derived by using either
�NonStr or �Str for � in T-Sub. When we want to make it explicit, we write Γ `NonStr P if
�NonStr is used, and write Γ `Str P if �Str is used.

In the rest of this section, we give several examples of typing of processes.
1The first premise Match(τi, τ

′
i) could be removed for a sound type system. We include it just in order to

simplify discussions on type reconstruction.
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2.4.5 Example: x: [[ ](0, 1)](0, 1) ` (νy: [ ](1, 1))(x![y] | y?[ ].0) holds, but x: [[ ](1, 0)](0, 1) `
(νy: [ ](1, 1))(x![y] | y?[ ].0) does not.

As is shown by the following examples, the relation �Str gives a more accurate judgment about
the usage of channels (but instead, type reconstruction is more complicated).

2.4.6 Example: Let P be a process x?[z]. z![ ] | y?[z]. z?[ ].0 |x![w]. Then, P uses w only for
output: indeed, P is typed as

x: [[ ](0, ω)](ω, ω), y: [[ ](ω, 0)](ω, 0), w: [ ](0, ω) ` P

by using either subtyping relation. Suppose P is executed in parallel to Q = u![x] |u![y]. Unless
a receiver on u uses x for input, w is still used only for output: in fact, P |Q is typed as

x: [[ ](0, ω)](ω, ω), y: [[ ](ω, 0)](ω, ω), w: [ ](0, ω), u: [[[ ](ω, ω)](0, ω)](0, ω) `Str P |Q
since [[ ](0, ω)](ω, ω) �Str [[ ](ω, ω)](0, ω) and [[ ](ω, 0)](ω, ω) �Str [[ ](ω, ω)](0, ω). However, the same
judgment cannot be derived by using �NonStr: we must weaken the type environment to

x: [[ ](ω, ω)](ω, ω), y: [[ ](ω, ω)](ω, ω), w: [ ](ω, ω), u: [[[ ](ω, ω)](0, ω)](0, ω),

where information of w being used only for output is lost.

2.4.7 Example: Let P be a process x![z] | z?[ ].0 |x?[y]. y![ ]. Since z is used both for input
and for output only once, (νz)P is typed as

x: [[ ](0, 1)](ω, ω) ` (νz: [ ](1, 1))P

by using either subtyping relation. Let Q = u![x] |u![v] | v?[w]. (w![ ] |w![ ]). If a receiver on u
uses x only for output, z is still used for input and for output once in (νz)P |Q. In fact,

x: [[ ](0, 1)](ω, ω), v: [[ ](0, ω)](ω, ω), u: [[[ ](0, ω)](0, ω)](0, ω) `Str (νz: [ ](1, 1))P |Q
since [[ ](0, 1)](ω, ω) �Str [[ ](0, ω)](0, ω), but it cannot by using �NonStr: we must weaken the type
of x to [[ ](0, ω)](ω, ω) and attach [ ](1, ω) to (νz). Thus, information of z being used only once is
lost.

3 Correctness of the Type System

We prove soundness of the type system presented in the previous section with respect to oper-
ational semantics. By soundness, we mean that the type system correctly estimates how often
each channel is used: for example, it must be guaranteed that if Γ, x: [τ̃ ](0, 1) ` P , then x can be
used only for output and at most once during evaluation of P . We first define the operational
semantics of the linear π-calculus (in Subsection 3.1), and then show the correctness of the type
system with respect to this reduction semantics (in Subsection 3.2), following the corresponding
proof for the original linear π-calculus [KPT96].

3.1 Reduction Semantics of Linear Pi-Calculus

Following the standard presentation for process calculi [Mil93], the reduction semantics for
process expressions is defined via two relations: a structural congruence P1

∼= P2 and a reduction
relation.
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3.1.1 Definition: Let FV (y[z̃] = P ) be FV (P ) ∪ {y} \ {z̃} where FV (P ) is the set of free
variables in P . Structural congruence P1

∼= P2 is the least congruence on process expressions
closed under the following rules.

P1 |P2
∼= P2 |P1

(P1 |P2) |P3
∼= P1 | (P2 |P3)

(νx)(P1 |P2) ∼= P1 | (νx)P2 (if x 6∈ FV (P1))
def x[ỹ] = P1 in P2 |P3 end ∼= P2 |def x[ỹ] = P1 in P3 end (if x 6∈ FV (P2))
(νx)def y[z̃] = P1 in P2 end ∼= def y[z̃] = P1 in (νx)P2 end (if x 6∈ FV (y[z̃] = P1))

3.1.2 Example: u![ ] |def y[z] = z![ ] in (νx)x![w] end ∼= (νx)def y[z] = z![ ] in u![ ] |x![w] end.

Next, we shall define the reduction relation. Usually, the reduction relation is written as
P → P ′, which means “P is reduced to P ′ in one step.” In this paper, this relation is annotated
with a label l, and written as P

l−−→ P ′. The label l is a special symbol ε, a variable, or of
the form x[ỹ] = Q: P

ε−−→ P ′ means that P is reduced by communication on a bound channel,

P
x−−→ P ′ means that P is reduced by communication on a free channel x, and P

x[ỹ]=Q−−−−−−→ P ′

means P is reduced to P ′ by replacing a single occurrence of x![z̃] with [z̃/ỹ]Q. Note that
on well-typed processes, our reduction relation coincides with the usual (untyped) reduction
relation [Mil93].

3.1.3 Definition: The relation P
l−−→ P ′ is the least relation closed under the following rules:

(· · · + x?[y1, . . . , yn]. P + · · ·) |x![z1, . . . , zn] x−−→ [z1/y1, . . . , zn/yn]P (R-Comm)

x![z1, . . . , zn]
x[y1,..., yn]=P−−−−−−−−−−−→ [z1/y1, . . . , zn/yn]P (R-Call)

P1
∼= P2 P1

l−−→ P ′
1 P ′

1
∼= P ′

2

P2
l−−→ P ′

2

(R-Cong)

P1
l−−→ P ′

1

P1 |P2
l−−→ P ′

1 |P2

(R-Par)

P
x−−→ P ′

(νx: ρ(κ1, κ2))P ε−−→ (νx: ρ(κ−
1 , κ−

2 ))P ′
(R-New1)

P
l−−→ P ′ x 6∈ FV (l)

(νx: ρ(κ1, κ2))P l−−→ (νx: ρ(κ1, κ2))P ′
(R-New2)

P2
x[ỹ]=P1−−−−−−−→ P ′

2

def x[ỹ]: ρ(ω, κ) = P1 in P2 end ε−−→ def x[ỹ]: ρ(ω, κ−) = P1 in P ′
2 end

(R-Def1)

P2
l−−→ P ′

2 x 6∈ FV (l)

def x[ỹ]: ρ(ω, κ) = P1 in P2 end l−−→ def x[ỹ]: ρ(ω, κ) = P1 in P ′
2 end

(R-Def2)

where FV (ε) = ∅ and κ− is defined by: 1− = 0 and ω− = ω (0− is undefined).
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The main difference from the ordinary reduction semantics lies in rules R-New1 and R-
Def1, in which the used capabilities for communication are removed from the binding on the
channel. For example, (νx: [ ](1, 1)) (x![ ] |x?[ ]. P ) is reduced to (νx: [ ](0, 0))P by communication
on x, thus P can no longer use the channel x.

3.1.4 Example: The process expression def x[w]: [τ ](ω, 1) = v![w] in y![u] | y?[z].x![z] end is
reduced by communication on the free channel y:

def x[w]: [τ ](ω, 1) = v![w] in y![u] | y?[z].x![z] end
y−→ def x[w]: [τ ](ω, 1) = v![w] in x![u] end

It is further reduced by communication on the channel x:

def x[w]: [τ ](ω, 1) = v![w] in x![u] end ε−→ def x[w]: [τ ](ω, 0) = v![w] in v![u] end

which is derived by applying rule R-Def1 to

x![u]
x[w]=v![w]−−−−−−−−→ v![u].

3.2 Correctness about Uses of Channels

As in [KPT96], correctness of the type system is shown by the subject reduction theorem
(Theorem 3.2.1), which implies that well-typedness of a process is preserved during reduction,
together with Theorem 3.2.2, which implies the lack of immediate misuse of channels by any
well-typed process expressions. They are valid for both subtyping relations: �NonStr and �Str.

The subject reduction theorem is stated below. Note that if the reduction comes from
communication on a free channel (the second case below), the reduced process should be well
typed under the type environment obtained by removing the consumed capabilities.

3.2.1 Theorem [Subject Reduction]:

1. If Γ ` P and P
ε−−→ P ′, then Γ ` P ′.

2. If Γ, x: ρ(κ1, κ2) ` P and P
x−−→ P ′, then Γ, x: ρ(κ−

1 , κ−
2 ) ` P ′.

Proof: See Appendix A. 2

By the lack of immediate misuse of channels, we mean, for example, that there is no case
where z: [ ](0, 1) ` P but P ∼= z![ ] | z![ ] (i.e., although the type system judges that z is a channel
used at most once, two messages are currently sent to z). It is stated as follows.

3.2.2 Theorem [Run-time Safety]: Suppose Γ ` P and P ∼= (νw1: τ1) · · · (νwn: τn) def
y1[z̃1]: τ = P ′

1 in def . . . in P1{| P2} end . . . end (where {| P} stands for either noth-
ing or a parallel composition with P .)

1. If P1 is x![y1, . . . , yn] | (· · · + x?[z1, . . . , zm].P ′ + · · ·), then n = m and for the use pair
(κ1, κ2) of the binding of x in either Γ or ν-prefix, κ1 ≥ 1 and κ2 ≥ 1. Furthermore, x is
not bound by def.

2. If P1 is x![y1, . . . , yn], then the output use of the binding of x (in either Γ, ν or def) is
greater than 0. Moreover, if x is bound by def x[z1, . . . , zm] = P ′ in . . . end, then n = m.

3. If P1 is (· · · + x?[ỹ].P ′ + · · ·), then the input use of the binding of x is greater than 0.
Furthermore, x is not bound by def.
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4. If P1 is x![ỹ] |x![z̃], then the output use of the binding of x is ω.

5. If P1 is (· · · + x?[ỹ].P ′ + · · ·) | (· · · + x?[z̃].P ′′ + · · ·), then the input use of the binding of
x is ω.

Proof: Trivial from the typing rules and the fact that ρ
(κ11,κ12)
1 � ρ

(κ21,κ22)
2 implies κ11 ≥ κ21

and κ12 ≥ κ22. 2

4 Type Reconstruction

We now focus on the main goal of this paper: type reconstruction. It consists of two phases:
in the first phase, constraints on types and uses are extracted from a given process expression,
and in the second phase, the constraints are solved. This section discusses the first phase. The
second phase is deferred until Section 5.

The typing rules presented in Section 2 are not suitable for type reconstruction. For example,
consider how to infer a typing for the process expression x![z] | y![z]. Rule T-Par tells us to
first compute the most general typings for x![z] and y![z], and then add the obtained type
environments. However, since we do not know how z will be used by receivers on x and y, the
reconstruction step stops there.

In order to avoid it, we introduce type variables and use variables to represent undetermined
types and uses, and keep information on such variables as a subtyping constraint. Thus, the
most general typing for a process is represented as a pair consisting of a type environment
and a subtyping constraint. For example, the most general typings for x![z] and y![z] can be
represented in the forms: ((x: τx, z:α(j1, j2)), C1) and ((y: τy, z:α(k1, k2)), C2) where α is a type
variable, j1, j2, k1, and k2 are use variables, and C1 and C2 are subtyping constraints. From these
typings, the typing for x![z] | y![z] is obtained as a pair ((x: τx, y: τy, z:β(l1, l2)), C1∪C2∪{β(l1, l2) �
α(j1+k1, j2+k2)}). This reconstruction step is expressed by the rule:

Γ1;C1 ` P1 Γ2;C2 ` P2 C |= Γ � Γ1 + Γ2 C |= C1 ∪ C2

Γ;C ` P1 |P2
(ST-Par)

where C |= Γ � Γ1 + Γ2 means that for each variable x bound in Γ1 + Γ2, Γ(x) is a subtype of
(Γ1 + Γ2)(x) under the assumption C, and C |= C1 ∪ C2 means that C is a stronger constraint
than C1 ∪ C2. (The formal definition of |= is found in Definition 4.1.4.) The intended meaning
of the new type judgment Γ;C ` P is that SΓ ` SP holds for any substitution S of types/uses
for type/use variables if S satisfies subtyping relations in C. With these modifications, we can
obtain, given a process expression P , the most general pair (Γ, C) such that Γ;C ` P .

The modified type system and the definition of principal typings are given in Subsection 4.1.
Then, we describe an algorithm to compute principal typings in Subsection 4.2. Discussions
in the rest of this section are independent of whether we use �Str or �NonStr for a subtyping
relation �.

4.1 Type System for Reconstruction and Principal Typing

As mentioned above, we introduce a countably infinite set of use variables (ranged over by
j, k, . . .), and replace a use with a use expression.

4.1.1 Definition: The set of use expressions is given by the following syntax.

κ ::= 0 | 1 | ω | j | κ1 + κ2 | κ1 · κ2
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We often call a use expression just a use, and call 0, 1, or ω a use constant. We do not
distinguish between an expression without use variables and its corresponding use constant. For
example, we identify 1 + 0 with 1. A countably infinite set of type variables (ranged over by
α, β, . . .) is added to the set of bare types. The operations + and · on types are extended in
an obvious way. A substitution, ranged over by S, is a finite mapping from type variables to
bare types and from use variables to uses. We write [ρ1/α1, . . . , ρn/αn, κ1/j1, . . . , κm/jm] for a
substitution which maps each αi to ρi and each ji to κi. We write S1S2 for the composition of
S1 and S2. We say S is ground if S maps use variables to use constants and type variables to
bare types without type variables.

Then, we define a subtyping constraint and several related notions.

4.1.2 Definition: A subtyping constraint C is a set of expressions of the form τ1 � τ2.

We often call an element in C a constraint expression.

4.1.3 Definition: A ground substitution S is a solution of C if and only if Sτ1 � Sτ2 holds
for every expression τ1 � τ2 in C.

4.1.4 Definition: C1 |= C2 if and only if every solution of C1 is also a solution of C2.

By its definition, |= is a preorder (on subtyping constraints) closed under substitutions. When
dom(Γ1) ⊇ dom(Γ2), we write Γ1 � Γ2 for the subtyping constraint {Γ1(x) � Γ2(x) | x ∈
dom(Γ2)}.
4.1.5 Example: {α(j1, j2) � β(k1, k2), β(k1, k2) � γ(l1+1, l2)} |= {α(j1, j2) � γ(1, 0)}.

The new typing rules for reconstruction are shown in Figure 1. Rules T-Sub and T-Weak
are combined with the other rules, so that the new rules are syntax-directed.

4.1.6 Example: x:α(j, k), y:β(l, m); {α(j, k) � [β(l, m)](0, 1)} ` x![y] is derivable in the new type
system.

To avoid confusion, we often write Γ `T R P for the type judgment derived from the previous
typing rules and Γ;C `ST R P for the one from the new typing rules.

The new type system is essentially equivalent to the previous one in the following sense.

4.1.7 Theorem [Equivalence of the Two Type Systems]:

1. Suppose Γ;C `ST R P . If S is a solution of C and its domain includes all type/use
variables in Γ and P , then SΓ `T R SP .

2. If Γ `T R P , then Γ; ∅ `ST R P , where ∅ is the empty subtyping constraint.

Proof: The first part is proved by straightforward induction on the derivation of Γ;C `ST R P
because each syntax-directed rule corresponds to a combination of the old rules. The second
part follows from the fact that the derivation of Γ; ∅ `ST R P can be constructed by combining
derivation steps which use rule T-Weak or T-Sub with the other derivation steps. 2

A principal typing of a process expression P is the most general pair (Γ, C) such that
Γ;C `ST R P . Its formal definition is given as follows.

4.1.8 Definition: (Γ, C) is a principal typing of P if and only if the following two conditions
are satisfied: (1) Γ;C `ST R P , and (2) if Γ′;C ′ `ST R S′P for some S′, Γ′ and C ′, then there
exists a substitution S such that C ′ |= SC and Γ′ ⊇ SΓ where S′P = SP .
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Γ1;C1 ` P1 Γ2;C2 ` P2 C |= Γ � Γ1 + Γ2 C |= C1 ∪ C2

Γ;C ` P1 |P2
(ST-Par)

Γ1;C1 ` P1 · · · Γn;Cn ` Pn

C |= ⋃
i(Γ � Γi) C |= C1 ∪ · · · ∪ Cn

Γ;C ` P1 + · · · + Pn
(ST-Choice)

C |= Γ � (x: [τ1, . . . , τn](0, 1) + y1: τ1 + · · · + yn: τn)
Γ;C ` x![y1, . . . , yn]

(ST-Out)

Γ, ỹ: τ̃ ;C ` P C ′ |= C C ′ |= Γ′ � (Γ + x: [τ̃ ](1, 0))
Γ′;C ′ ` x?[ỹ].P

(ST-In)

Γ1, x: τx1, y1: τ1, . . . , yn: τn;C1 ` P1 Γ2, x: τx2;C2 ` P2

C |= C1 ∪ C2 ∪



[τ1, . . . , τn](0, κ1) � τx1,

[τ1, . . . , τn](0, κ2) � τx2,

τ � [τ1, . . . , τn](ω, κ2·(κ1+1))




C |= Γ � ((κ2 · (κ1 + 1) · Γ1) + Γ2)
Γ;C ` def x[y1, . . . , yn]: τ = P1 in P2 end

(ST-Def)

Γ, x: τ ′;C ` P C |= τ � τ ′

Γ;C ` (νx: τ)P
(ST-New)

Figure 1: Syntax-directed Typing Rules
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4.1.9 Example: Let P = f ![r] | r?[ ]. s![ ]. A principal typing of P is (Γ, C) where:

Γ = f :α(jf , kf )
f , r:α(jr , kr)

r , s:α(js, ks)
s

C =




α
(jf , kf )
f � [β(jr1, kr1)

r ](0, 1),

α
(jr , kr)
r � β

(jr1+jr2, kr1+kr2)
r ,

β
(jr2, kr2)
r � [ ](1, 0),

α
(js, ks)
s � [ ](0, 1)




Since the channels f and s are used for output, C must contain α
(jf , kf )
f � [β(jr1, kr1)

r ](0, 1)

and α
(js, ks)
s � [ ](0, 1). Similarly, since the channel r is used for input, C must also contain

β
(jr2, kr2)
r � [ ](1, 0). Moreover, because r is also sent to f as a value of type β

(jr1, kr1)
r , the type

of r in Γ must be a subtype of the summation of β
(j1, k1)
r and β

(j2, k2)
r : it is expressed by the

constraint α
(jr , kr)
r � β

(jr1+jr2, kr1+kr2)
r .

4.2 Type Reconstruction Algorithm PTU

A type reconstruction algorithm is obtained by reading the new rules in a bottom-up manner.
Before describing our algorithm, we introduce several auxiliary functions

⊕
,
⊔

, and
⊙

used in
the algorithm. Γ1

⊕
Γ2 computes the most general pair (Γ, C) such that C |= Γ � Γ1 +Γ2. The

functions
⊔

and
⊙

are used for solving C |= ⋃
i(Γ � Γi) and C |= Γ � κ · Γ′, respectively.

4.2.1 Definition: Γ1
⊕

Γ2 is defined as the following procedure:

Γ1
⊕

Γ2 =
let

Γ′
1 and Γ′

2 be type environments such that
dom(Γ′

1) = dom(Γ′
2) = dom(Γ1) ∩ dom(Γ2),

Γ′
1(x) = α

(jx1, kx1)
x , and Γ′

2(x) = α
(jx2, kx2)
x

where αx, jx1, jx2, kx1 and kx2 are fresh for each x
Ci = {Γ′

i(x) � Γi(x) | x ∈ dom(Γ′
i)} for i = 1, 2

Γ be a type environment such that
dom(Γ) = dom(Γ1) ∪ dom(Γ2) and Γ(x) = β

(jx, kx)
x

where βx, jx, and kx are fresh
C = C1 ∪ C2 ∪ {Γ(x) � Γ′

1(x) + Γ′
2(x) | x ∈ dom(Γ1) ∩ dom(Γ2)}

∪ {Γ(x) � Γ1(x) | x ∈ dom(Γ1) \ dom(Γ2)}
∪ {Γ(x) � Γ2(x) | x ∈ dom(Γ2) \ dom(Γ1)}

in (Γ, C)

4.2.2 Definition: Γ1
⊔

Γ2 is defined as the following procedure:

Γ1
⊔

Γ2 =
let

Γ be a type environment such that
dom(Γ) = dom(Γ1) ∪ dom(Γ2),
Γ(x) = α

(jx, kx)
x where αx, jx and kx are fresh for each x

C = {Γ(x) � Γ1(x) | x ∈ dom(Γ1)} ∪ {Γ(x) � Γ2(x) | x ∈ dom(Γ2)}
in (Γ, C)

16



Γ1
⊕ · · ·⊕ Γn (n ≥ 3) is defined by (Γ, C ′ ∪ C) where (Γ, C) = Γ′ ⊕ Γn and (Γ′, C ′) =

Γ1
⊕ · · ·⊕ Γn−1. We define Γ1

⊔ · · ·⊔ Γn similarly.

4.2.3 Definition: κ
⊙

Γ is defined as the following procedure:

κ
⊙

Γ =
let Γ′ be a type environment such that

dom(Γ′) = dom(Γ)
Γ′(x) = α

(jx, kx)
x where αx, jx and kx are fresh for each x

C = {Γ′(x) � κ · Γ(x) | x ∈ dom(Γ)}
in (Γ′, C)

4.2.4 Example: Let Γ1 = x: [ ](0, 1), y: [[ ](1, 1)](1, 0) and Γ2 = x: [ ](1, 0). Then, Γ1
⊕

Γ2 =
((x:β(jx, kx)

x , y:β(jy , ky)
y ), C) where:

C =




β
(jx, kx)
x � α

(jx1+jx2, kx1+kx2)
x ,

α
(jx1, kx1)
x � [ ](0, 1),

α
(jx2, kx2)
x � [ ](1, 0),

β
(jy , ky)
y � [[ ](1, 1)](1, 0)




.

The type reconstruction algorithm PTU , shown in Figure 2, takes a process expression P as
an input, and returns a principal typing of P . As is already mentioned, a programmer need not
put type annotations into a process expression: before passing a process expression to PTU , a
system can automatically put α(j, k) (α, j, and k are fresh) into a place where type annotations
are omitted.

Note that PTU (P ) may succeed even when there is no Γ and C such that Γ;C ` P . For
example, consider the process def x[ ]: [ ](ω, j) = x![ ] in x?[ ]. x![ ] end: although it violates the
rule that a channel x bound by def cannot be used for input, PTU succeeds and outputs a
subtyping constraint including [ ](0, k) � [ ](1, 1); this kind of process will be rejected when the
satisfiability is checked during the phase for constraint solving (described in the next section).

We can prove that PTU (P ) computes a principal typing of P .

4.2.5 Theorem [Correctness of PTU ]: Given P , if Γ;C ` SP , for some S, Γ, and C, then
PTU (P ) outputs a principal typing of P .

Proof: See Appendix B. 2

5 Recovering Type Annotation by Constraint Solving

In the previous section, we showed how to compute a principal typing (Γ, C) for a given process
expression P . By solving the subtyping constraint C, we can find a type annotation for P and
detect linear channels. Among many possible type annotations for P , we are interested in an
optimal one in the sense that the uses of channels created in P are estimated to be as small
as possible (because we want to find as many linear channels as possible). We first define the
optimality of type annotations and discuss which solution for C gives an optimal annotation in
Subsection 5.1. We then show how to compute such a solution for C. It depends of course on
particular subtyping relations: we describe the case for �NonStr in Subsection 5.2 and the case
for �Str in Subsection 5.3.
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Every type/use variable is assumed to be fresh below. Γ \ {x1, . . . , xn} denotes the type envi-
ronment whose domain is restricted to dom(Γ) \ {x1, . . . , xn}.
PTU (P1 |P2) =

let (Γ1, C1) = PTU (P1)
(Γ2, C2) = PTU (P2)
(Γ, C) = Γ1

⊕
Γ2

in (Γ, C ∪ C1 ∪ C2)

PTU (P1 + · · · + Pn) =
let (Γ1, C1) = PTU (P1)

...
(Γn, Cn) = PTU (Pn)
(Γ, C) = Γ1

⊔ · · ·⊔ Γn

in (Γ, C ∪ C1 ∪ · · · ∪ Cn)

PTU ((νx: τ)P ) =
let (Γ, C) = PTU (P )
in if x ∈ dom(Γ) then (Γ \ {x}, C ∪ {τ � Γ(x)})

else (Γ, C)

PTU (x![y1, . . . , yn]) = x: [α(j1, k1)
1 , . . . , α

(jn, kn)
n ](0, 1) ⊕

y1:α
(j1, k1)
1

⊕ · · ·⊕ yn:α(jn, kn)
n

PTU (x?[y1, . . . , yn]. P ) =
let (Γ′, C ′) = PTU (P )

(Γ, C) = x: [τ1, . . . , τn](1, 0) ⊕
(Γ′ \ {y1, . . . , yn})

where τi (i ∈ {1, . . . , n}) is Γ′(yi) if yi ∈ dom(Γ′),
or α

(ji, ki)
i otherwise

in (Γ, C ∪ C ′)

PTU (def x[y1, . . . , yn]: τ = P1 in P2 end) =
let (Γ1, C1) = PTU (P1)

(Γ2, C2) = PTU (P2)
(Γ3, C3) = (l2 · (l1 + 1))

⊙
(Γ1 \ {x, y1, . . . , yn})

(Γ, C4) = Γ3
⊕

(Γ2 \ {x})
in (Γ, C1 ∪ C2 ∪ C3 ∪ C4 ∪ {[τ1, . . . , τn](0, li) � τxi | i ∈ {1, 2}}

∪ {τ � [τ1, . . . , τn](ω, l2·(l1+1))})
where τxi (for i ∈ {1, 2}) is Γi(x) if x ∈ dom(Γi), or α

(ji, ki)
i otherwise

τi (for i ∈ {1, . . . , n}) is Γ1(yi) if yi ∈ dom(Γ1), or α
(jyi

, kyi
)

yi otherwise

Figure 2: Type Reconstruction Algorithm PTU
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For simplicity, we consider only closed process expressions. If a process containing free
variables should be analyzed (for the purpose of separate compilation, etc.), we must let a
programmer declare some type information on the free variables. (Uses need not necessarily be
declared: ω can be assigned to unknown uses. In the case for �NonStr, even type declaration is
unnecessary.) Instead of such type declarations, we can delay instantiations of certain type/use
variables and keep constraints on them. An algorithm for such incremental constraint solving
can be easily obtained from our algorithms described in Subsection 5.2 and 5.3 since they
transform constraints step by step.

5.1 Optimality of Type Annotation

To state the optimality of a type annotation, we introduce an ordering ≥ on process expres-
sions. P ≥ P ′ means that two process expressions P and P ′ are identical except in their type
annotations, and that the pair of the (outermost) uses of every type appearing in P is equal to
or greater than that of the type in the corresponding position in P ′.

5.1.1 Definition: The relation ≥ between process expressions is the least relation closed under
the following rules:

x![y1, . . . , yn] ≥ x![y1, . . . , yn]

P ′
1 ≥ P1 P ′

2 ≥ P2

P ′
1 |P ′

2 ≥ P1 |P2

P ′ ≥ P κ11 ≥ κ21 κ12 ≥ κ22

(νx: ρ(κ11, κ12)
1 )P ′ ≥ (νx: ρ(κ21, κ22)

2 )P

P ′
1 ≥ P1 · · · P ′

m ≥ Pm

x1?[y1, . . . , yn1]. P
′
1 + · · · + xm?[y1, . . . , ynm ]. P ′

m ≥ x1?[y1, . . . , yn1 ]. P1 + · · · + xm?[y1, . . . , ynm]. Pm

P ′
1 ≥ P1 P ′

2 ≥ P2 κ1 ≥ κ2

def x[y1, . . . , yn]: ρ(ω, κ1)
1 = P ′

1 in P ′
2 end ≥ def x[y1, . . . , yn]: ρ(ω, κ2)

2 = P1 in P2 end

Now the optimality of type annotation is defined as follows.

5.1.2 Definition: A substitution S of types/uses for type/use variables in a process expression
P is optimal (with respect to P ) if (1) ∅ `T R SP and (2) S′P ≥ SP for any S′ such that
∅ `T R S′P .

5.1.3 Example: A substitution [0/j1, 1/j2] is optimal with respect to (νx: [ ](j1, j2))x![ ] but
[0/j1, ω/j2] is not.

Because ∅;C `ST R P implies ∅ `T R SP for any solution S of C, we can obtain an optimal type
annotation by computing a solution that assigns to use variables as small uses as possible.

5.1.4 Definition: A substitution S is a minimal solution of C if S is a solution of C and if,
for any solution S′ of C, S′j ≥ Sj for each use variable j appearing in C.

5.1.5 Theorem: Let P be a closed process expression and PTU (P ) be (∅, C). S is optimal
with respect to P if S is a minimal solution of C and if S assigns 0 to all the use variables
appearing not in C but in P .
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Proof: Trivial from the definition of a minimal solution. 2

By the above theorem, we can focus our attention on finding a minimal solution of a subtyping
constraint, which is the subject of the following two subsections.

5.2 Constraint Solving without Structural Subtyping

This subsection discusses how to solve a subtyping constraint in the case where � is the relation
�NonStr. By the definition of �NonStr, each constraint expression ρ

(κ11, κ12)
1 � ρ

(κ21, κ22)
2 in C

is reduced to an equality ρ1 = ρ2 on bare types and inequalities κ11 ≥ κ21 and κ12 ≥ κ22 on
uses. Equalities on bare types can be solved by the ordinary first-order unification, since we can
assume, by the definition of PTU (and the auxiliary functions), that every use in bare types is
a use constant or variable. Inequalities on uses can be solved by a simple iterative method.

Before describing more details, we show a simple example.

5.2.6 Example: Let C = {α(j, k) � β(l, m), β(l, m) � [ ](1, 0)}. It is reduced to equality con-
straints α = β and β = [ ] and inequalities j ≥ l, k ≥ m, l ≥ 1, and m ≥ 0 on uses. By solving
the equality constraints, we obtain α = β = [ ], while we obtain j = 1, k = 0, l = 1 and m = 0
by solving the inequalities. Thus, we obtain a substitution [[ ]/α, [ ]/β, 1/j,0/k,1/l, 0/m] as a
(minimal) solution of C.

Now we describe more details on how to solve equalities on bare types and inequalities on
uses. As mentioned above, solving equalities on bare types is a first-order unification problem.

5.2.7 Definition: A substitution S is a unifier of a set of pairs of bare types
{(ρ1, ρ

′
1), . . . , (ρn, ρ′n)} if Sρi = Sρ′i for i ∈ {1, . . . , n}. A unifier S of E = {(ρ1, ρ

′
1), . . . , (ρn, ρ′n)}

is most general if for any other unifier S′ of E, there exists a substitution S′′ such that S′ = S′′S.

5.2.8 Theorem [Unification [Rob65]]: Suppose every use expression appearing in
ρ1, . . . , ρn, ρ′1, . . . , ρ

′
n is either a use constant or variable. Then there exists an algorithm

U that computes the most general unifier of the set {(ρ1, ρ
′
1), . . . , (ρn, ρ′n)} if a unifier exists, or

reports failure if a unifier does not exist.

The final task is to solve inequalities on uses. Because we are interested in a minimal
solution of C, we need to find the least solution, i.e., a solution that assigns to use variables
as small uses as possible. By the definition of PTU , we can assume that κ1 of each inequality
κ1 ≥ κ2 is either a use variable or constant. So, the inequalities on uses are divided into two
sets {j1 ≥ κ1, . . . , jn ≥ κn} and {cn+1 ≥ κn+1, . . . , cm ≥ κm} where each ci is a use constant.
Without loss of generality, we can assume that j1, . . . , jn comprise all of the use variables which
occur in the κ1, . . . , κm and that they are distinct: we can add constraints j ≥ 0 when j appear
in κi but not in j1, . . . , jn, and replace inequalities j ≥ κ1, . . . , j ≥ κl with a single inequality
j ≥ κ1 t · · · tκl, where κ1 tκ2 represents the least upper-bound of κ1 and κ2, i.e., κ1 tκ2 = κ1

if κ1 ≥ κ2 or κ2 otherwise. The least solution of the first set of inequalities is computed and
then it is checked whether it is also a solution of the second part. (If the check fails, the original
subtyping constraint has no solutions.) Because every operation on uses is monotonic and use
variables j1, . . . , jn can range over finite space {0, 1, ω}, the least solution of the first part is
calculated by the following simple iterative method:

5.2.9 Lemma [Least Solution of Inequalities between Uses]: Let Θ1 = {j1 ≥ κ1, . . . ,
jn ≥ κn} and Θ2 = {cn+1 ≥ κn+1, . . . , cm ≥ κm} where j1, . . . , jn are distinct and each ci is a
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use constant. Define κ
(m)
i (m ≥ 0, 1 ≤ i ≤ n) by:

κ
(0)
i = 0

κ
(m+1)
i = [κ(m)

1 /j1, . . . , κ
(m)
n /jn]κi

Then, for some M ≥ 0, S = [κ(M)
1 /j1, . . . , κ

(M)
n /jn] is the least solution of the set Θ1. If Θ1∪Θ2

has a solution, then S is its least solution. Otherwise, S is not a solution of Θ2.

Proof: Since each use variable can range over the finite space and the operations on uses
are monotonic, there exists M such that κ

(M)
i = [κ(M)

1 /j1, . . . , κ
(M)
n /jn]κi holds for all i ∈

{1, . . . , n}. We show S = [κ(M)
1 /j1, . . . , κ

(M)
n /jn] is the least solution of Θ1. Suppose that

κ′
i ≥ [κ′

1/j1, . . . , κ
′
n/jn]κi holds for some κ′

1, . . . , κ
′
n. It suffices to show κ′

i ≥ κ
(n)
i for any n

by mathematical induction on n. The base case n = 0 is trivial. Suppose κ′
i ≥ κ

(m)
i for

i ∈ {1, . . . , n}. Then, for i ∈ {1, . . . , n},
κ′

i ≥ [κ′
1/j1, . . . , κ

′
n/jn]κi

≥ [κ(m)
1 /j1, . . . , κ

(m)
n /jn]κi

= κ
(m+1)
i

Next, we show the second part of the lemma. Suppose there is a solution [κ′
1/j1, . . . , κ

′
n/jn]

of Θ1 ∪ Θ2. Since [κ(M)
1 /j1, . . . , κ

(M)
n /jn] is the least solution of Θ1, from the first part, it

must be that κ′
i ≥ κ

(M)
i for i ∈ {1, . . . , n}. So, for all i ∈ {n + 1, . . . ,m}, we have ci ≥

[κ′
1/j1, . . . , κ

′
n/jn]κi ≥ [κ(M)

1 /j1, . . . , κ
(M)
n /jn]κi, which implies [κ(M)

1 /j1, . . . , κ
(M)
n /jn] is also a

solution of Θ1 ∪Θ2. The case where Θ1 ∪Θ2 has no solution is easy since S is a solution of Θ1,
which implies S must not be a solution of Θ2. 2

In the above two steps, we obtain a minimal solution of C:

5.2.10 Theorem [Minimal Solution (I)]: Let C be a subtyping constraint such that for any
constraint expression τ � ρ(κ1, κ2) ∈ C, every use in τ and ρ is either a use variable or constant.
Let E = {(ρ1, ρ2) | ρ(κ11, κ12)

1 � ρ
(κ21, κ22)
2 ∈ C} and Θ = {κ11 ≥ κ21, κ12 ≥ κ22 | ρ(κ11, κ12)

1 �
ρ
(κ21, κ22)
2 ∈ C}. If C has a solution, then S1 = U(E) and the least solution S2 of the set of

inequalities S1Θ are successfully obtained and S2S1 is a minimal solution of C. If C has no
solution, then U(E) reports failure, or it is reported that there is no solution for (U(E))Θ.

Proof: Follows from Theorem 5.2.8 and Lemma 5.2.9. 2

5.2.1 Computational Complexity

We informally discuss the computational cost of computing the least solution of inequalities on
uses. First, we show the cost of computing the least solution of a given set {j1 ≥ κ1, . . . , jn ≥ κn}
is polynomial in the size n of the set. In the discussion below, κ

(j)
i refers to the one defined

in Lemma 5.2.9 and the size size(κ) is defined as 1 if κ is either a constant or a variable, or
1 + size(κ1) + size(κ2) if κ is κ1 + κ2, κ1 t κ2, or κ1 · κ2. Since κ

(j)
i increases monotonically as

j increases, the number of steps M of iteration is at most 2 · n. In each step, the total cost of
computing κ

(j)
1 , . . . , κ

(j)
n is O(

∑
i size(κi))(≤ O(n · maxi(size(κi)))).

The number n of the inequalities, which is twice the size of a subtyping constraint set, is
O(p2) where p is the size of a process expression because the auxiliary functions like

⊕
add at

most six times as many constraint expressions as the number of variables in a process expression.
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As a result, the computational complexity of computing the least solution is polynomial in
the size of an expression. Note that this estimation of the order is very rough and there may
be a better upper-bound.

5.3 Constraint Solving with Structural Subtyping

This subsection discusses the case where � is the relation �Str. By the definition of rule S-
Chan2, a constraint expression τ � τ ′ implies the condition Match(τ, τ ′). Since Match(τ, τ ′)
means that τ and τ ′ only differ in their uses, it is essentially solved by the first-order unification,
with uses ignored. Once Match(τ, τ ′) is satisfied for each constraint expression τ �Str τ ′, it can
be reduced to constraints of the form κ1 ≥ 1 ⇒ · · · ⇒ κn ≥ 1 ⇒ κ ≥ κ′. They can be solved by
an iterative method. We can begin with the assignment of use 0 to all the use variables, and then
increase the assigned use step by step until all the constraints get satisfied: if κ1 ≥ 1, . . . , κn ≥ 1
become true at some step, then κ1 ≥ 1 ⇒ · · · ⇒ κn ≥ 1 ⇒ κ ≥ κ′ is simplified to κ ≥ κ′. Before
a formal description of the algorithm, let us consider a simple example.

5.3.11 Example: Let C = {[[ ](k1, k2)](ω, ω) � α(k1, k2), [ ](k1, k2) � [ ](0, 1)}. By the condition
Match([[ ](k1, k2)](ω, ω), α(k1, k2)), α is instantiated to a bare type [[ ](j1, j2)] for some fresh use
variables j1 and j2. Then, C is reduced to the following constraints on uses:

ω ≥ k1, ω ≥ k2

k1 ≥ 1 ⇒ k1 ≥ j1, k1 ≥ 1 ⇒ k2 ≥ j2

k2 ≥ 1 ⇒ j1 ≥ k1, k2 ≥ 1 ⇒ j2 ≥ k2

k1 ≥ 0, k2 ≥ 1,

where the first six conditions come from [[ ](k1, k2)](ω, ω) � [[ ](j1, j2)](k1, k2), and the last two come
from [ ](k1, k2) � [ ](0, 1). First, let us assign 0 to all the use variables above. Since k2 ≥ 1 is not
satisfied, the assignment to k2 is incremented to 1. Now, because k2 ≥ 1 is true, the conditions
k2 ≥ 1 ⇒ j1 ≥ k1 and k2 ≥ 1 ⇒ j2 ≥ k2 are simplified to j1 ≥ k1 and j2 ≥ k2. Then, the
assignment to j2 is incremented to 1 so that j2 ≥ k2 is satisfied. Because all the conditions are
satisfied now, we obtain [[ ](0, 1)/α, 0/k1, 1/k2] as a minimal solution for C.

Now we describe the algorithm more formally. First, we extend the definition Match(τ, τ ′) so
that Match(ρ(κ11,κ12)

1 , ρ
(κ21,κ22)
2 ) holds if both ρ1 and ρ2 are type variables. Then, we introduce

a procedure M for the condition Match(τ, τ ′). It takes a subtyping constraint C as an input
and outputs the most general substitution S such that Match(τ, τ ′) holds for any constraint
expression τ � τ ′ ∈ SC, or outputs fail if there is no such substitution. We call a subtyping
constraint C a matching constraint [FM90] if Match(τ, τ ′) holds for any τ � τ ′ ∈ C. Procedure
M is almost the same as MATCH described in [FM90].

5.3.12 Definition: M(C) is defined as the following procedure where ] stands for a union of
disjoint sets:

M(C) = M̂({(τ1, τ2) | τ1 � τ2 ∈ C}, [ ]) where [ ] is the empty substitution.
where
M̂(T ] {([τ1, . . . , τn](κ11, κ12), [τ ′

1, . . . , τ
′
m](κ21, κ22))}, S)

= if n = m

then M̂(T ∪ {(τi, τ
′
i) | 1 ≤ i ≤ n}, S)

else fail

M̂(T ] {(α(κ11 , κ12), [τ1, . . . , τn](κ21, κ22)}), S)
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= if α does not occur in [τ1, . . . , τn]
then M̂(SαT ∪ {(α(ji, ki)

i , τi) | 1 ≤ i ≤ n}, SαS)
where Sα = [[α(j1, k1)

1 , . . . , α
(jn, kn)
n ]/α] and every α

(ji, ki)
i is fresh.

else fail

M̂(T ] {([τ1, . . . , τn](κ11, κ12), β(κ21, κ22))}, S)
= if β does not occur in [τ1, . . . , τn]

then M̂(SβT ∪ {(β(ji, ki)
i , τi) | 1 ≤ i ≤ n}, SβS)

where Sβ = [[β(j1, k1)
1 , . . . , β

(jn, kn)
n ]/β] and every β

(ji, ki)
i is fresh.

else fail

M̂({(α(κ11 , κ12)
1 , β

(κ′
11, κ′

12)
1 ), . . . , (α(κn1, κn2)

n , β
(κ′

n1, κ′
n2)

n )}, S) = S

5.3.13 Lemma: Let C be a subtyping constraint. If there exists S′ such that S′C is a matching
constraint, then M(C) succeeds and outputs S such that: (1) SC is a matching constraint, and
(2) there exists a substitution S′′ such that S′ = S′′S. Otherwise, M(C) outputs fail .

Proof: Similar to the proof of the correctness of MATCH in [FM90]. 2

5.3.14 Example: M({[α(j1, k1), β(j2, k2)](0, ω) � [γ(j3, k3), [ ](1, 1)](j4, k4)}) = [[ ]/β].

Because we are interested only in one minimal solution for C, we can assign the bare type
[ ] to all the type variables that have not been instantiated by M. After that, the subtyping
constraint is transformed to simpler constraints on uses step by step. We describe the algorithm
as rewriting of a quadruple (C,Θ1,Θ2, S). C represents a subtyping constraint which has not
yet been reduced to constraints on uses. Θ1 and Θ2 are sets of inequalities on uses: Θ1 keeps
inequalities whose satisfiability needs to be checked, and Θ2 keeps already checked inequalities.
We begin with (C, ∅, ∅, [0/j1 , . . . , 0/jn]) where C is a matching constraint and j1, . . . , jn are the
use variables in C. During rewriting steps, S(= [c1/j1, . . . , cn/jn]) is always a solution of Θ2

and the satisfiability of C ∪ Θ1 ∪ Θ2 ∪ {j1 ≥ c1, . . . , jn ≥ cn} is preserved. If C has a solution,
rewriting always terminates with a quadruple (C ′, ∅,Θ′

2, S) where C ′ contains only expressions
of the form κ ≥ 1 ⇒ τ1 � τ2 for κ such that Sκ 6≥ 1. Then, S is a minimal solution of C.

We need several preliminary definitions. In order to transform a subtyping constraint τ � τ ′

into conditions on uses step by step, we extend the syntax of a constraint expression and the
definition of a solution of a subtyping constraint.

5.3.15 Definition: An extended subtyping constraint C is a set of expressions of the form
τ1 � τ2 or κ ⇒ τ1 � τ2. An extended subtyping constraint C is said to be matching if
Match(τ1, τ2) for any τ1 � τ2 and κ ⇒ τ1 � τ2 ∈ C.

5.3.16 Definition: A substitution S is a solution of an extended subtyping constraint C if and
only if Sτ1 � Sτ2 for each τ1 � τ2 in C, and Sκ ≥ 1 implies Sτ1 � Sτ2 for each κ ⇒ τ1 � τ2 in
C.

5.3.17 Example: [0/j,ω/k, 0/l] is a solution of {j ⇒ [ ](1, ω) � [ ](k, l)} but [1/j,ω/k, 0/l] is
not.

5.3.18 Definition: The relation ; between quadruples (C,Θ1,Θ2, S) is the least relation
closed under the following rules:

(C,Θ1 ] {κ1 ≥ κ2},Θ2, S) ; (C,Θ1,Θ2 ∪ {κ1 ≥ κ2}, S)
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if Sκ1 ≥ Sκ2

(C,Θ1 ] {j ≥ κ},Θ2, S) ; (C,Θ1 ∪ Θ2, {j ≥ κ}, [Sκ/j]S)
if Sj 6≥ Sκ

(C ] {[τ̃ ](κ11, κ12) � [τ̃ ′](κ21, κ22)},Θ1,Θ2, S) ; (C ∪ {κ21 ⇒ τi � τ ′
i | 1 ≤ i ≤ n}

∪ {κ22 ⇒ τ ′
i � τi | 1 ≤ i ≤ n},

Θ1 ∪ {κ11 ≥ κ21, κ12 ≥ κ22},Θ2, S)
(C ] {κ ⇒ τ1 � τ2},Θ1,Θ2, S) ; (C ∪ {τ1 � τ2},Θ1,Θ2, S)

if Sκ ≥ 1

5.3.19 Example: The quadruple ({j ⇒ [ ](k, l) � [ ](0, 1)}, {j ≥ 1}, ∅, [0/j,0/k,0/l]) rewrites to
(∅, ∅, {j ≥ 1, k ≥ 0, l ≥ 1}, [1/j,0/k,1/l]) in the following steps:

({j ⇒ [ ](k, l) � [ ](0, 1)}, {j ≥ 1}, ∅, [0/j,0/k,0/l])
; ({j ⇒ [ ](k, l) � [ ](0, 1)}, ∅, {j ≥ 1}, [1/j,0/k,0/l])
; ({[ ](k, l) � [ ](0, 1)}, ∅, {j ≥ 1}, [1/j,0/k,0/l])
; (∅, {k ≥ 0, l ≥ 1}, {j ≥ 1}, [1/j,0/k,0/l])
; · · · ; (∅, ∅, {j ≥ 1, k ≥ 0, l ≥ 1}, [1/j,0/k,1/l])

A quadruple (C,Θ1,Θ2, S) is called a normal form if there is no (C ′,Θ′
1,Θ

′
2, S

′) such that
(C,Θ1,Θ2, S) ; (C ′,Θ′

1,Θ
′
2, S

′). We can obtain a minimal solution of a matching constraint
by using the rewriting system.

5.3.20 Lemma: Let C be a matching constraint such that for any constraint expression
τ � ρ(κ1, κ2) ∈ C, every use appearing in τ or ρ is either a use variable or constant. Then,
([[ ]/α1, . . . , [ ]/αn]C, ∅, ∅, [0/j1 , . . . , 0/jn]), where α1, . . . , αn are the type variables and j1, . . . , jn

are the use variables in C, always rewrites to a normal form (C ′,Θ1,Θ2, S) by ;. If C has a
solution, then Θ1 is empty and S[[ ]/α1, . . . , [ ]/αn] is a minimal solution of C. If C does not
have any solutions, then Θ1 is not empty.

Proof: See Appendix C. 2

By combining M and the above rewriting system, we obtain an algorithm to compute a
minimal solution of a subtyping constraint.

5.3.21 Theorem [Minimal Solution (II)]: Let C be a subtyping constraint such that for
any constraint expression τ � ρ(κ1, κ2) in C, every use appearing in τ or ρ is either a use
variable or constant. If there is a solution for C, then S1(= M(C)) and a minimal solution S2

of S1C is successfully obtained by the rewriting system, and S2S1 is a minimal solution of C. If
there is no solution for C, then M(C) outputs fail , or the rewriting system reports that there
is no solution for (M(C))C.

Proof: Follows from Lemmas 5.3.13 and 5.3.20. 2

5.4 An Example of Detection and Optimization

We show an example of detection of linear channels using �NonStr. Consider the following
(closed) process expression, which computes the n-th Fibonacci number sequentially (the lan-
guage has been extended with integer values, boolean values and several operations like if or
+):
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def fib[n, c] = if n < 2 then c![1]
else (νc1:α(j, k))(νc2)

(fib![n − 1, c1] | c1?[x].(fib![n − 2, c2] | c2?[y].c![x + y]))
in fib![n, output ] end

The variable output denotes a special channel of type [Int](0, ω). Let us infer the values of use
variables (j, k) attached to the channel c1. PTU outputs the pair (∅, C) where

C =




α(j, k) � α(j1+j2, k1+k2),

β(l1, m1) � [Int, α(j1, k1)](0, 1),

α(j2, k2) � [Int](1, 0),

[Int, γ(j3, k3)](0, m) � β(l1+l2, m1+m2),

γ(j3, k3) � [Int](0, 1),
...




.

(We show a slightly simplified constraint.) The type variables β and γ denote the bare types
of fib and c, respectively. The use variables j1 and k1 denote how often c1 is used for in-
put and output in the process fib![n − 1, c1]. Similarly, j2 and k2 denote the uses of c1

in the process c1?[x]. (· · ·). By the rule for parallel composition, we obtain the expression
α(j, k) � α(j1+j2, k1+k2). The expression α(j2, k2) � [Int](1, 0) is also obtained from the in-
put prefix c1?[x].(· · ·). Similarly, β(l1, m1) � [Int, α(j1, k1)](0, 1) is obtained from the expression
fib![n − 1, c1], and γ(j3, k3) � [Int](0, 1) from c![1]. In the first step, we know α = γ = [Int] and
β = [Int, [Int](j1, k1)] and j1 = j3 and k1 = k3, and obtain the inequalities:

j ≥ j1 + j2, k ≥ k1 + k2, j2 ≥ 1, k1 ≥ 1, . . .

By solving them, we obtain j = k = 1, which implies that c1 is a linear channel. Similarly, we
know that c2 is also linear.

By using the information obtained above, we can replace the process with the following
optimized one:

def fibopt [n, c]: [Int, [Int](0, 1)](ω, ω) =
if n < 2 then c![1]
else def c1[x]: [Int](ω, 1) = (def c2[y]: [Int](ω, 1) = c![x + y]

in fibopt ![n − 2, c2] end)
in fibopt ![n − 1, c1] end

in fibopt ![n, output ] end

In the optimized program, the channels c1 and c2 for receiving results of recursive calls are
created by def. Since a value sent to those channels will always be received immediately,
variable-sized buffers for storing sent values or blocked receivers are no longer required in im-
plementing channels created by def, thus communication on them can be implemented more
efficiently. Moreover, since c1 and c2 are linear channels, the memory space for them can be
reclaimed immediately after they are once used. Note that the optimized process corresponds
to the continuation passing style representation [App92] of the functional Fibonacci program
(the channels c1 and c2 can be viewed as continuations).
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6 Experimental Results

In this section, we show results of simple experiments with a HACL compiler2 to evaluate
performance improvement obtained by our analysis and show elapsed time for analysis. Appli-
cation programs include the example of Fibonacci function described in the previous section,
and concurrent objects expressed in HACL.

6.1 Encoding and its Optimization of Concurrent Objects

Before showing the results, we explain how concurrent objects are realized in our language, and
what optimization is enabled by our analysis. The state of a concurrent object is implemented
by using a channel, while each method is implemented by a process which first extracts the
current state from the channel, executes the method, replies a result, and puts the new state
into the channel. So, the following fragment of a process expression corresponds to a typical
method definition:

def m[arg , r] = state?[s].(· · · | r![result ] | state![news ]) in . . .

On receiving from m the argument arg of the method and the channel r for replying the result,
it extracts the current state from the channel state. After some computation, the result is
replied to r and the new state news of the object is put into state. A caller of the method is
typically of the form:

(νr)(m![v, r] | r?[x].P )

It first creates the channel r for receiving the result, and invoke a method m with the argument
v. Finally, it waits for the result from r and carry out the rest of computation P .

With our analysis, it can be translated to def r[x] = P in m![v, r] end in most cases. Simi-
larly to the example of the Fibonacci function described in the previous section, the transformed
process can be implemented more efficiently.

6.2 Experiment Results and Evaluation

We evaluate performance improvement through six programs: a sequential Fibonacci program
sfib25 (the one shown in the optimization example where n = 25), a parallel Fibonacci program
pfib25 (which performs recursive calls in parallel), a counter increment program counter10000
(which creates a counter object and increments its value 10000 times), a tree summation program
tree14 (which creates a binary tree of which each node is a concurrent object, and computes
the summation of the values of its leaf nodes), a simulation of Conway’s life game life, and
the Knuth-Bendix completion algorithm kb.

In this experiment, we applied two kinds of optimization:

• Source-level program transformation: every process expression of the form (νx)(P |x?[ỹ].Q)
where x is known to be a linear channel, is transformed to def x[ỹ] = Q in P end. As
a special case, if Q = z![ỹ], then the entire expression is replaced with [z/x]P . Af-
ter this transformation, we may be able to hoist up [App92] the process definition to-
wards the top-level, reducing the number of dynamic process creation. For example,
z?[w̃].def x[ỹ] = Q in P end can be transformed to def x[ỹ] = Q in z?[w̃]. P end when

2The HACL compiler translates a HACL program to a C program in a manner similar to sml2c [TAL90].
The compiler is available both for a single processor workstation and for network of workstations. We just show
performance on a single processor workstation.
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Table 1: Running time for the benchmark programs

naive (sec) opt. (sec) func. (sec)
sfib25 1.45 0.57 0.41
pfib25 1.76 0.93 —
counter10000 0.26 0.17 —
tree14 1.55 1.36 —
life 2.49 2.45 —
kb 27.8 22.6 —

no wi is a free variable of Q; as a result, the receiver process waiting on x can be created
statically. It has been applied to most of the method invocations of concurrent objects or
the function calls.

• Refinement of the run-time representation of linear channels. Ordinary channels were
implemented by using two variable-sized buffers, one for storing sent values, and the other
for storing blocked processes waiting on the channel for values to be received. On the
other hand, linear channels were implemented by using one-place buffers. This saves the
memory space required for channels.

Moreover, send/receive operations for linear channels were optimized. In the send function
for an ordinary channel, it is first checked whether the receiver buffer of the channel is
empty: if so, the sent value is put into the buffer, and otherwise a receiver is extracted
from the buffer and executed. So, each call of the send function involves channel status
check and update of value/receiver buffers. On the other hand, for a linear channel, those
costs were substantially reduced. First, buffers were not updated once communication has
occurred. Second, the channel status check was eliminated. Notice that, when a value
is sent, there are only two status: the channel is empty, or a receiver is ready. So, we
can prepared two versions of send functions, and just switched them (by using function
pointers) after a receiver was put into the buffer.

We have not yet applied immediate reclamation of memory space for used linear channels.
Each row in Table 1 shows the result for each program. The first column (“naive”) shows

the running times of unoptimized programs written with concurrency primitives, and the second
column (“opt.”) shows the running times of programs optimized with our analysis. In addition,
we show in the third column (“func.”) the running time of a program written with function
primitives for the sequential Fibonacci. Note that all the programs are executed on a single
processor machine (Sun Sparc Station 20 (Hyper SPARC 150Mhz ×1)): therefore, pfib25 is
slower than sfib25 because of overheads.

The result of the sequential Fibonacci program sfib25 indicates that even if programmers
implement functional computations using concurrency primitives, the compiler can generate an
optimized code which is comparable to the one written by directly using function primitives. The
speedup ratio of the parallel Fibonacci program pfib25 is relatively smaller because of overheads
of multi-threading, but it is still large. Note that the speedup (100–200%) of sfib25 and pfib25
itself should not be deemed important, because the execution time of the Fibonacci program
is dominated by communications and/or function calls rather than local computations (integer
comparison and summation). Because life and kb perform communications less frequently
than sfib25 or pfib25, their speedups are much smaller.
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Table 2: Elapsed time for analysis

size reconst. solve standard
(nodes) (msec) (msec) (msec)

pfib25 67 43 8 6
sfib25 68 40 8 9
tree14 145 96 17 14
counter10000 153 103 25 17
life 613 849 91 62
kb 2019 13220 630 620

The two programs counter and tree14 are used for estimating performance improvement
of typical concurrent object-oriented programs. They represent the two extreme cases: in
counter, method invocations are much more frequent than creations of concurrent objects,
while in tree14, creations of concurrent objects happen as frequently as method invocations
do.

Table 2 shows the elapsed time by our analysis for the same set of benchmark programs. We
have implemented our analysis with the subtyping relation �NonStr, written in Standard ML of
New Jersey 0.93 running on SS20 (Hyper SPARC 150 MHz). The first column (“size”) shows the
sizes of the parse trees of the programs. The second column (“reconst.”) and the third column
(“solve”) show the elapsed times for type reconstruction and constraint solving, respectively.
Actually, our implementation integrates the unification phase of constraint solving with type
reconstruction, so the third column shows the elapsed times only for solving inequalities on
uses. The fourth column (“standard”) shows the elapsed times of standard (i.e., without use
information) type reconstruction. Since the type system of HACL includes the ML-style let-
polymorphism, the complexity of type reconstruction is theoretically exponential. Except kb,
our type reconstruction algorithm is about 10 times slower than the standard one. We believe
that it can be made faster by efficient implementation. The cost of solving inequalities is much
less than that of type reconstruction.

7 Related Work

Our work has its origin in the I/O channel type system with subtyping proposed by Pierce and
Sangiorgi [PS93], and the linear channel type system by Kobayashi, Pierce, and Turner [KPT96].
However, their results have been rather theoretical: they were mainly concerned about checking
channel usage and reasoning about program behavior. Since their type reconstruction problems
have been open, applications of the type systems to concurrent programming languages have
been limited: in [KPT96], although they claimed that linear channels would be potentially
useful for program optimization, they have not applied it to actual compilers.

Turner, Wadler, and Mossin [TWM95] proposed a similar static analysis technique for finding
use-once values in functional programming languages. In their type system, a use can only be
either 1 or ω and much simpler constraints on use variables are used; as a result, if a variable
has more than one syntactic occurrence, its use is always inferred to be ω. Therefore, it is not
possible to apply their technique directly to the detection of linear channels and it is not trivial
either to refine their technique accordingly: notice that a communication channel has normally
at least two syntactic occurrences (one occurrence for input and the other for output).
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Nielson and Nielson [NN95] proposed another technique that can be used for finding some
linear channels based on their effect-based analysis [NN94]. However, their analysis is not
so effective for detection of linear channels because it counts operations on channels region-
wise, where a region is a (possibly infinite) set of communication channels. For example, in
def f [ ] = m?[x].x![ ] | f ![ ] in f ![ ] |m![n] end, the number of output operations performed to
the channel x would be counted as ω in their analysis while it is counted as 1 in our type-
based analysis. Colby [Col95] also proposed a technique for analyzing communication based
on abstract interpretation, which is potentially applicable to the detection of linear channels.
However, his analysis would not be effective for the detection of linear channels, either: if it were
applied to the detection of linear channels, an infinite number of channels (which are uniquely
identified by control paths in the concrete semantics) would be mapped by the abstraction
function to the same abstract control path, and therefore his method would give rise to the
same problem as mentioned above.

Kobayashi, Nakade and Yonezawa [KNY95] proposed a technique for finding linear channels
(and linearized channels [KPT96]). However, it is rather complex: as far as linear channels are
concerned, our type-based analysis presented here gives more accurate results with much less
costs.

Mercouroff [Mer91] also proposed an algorithm for analyzing communication; however, its
target language is very restricted (channels are not first-class values, and moreover, dynamic
process creation is not allowed).

8 Conclusions

We have developed a type reconstruction algorithm for a linear channel type system with sub-
typing of input-only/output-only channel types. Our technique can be used for performing
source-level program transformations (such as tail-call optimization) and also for reducing run-
time costs of communications; indeed, the analysis (without structural subtyping) has been
applied to the compiler of the concurrent language HACL and the performance improvement
gained by those optimizations has been measured. We believe that the technique proposed here
is applicable to other similar concurrent programming languages.

Future work includes further evaluation of the analysis through more realistic (especially
distributed) applications. Although this paper focused on channel usage, the usage information
about other values (tuples, function closures, etc.) could also be obtained by our analysis [Iga97];
it is left for future work to utilize such information for program optimization or efficient memory
management.
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A Proof of Subject Reduction Theorem (Theorem 3.2.1)

We need several lemmas to prove Theorem 3.2.1. In what follows, we write Γ1 � Γ2 if Γ1(x) �
Γ2(x) for any x ∈ dom(Γ2).

A.1 Lemma: Suppose Γ ` P .

1. If P = P1 |P2, then there exist Γ1 and Γ2 such that Γi ` Pi for i = 1, 2 and Γ � Γ1 + Γ2.

2. If P = P1 + · · · + Pn, then Γ ` Pi for every i.

3. If P = x![ỹ], then there exist τ̃ and τ such that Γ � x: [τ̃ ](0, 1) + y1: τ1 + · · · + yn: τn.
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4. If P = x?[ỹ].P ′, then there exist Γ′ and τ̃ such that Γ′, ỹ: τ̃ ` P ′ and Γ � Γ′ + x: [τ̃ ](1, 0).

5. If P = def x[ỹ]: [τ̃ ](ω, κ) = P1 in P2 end, then there exist Γi and κi (for i = 1, 2) such
that Γ1, x: [τ̃ ](0, κ1), ỹ: τ̃ ` P1 and Γ2, x: [τ̃ ](0, κ2) ` P2 where Γ � (κ2 · (κ1 + 1) · Γ1) + Γ2

and κ = κ2 · (κ1 + 1).

6. If P = (νx: τ)P ′, then Γ, x: τ ` P ′.

Proof: Easy. The derivation for each case ends with an application of the typing rule cor-
responding to the form of P , followed by several consecutive applications of rules T-Sub and
T-Weak. Notice that those consecutive applications of T-Sub and T-Weak can be replaced
by an application of the following rule:

Γ ` P Γ′ � Γ
Γ′ ` P

For parts 2 and 6, T-Sub and T-Weak may be applied to the premise of the application of
T-Choice (or T-New). 2

A.2 Lemma: Both �NonStr and �Str satisfy the following conditions:

1. If ρ
(κ11, κ12)
1 � ρ

(κ21, κ22)
2 , then κ1i ≥ κ2i for i ∈ {1, 2}.

2. If κ1 ≥ κ2 and κ3 ≥ κ4, then ρ(κ1, κ3) � ρ(κ2, κ4).

3. Suppose ρ
(κ11, κ12)
1 � ρ

(κ21, κ22)
2 . If κ21 ≥ 1 and κ22 ≥ 1, then ρ

(κ−
11, κ−

12)
1 is well-defined, and

ρ
(κ−

11, κ−
12)

1 � ρ
(κ−

21, κ−
22)

2 .

Proof: Easy from the definitions of �NonStr and �Str. 2

A.3 Lemma: If Γ, ỹ: τ̃ ` P and there exist τ̃ ′ such that τ ′
i � τi and Γ + z1: τ ′

1 + · · · + zn: τ ′
n is

well defined, then Γ + z1: τ ′
1 + · · · + zn: τ ′

n ` [z̃/ỹ]P .

Proof: To prove it, we need to prove the following stronger statement:

If Γ, z1: τz1 + · · ·+ zn: τzn , ỹ: τ̃y ` P and there exist τ̃ ′
z and τ̃ ′

y such that z1: τ ′
z1

+ · · ·+
zn: τ ′

zn
is well defined and τ ′

zi
� τzi and τ ′

yi
� τyi where τ ′

zi
+ τ ′

yi
is well defined for

i ∈ {1, . . . , n}, then Γ, z1: (τ ′
z1

+ τ ′
y1

) + · · · zn: (τ ′
zn

+ τ ′
yn

) ` [z̃/ỹ]P .

It is proved by straightforward induction on the derivation of Γ, z1: τz1 + · · · + zn: τzn , ỹ: τ̃y ` P
using T-Sub in the T-Out and T-In cases. Now the lemma itself is a special case of the
statement above. Note that, without loss of generality, we can assume dom(Γ) ⊇ {z̃}: otherwise
we can use T-Weak. 2

A.4 Lemma: If P1
∼= P2, then Γ ` P1 if and only if Γ ` P2.

Proof: Straightforward induction on the proof of P1
∼= P2: the cases for P1 |P2

∼= P2 |P1 and
P1 | (P2 |P3) ∼= (P1 |P2) |P3 follow from commutativity and associativity of the operation + on
type environments. The other base cases are also easy, as are the induction steps. 2

A.5 Lemma: If Γ ` def x[ỹ]: ρ(ω, κ) = Q in P end and P
x[ỹ]=Q−−−−−−→ P ′, then Γ `

def x[ỹ]: ρ(ω, κ−) = Q in P ′ end.
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Proof: By structural induction on the derivation of P
x[ỹ]=Q−−−−−−→ P ′ with case analysis by the

last rule used. Since the cases of induction steps are easy, we show the only base case R-Call.
By the assumption, we have

P = x![z̃]
P ′ = [z̃/ỹ]Q
Γ ` def x[ỹ]: ρ(ω, κ) = Q in x![z̃] end.

By Lemma A.1, we obtain

Γ1, x: [τ̃ ](0, κ1), ỹ: τ̃ ` Q

Γ2, x: [τ̃ ](0, κ2) ` x![z̃]
κ = κ2 · (κ1 + 1)
Γ � κ · Γ1 + Γ2.

Now we have two cases according to the value of κ, which is either 1 or ω. We show the case for
κ = 1. Then, it must be the case that κ1 = 0 and κ2 = 1 by κ = κ2 · (κ1 +1) and the definitions
of · and +. Again, by Lemma A.1, we have

Γ2, x: [τ̃ ](0, κ2) � x: [τ̃ ′](0, 1) + Γ′
2

where Γ′
2 = z1: τ ′

1 + · · · + zn: τ ′
n. Then, whether � is �NonStr or �Str, we have τ ′

i � τi for all
i since [τ̃ ](0, κ2) � [τ̃ ′](0, 1). Thus, Γ2 � z1: τ1 + · · · + zn: τn. By using Lemma A.3 and rule
T-Weak, we have

Γ1 + Γ2, x: [τ̃ ](0, 0) ` [z̃/ỹ]Q

By rule T-Def, we have

(0 · Γ1) + (Γ1 + Γ2) ` def x[ỹ]: ρ(ω, 0) = Q in [z̃/ỹ]Q end,

finishing the subcase. The other subcase (where κ = ω) is similar. 2

Proof of Theorem 3.2.1: We prove by structural induction on the proof of P
l−−→ P ′ (where

l is a variable or ε) with case analysis by the last rule used.
Case R-Comm: l = x

P = (· · · + x?[ỹ].Q + · · ·) |x![z̃]
P ′ = [z̃/ỹ]Q
Γ, x: ρ(κ1, κ2) ` (· · · + x?[ỹ].Q + · · ·) |x![z̃].

By Lemma A.1, we obtain

Γ′
1, x: [τ̃ ](κ11, κ12), ỹ: τ̃ ` Q

x: [τz1 , . . . , τzn ](0, 1) + Γ′
2 ` x![z̃]

Γ′
2 = z1: τz1 + · · · + zn: τzn

Γ1 � Γ′
1, x: [τ̃ ](κ11+1, κ12)

Γ2 � x: [τz1 , . . . , τzn ](0, 1) + Γ′
2

Γ, x: ρ(κ1, κ2) � Γ1 + Γ2

By Lemma A.2, κ1 ≥ 1 and κ2 ≥ 1. We have four cases according to the values of κ1 and
κ2. We only show the case where κ1 = κ2 = 1. By Lemma A.2, we have κ11 = κ12 = 0. We
have τzi � τi for i ∈ {1, . . . , n} whether � is �NonStr or �Str since ρ(κ1, κ2) � [τ̃ ](κ11+1, κ12) and
ρ(κ1, κ2) � [τz1, . . . , τzn ](0, 1). Thus, Γ2 \{x} � z1: τ1 + · · ·+zn: τn. By rule T-Weak and T-Sub,

(Γ1 \ {x}), x: [τ̃ ](0, 0), ỹ: τ̃ ` Q.
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Then, by using Lemma A.3 and rule T-Weak, we have

(Γ1 + Γ2) \ {x}, x: [τ̃ ](0, 0) ` [z̃/ỹ]Q

Finally, rules T-Sub and T-Weak finishes the subcase.
The other three subcases are similar.

Case R-Call:

This case is excluded because the label l is not x[ỹ] = P .
Case R-Cong:

It follows from Lemma A.4.
Case R-Par:

We show the case where l is a variable x. By assumption, we have Γ, x: ρ(κ1, κ2)
1 ` P1 |P2.

By Lemma A.1, there exist some Γ1 and Γ2 such that Γ1, x: ρ(κ3, κ4)
2 ` P1 and Γ2 ` P2

where Γ, x: ρ(κ1, κ2)
1 � (Γ1, x: ρ(κ3, κ4)

2 ) + Γ2. By induction hypothesis, Γ1, x: ρ(κ−
3 , κ−

4 )
2 ` P ′

1.

By Lemma A.2, it is easy to show that Γ, ρ
(κ−

1 , κ−
2 )

1 � (Γ1, x: ρ(κ−
3 , κ−

4 )
2 ) + Γ2. Thus, Γ, ρ

(κ−
1 , κ−

2 )
1 `

P ′
1 |P2 finishes the case.

Case R-Def1:

It follows from Lemma A.5.
Case R-New1, R-New2, R-Def2:

These cases are easy. 2

B Proof of Theorem 4.2.5

To prove Theorem 4.2.5, we need several lemmas. The three lemmas below ensure that the
auxiliary functions

⊕
,

⊔
, and

⊙
output the most general type environment and subtyping

constraint. Intuitively, we would expect Γ1
⊕

Γ2 outputs the most general Γ and C such that
C |= Γ � Γ1 + Γ2, but since it is not always the case that Γ1 + Γ2 is well defined, we may not
have such a pair; instead of taking a summation of Γ1 + Γ2 directly, we introduce extra type
environments Γ′

1 and Γ′
2 such that their summation is well defined and each of them satisfies

C |= Γ′
i � Γi. Then, Γ and C are the most general pair which satisfies C |= Γ � Γ′

1 + Γ′
2.

B.1 Lemma: Suppose (Γ, C) = Γ1
⊕

Γ2. Then, C |= (Γ � Γ′′
1 + Γ′′

2) ∪ (Γ′′
1 � Γ1) ∪ (Γ′′

2 � Γ2)
for some Γ′′

1 and Γ′′
2. Moreover, if C ′ |= Γ′ � Γ′

1 + Γ′
2 and Γ′

i ⊇ SΓi (for i ∈ {1, 2}) for some
S,Γ′,Γ′

1,Γ
′
2, and C ′, then there exists a substitution S′ such that Γ′ ⊇ S′Γ and C ′ |= S′C and

S′ ⊇ S, where S′ ⊇ S denotes dom(S′) ⊇ dom(S) and, for any type/use variable α (and j) in
the domain of S, S(α) = S′(α) (and S(j) = S′(j)).

Proof: Let Γ′′
11 and Γ′′

21 be respectively Γ′
1 and Γ′

2 in the definition of
⊕

, and Γ′′
12 and Γ′′

22 be
Γ1 \dom(Γ′′

11) and Γ2 \dom(Γ′′
21), respectively, and Γ′′

i be Γ′′
i1 ∪Γ′′

i2 for i ∈ {1, 2}. Then, the first
part C |= (Γ � Γ′′

1 + Γ′′
2) ∪ (Γ′′

1 � Γ1) ∪ (Γ′′
2 � Γ2) is trivial.

Now, let S′′ be a substitution such that dom(S′′) is type/use variables in Γ, Γ′′
11 and Γ′′

21, and
S′′Γ′′

i1 ⊆ Γ′
i for i ∈ {1, 2} and S′′Γ ⊆ Γ′. Such a substitution always exists since every type/use

variable in Γ′′
11,Γ

′′
21 and Γ is fresh. Since dom(S′′SΓ′′

i ) = dom(Γ′′
i ) = dom(Γi) = dom(S′′SΓi)

and S′′SΓ′′
i ⊆ Γ′

i and S′′SΓi = SΓi ⊆ Γ′
i, we have S′′SΓ′′

i = S′′SΓi for i ∈ {1, 2}. Note that the
domain of S′′ includes only fresh variables. Then, it is easy to show that C ′ |= Γ′ � Γ′

1 + Γ′
2

implies C ′ |= S′′S(Γ � Γ′′
1 + Γ′′

2), which is equivalent to C ′ |= S′′S(Γ � Γ′′
1 + Γ′′

2) ∪ S′′S(Γ′′
1 �

Γ1) ∪ S′′S(Γ′′
2 � Γ2). Letting S′ = S′′S finishes the proof. 2
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B.2 Lemma: Suppose Γ1
⊔

Γ2 = (Γ, C). Then, C |= (Γ � Γ1) ∪ (Γ � Γ2). Moreover, if there
exist S′,Γ′,Γ′

1,Γ
′
2, and C ′ such that C ′ |= (Γ′ � Γ′

1) ∪ (Γ′ � Γ′
2), and Γ′

i ⊇ S′Γi (for i ∈ {1, 2}),
then C ′ |= SC and Γ′ ⊇ S′Γ for some S.

B.3 Lemma: Suppose κ
⊙

Γ1 = (Γ2, C). Then, C |= Γ2 � κ · Γ1. Moreover, if there exist
Γ′

1,Γ
′
2, C

′, κ′, and S′ such that C ′ |= Γ′
2 � κ′ · Γ′

1 and Γ′
1 ⊇ S′Γ1 and κ′ = S′κ, then Γ′

2 ⊇ SΓ2

and C ′ |= SC for some S.

Proofs of Lemmas B.2 and B.3 are similar to that of Lemma B.1.

B.4 Lemma: If Γ;C `ST R P and C ′ |= C and C ′ |= Γ′ � Γ, then Γ′;C ′ `ST R P .

Proof: By induction on the derivation of Γ;C `ST R P using transitivity of |= and the fact
that C |= Γ1 � Γ2 and C |= Γ2 � Γ3 implies C |= Γ1 � Γ3. 2

Proof of Theorem 4.2.5: Structural induction on the derivation of Γ′;C ′ `ST R SP , with
case analysis on the last rule used. We show only a few cases because the other cases are similar.
Case ST-Par: P = P1 |P2 Γ′

1;C
′
1 `ST R SP1 Γ′

2;C
′
2 `ST R SP2

C ′ |= Γ′ � Γ′
1 + Γ′

2 C ′ |= C ′
1 C ′ |= C ′

2

We first show Γ;C `ST R P where (Γ, C) = PTU (P ). Let (Γi, Ci) = PTU (Pi) for i ∈ {1, 2}. By
induction hypothesis, Γi;Ci `ST R Pi for i ∈ {1, 2}. Then, let (Γ, C) = Γ1

⊕
Γ2. By Lemma B.1,

(Γ, C) satisfies

C |= (Γ � Γ′′
1 + Γ′′

2) ∪ (Γ′′
1 � Γ1) ∪ (Γ′′

2 � Γ2)

for some Γ′′
1 and Γ′′

2. By Lemma B.4, Γ′′
i ;C ∪ C1 ∪ C2 `ST R Pi for i ∈ {1, 2}. By ST-Par, we

have Γ;C ∪ C1 ∪ C2 `ST R P .
Now, we must show that there exists a substitution S′ such that C ′ |= S′(C ∪C1 ∪ C2) and

Γ′
i ⊇ S′Γi where SP = S′P . By induction hypothesis, there exists a substitution Si such that

SPi = SiPi and C ′
i |= SiCi, and Γ′

i ⊇ SiΓi for i ∈ {1, 2}. Since the domains of S1 and S2

are disjoint, and each Γi includes only fresh type/use variables, Γ′
i ⊇ (S1 ∪ S2)Γi for i ∈ {1, 2},

where S1∪S2 stands for the union of two mappings whose domains are disjoint. By Lemma B.1,
(Γ, C) satisfies

Γ′ ⊇ S′′Γ
C ′ |= S′′C
S′′ ⊇ S1 ∪ S2

for some S′′. Letting S′ = S′′ finishes the case since S′P = SP and Γ′ ⊇ S′Γ and C ′ |=
S′(C∪C1∪C2), which is equivalent to C ′ |= S′′C∪S1C1∪S2C2. Note that dom(S′)\dom(S1∪S2)
is disjoint from type variables in C1 ∪ C2: in the proof of Lemma B.1, S′ is constructed by
extending S1 ∪ S2 with a mapping from fresh variables.
Case ST-New: P = (νx: τx)P ′ Γ′, x: τ ′

x;C ′ `ST R S′P ′ C ′ |= S′τx � τ ′
x.

We first show Γ;C `ST R P where (Γ, C) = PTU (P ). Let (Γ′′, C ′′) = PTU (P ′). By induction
hypothesis, Γ′′;C ′′ `ST R P ′. We show the subcase where x ∈ dom(Γ′′) here. Since C ′′ ∪ {τx �
Γ′′(x)} |= τx � Γ′′(x), we have

(Γ′′ \ {x});C ′′ ∪ {τx � Γ′′(x)} `ST R (νx: τx)P ′

by rule ST-New. Now, we must show there exists S such that C ′ |= S(C ′′ ∪ {τx � Γ′′(x)}) and
Γ′ ⊇ S(Γ′′ \ {x}). By induction hypothesis, we have S′′ such that C ′ |= S′′C ′′ and Γ′, x: τ ′

x ⊇
S′′Γ′′. We have S by extending S′′ so that Sτx = S′τx; it is possible since type/use variables in τx

are distinct from any other variables. Finally, C ′ |= SC ′′∪{Sτx � SΓ′′(x)} and Γ′ ⊇ S(Γ′′\{x}).
The other subcase, where x 6∈ dom(Γ), is similar. 2
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C Proof of Lemma 5.3.20

First, we prove termination of the rewriting system by introducing a well-founded order > on
quadruples (C,Θ1,Θ2, S). We begin with several preliminary definitions. The size |C| of an
extended subtyping constraint is defined as follows:

|∅| = 0
|C ] {τ1 � τ2}| = |C| + |τ1| + |τ2|
|C ] {κ ⇒ τ1 � τ2}| = |C ] {τ1 � τ2}| + 1
|α(κ1, κ2)| = 1
|[τ̃ ](κ1, κ2)| = (|τ1| + · · · + |τn|) + n + 1

We extend ≥ between uses pointwise to substitutions of uses: S1 ≥ S2 if and only if dom(S1) =
dom(S2), and S1j ≥ S2j for any use variable j ∈ dom(S2). The proper order S1 > S2 on
substitutions of uses for use variables is defined by: S1 > S2 if and only if S1 ≥ S2 and S1 6= S2.
Finally, (C1,Θ11,Θ12, S1) > (C2,Θ21,Θ22, S2) if and only if either (1) S2 > S1, (2) S1 = S2 and
|C1| > |C2|, or (3) S1 = S2 and |C1| = |C2| and Θ11 ⊃ Θ21.

C.1 Lemma: The set of quadruples (C,Θ1,Θ2, S) is well-founded under >.

Proof: > is a lexicographic product of well-founded orderings > on S, > on integers and ⊃
on Θ. 2

C.2 Lemma: The rewriting system ((C,Θ1,Θ2, S),;) is strong normalizing.

Proof: It is easy to show that if (C,Θ1,Θ2, S) ; (C ′,Θ′
1,Θ

′
2, S

′), then (C,Θ1,Θ2, S) >
(C ′,Θ′

1,Θ
′
2, S

′) by inspecting the rules for ;. Note that, for the third rule, we have

|C ] {[τ̃ ](κ11, κ12) � [τ̃ ′](κ21, κ22)}|
= |C| + (|τ1| + · · · + |τn| + n + 1) + (|τ ′

1| + · · · + |τ ′
n| + n + 1)

> |C| + (|τ1| + · · · + |τn|) + (|τ ′
1| + · · · + |τ ′

n|) + 2n
= |C ] {κ21 ⇒ τi � τ ′

i | 1 ≤ i ≤ n} ∪ {κ22 ⇒ τ ′
i � τi | 1 ≤ i ≤ n}|

Therefore, strong normalization follows from well-foundedness of >. 2

Rewriting steps preserve the following properties:

C.3 Lemma: Suppose (C,Θ1,Θ2, S) ;∗ (C ′,Θ′
1,Θ

′
2, S

′).

(1) If C is a matching constraint that contains no type variables and, for any constraint
expression τ � ρ(κ1,κ2) ∈ C, every use in τ and ρ is either a use variable or constant, and,
for any κ1 ≥ κ2 ∈ Θ1, the left-hand side κ1 is either a use variable or constant, then C ′

and Θ′
1 satisfy the same conditions.

(2) S′′ is a solution of C ∪ Θ1 ∪ Θ2 ∪ {j ≥ Sj | j ∈ dom(S)} iff S′′ is a solution of C ′ ∪ Θ′
1 ∪

Θ′
2 ∪ {j ≥ S′j | j ∈ dom(S′)}.

(3) if S is a solution of Θ2, then S′ is a solution of Θ′
2.

Proof: By induction on the length of the rewriting steps with inspection of the rewriting rules.
2
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Proof of Lemma 5.3.20: By Lemma C.2, (C, ∅, ∅, [0/j1 , . . . , 0/jn]) rewrites to a normal form
(C ′,Θ1,Θ2, S). If Θ1 is empty, then S is the least solution of C ′ ∪ Θ2 ∪ {j ≥ Sj | j ∈ dom(S)}
since C ′ includes a constraint expression of the form κ ⇒ τ1 � τ2 where Sκ = 0 (otherwise the
quadruple is not a normal form), and S is a solution of Θ2 by Lemma C.3 (3). By Lemma C.3
(2), S is the least solution of C. On the other hand, if Θ1 is not empty, then S is not a solution
of Θ since Θ1 includes only constraints of the form c ≥ κ (by Lemma C.3 (1)) such that c 6≥ Sκ
(otherwise the quadruple is not a normal form); by Lemma C.3 (2), C has no solutions. 2

D Benchmark Programs

This section shows some of the programs used in the experiments of Section 6. The benchmark
programs are translated to those written in the target language of this paper (extended with
several mathematical operations, conditional expressions, and records). In the programs below,
output is a special channel which represents an output device such as a display, {l1 = x1, . . . , ln =
xn} constructs a record of x1, . . . , xn with field names l1, . . . , ln, respectively, and x.l selects a
field l from a record x.

D.1 Fibonacci Functions

Naive and optimized sequential fibs are described as the example of our analysis (Section 5.4).
Naive parallel fib:

def pfib[n, c] =
if n < 2 then c![1]
else (νc1)(νc2)(pfib![n − 1, c1] | pfib![n − 2, c2] | c1?[x].c2?[y].c![x + y])

in pfib![25,output ] end

is optimized to the following expression:

def pfibopt(n, c) =
if n < 2 then c![1]
else (νc2)(def c1[x] = c2[y].c![x + y] in

pfibopt ![n − 1, c1] | pfibopt ![n − 2, c2] end)
in pfibopt ![25,output ] end

D.2 Counter Objects

The naive implementation of a counter object is:

def newcounter [init , c] =
(νst)(st ![init ]

|def g[c1] = st?[x].(c1![x] | st ![x]) in (* get the state of the counter *)
def i[ack ] = st?[x].(ack ![ ] | st ![x + 1]) in (* increment the counter *)

c![{get = g, inc = i}] end end)
in def incr [n, o, ack ] = (* invoke inc method n times *)

if n = 0 then ack ![ ]
else (νr)(o.inc![r] | r?[ ].(incr ![n − 1, o, ack ]))

in (νr1)(newcounter ![0, r1]
| r1?[o].(νr2)(incr ![10000, o, r2 ] | r2?[ ].(o.get ![output ])))

end end
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Then, the above program is optimized to:

def newcounter [init , c] =
(νst)(st ![init ]

|def g[c1] = st?[x].(c1![x] | st ![x]) in
def i[ack ] = st?[x].(ack ![ ] | st ![x + 1]) in

c![{get = g, inc = i}] end end)
in def incr [n, o, ack ] =

if n = 0 then ack ![ ]
else def r[ ] = incr ![n − 1, o, ack ] in o.inc![r] end

in def r1[o] = def r2[ ] = o.get ![output ] in incr ![10000, o, r2 ] end
in newcounter ![0, r1] end

end end

D.3 Tree Summation

The naive implementation of tree object is:

def newnode [n, left , right , rep] = (* n = 0 : node object, n 6= 0 : leaf object holding n *)
(νst)(st ![n, left , right ]

|def s[c] =
st?[n, l, r].(st ![n, l, r]

| if n <> 0 then c![n]
else (νr1)(νr2)(r.sum ![r1] | l.sum![r2] | r1?[x1].r2?[x2].c![x1 + x2]))

in rep![{sum = s}] end)
in def gentree[n, rep] =

if n = 0 then (νl)(νr)newnode ![1, l, r, rep ]
else (νr1)(νr2)(gentree ![n − 1, r1] | gentree ![n − 1, r2]

| r1?[left ].r2?[right ].newnode ![0, left , right , rep])
in (νr)(gentree [14, r] | r?[o].(o.sum ![output ])) end end

Then, the optimized program is:

def newnode [n, left , right , rep] =
(νst)(st ![n, left , right ]

|def s[c] =
st?[n, l, r].(st ![n, l, r]

| if n <> 0 then c![n]
else (νr2) def r1[x1] = r2?[x2].c![x1 + x2]

in r.sum![r1] | l.sum ![r2] end
in rep![{sum = s}] end)

in def gentree[n, rep] =
if n = 0 then (νr1)(νr2)newnode ![1, r1, r2, rep]
else (νr2)(def r1[left ] = c2?[right ].newnode ![0, left , right , rep ]

in gentree ![n − 1, r1] | gentree ![n − 1, r2] end)
in def r[o] = o.sum![output ] in gentree[14, r] end end
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