
Type-based Analysis of Communication for

Concurrent Programming Languages

Atsushi Igarashi

?

and Naoki Kobayashi

Department of Information Science, University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 Japan

figarashi, kobag@is.s.u-tokyo.ac.jp

Abstract. Powerful concurrency primitives in recent concurrent lan-

guages and thread libraries provide the great exibility about implemen-

tation of high-level features like concurrent objects. However, they are

so low-level that they often make it di�cult to check global correctness

of programs or to perform aggressive code optimization. We propose a

static analysis method for inferring how many times each communication

channel is used during execution of concurrent programs: a type system

that is sensitive to usage information is constructed for this purpose and

a type reconstruction algorithm is developed. Our analysis can, in par-

ticular, automatically detect linear channels (communication channels

used just once): as studied by Kobayashi, Pierce, and Turner, they are

very useful for reasoning about program behavior and aggressive code

optimization. Our analysis has already been implemented and applied

to the compiler of a concurrent language HACL; we present the results

of simple benchmarks to show performance improvement gained by our

analysis.

1 Introduction

Background. Many recent concurrent languages and thread libraries provide pro-

grammers with powerful but rather low-level concurrency primitives: dynamic

creation of processes and �rst-class communication channels. The major advan-

tages of providing those primitives are: (1) complex communication mechanisms

can be easily implemented and modi�ed; (2) their semantics can be obtained

uniformly in terms of the semantics of those primitives; and (3) implementation

of concurrent languages can be substantially simpli�ed. However, such advan-

tages are not free: when low-level primitives are used for implementing high-level

features like concurrent objects, useful information about their behavior may be

lost and as a result, it is di�cult to check global correctness of programs or to

perform aggressive code optimization.

Linear Types for Concurrent Languages. In order to overcome the above prob-

lems, a number of techniques have been recently proposed for analyzing the com-

munication topology [12, 2], checking usage of communication channels [14, 8],

?

Research Fellow of the Japan Society for the Promotion of Science.

detecting deadlock [6], etc. Among them, the linear channel type system [8],

which guarantees that certain channels are used at most once, is potentially use-

ful both for ensuring the correct program behavior and for optimizing concurrent

programs. In order to illustrate the ideas, we consider the following asynchronous

process calculus:

P ::= P

1

jP

2

(parallel execution of P

1

and P

2

)

j (�x)P (creates a channel x and executes P)

j x![y

1

; : : : ; y

n

] (sends y

1

; : : : y

n

along the channel x)

j x?[y

1

; : : : ; y

n

]:P (receives values v

1

; : : : ; v

n

along x

and executes [v

1

=y

1

; : : : ; v

n

=y

n

]P)

For example, the process x?[z]: y![z] receives a value along the channel x and

then forwards it to the channel y. Earlier type systems for concurrent languages

(including CML [16]) were only concerned with the type of values transmitted

along channels; so x?[z]: y![z] has been typed as:

x : [�]; y : [�] ` x?[z]: y![z],

where [�] denotes the type of channels used for transmitting values of type � .

The idea of the linear type system is to annotate channel type construc-

tors with information about how often channels can be used for input or output

(we use here a slightly di�erent formalization from the original linear type sys-

tem [8].); so, the above type judgement is replaced by:

x : [�]

(1;0)

; y : [�]

(0;1)

` x?[z]: y![z].

The superscript pair (�

1

; �

2

) of integers or ! (in�nity) speci�es how often a

channel can be used for input (by �

1

) and for output (by �

2

). (Throughout the

paper, `a channel being used for input or output' means that a process tries to

receive or send a value along the channel, rather than that a process succeeds

in receiving or sending a value by �nding its communication partner.) Let us

consider a more complex example:

f : [int; []

(0;1)

]

(0;1)

; r : []

(1;1)

; r

0

: []

(0;1)

; n : int ` f ![n; r] j r?[]: r

0

![].

The type of f indicates that f can be used at most once for sending a pair of an

integer and a channel and also that the channel may be used by the receiver on

f at most once for sending a null tuple. By using such type information, we can

safely replace the process (�r) (f ![n; r] j r?[]: r

0

![]) with the more e�cient process

f ![n; r

0

]. As we have argued elsewhere [7, 8], this optimization corresponds to

tail-call optimization of functions.

However, the previous linear type system [8] has been only concerned with

checking usage information; so programmers must put heavy annotations in order

to make optimization work. The main reason for it is that the type system

apparently has no principal typing property: in fact, there are lots of other

possible typings for the above process:

f : [int; []

(1;0)

]

(0;1)

; r : []

(2;0)

; r

0

: []

(0;1)

; n : int ` f ![n; r] j r?[]: r

0

![]

f : [int; []

(1;1)

]

(0;1)

; r : []

(2;1)

; r

0

: []

(0;1)

; n : int ` f ![n; r] j r?[]: r

0

![]

� � �

Our Goal and Approach. The main goal of the present paper was to re�ne the

above type system so that usage information can be automatically inferred. The

key idea to achieve that goal is to introduce use variables and constraint on

them, so that partial information on channel usage can be expressed. The new

type judgement is of the form � ;� ` P where � is a mapping from variables

to types annotated with use information, and � is a set (which we call a use

constraint set) of constraints on use variables. The two processes given above are

typed in our new type system as follows:

x : [�]

(j

x

;k

x

)

; y : [�]

(j

y

;k

y

)

; fj

x

� 1; k

y

� 1g ` x?[z]: y![z]

f : [int; []

(j;k)

]

(j

f

;k

f

)

; r : []

(j

r

;k

r

)

; r

0

: []

(j

r

0

;k

r

0

)

; n : int;

fj

r

� j + 1; k

r

� k; k

f

� 1; k

r

0

� 1g ` f ![n; r] j r?[]: r

0

![]

The use constraint sets specify the values taken by use variables (j; k; : : :). In the

process f ![n; r] j r?[]: r

0

![], r is used once for input by r?[]: r

0

![] and it may also

be used by the receiver on f at most j times for input; therefore, as speci�ed

by the inequation j

r

� j + 1, the total number j

r

of input uses of r may be

greater than or equal to j + 1. It can be shown that both of the above type

judgements are principal in the sense that they have all the possible typings as

their instances. If we let use variables to range over a �nite set of values, the

least solution of a use constraint set can always be computed e�ciently. (In fact,

here we let them range over the set f0; 1; !g: as we have argued elsewhere [8],

few bene�ts would be gained by introducing other values: 2; 3; : : :)

Applications. Applications of our analysis include:

(1) Elimination of redundant communication and channel creation: as mentioned

above, usage information can be used for tail-call optimization of functions

and methods of concurrent objects; moreover, as shown in a later section,

if we implement functions or concurrent objects in terms of concurrency

primitives, similar optimization can also be applied to most of the function

or method calls.

(2) Reduction of the cost for communication: we can optimize run-time repre-

sentation of a used-once channel (which we call a linear channel) and also

reduce run-time check of its state (and sometimes we can allocate it in a

register).

(3) Improvement of memory utilization: the memory space for a linear channel

can be reclaimed immediately after it is used for communication.

The amount of performance improvement of course depends on how often linear

channels are used in actual concurrent programs. (Informal) pro�ling of programs

written in CML [16], Pict [15], and HACL [9] indicates that linear channels are

very frequently used: it is because at least one of the two channels used in a

typical function or method call is linear.

Contributions and Overview of the Paper. The main contributions of the present

work are: (1) formalization of the type system mentioned above and a proof of the

existence of principal typing, (2) development of a polynomial time algorithm to

infer usage information, which consists of an algorithm to compute the principal

typing and an algorithm to solve a use constraint set, and (3) evaluation of our

analysis via simple benchmarks. For clarity and space restriction, we use here a

pure process calculus as a target language; however, we believe that our analysis

is applicable to many other concurrent languages [16, 19, 18, 15, 9]: in fact, we

have already incorporated our analysis into the compiler of HACL (which has

functions, records, and a polymorphic type system) and given a formal proof

of the correctness of our analysis for HACL (please refer to Igarashi's master

thesis [3]).

The rest of this paper is organized as follows. Section 2 introduces our target

language. After presenting typing rules in Section 3, we give a type reconstruc-

tion algorithm and show how to detect linear channels in Section 4. Section 5

briey mentions the correctness of our type judgement on usage information with

respect to operational semantics. Section 6 reports experimental results of ap-

plying our analysis to compile-time optimizations of concurrent programs. After

discussing related work in Section 7, we conclude in Section 8. Proofs omitted

in this paper can be found in an accompanying technical report [4].

2 Notational Preliminaries

In this section, we introduce the syntax of types, process expressions, and type

judgements. The target language can be considered an asynchronous fragment

of the polyadic �-calculus [11], and it is close to the core languages of HACL [9]

and Pict [15].

2.1 Types with Uses

As already mentioned, uses are associated to the channel type constructor and

denote how many times each channel is used. The set of uses, ranged over by �,

is de�ned by:

� ::= j j 0 j 1 j! j�

1

+ �

2

j�

1

t �

2

j�

1

� �

2

The metavariable j(; k; l; : : :) ranges over a countably in�nite set of use variables.

0; 1, and ! are often called use constants. The use constant 0 means that channels

can never be used, 1 means that channels can be used at most once, and ! means

that channels can be used an arbitrary number of times. Expressions �

1

+ �

2

,

�

1

t�

2

, and �

1

��

2

are called summation, upper-bound, and product, respectively.

De�nition 1 (bare types, types). The set of bare types, ranged over by �,

and the set of types, ranged over by � , are given by the following syntax:

� ::= � (type variables)

j bool (boolean type)

j [�

1

; : : : ; �

n

] (channel types)

� ::= �

(�

1

;�

2

)

The metavariable �(; �; : : :) ranges over a countably in�nite set of type variables.

A bare type [�

1

; : : : ; �

n

] (n may be 0), often abbreviated to [~�], denotes the type

of channels via which a tuple of values of types �

1

; : : : ; �

n

is transmitted. The

superscripted use �

1

(�

2

, resp.), often called input (output , resp.) use, denotes

how often the channel is used for input (output, resp.). For example, [�]

(0;1)

denotes the type of channels used at most once for sending a value of type � .

For the convenience of type reconstruction, we attach uses also to the boolean

type; since they are not important, we always assume that they are ! and often

write bool for bool

(!;!)

.

Several operations on use constants and types are de�ned below.

De�nition 2. The relation � between use constants is the total order de�ned

by ! � 1 � 0. We extend � to a partial order between types: �

(�

1

;�

2

)

1

� �

(�

3

;�

4

)

2

if and only if �

1

= �

2

, �

1

� �

3

, and �

2

� �

4

.

We often write ~� � ~�

0

instead of �

1

� �

0

1

; : : : ; �

n

� �

0

n

.

De�nition 3. The binary operator + on use constants, called summation, is the

commutative and associative operation that satis�es 0 + 0 = 0, 1 + 0 = 1, and

1 + 1 = ! + 0 = ! + 1 = ! + ! = !. The summation of two types, written

�

1

+ �

2

, is de�ned only when their bare types are identical: �

(�

1

;�

2

)

+ �

(�

3

;�

4

)

=

�

(�

1

+�

3

;�

2

+�

4

)

.

De�nition 4. The binary operator t on use constants, called upper-bound, is the

commutative and associative operation de�ned by: �

1

t �

2

= �

1

if �

1

� �

2

, and

�

1

t�

2

= �

2

otherwise. The upper-bound of two types, written �

1

t�

2

, is de�ned

only when their bare types are identical: �

(�

1

;�

2

)

t �

(�

3

;�

4

)

= �

(�

1

t�

3

;�

2

t�

4

)

.

De�nition 5. The binary operator � on use constants, called product, is the

commutative and associative operation that satis�es 0 � 0 = 0 � 1 = 0 � ! = 0,

1 � 1 = 1, and 1 � ! = ! � ! = !. The product is extended to an operation on use

constants and types by: � � �

(�

1

;�

2

)

= �

(���

1

;���

2

)

.

2.2 Process Expressions

De�nition 6. The set of process expressions, ranged over by P , is de�ned by:

P ::= P

1

jP

2

(parallel composition)

j (�x : �)P (channel creation)

j x![y

1

; : : : ; y

n

] (output atom)

j x?[y

1

; : : : ; y

n

]:P (input pre�x)

j �x x[y

1

; : : : ; y

n

] : � = P

1

in P

2

end (local process de�nition)

j if x then P

1

else P

2

(conditional expression)

The metavariable x(; y; z; : : :) ranges over a countably in�nite set of variables.

We assume that the set of variables contains special variables true and false .

The intuitive meanings of the expressions which were not introduced in Sec-

tion 1 are as follows. �x x[y

1

; : : : ; y

n

] : �

(�

1

;�

2

)

= P

1

in P

2

end �rst creates a

fresh channel x and spawns a process that repeatedly receives values z

1

; : : : ; z

n

from the channel x and spawns [z

1

=y

1

; : : : ; z

n

=y

n

]P

1

at most �

1

times; it then

executes the process P

2

.

2

We will later ensure by typing rules that x can be

used only for output in P

1

and P

2

at most �

2

times and that �

1

= �

2

; therefore,

x[y

1

; : : : ; y

n

] = P

1

can be regarded as a process de�nition since x![z

1

; : : : ; z

n

] in

P

1

or P

2

is always reduced to [z

1

=y

1

; : : : ; z

n

=y

n

]P

1

. We often call P

1

the body

of the process de�nition. if x then P

1

else P

2

is a conditional expression that

executes P

1

if x is true and executes P

2

if x is false.

A sequence of variables y

1

; : : : ; y

n

(n may be 0) is often written as ~y. Sim-

ilarly, a sequence of channel creations (�x

1

: �

1

) : : : (�x

n

: �

n

) is often abbre-

viated to (�~x : ~�). We give (�x : �) and x?[~y]: a higher precedence than j ;

for example, x?[z]:y![z] j (�w : �)P

1

jP

2

means (x?[z]:y![z]) j ((�w : �)P

1

) jP

2

.

The type annotations in �-pre�x and �x will be used for program transfor-

mation or for e�cient code generation for channels. Note that a programmer

need not write them: they can be automatically recovered by the type re-

construction algorithm given in Section 4. We often omit type annotations.

The bound variables of a process expression can be de�ned in a customary

fashion, i.e., (1) a variable x is bound in P of (�x)P and in both P

1

and

P

2

of �x x[~y] = P

1

in P

2

end and, (2) variables y

1

; : : : ; y

n

are bound in P of

x?[y

1

; : : : ; y

n

]:P and �x x[y

1

; : : : ; y

n

] = P in P

2

end. A variable which is not

bound will be called a free variable. We de�ne �-conversions of bound variables

in a customary manner and assume that implicit �-conversions make all the

bound variables in a process expression di�erent from the other bound variables

and free variables.

2.3 Type Judgement Form

We de�ne type environments, several operations on them, use constraint sets,

and type judgement form.

Type Environments. A type environment � is a mapping from a �nite set of

variables to the set of types such that � (true) = bool and � (false) = bool.

dom(�) denotes the domain of � . We write x

1

: �

1

; : : : ; x

n

: �

n

, abbreviated to

~x : ~� , for the type environment � such that dom(�) = fx

1

; : : : ; x

n

; true; falseg

and � (x

i

) = �

i

for each i 2 f1; : : : ; ng. When x 62 dom(�), we write �; x : � for

the type environment �

0

such that dom(�

0

) = dom(�) [fxg, �

0

(x) = � and

�

0

(y) = � (y) if x 6= y.

The operations `+' and `t' on types are pointwise extended to type envi-

ronments: that is, �

1

+ �

2

(�

1

t �

2

, resp.) is a type environment � such that

dom(�) = dom(�

1

) [dom(�

2

), � (x) = �

1

(x) + �

2

(x) (�

1

(x) t �

2

(x), resp.)

if x 2 dom(�

1

) \ dom(�

2

), � (x) = �

1

(x) if x 2 dom(�

1

) n dom(�

2

), and

� (x) = �

2

(x) if x 2 dom(�

2

)ndom(�

1

). � �� is de�ned by: dom(� ��) = dom(�)

2

Thus, �x x[y

1

; : : : ; y

n

] : �

(�

1

;�

2

)

= P

1

in P

2

end is similar to

(�x : �

(�

1

;�

2

)

) (

�

1

z }| {

x?[y

1

; : : : ; y

n

]: P

1

j � � � jx?[y

1

; : : : ; y

n

]: P

1

jP

2

)

and (� � �)(x) = � � (� (x)). �

1

� �

2

is de�ned by: �

1

� �

2

if and only if

dom(�

1

) � dom(�

2

) and 8x 2 dom(�

2

):�

1

(x) � �

2

(x).

Use Constraint Set. A use constraint set � is a set of inequalities of the form

�

1

� �

2

. The relation � is extend to the relation �

�

between uses:

De�nition 7. A substitution S of use constants for use variables respects a use

constraint set � if and only if for any inequality �

1

� �

2

in �, S�

1

� S�

2

holds. The binary relation �

�

is de�ned by: �

1

�

�

�

2

if and only if, for any

substitution that respects �, S�

1

� S�

2

. �

1

�

�

�

2

is extended to a binary

relation on types by: �

(�

1

;�

2

)

1

�

�

�

(�

3

;�

4

)

2

if and only if �

1

= �

2

, �

1

�

�

�

3

and

�

2

�

�

�

4

.

For example, j �

�

1 holds for � = fj � k + 1g.

Type Judgement Form. A type judgement is of the form � ;� ` P , read as \P

is well-typed under the type environment � and the use constraint set �." It

means not only that P is well-typed in the ordinary sense, but also that each

channel in P is used according to the uses of its type in � or P ; for example,

the type judgement �; x : [�]

(1;0)

;� ` P means that P uses x at most once for

receiving a value of the type � , and it never uses x for sending a value.

3 Typing Rules

We give the typing rules below. Since type environments are concerned with

uses of variables, we need to take special cares in merging type environments.

For example, if x : [�]

(0;1)

;� ` P

1

and x : [�]

(1;0)

;� ` P

2

, then x is totally used

once for output and once for input in P

1

jP

2

. Therefore, the total use of a variable

in P

1

jP

2

should be obtained by adding the uses in two type environments. Thus,

the rule for parallel composition is:

�

1

;� ` P

1

�

2

;� ` P

2

�

1

+ �

2

;� ` P

1

jP

2

(T-Par)

On the other hand, in a conditional expression if x then P

1

else P

2

, only

either P

1

or P

2

is executed. So, both two expressions should be typed under the

same type environment. Thus, the rule for conditional expressions is:

� ;� ` P

1

� ;� ` P

2

x : bool + � ;� ` if x then P

1

else P

2

(T-If)

Because x is used for output in x![~y], the output use of x must be greater

than 0. Similarly, since x is used for input in x?[~y]:P , the input use of x must

be greater than 0. Thus, the rules for an output atom and an input pre�x are:

�

2

�

�

1

x : [~�]

(�

1

;�

2

)

+ y

1

: �

1

+

� � �+ y

n

: �

n

;� ` x![~y]

(T-Out)

�; ~y : ~� ;� ` P �

1

�

�

1

� + x : [~�]

(�

1

;�

2

)

;� ` x?[~y]:P

(T-In)

Unlike the case for an input pre�x, P

1

of �x x[~y] = P

1

in P

2

end may be

executed more than once. The typing rule for a local process de�nition is:

0 �

�

�

11

0 �

�

�

21

�

1

; x : [~�]

(�

11

;�

12

)

; ~y : ~� ;� ` P

1

�

2

; x : [~�]

(�

21

;�

22

)

;� ` P

2

(�

22

� (�

12

+ 1) � �

1

) + �

2

;� `

�x x[~y] : [~�]

(�

22

�(�

12

+1);�

22

�(�

12

+1))

= P

1

in P

2

end

(T-Proc)

The conditions 0 �

�

�

11

and 0 �

�

�

21

ensure that x is not used for input in P

1

or P

2

. The multiplication of �

1

by �

22

� (�

12

+ 1) and the type annotation for x

are explained as follows. The premise �

1

; x : [~�]

(�

11

;�

12

)

; ~y : ~� ;� ` P

1

indicates

that x may be used �

12

times for output in the process P

1

. Therefore, each time

x is used for output in P

2

, P

1

is invoked and x may be used �

12

times for output;

moreover, each use of x in P

1

again spawns P

1

and causes x to be used �

12

times;

thus, each use of x for output in P

2

may cause x to be used 1 + �

12

+ �

2

12

+ � � �

times. Since the premise �

2

; x : [~�]

(�

21

;�

22

)

;� ` P

2

indicates that x may be used

�

22

times for output in P

2

, the total number of uses of x for output is bound

by �

22

� (1 + �

12

+ �

2

12

+ � � �) = �

22

� (1 + �

12

). For example, in the expression

�x x[] = (x![] jx![]) in x![] end , x![] produces two more copies of x![], each of

which again produces two copies; thus, the total number of messages sent to x

is 1 + 2 + 2

2

+ � � � = !.

The rule for channel creation moves the corresponding binding from the type

environment to the �-pre�x.

�; x : [~�]

(�

1

;�

2

)

;� ` P

� ;� ` (�x : [~�]

(�

1

;�

2

)

)P

(T-New)

We can weaken the assumption on uses. For example, if x : [�]

(0;1)

; y : � ;� `

x![y] holds, then we allow x : [�]

(0;!)

; y : � ;� ` x![y]: that is, if P is well-typed

under the assumption that x is used at most once, then P is also well-typed

under the weaker assumption that x is used an arbitrary number of times. The

rule (T-Weak) allows such weakening on uses.

�

0

;� ` P � �

�

�

0

� ;� ` P

(T-Weak)

4 Type Reconstruction and Detection of Linear Channels

This section shows an algorithm to detect linear channels. Our algorithm consists

of two phases: in the �rst phase, the most general typing (principal typing) is

computed for a given process, and in the second phase, the least solution for

the use constraint set is obtained and substituted. After de�ning the notion of

principal typing in Subsection 4.1, we explain a type reconstruction algorithm

to compute the principal typing in Subsection 4.2, and then show how to solve a

use constraint set in Subsection 4.3. As briey discussed in Subsection 4.3, our

algorithm runs in time polynomial in the size of a process. A simple example of

the detection of linear channels is also presented.

4.1 Principal Typing

The principal typing of a process expression P is the most general triple (�;�; P

0

)

such that P

0

= SP and � ;� ` P

0

for some substitution S for type variables and

use variables. The relation �

1

j= �

2

used below is de�ned by: �

1

j= �

2

if and

only if 8(�

1

� �

2

) 2 �

2

; �

1

�

�

1

�

2

.

De�nition 8. (�;�; P

0

) is a principal typing of P if and only if the following

three conditions are satis�ed: (1) P

0

= SP for some substitution S, (2) S� ;S� `

SP

0

for any substitution S, and (3) if P

00

= SP for some substitution S and

�

0

;�

0

` P

00

, then there exists a substitution S

0

such that P

00

= S

0

P

0

, �

0

j= S

0

�

and �

0

� S

0

� .

Note that a principal typing of P may exist even when there is no � and S

such that � ; ; ` SP . For example, consider the process �x x[] : []

(j;k)

= x![] in

x?[]: x![] end : although it violates the rule that a channel x bound by �x cannot

be used for input, it has (;; f0 � j; j � 1g;�x x[] : []

(j;j)

= x![] in x?[]: x![] end)

as the principal typing; this kind of process will be rejected in the second phase,

in which it is checked whether the use constraint set is satis�able.

4.2 Type Reconstruction Algorithm

A type reconstruction algorithm is obtained by (1) combining each rule with the

rule (T-Weak) (so that the resulting typing rules are syntax-directed) and (2)

reading the new typing rules in a bottom-up manner.

For example, the rule (T-Par) is replaced by:

�

1

;�

1

` P

1

�

2

;�

2

` P

2

� �

�

�

1

+ �

2

� j= �

1

� j= �

2

� ;� ` P

1

jP

2

(ST-Par)

It tells us to �rst compute the principal typings (�

1

; �

1

; P

0

1

) and (�

2

; �

2

; P

0

2

) for

P

1

and P

2

, and then compute the most general type environment � and use

constraint set � such that � �

�

�

1

+ �

2

, � j= �

i

for i = 1; 2.

The type reconstruction algorithm obtained in this manner is sound and

complete: it takes a process expression P as an input and returns the principal

typing of P if P is typable (otherwise it fails). For space restriction, we omit the

whole description of the algorithm. Please refer to [4] for details. As already men-

tioned, a programmer need not put type annotations into a process expression:

before passing a process expression to the algorithm, a system can automatically

put fresh type and use variables �

(j;k)

into a place where type annotations are

omitted.

4.3 Solving Use Constraint Set

Given a pair (�;�) such that � ;� ` P , we obtain �

0

such that �

0

; ; ` P

0

by

solving �. (P

0

is the process expression obtained by substituting the solution

for the use variables of P .) A solution of � is obtained by: (1) dividing � into

two parts fj

1

� �

1

; : : : ; j

n

� �

n

g and fc

n+1

� �

n+1

; : : : ; c

m

� �

m

g where each

c

i

is a use constant (note that each inequality output by the type reconstruction

algorithm is of the form j � � or c � �), (2) solving the �rst part of inequalities

and (3) checking whether the solution satis�es the second part. (If the check

fails, � has no solutions). Because every operation on uses is monotonic and

because j

1

; : : : ; j

n

can range over �nite space, the least solution of the �rst part

is calculated by the following simple iterative method

3

:

Theorem9 (Least Solution). Let � = fj

1

� �

1

; : : : ; j

n

� �

n

g. De�ne �

(m)

i

(m � 0; 1 � i � n) by: �

(0)

i

= 0; �

(m+1)

i

= [�

(m)

1

=j

1

; : : : ; �

(m)

n

=j

n

]�

i

. Then, for

some M � 0, j

1

= �

(M)

1

; : : : ; j

n

= �

(M)

n

is the least solution of �.

Remark: If use variables occur in the type environment output by the algo-

rithm, then those variables should be kept undetermined, because they may be

constrained outside the process expression. When such a process expression is

required to be compiled at that time (for separate compilation, etc.), a program-

mer can declare their uses, or the compiler can assign ! to the undetermined

use variables.

We informally explain that our analysis can be performed in time polynomial

in the size n of a process expression. First, type reconstruction can be performed

in time polynomial in n (the same argument applies as the one for simply-typed

�-calculus [5]). Secondly, the size of the use constraint set output by the type

reconstruction algorithm is O(n

2

). Since each use variable can range only over

f0; 1; !g, the number of iteration steps for solving the constraint is also O(n

2

),

which implies that the total time required for solving the use constraint set is

polynomial in the size of a process expression. Thus, the whole analysis can be

done in polynomial time. More details are found in the full paper [4].

4.4 An Example of Analysis and Optimization

We show an example of our analysis and optimization. Consider the following

process, which computes the nth Fibonacci number sequentially (the language

has been extended with integer values and several mathematical operations):

�x fib[n; c] = if n < 2 then c![1]

else (�c

1

: �

(j;k)

)(�c

2

: �

(l;m)

)

(fib![n� 1; c

1

]

j c

1

?[x]:((fib![n� 2; c

2

] j c

2

?[y]:c![x+ y])))

in P end

Let us infer the values of use variables (j; k) attached to the channel c

1

. The

reconstruction algorithm outputs the triple (�;�;�x fib : : :) where � = fj �

j

1

+ j

2

; k � k

1

+ k

2

; k

1

� k

3

� 1; j

2

� 1; : : :g. j

1

and k

1

denote how often c

1

are used for input and output in the process fib![n � 1; c

1

]. Similarly, j

2

and

3

Of course, we could apply some symbolic simpli�cation methods instead of the naive

iteration.

k

2

denote the uses of c

1

in the process c

1

?[x]: (� � �). By the rule for parallel

composition, we obtain the inequalities j � j

1

+ j

2

; k � k

1

+ k

2

. The inequality

j

2

� 1 is also obtained from the input expression c

1

?[x]:(� � �). Furthermore,

during the reconstruction, a type of the form [int; [int]

(j

3

;k

3

)

]

(j

4

;k

4

)

is assigned

to the channel fib; then the inequality k

1

� k

3

is obtained from the expression

fib![n�1; c

1

], and k

3

� 1 is obtained from the expression c![1]. By solving �, we

obtain j = k = 1, which implies that c

1

is a linear channel. Similarly, we know

that c

2

is also linear.

By using the information obtained above, we can replace the process by the

following optimized one:

�x fibopt[n; c] = if n < 2 then c![1]

else �x c

1

[x] : [int]

(1;1)

= (�x c

2

[y] : [int]

(1;1)

= c![x+ y]

in fibopt![n� 2; c

2

] end)

in fibopt![n� 1; c

1

] end

in P end

Note that the optimized process corresponds to the continuation passing style

representation [1] of the functional Fibonacci program (the channels c

1

and c

2

can be viewed as continuations).

5 Correctness

In order for the type system to be sound with respect to operational semantics,

it must be guaranteed, for example, that if x : [~�]

(0;1)

; ; ` P , then x can only be

used at most once for output during evaluation of P . The soundness is proved

in almost the same way as that of the original linear type system [8]. We only

sketch the key ideas here: a full proof is found in the technical report [4].

The soundness of the type system is ensured by the following two properties:

(1) Lack of immediate misuse of channels.

It is easy to know by typing rules that a well-typed process doesn't im-

mediately violate the channel usage speci�ed by types; for example, if x :

[~�]

(0;1)

; ; ` P , then P cannot be of the form (�y

1

) � � � (�y

n

) (x![~v] jx![~v

0

]).

(2) Subject reduction.

One-step reduction of a process is expressed by a 4-place relation: � `

P �! P

0

a �

0

. It is basically the same as the standard reduction re-

lation of the form P ! P

0

[11]; but in order to remember which chan-

nels have already been used, the consumed capability is removed from the

type environment � or type annotations in P . For example, if the initial

type environment is (�; y : [�]

(1;1)

), the reduction of the process expression

(�x : [�]

(1;1)

)(y![u] j y?[z]:x![z] jx?[w]:v![w]) by communication on the chan-

nel y is expressed by the relation:

�; y : [�]

(1;1)

` (�x : [�]

(1;1)

)(y![u] j y?[z]:x![z] jx?[w]:v![w])

�! (�x : [�]

(1;1)

)(x![u] jx?[w]:v![w]) a �; y : [�]

(0;0)

The next reduction step, communication on the channel x, is expressed by:

�; y : [�]

(0;0)

` (�x : [�]

(1;1)

)(x![u] jx?[w]:v![w]) �! (�x : [�]

(0;0)

)v![u] a �; y : [�]

(0;0)

We can show that if � ` P and � ` P �! P

0

a �

0

, then �

0

` P

0

.

By the above two properties, capabilities that have already been consumed can-

not be reused; thus, we know that the type system is sound with respect to

operational semantics.

6 Experimental Results

In this section, we show results of simple experiments with HACL compiler

4

to

evaluate performance improvement obtained by our analysis. Application pro-

grams are Fibonacci functions sfib25 and pfib25 (which performs recursive

calls sequentially/in parallel), a simulation of Conway's life game life, and con-

current objects counter10000 (which creates a counter object and increments

its value 10000 times) and tree14 (which creates a binary tree of which each

node is a concurrent object, and computes the summation of values of its leaf

nodes). Program transformation shown in the previous section has been applied

to most of the method invocations of concurrent objects or the function calls.

Each row in Table 1 shows the result for each program. The �rst column

(\naive") shows the running times of unoptimized programs written with con-

currency primitives, and the second column (\optimized") shows the ones of op-

timized programs. The rightmost column (\reduced time/call") shows speedup

per one function call or method invocation, which is calculated by (naive � op-

timized) = (the number of communications over linear channels). In addition, we

show in the third column the running time of a program written with function

primitives for the sequential Fibonacci. Note that all the programs are executed

on a single processor machine

5

: therefore, pfib25 is slower than sfib25 because

of overheads.

The result of sfib25 indicates that even if programmers implement func-

tional computations using concurrency primitives, the compiler can generate an

optimized code which is comparable to the one written by directly using function

primitives. The speedup ratio of pfib25 is relatively smaller because of over-

heads of multi-threading, but it is still large. Note that the speedup (100-200%)

in this experiment itself should not be taken important, because the execution

time of the Fibonacci program is dominated by communications and/or func-

tion calls rather than local computations (integer comparison and summation).

Because life performs communications less frequently than sfib25 or pfib25,

its speedup is much smaller than theirs.

4

The HACL compiler translates a HACL program to a C program in a similar manner

to sml2c. The compiler is available both for a single processor workstation and for net-

work of workstations. We just show performance on a single processor workstation.

5

Sun Sparc Station 20 (Hyper SPARC 150Mhz �1)

Table 1. Running time and reduced time for the benchmark programs

naive optimized function reduced time/call

(sec) (sec) (sec) (�sec)

sfib25 1.45 0.57 0.41 3.6

pfib25 1.76 0.93 | 3.4

life 2.49 2.45 | 17.2

counter10000 0.26 0.17 | 9.0

tree14 1.55 1.36 | 5.8

The last two programs (counter and tree14) are used for estimating perfor-

mance improvement of typical concurrent object-oriented programs. They rep-

resent the two extreme cases: in counter, method invocations are much more

frequent than creations of concurrent objects, while in tree14, creations of con-

current objects happen as frequently as method invocations do.

7 Related Work

Our analysis has its origin in the linear channel type system developed by

Kobayashi, Pierce, and Turner [8]. However, their results have been rather theo-

retical: they were mainly concerned about checking channel usage and reasoning

about program behavior. Although they claimed that linear channels would be

potentially useful for program optimization, they have neither shown how to

detect linear channels nor applied it to actual compilers.

Turner, Wadler, and Mossin [17] proposed a similar static analysis technique

for �nding use-once values in functional programming languages. In their type

system, a use can only be either 1 or ! and much simpler constraints on use vari-

ables are used; as a result, if a variable has more than one syntactic occurrence,

its use is always inferred to be !. Therefore, it is not possible to apply their

technique directly to the detection of linear channels and it is not trivial either

to re�ne their technique accordingly: notice that a communication channel has

normally at least two syntactic occurrences (one occurrence for input and the

other for output).

Nielson and Nielson [13] proposed another technique that can be used

for �nding some linear channels based on their e�ect-based analysis [12].

However, their analysis is not so e�ective for detection of linear chan-

nels because it counts operations on channels region-wise, where a region

is a (possibly in�nite) set of communication channels. For example, in

�x f [] = m?[x]:x![] j f ![] in f ![] jm![n] end, the number of output operations

performed to the channel x would be counted as ! in their analysis while it

is counted as 1 in our type-based analysis. Colby [2] also proposed a technique

for analyzing communication based on abstract interpretation, which is poten-

tially applicable to the detection of linear channels. However, his method would

give rise to the same problem because an in�nite number of channels (uniquely

identi�ed by control paths in the concrete semantics) would be mapped to the

same abstract control path by the abstraction function.

Kobayashi, Nakade and Yonezawa [7] proposed a technique for �nding linear

channels (and linearized channels [8]). However, it is rather complex: as far as

linear channels are concerned, our type-based analysis presented here gives more

accurate results with much less costs.

Mercouro� [10] also proposed an algorithm for analyzing communication;

however, its target language is very restricted (channels are not �rst-class values,

and moreover, dynamic process creation is not allowed).

8 Conclusions

We have proposed a type-based static analysis method for �nding linear chan-

nels in concurrent programs. The analysis can be used for performing source-level

program transformations (such as the tail-call optimization) and also for reduc-

ing run-time costs for communications; indeed, the analysis has been applied to

the compiler of a concurrent language HACL and the performance improvement

gained by those optimizations has been measured. We believe that the technique

proposed here is applicable to other similar concurrent programming languages.

Future work includes the re�nement of our analysis (by using subtyping and

polymorphism), and further evaluation of the analysis through more realistic

(especially distributed) applications. Although this paper focused on channel

usage, the usage information about other values (tuples, function closures, etc.)

could also be obtained by our analysis [3]; it is left for future work to utilize such

information for program optimization.

Acknowledgement

This work was originally motivated by discussions on linear channels with Ben-

jamin C. Pierce and David N. Turner. Active discussions with them have been

of great help to us, especially in �nding the right direction at the initial stage

of this work. Takayasu Ito carefully read an earlier draft of this paper and gave

us a number of useful suggestions. We are also grateful to Kenjiro Taura and

Akinori Yonezawa for their comments. Toshihiro Shimizu helped us experiment

with his HACL compiler.

References

1. Andrew W. Appel. Compiling with Continuations. Cambridge Univ. Press, 1992.

2. Christopher Colby. Analyzing the communication topology of concurrent pro-

grams. In ACM PEPM'95, 1995.

3. Atsushi Igarashi. Type-based analysis of usage of values for concurrent program-

ming languages. Master's thesis, University of Tokyo, February 1997.

4. Atsushi Igarashi and Naoki Kobayashi. Type-based analysis of communication

for concurrent programming languages. Technical Report 97-03, Department of

Information Science, University of Tokyo, June 1997.

5. P.C. Kanellakis, H.G. Mairson, and J.C. Mitchell. Uni�cation and ML type re-

construction. In Computational Logic, Essays in Honor of Alan Robinson, pages

444{478. MIT Press, 1991.

6. Naoki Kobayashi. A partially deadlock-free typed process calculus. In IEEE LICS,

1997.

7. Naoki Kobayashi, Motoki Nakade, and Akinori Yonezawa. Static analysis of com-

munication for asynchronous concurrent programming languages. In SAS'95, vol-

ume 983 of LNCS, pages 225{242. Springer-Verlag, 1995.

8. Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the

pi-calculus. In ACM POPL'96, pages 358{371, January 1996.

9. Naoki Kobayashi and Akinori Yonezawa. Higher-order concurrent linear logic pro-

gramming. In Theory and Practice of Parallel Programming, volume 907 of LNCS,

pages 137{166. Springer-Verlag, 1995.

10. Nicolas Mercouro�. An algorithm for analyzing communicating processes. In

S. Brookes, M. Main, A. Melton, M. Mislove, and D. Schmidt, editors, Mathemat-

ical Foundations of Programming Semantics, volume 598 of LNCS, pages 312{325.

Springer-Verlag, 1991.

11. Robin Milner. The polyadic �-calculus: a tutorial. Technical Report ECS{LFCS{

91{180, Laboratory for Foundations of Computer Science, Department of Com-

puter Science, University of Edinburgh, UK, 1991.

12. Hanne Riis Nielson and Flemming Nielson. Higher-order concurrent programs with

�nite communication topology. In ACM POPL'94, pages 84{97, 1994.

13. Hanne Riis Nielson and Flemming Nielson. Static and dynamic processor alloca-

tion for higher-order concurrent languages. In TAPSOFT'95: Theory and Practice

of Software Development, LNCS, pages 590{604. Springer-Verlag, 1995.

14. Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile pro-

cesses. In IEEE LICS'93, pages 376{385, 1993.

15. Benjamin C. Pierce and David N. Turner. Pict: A programming language based

on the pi-calculus. Technical report, Computer Science Department, Indiana Uni-

versity, 1997. To appear in Milner Festschrift, MIT Press, 1997.

16. John H. Reppy. CML: A higher-order concurrent language. In ACM PLDI'91,

pages 293{305, 1991.

17. David N. Turner, Philip Wadler, and Christian Mossin. Once upon a type. In

ACM FPCA'95, San Diego, California, 1995.

18. Akinori Yonezawa. ABCL: An Object-Oriented Concurrent System. MIT Press,

1990.

19. Akinori Yonezawa and Mario Tokoro. Object-Oriented Concurrent Programming.

The MIT Press, 1987.

This article was processed using the L

a

T

E

X macro package with LLNCS style

