
Calculi of Meta-variables

Masahiko Sato1, Takafumi Sakurai2, Yukiyoshi Kameyama3, and
Atsushi Igarashi1

1 Graduate School of Informatics, Kyoto University
{masahiko,igarashi}@kuis.kyoto-u.ac.jp

2 Department of Mathematics and Informatics, Chiba University
sakurai@math.s.chiba-u.ac.jp

3 Institute of Information Sciences and Electronics, University of Tsukuba, and JST
kam@is.tsukuba.ac.jp

Abstract. The notion of meta-variable plays a fundamental role when
we define formal systems such as logical and computational calculi. Yet it
has been usually understood only informally as is seen in most textbooks
of logic. Based on our observations of the usages of meta-variables in
textbooks, we propose two formal systems that have the notion of meta-
variable.

In both calculi, each variable is given a level (non-negative integer), which
classifies variables into object variables (level 0), meta-variables (level 1),
metameta-variables (level 2) and so on. Then, simple arity systems are
used to exclude meaningless terms like a meta-level function operating
on the metameta-level. A main difference of the two calculi lies in the
definitions of substitution. The first calculus uses textual substitution,
which can often be found in definitions of quantified formulae: when a
term is substituted for a meta-variable, free object-level variables in the
term may be captured. The second calculus is based on the observation
that predicates can be regarded as meta-level functions on object-level
terms, hence uses capture-avoiding substitution.
We show both calculi enjoy a number of properties including Church-
Rosser and Strong Normalization, which are indispensable when we use
them as frameworks to define logical systems.

Keywords : meta-variable, logical framework, context, λ-calculus

1 Introduction

The notion of meta-variable is a fundamental notion both in logic and computer
science. It is because both logic and computer science mainly deal with linguistic
objects such as formulas, proofs, programs etc., and whenever we make a general
statement about these objects we use meta-variables to refer to these objects.
For example, if we look at any book of logic, most variables we see are meta-
variables. Meta-variables are also known as metamathematical variables [7] and
syntactical variables [12]. However, it seems that, so far, only a very few attempts

have been made to formalize the notion of meta-variable. One reason for this
may be that we have to go to metameta-level to do so.

In this paper, we present two new formalizations of the concept of the meta-
variable. These formalizations are based on our observations of the usages of
meta-variables in text books and technical papers on logic.

The first observation is from Shoenfield [12] and Kleene [7]. In these books, we
find the following sentence as one of the inductive clauses which define formulas.
(We have slightly modified notations from the originals.)

If x is a variable and A is a formula, then ∃x A is a formula.

In the above sentence, both ‘x’ and ‘A’ are meta-variables, and when we use
the sentence as a rule which is used to construct a concrete formula, we must
instantiate these meta-variables by concrete linguistic objects of the object lan-
guage. Thus, for example, we may instantiate x by a concrete variable x and A

by a concrete formula x = x. Then, by applying the instantiated rule, we have
that ∃x x = x is a formula. Here, it is important to remark that the process
of instantiation we just described is a form of substitution, but, unlike ordinary
substitutions, the variables being substituted are meta-variables. There is an-
other subtle point in this substitution process. To see this, we analyze the above
instantiation process in two steps. Namely, we assume that the meta-variable
‘x’ is first instantiated and then, in the second step, the meta-variable ‘A’ is
instantiated. Then, after the first step, we get the following sentence.

If x is a variable and A is a formula, then ∃x A is a formula.

In the second step, we substitute x = x for A in the above sentence, and we get
the fully instantiated sentence:

If x is a variable and x = x is a formula, then ∃x x = x is a formula.

We note here that, unlike ordinary substitution, we have substituted x = x for
A in ∃x A without following the usual convention of renaming the name of the
binding variable (x in this case) to avoid the capture of free variables.

The second observation we now make is also a very common one. Often in the
literature, notation like A(x) is used to indicate a formula where free occurrences
of x in A(x) is implicitly understood. Thus, if t is a term, then A(t) stands for
a formula which is obtained from A(x) by substituting t for x in A(x). In this
usage, ‘x’, ‘t’ and ‘A’ are all meta-variables and the first two meta-variables range
over variables and terms in the object language. As for the third meta-variable
‘A’ it is possible to interpret its range in two ways.

The first interpretation is to regard ‘A’ as ranging over functions which, when
applied to terms, will yield formulas. In this interpretation A(t) denotes the result
of applying the meta-level function A to a term t. So, in this interpretation, A is
a metameta-variable, since its denotation is not a linguistic object of the object
language but it is a function in the meta language.

The second interpretation is to regard ‘A’ as ranging over abstracts of the
object language which can be instantiated to formulas by supplying terms of the

2

object language. This interpretation is possible only if the object language con-
tains such abstracts as its formal entities. Higher-order abstract syntax employed
by, e.g., Edinburgh LF [5] is based on this interpretation.

In this paper, we will introduce two typed calculi λM and λm, which are
respectively designed based on the above two observations. In λM and λm, with
each variable a non-negative integer, which we call the level of the variable, is
associated. We consider level 0 as the object-level, level 1 as the meta-level, level
2 as the metameta-level and so on.

In these formalizations, we believe that we can take virtually any formal
system as the object-level of our systems. However, for the sake of concrete
presentation, we take as the object-level a system of symbolic expressions we
introduced in Sato [10] which is simple but powerful enough to represent syntax
of many of the commonly used formal systems such as the λ-calculus and pred-
icate calculus. Both λM and λm will be constructed on top of this object-level
system by adding higher-level structures, and we will show that these calculi
enjoy nice properties such as confluence and strong normalizability. We will also
show that the calculus λM can represent the notion of context naturally since
a context, which is an expression containing some holes in it, is inherently a
linguistic object in the meta-level and not in the object-level.

Due to lack of space, we have omitted some lemmas and details of proofs. A
full version of this paper with proofs is accessible at

http://www.sato.kuis.kyoto-u.ac.jp/~masahiko/index-e.html.

2 Informal Introduction to the Calculi

In this section we informally explain the two calculi λM and λm which we pro-
pose in this paper. We assume our object language contains constants, abstrac-
tion ((x)[M]), and pair (〈M, N〉). Abstraction and application in the meta-level
are denoted by λX.M and MN . (We often use capital letters for meta-variables
in examples, although both object- and meta-level variables belong to the same
syntactic category in the formal definition.)

2.1 The Calculus λM

The first calculus λM is based on the first observation in Section 1. Let us
consider the first observation again and assume that we have just completed the
first step. Then, we have the expression ∃x A. We can represent this expression
by 〈′∃′, (x0)[A1]〉 using a constant ′∃′. On the shoulder of a variable, we write a
natural number to indicate its level, although we often omit the level if it is clear
from the context. So, we simply write x for x0 and it corresponds to the concrete
object-level variable x. In λM, the instantiation process of the meta-variable A

by the object-level formula x = x can be represented as the reduction process of
the following β-redex:

(λA. 〈′∃′, (x)[A]〉)〈′=′, 〈x, x〉〉.

3

In the reduction, as pointed out in Section 1, non-standard substitution is per-
formed and we get:

〈′∃′, (x)[〈′=′, 〈x, x〉〉]〉
which represents the formula ∃x x = x as expected. Note that the object-level
variable x is captured through the substitution.

The non-standard (textual) substitution we have just introduced gives rise
to the following two technical problems.

The first one is the non-confluence of the calculus. As argued in the litera-
ture on context calculi [8, 6, 11], calculi that have textual substitution cannot be
confluent unless we restrict the evaluation order. For instance, let M be the term
(λX2. (λx1. X2)y0)x1. Depending on the evaluation-order, we will get different
results y0 and x1. Our solution to this problem is (roughly) that, a redex may
not be reduced if it contains variables of higher levels than the level of the re-
dex1. In this example, the inner redex has level-1, so its reduction is postponed
until the variable X2 disappears.

The second problem in formulating λM is that, since we restrict the evaluation-
order, some reductions may get stuck. Consider the terms (λX2. λx1. X2)y0z0,
and (λx1. λX2. X2)y0z0. The first term reduces to y0, while the second term
cannot be reduced. Since we do not consider terms like the second one meaning-
ful, we introduce arities to rule out such terms. For instance, λx1. X2 : 0 →1 0
signifies that this term denotes a level-1 function from objects to objects. Sim-
ilarly we have λX2. λx1. X2 : 0 →2 (0 →1 0). On the other hand, λx1. λX2. X2

would have arity 0 →1 (0 →2 0), and it would denote a level-1 function which
returns a level-2 function. We will exclude such a term by defining arity properly,
and show that the evaluation in λM does not get stuck (Theorem 4).

Although λM has non-standard substitution, we need the standard capture-
avoiding substitution as well, when the variable being substituted for and one
being captured are of the same level. Let us see the following reduction:

(λX2. λY 2. λz1. X2)(Y 2z1) → λW 2. λz1. Y 2z1

in which the variable z1 is captured, while the variable Y 2 is not captured since
its level is the same as that of the variable X2.

2.2 The Calculus λm

The second calculus λm formalizes the first interpretation2 of the second obser-
vation in Section 1.

The formula A(t) can be represented as A2(t1) using the level-2 variable A2

of arity 0 →1 0, and the level-1 variable t of arity 0 in λm. The existential
formula ∃x A(x) is represented as:

〈′∃′, (x0)[A2(x0)]〉),

1 The level of the redex (λXi. M)N is i.
2 In this paper, we do not formalize the second interpretation in which A in A(t) ranges

over abstracts of the object language. It should be a straightforward extension of
this work, but details are left for future work.

4

and the substitution of λx1 : 0. 〈′=′, 〈x1, x1〉〉 for A2 is realized by β-reduction,
but this time we do not use the non-standard substitution. Hence, the term:

(λA2 : 0 →1 0. 〈′∃′, (x0)[A2(x0)]〉)(λx1 : 0. 〈′=′, 〈x1, x1〉〉)

reduces (using standard substitution) to

〈′∃′, (x0)[〈′=′, 〈x0, x0〉〉]〉

as expected.

3 The Calculus λM

In this section, we give a formal definition of the first calculus λM. The second
calculus λm will be introduced in the next section.

3.1 Arities and Terms

We define arity (α) and its level (|α|) as follows:

1. 0 is an arity and |0| = 0.

2. If α and β are arities, 0 < i, |α| < i, and |β| ≤ i, then α →i β is an arity
and |α →i β| = i.

Note that the side condition of the second clause reflects the intended notion of
level introduced in Section 1. Intuitively, the arity α →i β is for level-i functions
from terms of arity α to terms of arity β, thus |α| < i and |β| < i must be
satisfied. The restriction on β is relaxed to |β| ≤ i to allow currying.

We assume that, for each natural number i and arity α, there are infinitely
many variables, and the sets of variables of each level and arity are mutually
disjoint. For a variable x of level i and arity α, we sometimes write it as xi. The
set of all variables is denoted by V. A (variable) declaration is an expression of
the form xi : α, where α is an arity and either |α| < i or |α| = i = 0. We say
the level of this declaration is i. A hypothesis sequence is a finite sequence of
declarations. A judgment is an expression of the form Γ ⊢ M : α where Γ is a
hypothesis sequence and α is an arity.

We have the following rules that are used to derive judgments.

The first rule introduces variables for each i and α, where we assume x is a
variable of level i and arity α.

xi : α ∈ Γ

Γ ⊢ xi : α
(var)

The next two rules introduce abstraction and application for level-i (i > 0).

Γ, xi : α ⊢ M : β |β| ≤ i

Γ ⊢ λxi:α. M : α →i β
(abs)

Γ ⊢ M : α →i β Γ ⊢ N : α

Γ ⊢ MN : β
(app)

5

Note that, in the rule (abs), the level of the variable xi and that of the arity
α →i β should agree, and the side-condition |β| ≤ i is needed to form a (well-
formed) arity α →i β. Note also that we may not construct a term like λx1 :
0. λX2 : 0. X2.

The last group of rules are those for the level-0, the object language.

c is a constant
Γ ⊢ c : 0

(const0)
Γ, x0 : 0 ⊢ M : 0

Γ ⊢ (x0)[M] : 0
(abs0)

Γ ⊢ M : 0 Γ ⊢ N : 0
Γ ⊢ 〈M, N〉 : 0

(pair0)

An expression M is said to be a term if a judgment of the form Γ ⊢ M : α is
derivable for some Γ and α. We sometimes just write λxi. M for λxi:α. M when
the arity α of xi is irrelevant.

The scope of λx. and free occurrences of variables in a term are defined as
usual. For a term M , the set of free variables in M is denoted by FV(M). The
level of a term M , denoted by |M |, is the maximum level of variables in M ,
or 0 if there is no variable in M . Note that we take all variables (even variable
occurrences in the scope of λ) into account—for instance, |(λx2:α. x2)y1| = 2.
Note also that |M | is not necessarily equal to the level of its arity. The level of a
hypothesis sequence Γ , denoted by |Γ |, is the maximum level of variables in Γ ,
or 0 if Γ is the empty sequence.

3.2 α-equivalence

In the calculus λM, we need special care to define α-equivalence: occurrences
of a variable x in the scope of λx. – usually called bound occurrences – may or
may not be subject to renaming since textual substitution does not commute
with naive variable renaming. For instance, we may identify λx1. y2(λz1. x1z1)
with λx1. y2(λu1. x1u1), but not with λw1. y2(λz1. w1z1). To see its reason, let
us substitute x1 for y2 in these terms. Since the level of y2 is higher than x1 and
w1, the textual substitution is used, and the first and the third terms become
λx1. x1(λz1. x1z1), and λw1. x1(λz1. w1z1), resp., which do not have the same
denotational meaning. Hence, we let an abstraction λxi. e be α-convertible only
when no variable at a level higher than i occurs in its scope.

We define the α-equivalence after a few auxiliary definitions. A renaming
of variables is a partial function from V to V which is injective and satisfies
|f(xi)| = i for all xi in the domain of the partial function. For a partial function
f , its domain is denoted by dom(f). For a renaming f and a variable xi (which
may not be in dom(f)), f ↓ xi is a renaming of variables such that dom(f ↓
xi) = dom(f) − {xi}, and f ↓ xi agrees with f on its domain.

For a renaming f and terms M and N in λM, we derive a judgment of the
form f ⊢ M ≃ N by the following inference rules:

f(xi) = yi

f ⊢ xi ≃ yi

f ⊢ M ≃ M ′ f ⊢ N ≃ N ′

f ⊢ MN ≃ M ′N ′

6

f ⊢ M ≃ M ′

f ⊢ λxi : α. M ≃ λxi : α. M ′
(f(xi) = xi)

f ⊢ M ≃ M ′

g ⊢ λxi : α. M ≃ λyi. α.M ′

(

|M | ≤ i, |M ′| ≤ i,

f(xi) = yi, g ↓ xi = f ↓ xi

)

The last rule can be applied only when both M and M ′ are of level less than or
equal to i. Otherwise, the term λxi. M contains (not necessarily free) occurrences
of meta-variables which have higher levels than i, and we cannot rename the
bound variable xi. In this case we can still apply the second last rule, since
it does not rename the bound variable xi. For brevity, we omit the inference
rules for terms constructed by the rules (const0), (abs0), and (pair0), which are
similarly defined. For instance, a term (x0)[M] has the same rules as the term
λxi : α. M .

Let id be the identity function on V. If id ⊢ M ≃ N is derived by the rules
above, we say M is α-equivalent to N (written by M ≡α N). It is easy to show
the relation ≡α is a congruence on terms.

3.3 Substitution and Reduction

The notion of reduction in the calculus λM is the union of those in the object
language (which we do not specify) and the following β-reduction:

(β) (λxi. M)N → [xi := N]M if |M | ≤ i and |N | ≤ i

in which [xi := N]M denotes the (non-standard) substitution defined below. We

write
∗
→ for the reflexive and transitive closure of →.

For a level i > 0, a level-i variable xi, and terms M and N such that |M | ≤ i

and |N | ≤ i, we define [xi := N]M as follows:

1. [xi := N]xi △
= N

2. [xi := N]yj △
= yj if yj 6≡ xi

3. [xi := N](M1M2)
△
= ([xi := N]M1)([x

i := N]M2)

4. [xi := N](λyj . M)
△
= λyj . [xi := N]M if j < i

5. [xi := N](λyi. M)
△
= λyi. [xi := N]M if yi 6∈ FV(N) and xi 6≡ yi

6. [xi := N]c
△
= c

7. [xi := N](y0)[M]
△
= (y0)[[xi := N]M]

8. [xi := N]〈M1, M2〉
△
= 〈[xi := N]M1, [x

i := N]M2〉

The first three clauses are standard. For the fourth line, if the level of yj is
strictly less than that of xi, the substitution behaves like textual replacement,
that is, free variables may get captured through this substitution. For the fifth
line, the bound variable yi has the same level as xi that is being substituted,
in which case the substitution is the standard capture-avoiding one, hence the
side-conditions yi 6∈ FV(N) and xi 6≡ yi must be satisfied. (The second side-
condition x 6≡ y is not needed for the fourth clause because variables at different

7

levels are assumed to be different.) This side-condition can be always satisfied
by taking an α-equivalent term. The last three clauses deal with the level 0 in a
straightforward manner, except textual substitution.

For brevity, we identify α-equivalent terms in the following. Under this con-
vention, we simply have that [xi := N]M is defined if and only if max(|M |, |N |) ≤
i.

The object-level may contain other redices than the β-redices in the above
form, and to distinguish these two, we say that a redex (λxi : α. M)N is a meta-
redex. A term is meta-normal if it does not have meta-redices and a reduction
is called a meta-reduction if its redex is a meta-redex.

3.4 Replacing Level-0 Languages

Our level-0 language here is a simplest possible language, which has no notion
of types or even computation. We have adopted such a language because it is
simple but expressible enough to represent expressions that appear in typical
logical systems. It would be possible, however, to adopt other languages such as
untyped and simply typed λ-calculi as the level-0 language.

For example, for untyped λ-calculus, we could introduce another term con-
structor M1 · M2 by the rule

Γ ⊢ M : 0 Γ ⊢ N : 0
Γ ⊢ M · N : 0

(app0)

and a reduction rule (x0)[M] · N → [x0 := N]M (if |M | = |N | = 0) where
the level-0 substitution would be defined as expected. It would be also straight-
forward to substitute the simply typed λ-calculus for the level-0 language, by
extending the base arities from 0 to the set of simple types.

4 The Calculus λm

As discussed in the previous sections, the second calculus λm is based on the sec-
ond observation discussed in the introduction. It is obtained from λM by replac-
ing the definition of substitution with the standard capture-avoiding one. Also,
we need to use the standard definition of α-equivalence to identify λx1.y2(λz1.x1z1)
with λw1.y2(λz1.w1z1), which are not α-equivalent in λM. Since the other def-
initions of arities, rules to derive judgments, β-reduction remain the same, we
avoid repeating definitions and just show changes to be made.

For α-equivalence, we replace the third and fourth rules to derive f ⊢ M ≃ N

with the following one:

f ⊢ M ≃ M ′

g ⊢ λxi : α.M ≃ λyi : α.M ′
(f(xi) = yi, g ↓ xi = f ↓ xi)

Notice that there is no restriction on the levels of the bodies M and M ′ of
λ-abstraction. Similarly, the definition of substitution will be as follows.

8

For a level i > 0, a level-i variable xi, and terms M and N such that
|M | ≤ i and |N | ≤ i, [xi := N]M is defined by:

1. [xi := N]xi △
= N

2. [xi := N]yj △
= yj if yj 6≡ xi

3. [xi := N](M1M2)
△
= ([xi := N]M1)([x

i := N]M2)

4. [xi := N](λyj . M)
△
= λyj . [xi := N]M if yj 6∈ FV(N) and xi 6≡ yj

5. [xi := N]c
△
= c

6. [xi := N](y0)[M]
△
= (y0)[[xi := N]M] if y0 6∈ FV(N)

7. [xi := N]〈M1, M2〉
△
= 〈[xi := N]M1, [x

i := N]M2〉

Notice that the first three clauses are the same as before and the fourth clause
is now a familiar one that avoids variable capturing.

5 Examples

In this section, we show a few examples of λM and λm.

5.1 Representing Formulas

In earlier sections, we informally explained how the formula x = x is substituted
for the meta-variable A in ∃x A. Here we consider this process formally in λM.

The arity of the corresponding term is inferred in λM as follows:

x0 : 0, A1 : 0 ⊢ ′∃′ : 0

x0 : 0, A1 : 0, x0 : 0 ⊢ A1 : 0

x0 : 0, A1 : 0 ⊢ (x0)[A1] : 0

x0 : 0, A1 : 0 ⊢ 〈′∃′, (x0)[A1]〉 : 0

x0 : 0 ⊢ λA1 : 0. 〈′∃′, (x0)[A1]〉 : 0 →1 0

....
x0 : 0 ⊢ 〈′=′, 〈x0, x0〉〉 : 0

x0 : 0 ⊢ (λA1 : 0. 〈′∃′, (x0)[A1]〉)(〈′=′, 〈x0, x0〉〉) : 0

Note that, the variable x0 occurs free in the term of the conclusion, as indicated
by the hypothesis sequence.

We can compute this term as:

(λA1 : 0. 〈′∃′, (x0)[A1]〉)(〈′=′, 〈x0, x0〉〉)

→ [A1 := 〈′=′, 〈x0, x0〉〉]〈′∃′, (x0)[A1]〉

≡ 〈′∃′, [A1 := 〈′=′, 〈x0, x0〉〉](x0)[A1]〉

≡ 〈′∃′, (x0)[〈′=′, 〈x0, x0〉〉]〉

Note that non-standard (textual) substitution is applied in the last step, since
the level of A1 is higher than that of x0. As a result, the free occurrences of x0

get bound, and x0 does not occur free in the resulting term, which represents
the formula ∃x x = x.

9

We also informally explained how the same example can be written in λm.
Its formal counterpart can be written as follows3:

A2 : 00 ⊢ ′∃′ : 0

Γ ⊢ A2 : 00 Γ ⊢ x0 : 0

Γ ⊢ A2(x0) : 0

A2 : 00 ⊢ (x0)[A2(x0)] : 0

A2 : 00 ⊢ 〈′∃′, (x0)[A2(x0)]〉 : 0

⊢ λA2 : 00. 〈′∃′, (x0)[A2(x0)]〉 : 00 →2 0

....
y1 : 0 ⊢ 〈′=′, 〈y1, y1〉〉 : 0

⊢ λy1 : 0. 〈′=′, 〈y1, y1〉〉 : 00

⊢ (λA2 : 00. 〈′∃′, (x0)[A2(x0)]〉)(λy1 : 0. 〈′=′, 〈y1, y1〉〉) : 0

where we put an arity 00 = 0 →1 0 and Γ = A2 : 0 →1 0, x0 : 0 Note that we
replaced the meta-variable A1 in λM by an application term A(x), and to ensure
this application is resolved in a meta-level, the arity of A should be 0 →1 0, hence
the level of the variable A must be 2 (or higher).

We omit the computation of the term here, since it is essentially the same as
the standard β-reduction.

5.2 Representing Contexts

Contexts can be represented in λM using meta-variables naturally. Let M be
a term, C be a context in the object language, i.e., a term with a hole [] in it,
and C[M] be the result of the hole-filling operation. In λM, the context C is
represented as a term C ≡ (λX1:0. C[X1]), and C[M] as an application (CM),
which reduces to C[M] by the textual substitution in λM.

Let us take an example from Hashimoto and Ohori’s context calculus [6].
Consider the context C ≡ (λu. (λx. [])u+ y)3 and the term M ≡ (λz. C[x+ z])x
in lambda calculus. They can be written in λM (using our notation for object
language) as:

C ≡ λX1:0. (u0)[((x0)[X1] · u0) + y0] · 3

M ≡ (z0)[C (x0 + z0)] · x0

We can reduce M as:

M → (z0)[[X1 := x0 + z0]((u0)[((x0)[X1] · u0) + y0] · 3)] · x0

≡ (z0)[(u0)[((x0)[x0 + z0] · u0) + y0] · 3] · x0

∗
→ 3 + x0 + y0

Note that, by the side-condition of the β-reduction, we cannot reduce the outer-
most level-0 redex first. If it would be reduced first, we would get 3+x0+x0 as a
result, so the Church-Rosser property would be broken. Hashimoto and Ohori’s
context calculus has a similar restriction that the β-reduction is prohibited when
the redex contains a hole.
3 We changed the level-1 variable x1 to y1 for readability. Formally this renaming is

justified by the α-equivalence.

10

A good point of our representation of contexts is that, since contexts are
functions, they can be composed, in other words, we can fill a context in another
context. As a simple example, let C and D be the contexts λx. [] and λy. [] in
lambda calculus, and consider hole-filling of D in C, i.e. C[D]. The contexts C

and D are represented in λM as C ≡ λX1. (x0)[X1] and D ≡ λX1. (y0)[X1],
then we can compose them in the same way as composition of two functions:

C ◦ D ≡ λX1. C (D X1)

C ◦D reduces to λX1. (x0)[(y0)[X1]] which represents the context λx. λy. [].
It should be noted that, in several existing context calculi including Hashimoto-
Ohori’s and our previous work [11], contexts cannot be composed, since these
calculi keep track of possible bound variables in a hole.

6 Properties of λM and λm

We have a number of desirable properties for the calculi λM and λm, that is,
they enjoy subject reduction, confluence, and strong normalization properties.
In the following, we focus on the properties of λM, but the modification for λm

is straightforward.
We can prove the subject reduction property in the standard way.

Theorem 1 (Subject Reduction Property). If Γ ⊢ M : α is derived and

M
∗
→ N , then Γ ⊢ N : α can be derived.

Note that even if Γ ⊢ (λxi. M)N : α is derived, [xi := N]M is not necessarily
defined. But we can prove from Theorem 2 and 3 that if |Γ | ≤ i then there exist

terms M ′ and N ′ such that M
∗
→ M ′, N

∗
→ N ′, and [xi := N ′]M ′ is defined.

Lemma 1. Suppose Γ ⊢ M : α is derived and the highest level of the redices of
M is i. Then, any reduction sequence that reduces only level-i redices leads to a
term that does not have redices of level-i or higher.

We can prove this lemma by reducing it to the strong normalizability of the
simply typed λ-calculus. We translate λM to the simply typed λ-calculus by
mapping a level-i abstraction λxi. M to an abstract of the simply typed λ-
calculus and a level-j (j < i) abstraction λxj . M to a pair of xj and M . Since
we prove a stronger property in Theorem 6, we omit the details here.

Note that, we cannot simply map λ-abstractions of λM to those of the sim-
ply typed λ-calculus, since the textual substitution cannot be simulated by the
capture-avoiding substitution in the standard calculi.

Theorem 2. If Γ ⊢ M : α is derived, then M has a meta-normal form.

Proof. By repeatedly using Lemma 1. ⊓⊔

Theorem 3. If Γ ⊢ M : α is derived and M is meta-normal, then |M | ≤
max(|Γ |, |α|).

11

Proof. Suppose M is a meta-normal term. We prove the theorem by induction
on M .

If M is (λxi:β1. N0)N1 · · ·Nn for some i ≥ 0, xi, β1, n ≥ 0, N0, · · · , Nn, then
the arity of N0 should be γ ≡ β2 →j2 · · · →jn

βn →i α where βk is the arity of
Nk for k = 2, · · · , n. Since N0 is meta-normal, we have |N0| ≤ max(|Γ |, i, |γ|) by
induction hypothesis, and |γ| ≤ i by the side-condition of rule (abs). Therefore,
we have |λxi:β1. N0| = max(i, |N0|) ≤ max(i, |Γ |). Now, we have two cases.

1. n = 0. |M | ≤ max(i, |Γ |) = max(|β1 →i γ|, |Γ |).
2. n > 0. We have, by induction hypothesis, |Nk| ≤ max(|Γ |, |βk|) for 1 ≤ k ≤

n. Hence |N1| ≤ max(|Γ |, i). Since M is meta-normal, max(|N0|, |N1|) > i.
Hence |Γ | > i. Since |γ| ≥ |βk|, we have |Nk| ≤ |Γ | for 1 ≤ k ≤ n. Hence
|M | ≤ |Γ |.

We omit the proof of the case where M is of the form xiN1 · · ·Nn and we can
easily prove the claim in other cases (M is a constant c, (x0)[N0], or 〈N0, N1〉)
by induction hypothesis. ⊓⊔

The following theorem ensures that meta-level evaluation in λM does not
get stuck.

Theorem 4 (Normal Form Property). Suppose Γ ⊢ M : α is derived and
M is meta-normal. (1) If |Γ | = |α| = 0, then |M | = 0. (2) If |Γ | < |α|, then M

is a λ-abstraction.

Proof. (1) Clear from Theorem 3. (2) If M is not a λ-abstraction, then it must
be of the form xiN1N2 · · ·Nn or (λxi:γ. N0)N1N2 · · ·Nn for n ≥ 0. In the former
case, |α| ≤ |xi| ≤ |Γ |. Contradiction. In the latter case, let β be the arity of N0.
From Theorem 3, |(λxi : γ.N0)N1| ≤ |β|. By the side-condition of rule (abs),
|β| ≤ i. Hence |N0| ≤ i and |N1| ≤ i, which implies (λxi:γ. N0)N1 is a redex.
Contradiction. ⊓⊔

We can prove the confluence and strong normalizability of λM. The conflu-
ence can be proved using the standard technique (parallel reduction), but the
strong normalizability is not trivial. Since space is limited, we just give the idea
of the proof here. For the detailed proof, see the full version of this paper.

Lemma 2 (Substitution Lemma). Let xi and yi be distinct variables, |M0| ≤
i, |M1| ≤ i, and |N | ≤ i. Then we have

[xi := N][yi := M1]M0 ≡ [yi := [xi := N]M1][x
i := N]M0

Theorem 5 (Confluence). The meta-reduction is confluent.

Theorem 6 (Strong Normalizability). If Γ ⊢ M : α is derived, then M is
strongly normalizable with respect to the meta-reduction.

Proof. (idea) We can prove this theorem by using the reducibility method, but we
cannot follow the standard way because substitution operations can be applied
only when the level restriction is satisfied. In other words, we cannot express the
lemma, which is usually claimed in proof by the reducibility method, that

12

If Γ ⊢ M : α is derived, then a term that is obtained by substituting
reducible terms for free variables in M is reducible.

To deal with this difficulty, we extend λM so that it has ‘postponed substitu-
tions’, that is, we define an extended judgment of the form Γ1, x

i := N : α, Γ2 ⊢
M and give a reduction rule that substitutes N for x in Γ2 or M under some
conditions. Then, we define reducibility sets that consist of extended judgments
and prove lemmas similar to the ones in the case of simply typed lambda calcu-
lus. ⊓⊔

We remark that, for many object languages such as the simply typed lambda
calculus, these theorems still hold if we replace the meta-reduction by the union
of the meta-reduction and the reductions in the object language.

7 Related Work and Conclusion

We have proposed two formal systems λM and λm that formalize the notion
of meta-variable, motivated by the observations how meta-variables are used in
textbooks of logic.

Edinburgh Logical Framework (LF) [5] gives a typed framework by which we
can define various logical systems as object calculi. Unlike LF and its descen-
dants, we clearly distinguish the meta-levels from the object-level. The textual
substitution in λM is another characteristic feature.

Geuvers and Jogjov [3] have introduced the notion of meta-variable into the
proof assistant system, so that they can describe open proofs. Their motivation
is similar to ours, so they have also encountered the problem that free variables
are captured when a meta-variable is instantiated. Their solution to this problem
is similar to the one in our work on the calculus of context [11].

Recently much effort has been devoted to formalize the notion of context
in lambda calculi, and various calculi of context have been proposed. In the
work of Talcott [13] and Mason [8], the notion of contexts are formalized outside
of the object language, because contexts are meta-level objects in nature and
should be characterized independently of the object language. In other work such
as Dami [1], Hashimoto-Ohori [6], Sands [9], and Sato-Sakurai-Kameyama [11],
contexts are built into the system, so that context manipulations and object-
level calculations can be carried out in the same framework. By representing
contexts in λM, we have integrated the two approaches.

It turns out that λm is similar to the calculi for binding-time analysis in off-
line partial evaluation with multiple computation stages [4, 2]. In those calculi,
types are stratified like ours but, there, levels represent binding time—i.e., when
certain expression can be computed. Reduction is similar to ours in that the
order of computation is also determined by levels. Aside from the base language
(for which they use typed or untyped λ-calculus), one subtle difference is that,
in those calculi, variables can range over expressions of the same level, resulting
in a relaxed condition on function types: α →i β is a type if |α| ≤ i (not |α| < i),
and |β| ≤ i.

13

Davies [2] also presents a reformulation λ© of the calculus for binding-time
analysis and shows that it corresponds to a proof system of linear-time temporal
logic with a modal operator. Actually, our earlier attempt to formalize meta-
variables [14] was done in a close style. In these calculi, terms are annotated
with information that indicates levels of subexpressions, hence λm is a simpler
calculus to formalize meta-variables.

As far as we know, the calculus λM is the first one which formalizes non-
standard (textual) substitution and is confluent and strongly normalizing. We
believe that our calculi can be a basis of formalizing logical and computation
systems naturally and directly, but their further development is left for future
work.

Acknowledgements: We thank anonymous referees for helpful comments. The first

author thanks Henk Barendregt and Jan Willem Klop for having discussions on meta-

variables with him. This work is supported in part by Grant-in-Aid for Scientific Re-

search on Priority Areas Research No. 15017247 (Sato, Sakurai) and Grant-in-Aid for

Young Scientists (B) No. 15700011 (Igarashi), from MEXT of Japan.

References

1. L. Dami. A Lambda-Calculus for Dynamic Binding. Theoretical Computer Science,
192:201–231, 1998.

2. R. Davies. A Temporal-Logic Approach to Binding-Time Analysis. In 11th Annual
IEEE Symposium on Logic in Computer Science (LICS’96), pages 184–195, 1996.

3. H. Geuvers and G. Jojgov. Open Proofs and Open Terms: A Basis for Interactive
Logic. In CSL 2002, LNCS 2471, pages 537–552, 2002.

4. R. Glück and J. Jørgensen. Efficient multi-level generating extensions for program
specialization. In Programming Languages, Implementations, Logics and Programs
(PLILP’95), LNCS 982, pages 259–278, 1995.

5. R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics. Journal
of the Association for Computing Machinery, 40(1):143–194, 1993.

6. M. Hashimoto and A. Ohori. A Typed Context Calculus. Theoretical Computer
Science, 266(1-2):249–272, 2001.

7. S. C. Kleene. Introduction to Metamathematics. North-Holland, 1952.
8. I. Mason. Computing with Contexts. Higher-Order and Symbolic Computation,

12:171–201, 1999.
9. D. Sands. Computing with Contexts - a Simple Approach. Electronic Notes in

Theoretical Computer Science, 10, 1998.
10. M. Sato. Theory of Judgments and Derivations. In Discovery Science, LNAI 2281,

pages 78–122, 2001.
11. M. Sato, T. Sakurai, and Y. Kameyama. A Simply Typed Context Calculus

with First-Class Environments. Journal of Functional and Logic Programming,
2002(4):1–41, 2002.

12. J. R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.
13. C. Talcott. A Theory of Binding Structures and Applications to Rewriting. The-

oretical Computer Science, 112(1):99–143, 1993.
14. K. Yamamoto, A. Okamoto, M. Sato, and A. Igarashi. A Typed Lambda Calculus

with Quasi-quotation (in Japanese). In Informal Proceedings of the 4th JSSST
Workshop on Programming and Programming Languages, pages 87–102, 2003.

14

