
A Modal Foundation for Secure Information Flow

Kenji Miyamoto Atsushi Igarashi
Graduate School of Informatics, Kyoto University

{miyamoto, igarashi }@kuis.kyoto-u.ac.jp

Abstract

Information flow analysis is a program analysis that detects possible illegal information flow such as the
leakage of (partial information on) passwords to the public. Recently, several type-based techniques for infor-
mation flow analysis have been proposed for various kinds of programming languages. Details of those type
systems, however, vary substantially and even their core parts are often slightly different, making the essence
of the type system unclear.

In this paper we propose a typed lambda calculusλ2
s as a foundation for information flow analysis. The

type system is developed so that it corresponds to a proof system of an intuitionistic modal logic of validity
by the Curry-Howard isomorphism. The calculus enjoys the properties of subject reduction, confluence, and
strong normalization. Moreover, we give a very simple proof of the noninterference property, which guarantees
that, in a well-typed program, no information on confidential data is leaked to the public. We also demonstrate
that a core part of the SLam calculus by Heintze and Riecke can be encoded intoλ2

s .

Keywords: Curry-Howard isomorphism, information flow analysis, modal logic, noninterference, and type sys-
tems.

1 Introduction

Background. Increasing demands for security in software have recently been stimulating the research on language-
based security. Among such work is a program analysis technique calledinformation flow analysis[8, 24], which
statically checks whether or not secret information, such as passwords, is leaked by program execution.

Information flow analysis keeps track of how information on confidential data flows. In the literature, informa-
tion flow is classified into two:explicit and implicit flow. Explicit flow occurs when, for example, confidential
data are assigned to public variables while implicit flow arises from the control structure of a program: it occurs
when confidential data control which conditional branch to take. For example, consider the following program
fragment:

pub := if length(passwd) > 5 then 1 else 2;

and supposepub is a public variable,passwd is a confidential string, andlength is a function to compute the
length of a given string. In information flow analysis, this program is considered insecure—even thoughpasswd
itself is not leaked, its partial information, that is, whetherpasswd is more than five characters, is leaked topub .
A principal correctness property of information flow analysis is callednoninterference. This property intuitively
means that, given a program that takes a confidential input and yields a public output, the output remains the same
no matter what value is given as the input.

Recently, a lot oftype-basedtechniques for information flow analysis have been proposed for various kinds
of languages, including procedural [27, 26], functional [10, 1, 23], object-oriented [19, 3, 4] and, concurrent

1

languages [25, 11, 12, 22, 15]. The basic idea of type-based analysis is as follows: (1) types are extended so that
they include security information as well as standard information on the kinds of values, such asint or int → int;
(2) typing rules are constructed by taking security information into account—for example, a conditional expression
whose test involves a high-security type is well typed only if both branches are given high-security types to prevent
implicit flow; and, finally, (3) a type reconstruction algorithm for the type system is developed. Type-based
information flow analysis has been drawing much attention, partially because it cleanly separates the specification
and algorithm of the analysis as a type system and type reconstruction, respectively.

Details of those type systems, however, vary substantially (apart from the difference of their base languages)
and even their functional core parts are often slightly different. Also, fairly complicated techniques are used to
prove noninterference (especially in those for functional languages): some use denotational semantics [10, 1, 3]
and some use a non-standard operational semantics [23]. It makes it difficult not only to compare those techniques
but also to grasp the essence of the type system and the noninterference property.

Our Goal and Approach. Our goal here is to give a foundational account for type-based information flow
analysis. To achieve this goal, we, inspired by the following observation, develop a natural extension of the
Curry-Howard isomorphism between a type system for information flow analysis and a certain modal logic.

Modal logic is a language to talk about truth relative to time or places, etc., which are abstracted as possible
worlds. Here, we talk about things like at what level the information on certain values can be available. So, it
seems to natural to relate the notion of security levels to possible worlds. Since information available at a lower
level is also available at a higher level, a suitable modality seems to belocal validity (or validity for simplicity) 2`,
which means “it is true at every level higher (or equal to) the security level` that . . . ” So, the fact that̀1 is higher
than`2 (or information can flow from̀2 to `1) can be regarded as that a possible world`1 is reachable from̀2. It
is expected that the proposition2`A naturally corresponds to the type that represents the values of typeA at the
security level̀ .

Our Contributions. The contributions we make in this paper are summarized as follows:

• As discussed above, we point out an informal correspondence between a type system for information flow
analysis and a certain modal logic.

• To make this correspondence more formal, we develop a typedλ-calculusλ2
s with modal typesof the form

2`A and prove that it enjoys subject reduction, Church-Rosser, and strong normalization.

• We also prove noninterference, which is essential to information flow analysis. Our proof is very simple,
without using complex denotational techniques or non-standard reduction relations as in previous work.

• To demonstrate thatλ2
s can be a foundation for information flow analysis, we develop encoding from (a

purely-functional subset of) the SLam calculus [10] toλ2
s .

Structure of the paper The rest of the paper is organized as follows. Section 2 introducesλ2
s with its syntax,

type system and reduction. Section 3 proves its properties including noninterference. After showing how the SLam
calculus can be encoded toλ2

s in Section 4, we discuss related work in Section 5 and give concluding remarks in
Section 6. Most of the proofs are omitted for brevity.

2 The Systemλ2
s

In this section, we define the typedλ-calculusλ2
s . We first briefly introduce a proof system of the modal logic

discussed in the previous section and then proceed to the formal definition ofλ2
s .

2

2.1 Modal Logic of Local Validity

The proof system is partially inspired by Pfenning and Davies’ formalization [21], based on the notion of judg-
ments.

The basic idea is to consider judgments to assert truth and local validity separately. Accordingly, a judgment
has two kinds of assumption sets and that of truth is writtenA`1

1 , . . . , A`n
n ; B1, . . . , Bm −` C. It meansC is true

at ` under the assumption thatAi is trueeverywhere reachable from̀i andBj is true at the current level. (In what
follows, we write∆ for A`1

1 , . . . , A`n
n andΓ for B1, . . . , Bm.) A locally valid assumption can be used only when

the current level is reachable from the level of the assumption, while the rule for (ordinary) truth assumptions are
as usual, as the following two rules:

`i v `

A`1
1 , . . . , A`i

i , . . . , A`n
n ; Γ −` Ai

∆; B1, . . . , Bj , . . . , Bm −` Bj

Validity is expressed by a judgment of truth with zero truth assumptions. The introduction rule for2`A amounts
to internalizing a judgment of validity as a proposition and the elimination rule turns “2`A is true” into “A is valid
at `”:

∆; · −` C

∆;Γ −`′ 2`C

∆;Γ −`′ 2`A ∆, A`; Γ −`′ C

∆;Γ −`′ C

The rules for other logical connectives are straightforward. For example, the elimination rule of implication is as
follows.

∆;Γ −` A → B ∆;Γ −` A

∆;Γ −` B

Note that the levels of the judgments must be the same.
Keeping this in mind, we proceed to the formal definition of our calculus.

2.2 Syntax

We first assume the countably infinite setOVar of ordinary variables, ranged over byx, y, z, andMVar of modal
variables, ranged over byu andv. We also assume the partially ordered set(L,v) of levels; elements ofL are
ranged over bỳ.

The types ofλ2
s are simple types with the unit type, product types, sum types, and modal types.

2.2.1 Definition [Types]: The set of types, ranged over byA, B, andC, is defined by the following grammar:

A ::= unit | A → A | A×A | A + A | 2`A

The precedence of type constructor is given by the decreasing order2` > × > + > → and the function type
constructor is right associative. For example,A → 2`B → A × C stands forA → ((2`B) → (A × C)) and
2`A×2`C + B → A for (((2`A)× (2`C)) + B) → A.

2.2.2 Definition [Terms]: The set of terms, ranged over byM andN , is defined by the grammar:

M ::= x | u | () | λx : A.M | M M | 〈M, M〉 | π1(M) | π2(M) | ι1(M) | ι2(M)
| (caseM of ι1(x) ⇒ M | ι2(x) ⇒ M) | box` M | let box` u = M in M

3

We omit parentheses according to the usual convention and assume that application is left associative. Also,
bound variables and their scopes are defined in a customary manner:λx : A.M boundsx in M ; caseM of ι1(x1) ⇒
N1 | ι2(x2) ⇒ N2 boundsx1 andx2 in N1 andN2, respectively;let box` u = M in N boundsu in N .

Terms are mostly those of the simply typedλ-calculus with unit, products, and sums. We have two kinds of term
variables as the logic has two kinds of assumptions: truth and validity. As we shall see in typing rules,box` M
corresponds to an application of the introduction rule for2` when viewed as a proof term, and can be thought
as asealingoperation where the sealed value is accessed at security level`. Similarly, let box` u = M in N
corresponds to an application of the elimination rule, when viewed as a proof term, and can be thought as unsealing.
Operationally, ifM reduces tobox` M0, thenlet box` u = M in N reduces toN in which M0 is substituted for
u.

Free variables are defined as usual except that there are two kinds of variables. We writeFMV(M) (FOV(M),
resp.) for modal (ordinary, resp.) variables that occur free inM . For example,FMV(〈ι2(z), λx : A.xu〉) = {u}
andFOV(〈ι2(z), λx : A.xu〉) = {z} andFMV(let box` u = x v in u y) = {v}.

We write [M/x] ([M/u], resp.) for the capture-avoiding substitution ofM for the ordinary variablex (the
modal variableu, resp.).

2.3 Type System

As discussed above, the judgment form of the logic isA`1
1 , . . . , A`n

n ; B1, . . . , Bm −` C. Accordingly, the type
judgment ofλ2

s is of the form∆;Γ −` M : A, read as “M is given typeA at level` under modal context∆
and ordinary contextΓ.” A modal context, which corresponds toA`1

1 , . . . , A`n
n , is a sequence of the formu ::` A

where modal variables in the sequence are pairwise distinct. Similarly, an ordinary context, which corresponds to
B1, . . . , Bm, is a sequence of the formx : B where variables in the sequence are pairwise distinct. We often write
‘ ·’ for the empty modal/ordinary context. When both contexts in a judgment are empty, they are simply omitted
and the judgment is written−` M : A. We writeu ::` A ∈ ∆ when∆ includesu ::` A. Similarly for ordinary
contexts.

The whole set of typing rules is given in Figure 1. We explain key rules in detail; other rules are fairly standard
(modulo two kinds contexts and the annotation of a level).

The ruleT-OVAR for ordinary variable reference is just as usual. On the other hand, modal variables can be
used only when the level of the variable is lower than or equal to the current level (the ruleT-MVAR). From the
viewpoint of information flow, a program at a lower level cannot refer to a variable of a higher security level,
preventing confidential information from flowing into irrelevant levels. It may first appear that the ruleT-MVAR is
too strict because a term containing a (modal) variable of high security as a free variable is regarded as confidential
computation even if the variable is just discarded. However, with a certain programming style, we can remedy it:
(a core of) the SLam calculus can be encoded intoλ2

s as we discuss in Section 4. In this sense,λ2
s is as expressive

as the SLam calculus.
The ruleT-BOX introduces modal types.Since “2`A is true” stands for “A is true everywhere reachable from`,”

the premise must be a judgment of validity, that is, the ordinary context must be empty. Since the judgment does
not depend on any assumptions of a particular level, it holds at any level, hence`′. For weakening, any ordinary
context can be placed in the conclusion. With the terminology of information flow, a sealed piece of code may be
used at an arbitrary level above or equal to`, so it cannot refer to (ordinary) variables available only at a particular
security level.

The last ruleT-LETBOX eliminates modal types. It turns “2`A is true” into “A is valid at`” and addsu ::` A
to the modal context to deduceB. It might look odd that̀ is not necessarily related tò′ at whichM is unsealed.
Actual access restriction is enforced byT-MVAR and, ifu is used inN (not underbox`), it should be the case that
` v `′.

4

x : A ∈ Γ
∆;Γ −` x : A

(T-OVAR)

u ::`
′
A ∈ ∆ `′ v `

∆;Γ −` u : A
(T-MVAR)

∆;Γ −` () : unit (T-UNIT)

∆; Γ, x : A −` M : B

∆;Γ −` λx : A.M : A → B
(T-ABS)

∆;Γ −` M : A → B ∆;Γ −` N : A

∆; Γ −` M N : B
(T-APP)

∆;Γ −` M : A ∆; Γ −` N : B

∆;Γ −` 〈M, N〉 : A×B
(T-PAIR)

∆;Γ −` M : A1 ×A2 i ∈ {1, 2}
∆;Γ −` πi(M) : Ai

(T-PROJ)

∆;Γ −` M : Ai i ∈ {1, 2}
∆;Γ −` ιi(M) : A1 + A2

(T-INJ)

∆;Γ −` M : A1 + A2

∆;Γ, x1 : A1 −` N1 : B
∆;Γ, x2 : A2 −` N2 : B

∆;Γ −` caseM of ι1(x1) ⇒ N1 | ι2(x2) ⇒ N2 : B
(T-CASE)

∆; · −`′ M : A

∆;Γ −` box`′ M : 2`′A
(T-BOX)

∆;Γ −` M : 2`′A ∆, u ::`
′
A; Γ −` N : B

∆;Γ −` let box`′ u = M in N : B
(T-LETBOX)

Figure 1: Typing Rules ofλ2
s

2.3.1 Example: If ` v `′, then the type judgment−`′ λx : 2`A.let box` u = x in u : 2`A → A can be derived.
By ignoring levels, this type can be viewed as to a variant of the axiom M.

2.3.2 Example: If `1 v `3 and`2 v `3, then

−` λx : 2`1(A → B).let box`2 u = x in λy : 2`2A.let box`2 v = y in box`3 (u v)
: 2`1(A → B) → 2`2A → 2`3B

is derivable. This type corresponds to a variant of the axiom K.

2.4 Operational Semantics

Operational semantics is given by the reduction relation of the formM −→ M ′, read as “M reduces toM ′ in one
step.” The computation rules are given as follows.

(λx : A.M1) M2 −→ [M2/x]M1

πi(〈M1,M2〉) −→ Mi

caseιi(M) of ι1(x1) ⇒ N1 | ι2(x2) ⇒ N2 −→ [M/xi]Ni

let box` u = box` M in N −→ [M/u]N

They can be applied at any point in a term, so we also need the obvious congruence rules (ifM1 −→ M ′
1, then

M1 M2 −→ M ′
1 M2, and the like), which we omit here.

2.4.1 Example: Let M = (λx : 2`A.let box` u = x in π2(u)) (box` 〈M1,M2〉). Then,M reduces toM2 as
follows:

M −→ [box` 〈M1,M2〉/x]let box` u = x in π2(u) (= let box` u = box` 〈M1,M2〉 in π2(u))
−→ [〈M1,M2〉/u]π2(u) (= π2(〈M1,M2〉)) −→ M2

5

3 Properties ofλ2
s

In this section, we show thatλ2
s satisfies basic properties including subject reduction, Church-Rosser and strong

normalization. Then, we show that it also satisfies the noninterference property, as expected.

3.1 Basic Properties

All the statements of the properties mentioned above are standard. Note that, in Subject Reduction, not only is the
type of a term preserved during reduction but also is the level at which the type judgments are derived. They are
proved by standard techniques.

3.1.1 Theorem [Subject Reduction]: If ∆; Γ −` M : A andM −→ N then∆;Γ −` N : A.

3.1.2 Theorem [Church-Rosser]: If M
∗−→ M1 andM

∗−→ M2, then there exists a termN such thatM1
∗−→ N

andM2
∗−→ N .

3.1.3 Theorem [Strong normalization]: If ∆;Γ − M : A, thenM is strongly normalizing.

3.2 Noninterference

One of the most important correctness properties isnoninterference, which intuitively means that a program input
at a high security level does not affect the program output at a lower level. To state this property more formally,
we require the following technical definition.

3.2.1 Definition [Transparent ground types]: A typeA is transparent ground type at level` if and only if:

1. A = unit,

2. A = A1 ×A2 and bothA1 andA2 are transparent ground types at`,

3. A = A1 + A2 and bothA1 andA2 are transparent ground types at`, or

4. A = 2`′A0 and`′ v ` andA0 is transparent ground type at`′.

Intuitively, a transparent ground type at` represents values of which it is effectively possible to inspect equality.
Now, the noninterference property is stated as follows:

3.2.2 Theorem [Noninterference]: If u ::` A; · −`′ M : B andB is a transparent ground type at`′ and` 6v `′,
then, there exists a unique normal formM ′ (moduloα-conversion) such that, for anyN , if −` N : A, then
[N/u]M ∗−→ M ′.

In this statement,u serves as a high level input, whose information is not allowed to flow into the level`′ (hence
` 6v `′). The condition onB expresses the fact that the value ofB can be inspected (or observed) at level`′. Thus,
it cannot include function types or modal types at a level irrelevant to`′.

This theorem can be proved by a very simple manner: it turns out that the modal variable that stands for a
high level input will disappear during reduction—this is shown simply by inspecting the structure of normal forms
(Theorem 3.2.4). Then, Theorem 3.2.2 is obtained as an easy corollary. We sketch the proof below.

First, we introduce neutral terms which correspond to applications of the elimination rules.

3.2.3 Definition [Neutral terms]: A term isneutral if it is of the form x, u, M N , πi(M), caseM of ι1(x1) ⇒
N1 | ι2(x2) ⇒ N2, or let box` u = M in N .

6

3.2.4 Theorem: If u ::` A; · −`′ M : B andM is a normal form andB is a transparent ground type at`′ and
u ∈ FMV(M), then` v `′.

Proof: By induction on the derivation ofu ::` A; · −`′ M : B with case analysis on the last rule used. ¤

Finally, we can prove Theorem 3.2.2.

Proof of Theorem 3.2.2: Let M ′ be a normal form such thatM
∗−→ M ′. By Theorem 3.1.1,u ::`

′
A; · −`

M ′ : B. Then, by the assumptioǹ 6v `′ and (a contraposition of) Theorem 3.2.4,u 6∈ FMV(M ′), hence
[N/u]M ′ = M ′. By using the fact thatM −→ M ′ implies [N/u]M −→ [N/u]M ′, we have[N/u]M ∗−→ M ′,
which is a normal form. By Theorems 3.1.2 and 3.1.3, any reduction sequence from[N/u]M will end with M ′.
¤

4 Encoding the SLam Calculus

In this section, we show how (a pure fragment of) the SLam calculus [10] can be encoded intoλ2
s . Recursive

functions have been dropped because the target languageλ2
s is not equipped with them. Also, we have dropped

protect in the SLam calculus for the following reasons: (1) the static semantics ofprotect , which raises
the security level of the type of the operand, can be simulated by application of a coercion function; (2) the
dynamic semantics ofprotect , which dynamically raises the security level of a value, is not relevant to ensure
noninterference—even if it was “nop,” noninterference could be proved. (In fact, coercion functions used in our
encoding are essentially identity functions.) We first briefly review the definition of the SLam calculus and then
show the translation with its correctness theorems.

4.1 Review of the SLam Calculus

LetL be a join semilattice of security levels, ranged over by`. The elements ofL are ordered byv and the binary
join of `1 and`2 is written `1 ∨ `2. A type, more precisely a secure type, in the SLam calculus is a simple type
where every type constructor is annotated with a security level, which signifies at which level the information on
a value of the type may be available.

4.1.1 Definition [SLam types]: The set ofSLam types, ranged over byt, and the set ofSLam secure types, ranged
over bys are defined as follows:

t ::= unit | s× s | s + s | s → s

s ::= (t, `)

Whens = (t, `), we often writes • `′ for (t, ` ∨ `′) and]s for `.

4.1.2 Definition [SLam expressions]:The set of expressions, ranged over by the metavariablee, are formed by
the typing rules in Figure 2.

An operational semantics of the SLam calculus is given by the following computation rules together with
congruence rules, omitted for brevity.

(λx : s.e0)` e1 ; [e1/x]e0

πi(〈e1, e2〉`) ; ei

caseιi(e0)` of ι1(x1) ⇒ e1 | ι2(x2) ⇒ e2 ; [e0/xi]ei

7

Γ(x) = s

Γ − x : s

Γ − e : s s ≤ s′

Γ − e : s′
Γ − ()` : (unit, `)

Γ, x : s1 − e0 : s2

Γ − (λx : s1.e0)` : (s1 → s2, `)

Γ − e1 : (s2 → s0, `)
Γ − e2 : s2

Γ − e1 e2 : s0 • `

Γ − e1 : s1 Γ − e2 : s2

Γ − 〈e1, e2〉` : (s1 × s2, `)
Γ − e : (s1 × s2, `)
Γ − πi(e) : si • `

Γ − e : si

Γ − ιi(e)` : (s1 + s2, `)

Γ − e0 : (s1 + s2, `)
Γ, x1 : s1 − e1 : s Γ, x2 : s2 − e2 : s

Γ − casee0 of ι1(x1) ⇒ e1 | ι2(x2) ⇒ e2 : s • `

` v `′

(unit, `) ≤ (unit, `′)

` v `′ s′1 ≤ s1 s2 ≤ s′2
(s1 → s2, `) ≤ (s′1 → s′2, `

′)
` v `′ s1 ≤ s′1 s2 ≤ s′2

(s1 × s2, `) ≤ (s′1 × s′2, `
′)

` v `′ s1 ≤ s′1 s2 ≤ s′2
(s1 + s2, `) ≤ (s′1 + s′2, `

′)

Figure 2: Typing rules of a core of the SLam calculus

Translation from subtyping to coercion: s1 ≤ s2 ↘ M

` v `′

(unit, `) ≤ (unit, `′) ↘
λx : 2`unit.let box` ux = x in ux

` v `′ s′1 ≤ s1 ↘ M1 s2 ≤ s′2 ↘ M2

(s1 → s2, `) ≤ (s′1 → s′2, `
′) ↘

λx : |(s1 → s2, `)|.let box` ux = x in
λy : |s′1|.M2 (box]s2 (ux (box]s1 (M1 y))))

` v `′ s1 ≤ s′1 ↘ M1 s2 ≤ s′2 ↘ M2

(s1 × s2, `) ≤ (s′1 × s′2, `
′) ↘

λx : |(s1 × s2, `)|.let box` ux = x in
〈box]s′1 (M1 (π1(ux))), box]s′2 (M2 (π2(ux)))〉

` v `′ s1 ≤ s′1 ↘ M1 s2 ≤ s′2 ↘ M2

(s1 + s2, `) ≤ (s′1 + s′2, `
′) ↘

λx : |(s1 + s2, `)|.let box` ux = x in
caseux of ι1(y) ⇒ ι1(box]s1 (M1 y)) | ι2(z) ⇒ ι2(box]s2 (M2 z))

Figure 3: Translation from SLam toλ2
s

4.2 Translation from SLam to λ2
s

The translation from the SLam calculus toλ2
s is rather straightforward. We takeL as the partially ordered set of

levels. Secure types are translated to (λ2
s) types by the function|s|:

|unit| = unit, |s1ops2| = |s1|op|s2|, |(t, `)| = 2`|t|
whereop is ×, +, or→. For the sake of simplicity, we assume that all bound variable names are different and
there is a bijection from the set of SLam variables to the set of modal variables. The modal variable corresponding
to x is writtenux below. Then, type-directed translation rules for expressions are given in Figures 3 and 4.

As will be formally stated in Theorem 4.2.1, a SLam expression of type(t, `) will be translated to a term typed
at `. The translation follows the following patterns: (1) when a subexpression is consumed by a given SLam
operation (for example,e1 e2 consumese1 but note2), it is translated to the corresponding operation and the result
is immediately unsealed; and (2) when a subexpression is not really consumed by an operation (for example,
none of function application, pairing, and injection consume their arguments), the subexpression is first sealed
and passed to the operation. This straightforward translation can introduce a lot of unsealing followed by sealing;
developing an optimized translation may be of interesting.

As mentioned in Section 2, a term containing a (modal) variable of high security as a free variable is regarded
as confidential computation even if the variable is just discarded. The translation patterns also show how to avoid

8

Translation of expressions:Γ − e : s ↘ M

Γ(x) = s

Γ − x : s ↘ ux

Γ − e : s ↘ N s ≤ s′ ↘ M

Γ − e : s′ ↘ M (box]s N)
Γ − ()` : (unit, `) ↘ ()

Γ, x : s − e0 : s0 ↘ M

Γ − (λx : s.e0)` : (s → s0, `) ↘
λx : |s|.let box` ux = x in box]s0 M

Γ − e1 : (s2 → s0, `) ↘ M1 Γ − e2 : s2 ↘ M2

u 6∈ FMV(M1) ∪ FMV(M2)
Γ − e1 e2 : s0 • ` ↘ let box]s0 u = M1 (box]s2 M2) in u

Γ − e1 : s1 ↘ M1

Γ − e2 : s2 ↘ M2

Γ − 〈e1, e2〉` : (s1 × s2, `) ↘
〈box]s1 M1, box]s2 M2〉

Γ − e : (s1 × s2, `) ↘ M
i ∈ {1, 2} u 6∈ FMV(M)

Γ − πi(e) : si • ` ↘
let box]si u = πi(M) in u

Γ − e : si ↘ M i ∈ {1, 2}
Γ − ιi(e)` : (s1 + s2, `) ↘ ιi(box]si

M)

Γ − e0 : (s1 + s2, `) ↘ M0 Γ, x : s1 − e1 : s ↘ M1 Γ, y : s2 − e2 : s ↘ M2

Γ − casee0 of ι1(x) ⇒ e1 | ι2(y) ⇒ e2 : s • ` ↘
caseM0 of ι1(x) ⇒ let box]s1 ux = x in M1 | ι2(y) ⇒ let box]s2 uy = y in M2

Figure 4: Translation from SLam toλ2
s

such undesirable increase of security levels. Unless a modal variable is really consumed, it can be passed to
elsewhere by putting in abox, making the security level of the whole expression unrelated to that of the variable.

Correctness of the translation is given by Theorem 4.2.3. It requires auxiliary theorems stating that translation
preserves typing and semantics with the following definitions.

Translation of SLam contexts to modal contexts is given as follows:

|x1 : (t1, `1), . . . , xn : (tn, `n)| = ux1 ::`1 |t1|, . . . , uxn ::`n |tn|

We writee ⇓ e′ whene
∗
; e′ and there is noe′′ such thate′ −→ e′′.

4.2.1 Theorem [Translation Preserves Typing]:If Γ − e : (t, `), then there existsM such thatΓ − e : (t, `) ↘
M and|Γ|; · −` M : |t|.

4.2.2 Theorem [Adequacy]: If − e : (t, `) ↘ M andt is ground, thene ⇓ e′ iff M
∗−→ M ′ and− e′ : s ↘ M ′

for somes ≤ (t, `) and normal formM ′.

4.2.3 Theorem [SLam Noninterference]:Let `1 and`2 be any two elements ofL. If `1 6v `2 andx : (t, `1) −
e : ((unit, `2) + (unit, `2), `2), then for anye1 ande2 such that− ei : (t, `1), [e1/x]e ⇓ v iff [e2/x]e ⇓ v.

Proof sketch: By Theorem 4.2.1,x : (t, `1) − e : ((unit, `2) + (unit, `2), `2) ↘ M andux ::`1 ; · − M :
2`2(2`2unit + 2`2unit). Then, the conclusion is immediate from Theorem 3.2.2. ¤

5 Related Work

Type-based Information Flow Analysis. As mentioned before, there have been a lot of type-based techniques of
information flow analysis for various kinds of languages [10, 1, 23, 19, 3, 25]. (See also Sabelfeld and Myers [24]
for an excellent survey of this area.) Among them, close to ours are of course ones for functional languages [10,
1, 23]. It is interesting to see that even their core type systems and semantics are slightly different from each

9

other and that the proofs of noninterference are also significantly different, accordingly. For example, Heintze and
Riecke [10] and Abadi et al. [1] proved noninterference for variants of the SLam calculus, by using denotational
techniques, while Pottier and Simonet [23] did it, by developing a customized operational semantics that can
express two executions with different high security inputs at once. On the other hand, our noninterference proof is
very simple, and essentially based on the observation that high security inputs simply disappear during reduction.
Of course, this argument was possible as we have (1) fullβ-reduction, where any subterms—even terms under
lambda abstractions—can be reduced and (2) nondeterministic reduction that allows to delay computation at a
higher level.1 So, we think it doesn’t directly extend to a language with side-effects. Nevertheless, we believe it is
worth noting that noninterference for a purely functional languageis easy to prove.

To perform precise analysis for the while language with (first-order) procedures, Volpano and Smith [26] in-
troduced procedures polymorphic with respect to security levels, that is, procedures parameterized by variables
ranging over security levels. Although our calculus is not equipped with such a notion, it would be in principle
possible to introduce the universal quantifier for possible worlds to our language. For example, the type of a
function that takes two integers of the same security level and yields their sum might be written something like
∀n ∈ L.(2nint×2nint → 2nint).

Barthe and Serpette [4] developed a type system for information flow analysis (and binding time analysis) for
FOb1≤: [2], an object calculus with a first-order type system and subtyping, and proved noninterference. Their
approach to proving noninterference is very similar to ours: both proofs are entirely syntactic and use the fact that
a normal form at some level cannot contain higher-level variables. Our proof may appear slightly more involved
since we use Church-Rosser and Strong Normalization properties, which are required only because we adopt full
β-reduction and do not fix the evaluation strategy. On the other hand, Barthe and Serpette assumed the normal
order for reduction; so, it always leads to a normal form (if any), making the proof look slightly simpler.

Monadic Type Systems and Lax Logic. One of the closest related work is Abadi et al.’s dependency core
calculus (DCC) [1]. Its purpose is to give a unified account for more general program analysis—dependency
analysis, of which information flow analysis is one instance. DCC, an extension of Moggi’s computational lambda
calculus [17], is equipped with monadic types,T`A, indexed by a predetermined lattice element`.

We believe that similarity to our modal types2`A is not superficial. In fact, the computational lambda calculus
has been found to correspond to a modal logic called lax logic [5, 9]. One standard interpretation of lax modality,
usually written©A, is “A is trueunder some constraint,” and the elimination rule of lax modality is given as:

Γ − ©A Γ, A − ©B

Γ − ©B

It corresponds to the typing rule for monadic bindingbind x = M in N by interpreting© as the monadic type
constructor. Later, Pfenning and Davies [21] pointed out that the lax modality© can be decomposed as “possibly
necessary”32. On the other hand, our modal types2`A could be decomposed as@`2A, where@`A would
mean “A is true at the world̀ .” In some sense, inλ2

s , it is made explicit at which world2A holds, while, in lax
logic and the original computational lambda calculus, it is abstracted out by the possibility modality3. However,
the typing rules ofλ2

s and DCC are rather different. It is left for future work to figure out how they (do or do not)
correspond to each other.

Type Systems Based On Modal Logic. Recently, several typed calculi based on proof systems of modal logic
have been proposed for various purposes: staged computation [7], binding-time analysis in partial evaluation [6],

1Strong normalization and Church-Rosser guarantee that noninterference holds under any reduction strategy, though.

10

a formal account for the notion of meta-variables [20], and distributed computation [18, 13]. Each calculus (in-
cludingλ2

s) has slightly different modality, specialized to its purpose. To our knowledge, our work is the first to
point out the relevance of modal logic to security or dependency analysis.

6 Conclusion

We have developed a typed lambda-calculusλ2
s to give a foundational account for type-based information flow

analysis. The calculus corresponds, by (a natural extension of) the Curry-Howard isomorphism, to a proof system
of an intuitionistic modal logic of local validity. The correspondence is based on the observation that security
levels can be interpreted as possible worlds, legal directions of information flow can be as the reachability relation
on possible worlds, and security types can be as propositions of validity. The calculus is shown to satisfy desirable
properties including subject reduction, Church-Rosser, strong normalization. Moreover, we have found the nonin-
terference property, a correctness property essential for information flow analysis, can be proved in a very simple
syntactic manner, without involving denotational semantics or non-standard operational semantics. We also show
that a purely functional core of the SLam calculus can be encoded intoλ2

s and that its noninterference can be
proved in terms ofλ2

s .
We briefly discuss possible future work below.
As mentioned in the last section, we conjecture that DCC’s monadic types have strong connection with our

modal types, although the type system is rather different. It is interesting work to investigate Curry-Howard
isomorphism for DCC and study its logical interpretation.

We have studied a modal logic with validity as the only modality. It remains as an open question whether there
is any sensible interpretation of modal possibility [21] in our context.

Recently, type-based information flow analysis for low-level languages such as the Java Virtual Machine Lan-
guage (JVML) has been studied [16]. Since a type system for JVML can be interpreted as a variant of Gentzen’s
sequent calculus [14], we think it would be possible to apply our idea and develop a correspondence for low-level
languages.

It may be an interesting question to answer how general our overall approach to foundations for type-based
program analyses is. There have been a lot of type-based program analyses that use non-standard type systems—
non-standard in the sense that types are decorated with information peculiar to the purpose of the analysis. It may
be possible to find yet another correspondence between type-based program analyses and (modal) logic. Such
work will be useful to deepen understanding of the essence of program analyses, as our work have been so for
information flow analysis.

Acknowledgements. The authors are grateful to Masahiko Sato and anonymous reviewers for their useful com-
ments. This work is supported in part by Grant-in-Aid for Scientific Research on Priority Areas Research No.
12133202 and Grant-in-Aid for Young Scientists (B) No. 15700011 from MEXT of Japan.

References

[1] Martı́n Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core calculus of dependency. InProc. of POPL
’99, pages 147–160, 1999.

[2] Martı́n Abadi and Luca Cardelli.A Theory of Objects. Springer-Verlag, 1996.

[3] Anindya Banerjee and David A. Naumann. Secure information flow and pointer confinement in Java-like language. In
Proc. of 15th CSFW, pages 253–267, 2002.

11

[4] Gilles Barthe and Bernard P. Serpette. Partial evaluation and non-interference for object calculi. InProc. of 4th Fuji
International Symposium on Functional and Logic Programming (FLOPS’99), volume 1722 ofLNCS, pages 53–67,
Tsukuba, Japan, 1999.

[5] P. N. Benton, Gavin Bierman, and Valeria de Paiva. Computational types from a logical perspective.Journal of
Functional Programming, 8(2):177–193, 1998.

[6] Rowan Davies. A temporal-logic approach to binding-time analysis. InProc. of LICS’96, pages 184–195, 1996.

[7] Rowan Davies and Frank Pfenning. A modal analysis of staged computation.Journal of the ACM, 48(3):555–604,
2001.

[8] D. E. Denning and P. J. Denning. Certification of programs for secure information flow.Communications of the ACM,
20(7):504–513, July 1977.

[9] Matt Fairtlough and Michael Mendler. Propositional lax logic.Information and Computation, 137(1):1–33, 1997.

[10] Nevin Heintze and Jon G. Riecke. The SLam calculus: programming with secrecy and integrity. InProc. of POPL ’98,
pages 365–377, 1998.

[11] Kohei Honda, Vasco Vasconcelos, and Nobuko Yoshida. Secure information flows as typed process behaviour. InProc.
of ESOP (ESOP), Springer LNCS 1782, pages 180–199, 2000.

[12] Kohei Honda and Nobuko Yoshida. A uniform type structure for secure information flow. InProc. of 29th POPL
(POPL’02), pages 81–92, Portland, OR, January 2002.

[13] Limin Jia and David Walker. Modal proofs as distributed programs. InProc. of ESOP, volume 2986 ofLNCS, pages
219–233, 2004.

[14] Shin-ya Katsumata and Atsushi Ohori. Proof-directed de-compilation of low-level code. InProc. of ESOP, volume
2028 ofLNCS, pages 352–366, 2001.

[15] Naoki Kobayashi. Type-based information flow analysis for the pi-calculus. Technical Report TR03-0007, Dept. of
Computer Science, Tokyo Institute of Technology, October 2003.

[16] Naoki Kobayashi and Keita Shirane. Type-based information flow analysis for JVML. InInformal Proc. of APLAS’02,
2002.

[17] Eugenio Moggi. Notions of computation and monads.Information and Computation, 93(1):55–92, 1991.

[18] Jonathan Moody. Modal logic as a basis for distributed computation. Technical Report CMU-CS-03-194, School of
Computer Science, Carnegie Mellon University, 2003.

[19] Andrew C. Myers. JFlow: Practical mostly-static information flow control. InProc. of POPL’99, pages 228–241, 1999.

[20] Aleksander Nanevski, Brigitte Pientka, and Frank Pfenning. A modal foundation for meta-variables. InProc. of Merλin,
2003.

[21] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.Mathematical Structures in Computer
Science, 11(4):511–540, 2001.

[22] François Pottier. A simple view of type-secure information flow in the pi-calculus. InProc. of CSFW, pages 320–330,
2002.

[23] François Pottier and Vincent Simonet. Information flow inference in ML.ACM TOPLAS, 25(1):117–158, 2003.

[24] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.IEEE Journal On Selected Areas
In Communications, 21(1):5–19, 2003.

[25] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-thereaded imperative language. InProc. of
POPL, pages 355–364, 1998.

[26] Dennis Volpano and Geoffrey Smith. A type-based approach to program security. InProc. of TAPSOFT, volume 1214
of LNCS, pages 607–621, 1997.

[27] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure flow analysis.Journal of
Computer Security, 4(3):1–21, 1996.

12

