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ABSTRACT

We propose a type-based technique to analyze how many times each value, in-

cluding communication channels, is used during execution of concurrent programs.

This work is closely related with the recent work by Kobayashi, Pierce, and Turner

on a linear channel system on a process calculus. They introduced a type system

that ensures certain channels (called linear channels) to be used just once, and

showed that how linear channels help reasoning about program behaviors. How-

ever, they only deal with a pure message passing calculus, and more importantly,

the type reconstruction problem is left open. This thesis develops a type recon-

struction algorithm of a variant of a linear channel type system for a concurrent

language with data constructors such as records, and let-polymorphism. We can

detect not only linear channels but also other used-once values (closures, records,

etc.) by the type reconstruction algorithm. Computational cost of our analysis

(excluding cost of ordinary type reconstruction { which is known exponential in

the worst case {) is polynomial in the size of a program. Moreover, several exper-

iments show that our analysis is enough e�cient in practice. We also incorporate

the proposed analysis into a compiler of a concurrent language HACL and present

results of several benchmarks.
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論 文 要 旨

並列プログラムの実行における、通信チャネルなどの値の使用回数を型に基づい

て解析する手法を提案する。本研究は Kobayashi, Pierce, Turner らのリニアチャ

ネルシステムに関する研究に密接に関連している。その研究では、あるチャネル (リ

ニアチャネルという)は、型システムによって一度しか使われないことが保証でき、

そのリニアチャネルはプログラムの振舞いに関する推論に役立つことが示されてい

る。しかし、そこでは対象として純粋な並列計算しか扱われず、さらに重要なこと

として、型推論の問題は論じられていない。本論文では、レコードなどのデータ構

築子や let による多相型を導入した並列言語のためのリニアチャネルを判定する型

システムおよびその型推論アルゴリズムを提案する。これはリニアチャネルだけで

なく、それ以外の種類の一度しか使われない値 (関数、レコードなど)の検出を可能

にする。この解析の計算コストは通常の型推論のコスト (最悪指数オーダーとして知

られている)を除くと、プログラムサイズに対し多項式時間である。さらに、いくつ

かの実験により実際上は解析が十分効率的に行えることを示す。また、提案する解

析手法を並列言語 HACL コンパイラ上に組み込みベンチマークの結果を示す。
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Chapter

1

Introduction

1.1 Background

With the recent development of parallel computers and high-speed networks, con-

current/distributed programming languages have been drawing great attentions.

Concurrent programming languages are important even in sequential environments

in describing interactive applications such as graphical user interfaces[4]. Indeed,

many concurrent programming languages { including concurrent object-oriented

languages[27, 1], concurrent extensions of functional languages[20], concurrent

constraint/linear logic programming languages[22, 21, 10], and programming lan-

guages based on process calculi[17, 23] { have been proposed and implemented.

Of those researches, the frameworks of process calculi[13, 10] are drawing at-

tentions as a vehicle for studying theoretical aspects of concurrent programming

languages. The process calculi are based on the model that computation is per-

formed by multiple concurrent processes communicating values along communi-

cation channels. Their computational models are simple but so expressive that

various high-level constructs for concurrent object-oriented languages can be cap-

tured by process calculi extended with records[9, 11, 18]. Moreover, they provide

us various useful methods to reason about behaviors of programs: criteria of be-

havioral equivalence of processes such as barbed bisimulation, or (static) type
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systems. For these reasons, programming languages based on process calculi have

the following advantages:

� Semantics of the core language is clearly de�ned through the basis calculus.

� High-level constructs, like concurrent objects, can be 
exibly introduced/modi�ed

with clear semantics.

� Various aspects (theory, implementation, etc.) of such high-level constructs

can be uniformly discussed.

On the other hand, once high-level constructs are encoded into a lower-level

core language, their good properties are often thrown away and so safety use of the

constructs is di�cult to ensure on the core language. As another disadvantage,

overhead of multi-threading and communication among threads, i.e., operations

on channels, are large. To recover these disadvantages, analysis technique for

languages based on process calculi, particularly static analysis which makes use

of their clear semantics, is required. By developing analysis technique on such

languages, it would be easy to develop similar technique for other concurrent pro-

gramming languages.

1.2 Linear Channel Type System

As an instance of static analysis for process calculi, recently, Kobayashi, Pierce, and

Turner[8] gave a static type system with which certain communication channels,

called linear channels, can be ensured to be used just once. Linear channels have

many good properties such as partial con
uence with respect to communication

on them.

Above all, linear channels enable to eliminate redundant communication. Con-

sider the following expression new r in (m(v; r) j r(x)) e) end, which repre-

sents a function call or a method invocation of concurrent objects. It creates a

2



new channel r, then activates m(v; r) and r(x) ) e concurrently. m(v; r) sends

(v; r) to the channel m where m and v represent the location of the function or

the method and its argument, respectively. The channel r is used for the callee to

send a result. r(x)) e is a message receiver which executes [z=x]e when a value z

is received at the channel r. If r is proved to be a linear channel, we can reduce the

above expression into m(v; �x:e), in which the channel creation new r in : : : end

and the communication on the channel are eliminated. Moreover, consider a spe-

cial case that e is just a r

0

(x), which forwards the value from r to another channel

r

0

. Then the resulting code is m(v; r

0

), which may be regarded as the tail-call op-

timized form of the expression new r in (m(v; r) j r(x)) r

0

(x)) end. Note that

this kind of tail-call optimization is only possible by a non-trivial global analysis,

unlike that in functional programming languages (because we need to check the

behaviors of receivers on the channel m).

In addition to the elimination of redundant message passing, linear channel

type system can be used to: (1) reduce the cost of operations on communication

channels, (2) reduce the cost of garbage collection by the reuse of memory space

for linear channels, (3) guarantee safety of programs by the properties of linear

channels. There are many situations where linear channels are used. As mentioned

above, one of two communications involved in function/method calls is performed

on a linear channel. Moreover, most of dynamically created channels are linear

ones in typical programs.

Their system is, however, on a pure message passing calculus, and the type

reconstruction problem of the system is left open.

1.3 Our Approach

In this study, we improve their type system and develop a type reconstruction

algorithm which can detect a�ne channels[8], which is used at most once. Note

that in the type system of [8], linear channels and a�ne channels have nearly

3



identical properties because it is possible to throw away linear channels without

using by placing them in a deadlocked subprocess. So, in this thesis, we do not

particularly distinguish them.

The basic ideas of our analysis are a type system with uses and introduction

of use constraint. Uses are attached to type constructors and denote how many

times the values are used. For example, int

1

denotes the type of integers which

can be used at most once where the superscripted 1 is a use. It will be ensured

that values are used according to their uses, i.e., a value of int

1

is really used at

most once, during execution.

Use constraint is introduced for ease of type reconstruction. In the sense that a

whole program determines uses of values, a use is a global property. So, analysis in

a simple-minded bottom-up manner does not work because uses of values cannot

be determined from local information. To solve this problem, we introduce use

variables, which represent such undetermined uses, and a use constraint set, which

keeps local information as a system of inequalities on use variables. Our type

reconstruction algorithm generates a use constraint set as a part of outputs. To

detect linear channels, the constraint set is to be solved.

Our target language discussed here is a small core of concurrent programming

languages, which can be considered as a process calculus extended with functions,

data structures such as records, and the ML-style let-polymorphism. We choose

such a language because behaviors of various concurrent programming languages

can be captured as mentioned above and it is more realistic for practice than pure

process calculi. Therefore, the result of this study would be easy to apply to other

concurrent programming languages.

1.4 Contribution

Main contributions of this thesis are:

4
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Figure 1.1: Overview of This Thesis

� Development of a type reconstruction algorithm for a type system with uses

for a realistic core of concurrent programming languages.

� Development of a method for detection used-once values, including linear

channels. Used-once values are detected with no declarations about types in

programs by our analysis.

Computational cost of our analysis (excluding cost of ordinary type reconstruction

{ which is known exponential in the worst case {) is polynomial in the size of a

program.

Note that the linearity analysis of communication channels is more di�cult to

detect than that in functional programming languages[24], because a linear channel

has at least two syntactic occurrences { one for receiving and another for sending.

We also show that the cost of the analysis is e�cient for practice and that the

e�ects of optimization by linear channels are promising.

1.5 Overview of This Thesis

The goal of this thesis is to give an algorithm to obtain use information, and

prove it to be correct with respect to operational semantics. The overview of this

thesis is illustrated in Figure 1.1. First, we discuss the analysis for a pure process
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calculus, and then we extend the target language. In both discussions, we intro-

duce two kinds of type systems. One of them (type system (I)) is a type system

to guarantee the correctness of uses of values. The judgements on uses obtained

by the type system are proved to be sound with respect to operational seman-

tics. Then, we modify it to the other type system, type system (II), which eases

type reconstruction by introducing use constraint, present a type reconstruction

algorithm and prove soundness and completeness of the algorithm. The two type

systems are proved to be essentially equivalent. As a result, reconstructed type

(including use information) will be sound with respect to operational semantics.

The structure of the rest of this thesis is as follows. In Chapter 2, we describe

a type system with uses for a pure process calculus and prove it to be sound with

respect to its operational semantics. The modi�ed type system, its type recon-

struction algorithm, and the method for detecting linear channels are presented in

Chapter 3. In Chapter 4, we discuss our analysis for the extended language. By

the analysis, we can detect not only linear channels but also other used-once val-

ues (closures, records, etc.) Chapter 5 gives some experimental results to show the

e�ect of optimization through simple examples and that the cost of our analysis is

enough e�cient in practice in spite of its theoretical complexity. After discussing

several issues and related work in Chapter 6 and Chapter 7, we conclude this thesis

in Chapter 8.

6



Chapter

2

A Type System with Uses for a Pure

Message Passing Calculus

In this chapter, we give a type system of an asynchronous (pure) message passing

calculus, which judges how often each channel will be used, and prove that the

type system is correct with respect to its operational semantics. The type system

handles not only the usual types but also uses, which are attached to type con-

structors and denote how many times each channel is used. For example, [� ]

(0;1)

,

where the superscripted 0 and 1 are called uses, denotes a type of channels used at

most once to send a variable of � type. By the correctness of the type system, we

mean that the channels of such a type are used for sending at most once, indeed,

during evaluation.

We �rst present the syntax of our target language, which can be considered

an asynchronous fragment of the polyadic �-calculus[13], and explain its intuitive

meaning. In the �rst section, without introducing uses, we give a type system and

operational semantics for the target calculus. Second, the de�nition of uses and a

type system with uses are described in Section 2.2. Third, operational semantics

is extended with uses and the correctness of the type system with uses is proved

in Section 2.3.
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2.1 Target Language

The target language is considered as a fragment of the polyadic �-calculus allowing

only asynchronous communication. Computation in this language is performed by

multiple processes which communicate values asynchronously through communi-

cation channels, simply called channels. Channels are �rst-class citizens in the

sense that they can be passed from a process to other processes.

2.1.1 Syntax

We give the de�nition of preterms, which are untyped process expressions. The

metavariable x(; y; z; : : :) ranges over the �nite set of variables. The syntax of

preterms of the language is given below.

De�nition 2.1 (preterms) The set of preterms, ranged over by e, is de�ned as

follows.

e ::= e

1

j e

2

(parallel composition)

j x(y

1

; : : : ; y

n

) (message send)

j r (message receiver(s))

j x

�

(y

1

; : : : ; y

n

)) e (replicated message receiver)

j new x in e end (channel creation)

r ::= x(y

1

; : : : ; y

n

)) e (message receiver)

j r

1

&r

2

(guarded choice of receivers)

A sequence of variables y

1

; : : : ; y

n

is often written as ~y. Also, we abbreviate

new x

1

in : : :new x

n

in e end : : : end to new ~x in e end. We give x(~y) (mes-

sage send) a higher precedence than ), and ) a higher precedence than j and

&. For example, e

1

jx(z)) y(z) j e

2

means e

1

j (x(z)) (y(z))) j e

2

.

Their intuitive meanings are as follows. e

1

j e

2

executes e

1

and e

2

in par-

allel. x(y

1

; : : : ; y

n

) sends the tuple of the values (y

1

; : : : ; y

n

) along the chan-

nel x. new x in e end creates a new channel x and executes the process e.

x(y

1

; : : : ; y

n

)) e waits for z

1

; : : : ; z

n

along the channel x, and executes [z

1

=y

1

; : : : ; z

n

=y

n

]e.

r

1

& � � �&r

n

executes either of r

i

depending on available messages. For instance,

8



new x in x(z) j ((v(y)) w(y))&(x(y)) u(y))) end communicates on x and is

reduced to new x in u(z) end. A replicated message receiver x

�

(y

1

; : : : ; y

n

)) e

also waits for z

1

; : : : ; z

n

along x, spawns [z

1

=y

1

; : : : ; z

n

=y

n

]e and executes itself

repeatedly.

Bound variables of a preterm can be de�ned in a customary fashion, i.e., vari-

ables y

1

; : : : ; y

n

are bound in e of x(y

1

; : : : ; y

n

) ) e, x

�

(y

1

; : : : ; y

n

) ) e, and

new y

1

; : : : ; y

n

in e end. A variable which is not bound in a preterm will be

called a free variable of the preterm. We de�ne �-conversions of bound variables

in a customary manner and assume that implicit �-conversions are allowed, hen-

thforce.

2.1.2 Type System

The syntax of types is de�ned below:

De�nition 2.2 (types) The metavariable �(; �; : : :) ranges over the �nite set of

type variables. The set of types, ranged over by � , is given by the following syntax.

� ::= � (type variables)

j [�

1

; : : : ; �

n

] (channel types)

[�

1

; : : : ; �

n

], often abbreviated to [~� ], denotes the type of channels which com-

municates a tuple of values, each of which has �

i

type.

A type environment � is a mapping from the set of variables to the set of types.

The domain of a type environment is written as dom(�). We write x

1

: �

1

; : : : ; x

n

:

�

n

, abbreviated to ~x : ~� , for a type environment � such that dom(�) = fx

1

; : : : ; x

n

g

and �(x

i

) = �

i

for each i. When x 62 dom(�), we write �; x : � to mean a type

environment �

0

such that �

0

(x) = � and �

0

(y) = �(y) if x 6= y. A type judgement

form is � ` e, read as the preterm e is well-typed under �. It means that if the free

variables of e has the types obtained from �, respectively, then e is a well-typed

process.

9



� ` e

1

� ` e

2

� ` e

1

j e

2

(T-Par)

� ` e

1

� ` e

2

� ` e

1

&e

2

(T-Choice)

�; x : [~� ]; ~y : ~� ` x(~y) (T-Send)

�; x : [~� ]; ~y : ~� ` e

�; x : [~� ] ` x(~y)) e

(T-Recv)

�; x : [~� ] ` e

� ` new x in e end

(T-New)

�; x : [~� ]; ~y : ~� ` e

�; x : [~� ] ` x

�

(~y)) e

(T-RRecv)

Figure 2.1: Typing Rules for the Target Language

Typing rules are given in Figure 2.1. A well-typed preterm is simply called

a term. To avoid confusion with type judgement derived the other typing rules

described later, we write � `

T

e if it is derivable from these typing rules.

Intuitive meanings of typing rules are as follows:

(T-Par, T-Choice) If subexpression e

1

and e

2

is well-typed under �, then both

e

1

j e

2

and e

1

&e

2

are well-typed.

(T-Send) If x is a channel to a communicate a tuple of values, each of which has

the type �

i

, and each y

i

has the type �

i

, respectively, then message sending

x(~y) is well-typed.

(T-Recv, T-RRecv) If the body of a receiver e is well-typed under a type envi-

ronment that each y

i

has the type �

i

, respectively, and x has the channel type

[�

1

; : : : ; �

n

], then the whole receiver is well-typed under the type environment

from which the assumption on ~y is eliminated.

(T-New) If e is well-typed under a type environment that x has a channel type,

then new x in e end is well-typed under the type environment from which

the binding of x is eliminated.

10



2.1.3 Reduction Semantics

Following the standard presentation for process calculi[13], the reduction semantics

for preterms is de�ned via two relations: a structural congruence and a reduction

relation. First, we de�ne a structural congruence relation e

1

�

=

e

2

, which is congru-

ence based on the structures of preterms. It is introduced for the simplicity of the

reduction semantics and represents the fact that the order of parallel composition

in a preterm does not a�ect the behavior of the preterm and so forth. In other

words, if two preterms are in a reduction relation given below, those structurally

congruent to them are also in the relation. Second, the reduction relation e! e

0

,

which means that \e is reduced to e

0

in one step," is de�ned.

De�nition 2.3 (structural congruence e

1

�

=

e

2

) Structural congruence e

1

�

=

e

2

is the least congruence on preterms closed under the following rules.

e

1

j e

2

�

=

e

2

j e

1

(e

1

j e

2

) j e

3

�

=

e

1

j (e

2

j e

3

)

e

1

&e

2

�

=

e

2

&e

1

(e

1

&e

2

)&e

3

�

=

e

1

&(e

2

&e

3

)

new x in (e

1

j e

2

) end

�

=

e

1

jnew x in e

2

end (if x is not free in e

1

)

De�nition 2.4 (reduction relation e! e

0

) The reduction relation e ! e

0

is

the least relation closed under the following rules:

((x(~y)) e)&e

0

) j x(~z)! [~z=~y]e (R-Comm)

(x

�

(~y)) e) j x(~z)! [~z=~y]e j (x

�

(y)) e) (R-RComm)

e

1

�

=

e

2

e

1

! e

0

1

e

0

1

�

=

e

0

2

e

2

! e

0

2

(R-Cong)

e

1

! e

0

1

e

1

j e

2

! e

0

1

j e

2

(R-Par)

e! e

0

new x in e end! new x in e

0

end

(R-New)

The type system ensures that the well-typedness of a term is preserved during

the reduction.
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Theorem 2.1 (Subject Reduction (1)) If � ` e and e! e

0

, then � ` e

0

.

Proof Structural induction on the proof of e! e

0

. 2

2.2 Type System with Uses

Now, we show how a type system judges how many times each channel is used. For

this purpose, the set of uses, which are associated to the channel type constructor

and denote how many times the channel is used, is introduced. The syntax of

types and typing rules are rede�ned so that uses are properly handled.

2.2.1 Uses and Types with Uses

The set of uses, ranged over by �, is f0; 1; !g. The intuitive meaning of each use

is as follows. 0 means that channels will be never used, 1 means that channels

will be used at most once, and ! means that channels will be used any number of

times.

Note that a use is not just the number of syntax occurrences of the channel

because each channel can be used for two di�erent operations, i.e. sending and

receiving. Consider the following preterm:

f(x)) x(v) jnew y in (f(y) j y(w)) e) end

In the above preterm, y appears twice, but is used for di�erent operations. It is

used once for sending after y is sent to f , while for receiving in y(w)) e. Hence,

a pair of two uses (�

1

; �

2

) is attached to the channel type constructor. The �

1

and

�

2

denote how many times the channel may be used for receive operations and for

send operations, respectively. After all, the total use of y is counted as (1; 1) in

the above example.

Now, we formally rede�ne the syntax of types.

12



De�nition 2.5 (bare types, types) The set of bare types, ranged over by �, and

the set of types, ranged over by � , are given by the following syntax.

� ::= � (type variables)

j [�

1

; : : : ; �

n

] (channel types)

� ::= �

(�

1

;�

2

)

As explained above, the attached �

1

, often called receive use, and �

2

, often

called send use, denote how many times the channel may be used for receive

operations and for send operations, respectively. For example, [� ]

(0;1)

denotes a

type of channels used at most once to send a value of � type.

2.2.2 Typing Rules with Uses

A type judgement form � ` e means not only that e is well typed in the sense

until now, but also that each variable in e is used according to the uses of its type

in �. For example, the type judgement �; x : [� ]

(1;0)

` e means that x is used at

most once for receiving a value of � type, and never used for sending in e.

Since type environments are concerned with uses of variables, we need to take

special cares in merging type environments. For example, if x : [� ]

(0;1)

` e

1

and

x : [� ]

(1;0)

` e

2

, then x is totally used once for sending and once for receiving in

e

1

j e

2

. Therefore, the total use of a variable in e

1

j e

2

should be obtained by adding

uses of two type environments. Thus, the rule for parallel composition is de�ned

as:

�

1

` e

1

�

2

` e

2

�

1

+ �

2

` e

1

j e

2

(Tu-Par)

where the operation �

1

+ �

2

, which will be de�ned later, represents a type envi-

ronment obtained by adding uses of each variable in �

1

and �

2

.

In the case of a guarded choice of receivers (x

1

(~y

1

)) e

1

)& � � �&(x

n

(~y

n

)) e

n

),

on the other hand, the uses of a variable should be computed by taking an upper

bound of uses in the type environments of the receivers, because only one of the

13



receivers is executed. Thus, the rule for & is de�ned as:

�

1

` e

1

�

2

` e

2

�

1

t �

2

` e

1

&e

2

(Tu-Choice)

where �

1

t�

2

is the upper bound of type environments, which is also de�ned below.

Formal de�nitions of the summation and the upper bound of uses, types and

type assignments are given below.

De�nition 2.6 (summation) Summation of uses �

1

+ �

2

is de�ned by:

�

1

+ �

2

=

8

>

>

<

>

>

:

0 if (�

1

; �

2

) = (0; 0)

1 if (�

1

; �

2

) 2 f(0; 1); (1; 0)g

! otherwise

If two types are identical except for their outermost uses, the summation of

the types is obtained by adding the outermost uses:

�

(�

1

;�

2

)

+ �

(�

3

;�

4

)

= �

(�

1

+�

3

;�

2

+�

4

)

The summation is extended pointwise to type environments as follows:

(�

1

+ �

2

)(x) =

8

>

>

<

>

>

:

�

1

(x) + �

2

(x) if x 2 (dom(�

1

) \ dom(�

2

))

�

1

(x) if x 2 (dom(�

1

) n dom(�

2

))

�

2

(x) if x 2 (dom(�

2

) n dom(�

1

))

De�nition 2.7 (upper bound) The upper bound of two uses �

1

t �

2

is de�ned

as follows:

�

1

t �

2

=

8

>

>

<

>

>

:

0 if (�

1

; �

2

) = (0; 0)

1 if (�

1

; �

2

) 2 f(0; 1); (1; 0); (1; 1)g

! otherwise

The de�nition of the upper bound of types and that of type environments are

obtained by replaced + with t from De�nition 2.6.

Another important operation is � � �, which represents the summation of �

copies of the type environment �. Using this operator, the typing rule for replicated

message receivers is de�ned as follows:

�; y : ~� ` e

(! � �) + x : [~� ]

(!;0)

` x

�

(y)) e

(Tu-RRecv)
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Because a replicated receiver x

�

(~y)) e is considered as an arbitrary number of a

parallel composition of x(~y)) e, each binding in the type environment � used in

the body may be used an arbitrary number of times, i.e., ! times. Therefore, we

need totally the summation of ! copies as the type environment.

For example, in the following preterm,

(x

�

(y)) z(y)) jx(v) j x(w)

the free variable z in the replicated receiver appears only once, but a message

sending to x appears twice. So, the number of send operations on the channel z

should be counted as 2 � 1.

� � � is formally de�ned as follows.

De�nition 2.8 (�-product) �

1

� �

2

is de�ned below.

�

1

� �

2

=

8

>

>

<

>

>

:

1 if (�

1

; �

2

) = (1; 1)

! if (�

1

; �

2

) 2 f(1; !); (!; 1); (!; !)g

0 otherwise

� � � is obtained by the multiplication of � with the outermost use of � , and � � �

is obtained by the pointwise extension:

� � �

(�

1

;�

2

)

= �

(���

1

;���

2

)

(� � �)(x) = � � (�(x))

We allow to make the assumption on uses rough. For example, if x : [� ]

(0;1)

; y :

� ` x(y) holds, then we allow x : [� ]

(0;!)

; y : � ` x(y), that is, if e is well typed

under the assumption that x is used at most once, then e is well typed even under

the assumption that x is used an arbitrary number of times. The below-de�ned

relation �

1

� �

2

represents that the assumptions on uses of the variables in �

1

are

larger (rougher) than that in �

2

.

De�nition 2.9 (relation �) The relation between uses� is a partial order which

satis�es ! � 1 � 0. The relation � is extended pointwise to pairs of uses.
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�

1

` e

1

�

2

` e

2

�

1

+ �

2

` e

1

j e

2

(Tu-Par)

�

1

` e

1

�

2

` e

2

�

1

t �

2

` e

1

&e

2

(Tu-Choice)

�

2

� 1 �

0

1

� �

1

� � � �

0

n

� �

n

�; x : [�

1

; : : : ; �

n

]

(�

1

;�

2

)

; y

1

: �

0

1

; : : : ; y

n

: �

0

n

` x(y

1

; : : : ; y

n

)

(Tu-Send)

�; y

1

: �

1

; : : : ; y

n

: �

n

` e �

1

� 1

� + x : [�

1

; : : : ; �

n

]

(�

1

;�

2

)

` x(y

1

; : : : ; y

n

)) e

(Tu-Recv)

�

0

; y

1

: �

1

; : : : ; y

n

: �

n

` e � � ! � �

0

� + x : [�

1

; : : : ; �

n

]

(!;�)

` x

�

(y

1

; : : : ; y

n

)) e

(Tu-RRecv)

�; x : [�

1

; : : : ; �

n

]

(�

1

;�

2

)

` e

� ` new x

(�

1

;�

2

)

in e end

(Tu-New)

Figure 2.2: Typing Rules with Uses

We de�ne � between types as �

(�

1

;�

2

)

1

� �

(�

3

;�

4

)

2

if and only if �

1

= �

2

and

(�

1

; �

2

) � (�

3

; �

4

). For type environments, we de�ne � � �

0

as follows:

� � �

0

i� 8x 2 dom(�

0

):(x 2 dom(�) ^ (�(x) � �

0

(x)))

We often write ~� � ~�

0

instead of �

1

� �

0

1

; : : : ; �

n

� �

0

n

.

The whole typing rules with uses are described in Figure 2.2. We write � `

T U

e : � if � ` e : � is derivable by these rules. We explain other notable rules.

(Tu-Send) Because x in x(~y) is used as a channel for sending a message, send

use �

2

of x must be greater than 0.

(Tu-New) The syntax for channel creation new x in e end is modi�ed to

new x

(�

1

;�

2

)

in e end

1

so that the use of x is declared explicitly. �

1

and �

2

are receive and send use of x, respectively. These indices of uses in preterms

will be used for program transformation or for e�cient code generation for

channels, which are mentioned in Chapter 1. Note that there is no need for

1

The abbreviation new x

(�

11

;�

12

)

1

; : : : ; x

(�

n1

;�

n2

)

n

in e end is often used instead of new

x

(�

11

;�

12

)

1

in : : :new x

(�

n1

;�

n2

)

n

in e end : : :end
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programmers to declare them, indeed. The type reconstruction algorithm

described in Chapter 3 infers and recovers these uses.

The types system with uses is sound with respect to the type system described

in the previous section. By the soundness, we mean that if a preterm is well-typed

under some type environment � by the typing rules in Figure 2.2, it is also well-

typed by the typing rules in Figure 2.1 under the type environment from which

use information is removed. Erase(�; e) is a pair of �

0

and e

0

such that uses

are removed from e and the bound types in �. The removal of uses from a type

EraseTy(�) is de�ned as EraseTy([�

1

; : : : ; �

n

]

(�

1

;�

2

)

) = [EraseTy(�

1

); : : : ; EraseTy(�

2

)]

and EraseTy(�

(�

1

;�

2

)

) = �.

Theorem 2.2 If � `

T U

e, then there exist some �

0

and e

0

such that �

0

`

T

e

0

, and

(�

0

; e

0

) = Erase(�; e).

Proof Structural induction on the proof of � `

T U

e. 2

2.3 Correctness of Type System with Uses

In this section, we show that the type system correctly judges the uses of channels.

For example, we must ensure that if x : [~� ]

(0;1)

` e, then x can be used at most

once for sending during evaluation of e. In order to check the correctness, the

reduction relation is annotated with some use information. Then, we show that the

correctness of the type system with uses with respect to this reduction semantics.

2.3.1 Reduction Semantics with Uses

In the original de�nition, the reduction relation is written as e ! e

0

. In this

section, this relation is annotated with an environment � and a label l and written

as � ` e

l

�! e

0

. Intuitively, � is a type environment which keeps uses of variables,

which can possibly be used during the evaluation of e, and l is either a variable x,

17



which implies that e is reduced to e

0

by communication on the free channel x, or

a special label ", which implies communication on a bound channel.

De�nition 2.10 (reduction relation � ` e

l

�! e

0

) The reduction relation � `

e

l

�! e

0

is the least relation closed under the following rules:

�

1

� 1 �

2

� 1

�; x : [~� ]

(�

1

;�

2

)

` ((x(~y)) e)&e

0

) jx(~z)

x

�! [~z=~y]e

(Ru-Comm)

� � 1

�; x : [~� ]

(!;�)

` (x

�

(~y)) e) j x(~z)

x

�! [~z=~y]e j (x

�

(~y)) e)

(Ru-RComm)

e

1

�

=

e

2

� ` e

1

l

�! e

0

1

e

0

1

�

=

e

0

2

� ` e

2

l

�! e

0

2

(Ru-Cong)

�

1

` e

1

l

�! e

0

1

�

1

+ �

2

` e

1

j e

2

l

�! e

0

1

j e

2

(Ru-Par)

�; x : [~� ]

(�

1

;�

2

)

` e

x

�! e

0

� ` new x

(�

1

;�

2

)

in e end

"

�! new x

(�

�

1

;�

�

2

)

in e

0

end

(Ru-New1)

�; x : [~� ]

(�

1

;�

2

)

` e

l

�! e

0

x 6= l

� ` new x

(�

1

;�

2

)

in e end

l

�! new x

(�

1

;�

2

)

in e

0

end

(Ru-New2)

where 1

�

= 0 and !

�

= !

We de�ne �

�l

by (�; x : [~� ]

(�

1

;�

2

)

)

�x

= �; x : [~� ]

(�

�

1

;�

�

2

)

and �

�"

= �. Intuitively,

�

�x

represents a type environment after a reduction occurs on the channel x.

When � ` e

l

�! e

0

holds, we often write � ` e

l

�! e

0

a �

�l

. It means that if

the reduction comes from communication on a free channel of x, the uses (�

1

; �

2

)

of the binding of x in � are decreased by 1. On the other hand, if the reduction

comes from communication on a bound channel, then the uses are removed from

the corresponding new-construct in the preterm. For example, the preterm

new x

(1;1)

in (y(u) j y(z)) (x(z) jx(w)) v(w))) end

is reduced under the type environment �; y : [� ]

(1;1)

by communication on the free

channel y:

�; y : [� ]

(1;1)

` new x

(1;1)

in (y(u) j y(z)) (x(z) j x(w)) v(w))) end

y

�! new x

(1;1)

in (x(u) jx(w)) v(w)) end a �; y : [� ]

(0;0)
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It is further reduced by communication on the bound channel x:

�; y : [� ]

(0;0)

` new x

(1;1)

in (x(u) jx(w)) v(w)) end

"

�! new x

(0;0)

in v(u) end a �; y : [� ]

(0;0)

On terms, the operational semantics with uses allows the same reduction as

that of the previous section by removing use information.

Theorem 2.3 Suppose � `

T U

e

1

. Then, � ` e

1

l

�! e

2

holds if and only if e

0

1

! e

0

2

holds where e

0

1

and e

0

2

are obtained by removing uses from e

1

and e

2

, respectively,

and ! is the reduction relation de�ned in De�nition 2.4.

Proof

) Structural induction on the proof of � ` e

l

�! e

0

.

( Structural induction on the proof of e

0

1

! e

0

2

with the well-typedness of e

1

.

2

2.3.2 Correctness about Uses of Channels

As usual, correctness of the type system is shown through the subject reduc-

tion theorem (Theorem 2.4), which implies that well-typedness of a term is pre-

served during reduction, together with the lack of immediate misuse of uses

by any term (Theorem 2.5). By the lack of immediate misuse of uses, we

mean, for example, that there is no case where y : [� ]

(0;1)

` e but e

�

=

new x

(�

11

;�

12

)

1

; : : : ; x

(�

n1

;�

n2

)

n

in (y(z

1

) j y(z

2

) j e

0

) end (which means that e is now

trying to send two messages along the channel y though y is declared as a channel

allowing only one sending).

Subject reduction theorem is stated again as follows.

Theorem 2.4 (Subject Reduction (2)) If � ` e and � ` e

l

�! e

0

, then �

�l

is

well-de�ned and �

�l

` e

0

holds.
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Proof Structural induction on the proof of � ` e

l

�! e

0

. See Appendix A.1 for

the detailed proof. 2

Note that it implies not only that well-typedness is preserved in the usual sense,

but also that the uses of the corresponding channel are removed after communi-

cation, so that, for example, the use (1; 1) of a channel becomes (0; 0) after it is

used for communication.

Theorem 2.5 (Run-time safety) If � ` e and e

�

=

new x

(�

11

;�

12

)

1

; : : : ; x

(�

n1

;�

n2

)

n

in (e

1

fj e

2

g) end then

2

:

1. If e

1

is x(y

1

; : : : ; y

n

) j (x(z

1

; : : : ; z

m

)) e

0

)&r or x(y

1

; : : : ; y

n

) jx

�

(z

1

; : : : ; z

m

))

e

0

, then n = m and for the use pair (�

1

; �

2

) of the binding of x (in either �

or new), (�

1

; �

2

) � (1; 1).

2. If e

1

is x(~y), then the send use of the binding of x is greater than 0.

3. If e

1

is (x(~y)) e

0

)&r, then the receive use of the binding of x is greater than

0.

4. If e

1

is x(~y) jx(~z), then the send use of the binding of x is !.

5. If e

1

is ((x(~y) ) e

0

)&r

1

) j ((x(~z) ) e

00

)&r

2

) then the receive use of the

binding of x is !.

6. If e

1

is x

�

(~y)) e

0

, then the receive use of the binding of x is !.

Note that r denotes an arbitrary number of receivers x(~y)) e combined with

&.

Proof Trivial from the typing rules. 2

2

We use the shorthand fj eg to stand for either nothing or a parallel composition with e.
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2.4 Summary

First, we have described a type system for a pure asynchronous process calculus

and its operational semantics. Then, a type system with uses, which are attached

to the channel type constructor and denote how many times each channel is used,

have been introduced. The type system with uses is sound with the original type

system if use information is removed. The type system with uses has been proved

to be sound with respect to operational semantics (with uses). The soundness

ensures that there is no possibility of misuse of channels against its uses, i.e.,

channels, which are proved to be linear channels by the type system, are used at

most once during reduction, indeed.
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Chapter

3

Type Reconstruction and Detection of

Linear Channels

The purpose of this chapter is to reconstruct, given a preterm e, the most general

type environment � such that � `

T U

e. The typing rules presented in Section 2.2

are not enough for this purpose. For example, consider the preterm x(z) j y(z).

In order to �nd the most general typing, the rule (Tu-Par) tells us to �rst com-

pute the most general typings for x(z) and y(z), and then add the obtained type

environments. However, since the use of z cannot be determined at this mo-

ment, the reconstruction step stops there. In order to avoid this, we introduce

use variables to represent undetermined uses, and keep information on the use

variables as a constraint set on use variables. Thus, the most general typing is

represented as a pair consisting of a type environment and a constraint set on

use variables. For example, the most general typings for x(z) and y(z) can be

represented in the forms: ((x : � � � ; z : �

(j

1

;j

2

)

);�

1

) and ((y : � � � ; z : �

(k

1

;k

2

)

);�

2

)

where j

1

; j

2

; k

1

; k

2

are use variables and �

1

;�

2

are constraint sets on use vari-

ables. From these typings, the typing for x(z) j y(z) is represented as a pair

((x : � � � ; y : � � � ; z : �

(l

1

;l

2

)

);�

1

[ �

2

[ fl

1

� j

1

+ k

1

; l

2

� j

2

+ k

2

g). This re-

construction step is expressed by the rule:

�

1

;� ` e

1

�

2

;� ` e

2

� �

�

�

1

+ �

2

�;� ` e

1

j e

2

(Tru-Par)
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where the intended meaning of �;� ` e is that S� `

T U

Se holds for any substi-

tution S of uses for use variables if S satis�es a system of inequations �. With

these modi�cations, we can obtain, given a preterm e, the most general pair (�;�)

such that �;� ` e. After that, we can obtain �

0

`

T U

e

0

by solving the set � of

inequations and substituting the minimal solution for use variables in � and e.

Note that by the introduction of use variables, programmers need not declare

uses of channels in new-construct, because fresh use variables can automatically

be inserted into a program before the reconstruction algorithm is applied.

First, we show a modi�ed type system for reconstruction. After that, we

demonstrate detection of linear channels. The procedure to detect linear chan-

nels consists of: (1) a type reconstruction phase to obtain the principal typing of a

given preterm and (2) a phase to solve the inequalities on use variables. In the rest

of this chapter, after presenting the modi�ed type system for reconstruction and

a type reconstruction algorithm (Section 3.1{3.3), we describe how to solve the

inequalities on use variables (Section 3.4). We then give an example of detection

of linear channels (Section 3.5).

3.1 Typing Rules with Use Constraint Set

The metavariable j(; k; : : :) ranges over the �nite set of use variables. We replace

uses with the following use expressions in order to handle use variables, summa-

tions and products of uses.

De�nition 3.1 (use expressions) The set of use expressions, ranged over by �,

is given by the following syntax:

� ::= 0 j 1 j ! j j j �

1

+ �

2

j �

1

t �

2

j �

1

� �

2

We often call 0; 1, and ! use constants. We do not distinguish between a use

expression with no use variable and its corresponding use. For example, we identify

the use expression 1 + 0 with the use 1. A use constraint set � is a system of
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inequalities on use expressions, where each inequality is of the form �

1

� �

2

where

�

1

is restricted to be either a use constant or a use variable. The syntax of types

is not changed except that uses are replaced with use expressions. We allow only

either use constants or variables in new x

(�

1

;�

2

)

in e end.

The relation �

�

is used in the typing rules for reconstruction, instead of �.

�

1

�

�

�

2

means that for any ground substitutions for use variables (i.e., substitu-

tions that instantiate all use variables in �

1

; �

2

, and � with use constants), if all

inequalities in � are satis�ed, then �

1

� �

2

is satis�ed. For example, j �

�

l+1 if

� = fj � k + 1; k � lg. The relation is extended pointwise to pairs of uses. Also,

the relation �

�

is extended to types and type environments in the same manner

as in Section 2.2.

De�nition 3.2 (relation �

�

) �

1

�

�

�

2

is de�ned if for all ground substitutions

of use constants for use variables S, 8(�

0

1

� �

0

2

2 �):S�

0

1

� S�

0

2

) S�

1

� S�

2

.

�

1

�

�

�

2

and �

1

�

�

�

2

are de�ned as follows:

�

(�

1

;�

2

)

1

�

�

�

(�

3

;�

4

)

2

i� �

1

= �

2

and (�

1

; �

2

) �

�

(�

3

; �

4

)

� �

�

�

0

i� 8x 2 dom(�

0

):(x 2 dom(�) ^ �(x) �

�

�

0

(x))

The typing rules for reconstruction are presented in Figure 3.1. We write

�;� `

T RU

e if �;� ` e is derivable by the rules in Figure 3.1. We do not present

syntactic inference rules to derive the (semantic) relation �

1

�

�

�

2

. Note that,

however, obvious sound inference rules such as:

�

1

� �

2

2 �

�

1

�

�

�

2

�

1

�

�

�

2

S�

1

�

S�

S�

2

�

1

�

�

�

2

�

2

�

�

�

3

�

1

�

�

�

3

where S is a substitution for use variables, are enough for our reconstruction

algorithm.

The relation �

1

j= �

2

intuitively means that �

1

is stronger constraint than

�

2

.
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�

1

;� ` e

1

�

2

;� ` e

2

� �

�

�

1

+ �

2

�;� ` e

1

j e

2

(Tru-Par)

�

1

;� ` e

1

�

2

;� ` e

2

� �

�

�

1

t �

2

�;� ` e

1

&e

2

(Tru-Choice)

�

2

�

�

1 ~�

0

�

�

~�

�; x : [~� ]

(�

1

;�

2

)

; ~y : ~�

0

;� ` x(~y)

(Tru-Send)

�

0

; ~y : ~�;� ` e �

1

�

�

1 � �

�

�

0

+ x : [~� ]

(�

1

;�

2

)

�;� ` x(~y) ) e

(Tru-Recv)

�

0

; x : [~� ]

(�

1

;�

2

)

;� ` e � �

�

�

0

�;� ` new x

(�

1

;�

2

)

in e end

(Tru-New)

�

0

; ~y : ~�;� ` e � �

�

(! � �

0

) + x : [~� ]

(!;�)

�;� ` x

�

(~y)) e

(Tru-RRecv)

Figure 3.1: Typing Rules for Type Reconstruction

De�nition 3.3 (relation �

1

j= �

2

)

�

1

j= �

2

i� 8�

1

� �

2

2 �

2

; �

1

�

�

1

�

2

The following two lemmas are trivial from the de�nition of �

�

.

Lemma 3.1 If � �

�

�

0

and �

0

j= �, then � �

�

0

�

0

.

Lemma 3.2 If � �

�

�

0

and �

0

j= �, then � �

�

0

�

0

.

Lemma 3.3 If �;� `

T RU

e and �

0

j= �, then �;�

0

`

T RU

e.

Proof Structural induction on the proof of �;�

0

`

T RU

e. 2

The type system for reconstruction is essentially equivalent to the type system

presented in Section 2.2 in the following sense.

Theorem 3.1 (Equivalence of T U and T RU) If �;� `

T RU

e, then S

�

� `

T U

S

�

e for any ground substitutions S

�

of use constants for use variables such that

; j= S

�

� where ; is the empty constraint set (i.e., S

�

� is satis�ed). Conversely, if

� `

T U

e, then �; ; `

T RU

e where ; is the empty constraint set.

Proof The �rst half of the statement is proved as follows. For any substitutions

S

0

�

for use variables, S

0

�

�; S

0

�

� `

T RU

S

0

�

e holds by straightforward induction on the

structure of the proof of �;� `

T RU

e. By ; j= S

�

� and Lemma 3.3, S

�

�; ; `

T RU
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S

�

e holds. Since S

�

is a ground substitution, S

�

� `

T U

S

�

e (by straightforward

induction).

The second half of the statement is proved by straightforward induction on the

structure of the proof of � `

T U

e : � . 2

We give the de�nition of the principal typing after several preliminary de�ni-

tions.

3.2 Principal Typing

First, we de�ne a type-use substitution S, often simply called a substitution unless

confusing, below. S maps not only a type variable to a bare type but also a use

variable to a use constant.

De�nition 3.4 (type-use substitution) A type-use substitution S is de�ned as

a pair of S

�

and S

�

, where S

�

is a mapping from type variables to bare types

and S

�

is a mapping from use variables to either use constants or use variables.

(S

�

; S

�

)(�) is de�ned as S

�

S

�

� . (S

�

; S

�

)(�) is de�ned as S

�

�.

Lemma 3.4 (Type-Use Substitution) If �;� `

T RU

e, then S�; S� `

T RU

Se

for any type-use substitutions S.

Proof Straightforward induction on the structure of the proof of �;� `

T RU

e : � .

2

Principal typing is de�ned as a pair consisting of a type environment and a use

constraint set.

De�nition 3.5 (principal typing) (�;�) is de�ned as the principal typing of e

if the pair satis�es the following conditions:

1. �;� `

T RU

e
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2. If �

0

;�

0

`

T U

e, there exists a substitution S such that

(a) �

0

j= S�

(b) �

0

� S�

3.3 Type Reconstruction Algorithm PTU

We show a type reconstruction algorithm for the modi�ed type system. Before

describing the algorithm, we introduce several subprocedures including uni�cation.

Formally, the property of the uni�cation algorithm U is stated as follows:

De�nition 3.6 (uni�er) A substitution S is a uni�er of a set of pairs of types

f(�

11

; �

12

); : : : ; (�

n1

; �

n2

)g if and only if S�

i1

� S�

i2

for all i.

De�nition 3.7 (most general uni�er) A uni�er S of f(�

11

; �

12

); : : : ; (�

n1

; �

n2

)g

is the most general uni�er if and only if there exists S

00

such that S

0

= S

00

S for

any other uni�er S

0

of f(�

11

; �

12

); : : : ; (�

n1

; �

n2

)g

We do not present an algorithm of uni�cation, but it is easy to obtain from

the standard one by restricting use expressions in types to be either constants or

variables.

Theorem 3.2 (Uni�cation (1)) Given f(�

11

; �

12

); : : : ; (�

n1

; �

n2

)g where every use

in �

ij

is either a constant or a variable, there exists an algorithm U which computes

the most general uni�er of the set f(�

11

; �

12

); : : : ; (�

n1

; �

n2

)g, or reports failure if it

does not exist.

Then, we introduce subprocedures

L

,

J

, and

F

, each of which corresponds to

the conditions in the typing rules � �

�

�

1

+ �

2

, � �

�

� � �

0

and � �

�

�

1

t �

2

,

respectively. From pairs of a type environment and a use constraint set, they

generate a type environment and a use constraint set which satisfy the condition

on the type environments like above.

We give the de�nitions of them by using the uni�cation algorithm U .
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De�nition 3.8

L

(f(�

1

;�

1

); : : : ; (�

n

;�

n

)g) is de�ned as the following procedure:

1. De�ne E;�, and � as the least sets (or mapping) which satisfy the following

conditions. For each x 2 dom(�

1

) [ � � � [ dom(�

n

),

8

>

>

>

>

>

<

>

>

>

>

>

:

E � f(�

(j

x1

;j

x2

)

i

x

1

; �

(j

x1

;j

x2

)

i

x

2

); : : : ; (�

(j

x1

;j

x2

)

i

x

m�1

; �

(j

x1

;j

x2

)

i

x

m

)g

� � fj

x1

� �

i

x

1

1

+ : : :+ �

i

x

m

1

; j

x2

� �

i

x

1

2

+ : : :+ �

i

x

m

2

g

�(x) = �

(j

x1

;j

x2

)

i

x1

where fi

x

1

; : : : ; i

x

m

g(= I

x

) be the set of indices s.t. i 2 I

x

, x 2 dom(�

i

),

�

(�

i

x

k

1

;�

i

x

k

2

)

i

x

k

= �

i

x

k

(x) (i

x

k

2 I

x

), and j

x1

; j

x2

are fresh use variables.

2. S = U(E)

3. Return (S; S�; S(� [�

1

[ � � � [�

n

))

De�nition 3.9

J

(�;�; �) is de�ned as the following procedure:

1. Return a type environment �

0

and the least use constraint set �

0

which

satisfy the following conditions: 1) dom(�

0

) = dom(�), 2) �

0

� � and 3)

�(x) = �

(�

1

;�

2

)

) (�

0

(x) = �

(j

1

;j

2

)

^ j

1

� � � �

1

; j

2

� � � �

2

2 �

0

) where j

1

; j

2

are fresh use variables.

The de�nition of

F

(f(�

1

;�

1

); : : : ; (�

n

;�

n

)g) is obtained from the de�nition of

L

by replacing all + with t.

The algorithm PTU , shown in Figure 3.2 and Figure 3.3, takes e as an input

and returns a triple (�;�; e). For the simplicity of the following discussions, we

assume that the uni�cation procedure does not generate a uni�er which substitutes

any other uses for use variables in e. This assumption is reasonable because it can

be proved that uses to be uni�ed with uses in e are only use variables. Hence, it

is possible to avoid substituting some uses for use variables in e.

The following theorem ensures that our algorithm computes a principal typing.

Theorem 3.3 (PTU) If �

0

;�

0

`

T RU

e, then PTU(e) computes the principal

typing of e without failure.
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PTU (x(y

1

; : : : ; y

n

)) = (fx : [�

(j

11

;j

12

)

1

; : : : ; �

(j

n1

;j

n1

)

n

]

(j;k)

; y

1

: �

(k

11

;k

12

)

1

; : : : ; y

n

: �

(k

n1

;k

n2

)

n

g;

fk � 1g [ fk

ij

� j

ij

j1 � i � n; j = 1; 2g; x(y

1

; : : : ; y

n

))

where �

i

's, j; k; j

ij

's, and k

ij

's are fresh type/use variables

PTU (e

1

j e

2

) = let (�

1

;�

1

; e

1

) = PTU (e

1

)

(�

2

;�

2

; e

2

) = PTU (e

2

)

(S;�;�) =

L

(f(�

1

;�

1

); (�

2

;�

2

)g)

in (�;�; e

1

j e

2

)

PTU (e

1

&e

2

) = let (�

1

;�

1

; e

1

) = PTU(e

1

)

(�

2

;�

2

; e

2

) = PTU(e

2

)

(S;�;�) =

F

(f(�

1

;�

1

); (�

2

;�

2

)g)

in (�;�; e

1

&e

2

)

PTU (x(y

1

; : : : ; y

n

)) e) =

let (�

1

;�

1

; e) = PTU(e)

(S

1

;�;�) =

L

(f (x : [�

(j

1

;k

1

)

1

; : : : ; �

(j

n

;k

n

)

n

]

(j;k)

; fj � 1g);

(�

1

n (y

i

: �

i

jy

i

2 dom(�

1

));�

1

)g)

S

2

= U (f(S

1

�

(j

i

;k

i

)

i

; S

1

�

i

)jy

i

2 dom(�

1

)g)

in (S

2

�; S

2

�; x(y

1

; : : : ; y

n

)) e)

where �

i

's, j

i

's, and k

i

's are fresh type/use variables.

Figure 3.2: Type Reconstruction Algorithm PTU (part 1)
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PTU(x

�

(y

1

; : : : ; y

n

)) e) =

let (�

1

;�

1

; e) = PTU(e)

(�

0

1

;�

0

1

) =

J

(�

1

n (y

i

: �

i

jy

i

2 dom(�

1

));�

1

; !)

(S

1

;�;�) =

L

(f(x : [�

(j

1

;k

1

)

1

; : : : ; �

(j

n

;k

n

)

n

]

(!;k)

; ;); (�

0

1

;�

0

1

)g)

S

2

= U(f(S

1

�

(j

i

;k

i

)

i

; S

1

�

i

)jy

i

2 dom(�

1

)g)

in (S

2

�; S

2

�; x

�

(y

1

; : : : ; y

n

)) e)

where �

i

's, j

i

's, and k

i

's are fresh type/use variables.

PTU(new x

(�

1

;�

2

)

in e end) =

let (�;�; e) = PTU(e)

in if x 2 dom(�) then

(S(� n x : �

x

); S�;new x

(�

1

;�

2

)

in e end)

where S = U(f(�

x

; �

(�

1

;�

2

)

)g)

� is a fresh type variable

else (�;�;new x

(�

1

;�

2

)

in e end)

Figure 3.3: Type Reconstruction Algorithm PTU (part 2)

Proof Structural induction on the proof of �

0

;�

0

`

T RU

e. See Appendix A.2 for

the detailed proof. 2

3.4 Detection of Linear Channels by Solving Constraint

Given a pair (�;�) such that �;� `

T RU

e, we obtain � such that �

0

`

T U

e

0

by solving �

1

. A solution of � is obtained by: (1) dividing � into two parts

fj

1

� �

1

; : : : ; j

n

� �

n

g and fc

n+1

� �

n+1

; : : : ; c

m

� �

m

g where each c

i

is a use

constant, (2) solving the �rst part of inequalities and (3) checking whether the

solution satis�es the second part

2

.

Since every operation on uses is monotonic, and j

1

; : : : ; j

m

can range over �nite

space, the minimal solution of the �rst part is calculated by the simple iteration

3

.

1

e

0

is the preterm where use variables in e is replaced with the solution.

2

If the check fails, � has no solutions.

3

Of course, we can apply some symbolic simpli�cation methods instead of the naive iteration.
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Note that j

1

= !; : : : ; j

n

= ! is always a solution of the �rst part.

Theorem 3.4 (Minimal Solution) Let � = fj

1

� �

1

; : : : ; j

n

� �

n

g. These

inequalities are abbreviated as

~

j � ~�(

~

j). Note that each �

i

can be regarded as a

n-ary function. De�ne the tuple of use constants ~�

(m)

(m � 0) by

~�

(0)

= (

n

z }| {

0; : : : ; 0)

~�

(m+1)

= ~�(~�

(m)

) = ([�

(m)

1

=j

1

; : : : ; �

(m)

n

=j

n

]�

1

; : : : ; [�

(m)

1

=j

1

; : : : ; �

(m)

n

=j

n

]�

n

).

Then, for some M ,

~

j = ~�

(M)

is the least solution of �.

Proof Since a use constant can range over the �nite space and the operations

for uses are monotonic, there exists M such that ~�

(M)

= ~�(~�

(M)

) holds. Suppose

that ~�

0

� ~�(~�

0

) holds for some ~�

0

. Then, by the monotonicity of each �

i

,

~�

0

� ~�(~�

0

) � : : : � (~�)

M

(~�

0

)

Moreover, by ~�

0

� (0; : : : ; 0),

(~�)

M

(~�

0

) � (~�)

M

((0; : : : ; 0))(= ~�

(M)

)

from which we obtain ~�

0

� ~�

(M)

. 2

Remark: If use variables appear in � of the pair (�;�) obtained by the recon-

struction, then those variables should be kept undetermined, because they may be

constrained outside the term. When such a term is required to be compiled at that

time (for separate compilation, etc.), we can allow programmers to declare their

uses (in addition to type declarations), and the compiler can assign ! without such

declarations.

3.5 An Example of Analysis and Optimization

We show an example of type reconstruction and optimization. Consider the follow-

ing term, which computes the factorial of n, implemented with the target language

extended with integers, boolean values and several primitive operators like if.
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fact

�

(n; c) =

if n < 2 then c(1)

else new c1

(j;k)

; c2 in

(pred(n; c1) j c

1

(x)) (mul(x; n; c2) j c2(y)) c(y))) end

pred is a (built-in) replicated receiver, which sends n � 1 to c if it receives (n; c).

mul is also a built-in replicated receiver, which sends x � y to c if it receives

(x; y; c). pred and mul have the type [int; [int]

(0;1)

]

(0;!)

and [int; int; [int]

(0;1)

]

(0;!)

,

respectively

4

. For simplicity, we concern only uses related to c1. So uses about c2

is omitted.

The reconstruction algorithm outputs the triple (fact : [int; [int]

(j

1

;k

1

)

]

(!;l)

;�; e))

where

� = fj � j

1

+ j

2

; k � k

1

+ k

2

; k

1

� 1; j

2

� 1; : : :g

Use variables j

1

and k

1

in � are the uses of c1 in the type environment for

pred(n; c1). Similarly, j

2

and k

2

are the ones for c1(x) ) e

0

. The minimal so-

lution of � is

j = j

2

= 1; j

1

= 0;

k = k

1

= 1; k

2

= 0; : : :

As a result, we know that c1 is a linear channel. Similarly, we know that c2 is also

linear.

From the information obtained above, we can optimize the program below.

factopt

�

(n; c) =

if n < 2 then c(1)

else new c1

(1;1)

in pred(n; c1) j c1(x)) mul(x; n; c) end

Note that the optimized program is \tail-call optimized" form of the original pro-

gram.

4

Strictly speaking, uses should be attached to also int, but we ignore them.
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3.6 Summary

The type system with uses introduced in the previous chapter has been modi�ed

for type reconstruction. The modi�ed system is essentially equivalent to the orig-

inal one, but become suitable for extracting a type reconstruction algorithm by

introducing use expressions and use constraint sets. Then, a type reconstruction

algorithm PTU for the modi�ed type system has been described. Given a preterm

e, PTU outputs its principal typing, which includes a use constraint set. By

solving the use constraint, with no type declarations in a preterm, we can detect

which channels are linear. By linear channel information, we can apply a program

transformation corresponding to tail-call optimization of concurrent programming

languages.
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Chapter

4

Analysis of Usage of Values

In this chapter, we extend our analysis to the language extended with basic val-

ues such as integers, functions, data constructors such as records, and ML-style

let-polymorphism. The extended language is still small but realistic enough to

apply our analysis to other concurrent programming languages. We show a typing

system with uses and its type reconstruction algorithm for the extended language.

Although it augments the expressiveness, the language extensions do not require

our type system and analysis method to be modi�ed so much.

To prove the correctness of the type system, we need handle uses of values other

than channels in operational semantics. For this purpose, the reduction relation

of the operational semantics is annotated with heap, which is an abstraction of

memory space. To put it more concretely, a snapshot of execution is represented as

a pair of a preterm and a heap, which keeps information on values of free variables

of the preterm, and the reduction relation is de�ned as a relation between such

pairs.

The structure of this chapter is as follows. In Section 4.1, the pure message

passing calculus we have treated is extended. The extended syntax, a type system

with uses, and its type reconstruction algorithm are described. In Section 4.2, the

correctness of the type system is proved.
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4.1 Extended Language

The extended target language is close to the core of HACL[10] and can be con-

sidered as an asynchronous process calculus equipped with integers, functions, the

ML-style let-polymorphism, and records. It is small, but realistic enough to apply

our analysis to other concurrent programming languages. Similarly to the lan-

guage treated until the previous section, computation is performed by multiple

processes which communicate values asynchronously through channels.

4.1.1 Syntax

The syntax of the extended language is given below.

De�nition 4.1 (preterms) The set of preterms, ranged over by e, and the set

of values, ranged over by v, are de�ned as follows.

e ::= x(; y; z; : : :) (variable)

j v

�

(values (other than channels) with a use)

j e

1

+

�

e

2

(summation of integers)

j e

1

e

2

(application, message send)

j match fl

1

= x

1

; : : : ; l

n

= x

n

g = e

1

in e

2

end

(simultaneous �eld extractions from a record)

j let x = e

1

in e

2

end (polymorphic de�nition)

j e

1

je

2

(parallel composition)

j x

1

(y

1

)) e

1

& � � �&x

n

(y

n

)) e

n

(message receiver(s))

j new x

(�

1

;�

2

)

in e end (channel creation)

v ::= i 2 f: : : ;�1; 0; 1; 2; : : :g (integers)

j �x:e (�-abstraction)

j rec f(x) = e (recursive function or process)

j fl

1

= e

1

; : : : ; l

n

= e

n

g (record creation)

� of v, +, and channel creation is a use (constant) de�ned before. Uses in

a preterm are often omitted for readability unless they are important. We give

e

1

e

2

(applications, or message send) a higher precedence than +

�

, +

�

a higher

precedence than ), and ) a higher precedence than j and &.
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Their intuitive meanings are as follows. e

1

+

�

e

2

evaluates e

1

and e

2

to two

integers i

1

and i

2

and computes their mathematical summation whose use is �.

For example, 3

1

+

!

2

1

is evaluated to 5

!

. e

1

e

2

evaluates e

1

and e

2

to values x and

y. If x is a communication channel, then it sends y along the channel x. (while if

x is a function, it applies x to y as in ML.) rec f(x) = e is a recursive function (or

process) where f can be referred as �x:e in e. match �rst evaluates e

1

to a record

fl

1

= y

1

; : : : ; l

n

= y

n

g

�

, then binds x

1

; : : : ; x

n

to y

1

; : : : ; y

n

, and executes e

2

. For

example, match fl = x;m = yg = fl = 3;m = �x:xg

!

in y x end is reduced to

3 via �x:x 3. The intuitive meaning of let x = e

1

in e

2

end is the same as in ML.

The concurrency primitives have the same meaning as described in Chapter 2.

The communication primitives (e

1

e

2

and x(y) ) e) look as if they can pass

only a single value at once. However, with records, polyadic communication can

be expressed. Besides, replicated message receivers are removed from the syntax

because they can be represented with rec. For example, x

�

(y)) e is represented

as rec x(y) = e, while sending to a replicated message receiver is as an application

of such a recursive process.

A variable x is bound in e of: 1) �x:e, 2) let x = e

0

in e end, 3) new x

(�

1

;�

2

)

in

e end, and 4) y(x)) e. Similarly, f and x are bound in e of rec f(x) = e, and the

variables x

1

; � � � ; x

n

are bound in e

2

ofmatch fl

1

= x

1

; : : : ; l

n

= x

n

g = e

1

in e

2

end.

We allow implicit �-conversion of bound variables, again.

4.1.2 Typing Rules

Uses are attached not only to the channel type constructor but also type construc-

tors of integers, functions, and records. Similar to communication channels, the

use of other values is also not just the number of syntactic occurrences. For the

integer type, we count its use when the values are actually used, that is, by apply-

ing +

�

. For example, the use of 3 in a preterm (�x:(((�y:1)x)+

�

x)) 3 (where uses

are omitted) is 1, because x in the �rst occurrence of x is never used. Similarly,
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the use of a record is counted only when values are extracted by match and that

of a function is counted in application.

Now, we formally de�ne the types and the type schemes for polymorphic values.

For the convenience of type reconstruction, we attach two uses to every type

constructor, although one of them is not important for most type constructors.

De�nition 4.2 (bare types, types with uses, type schemes) The set of bare

types, ranged over by �, and the set of types, ranged over by � , the set of type

schemes, ranged over by �, are given by the following syntax.

� ::= int (integer type)

j _�(;

_

�; : : :) ((ordinary) type variables)

j ��(;

�

�; : : :) (non-O type variables)

j O (process type)

j �

1

! �

2

(function types)

j fl

1

: �

1

; : : : ; l

n

: �

n

g (record types)

� ::= �

(�

1

;�

2

)

� ::= � j 8 _�:� j 8��:� (type schemes)

O is the special type for processes, that is, if a preterm e is proved to be a well-

typed process expression, it has O type. We introduce two kinds of type variables.

One of them, _�, is the usual one, for which any bare type can be substituted. �� is

a type variable, which can be replaced with any bare type except for the process

type and ordinary type variables. When we don't need to distinguish the two

kinds of type variables, we use the word `type variables' and �. The (bare) type

of channels that carry values of a type � is represented as � ! O instead of [� ].

Thus, a function that returns a process, called process closure, and a channel have

the same form of a bare type.

1

They are distinguished by the use; since functions

can only be used for application, the receive use is required to be 0. It is forced

by the typing rule for �-abstraction by giving a function a type (�

1

! �

2

)

(0;�)

. We

often write �

1

(�

1

;�

2

)

�! �

2

for (�

1

! �

2

)

(�

1

;�

2

)

.

1

This is not surprising because a channel m for sending a message can be considered as a

process that sends a message m(v) and does nothing.
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We allow silent �-conversions of bound type variables by 8�. Two bare type

schemes 8�:� and � are identi�ed if � is not bound in �. Also, �

1

and �

2

are

identi�ed if they di�er only in the order of their 8�'s. For instance, we identify

8�

1

:8�

2

:8�

3

:�

(j;k)

1

! �

(l;m)

2

and 8�:8�

1

:�

(j;k)

1

! �

(l;m)

.

Since they are not important, we ignore one of the uses of type constructors

except for the function (channel) type constructor !. Therefore, we often write

int

�

for int

(�;�)

, O for O

(�;�)

, and fl

1

: �

1

; : : : ; l

n

: �

n

g

�

for fl

1

: �

1

; : : : ; l

n

: �

n

g

(�;�)

.

The uses replaced with \�" have no real meaning, hence they are assumed to be

! by default in the type system.

A type environment will be a mapping from variable to type schemes in the

type system of this chapter. Type judgement form is modi�ed to � ` e : � , which

means that \e has the type � under the type environment �."

The de�nitions of �

1

+ �

2

, �

1

t �

2

, � � � and �

1

� �

2

are similar to that in

Section 2.2. Also the de�nitions of such operations on type schemes are obtained

as straightforward extension of those of types, i.e.,

8�

1

: : : 8�

n

:�

(�

1

;�

2

)

1

+ 8�

1

: : :8�

n

:�

(�

3

;�

4

)

= 8�

1

: : : 8�

n

:�

(�

1

+�

3

;�

2

+�

4

)

8�

1

: : :8�

n

:�

(�

1

;�

2

)

1

t 8�

1

: : :8�

n

:�

(�

3

;�

4

)

= 8�

1

: : : 8�

n

:�

(�

1

t�

3

;�

2

t�

4

)

� � 8�

1

: : : �

n

:�

(�

1

;�

2

)

= 8�

1

: : : �

n

:�

(���

1

;���

2

)

8�

1

: : :8�

n

:�

(�

1

;�

2

)

� 8�

1

: : : 8�

n

:�

(�

3

;�

4

)

is de�ned if (�

1

; �

2

) � (�

3

; �

4

).

Before describing the typing rules, we give several preliminary de�nitions. For

a subtle technical reason, we assume that e

2

in e

1

e

2

, e

1

in let x = e

1

in e

2

end,

and each e

i

in fl

1

= e

1

; : : : ; l

n

= e

n

g cannot have the type O. The condition is

represented as � 6� O which means that � is neither O nor _�

(�

1

;�

2

)

.

Substitutions for type variables are restricted so that O type (or ordinary type

variables _�) is not substituted for non-O type variables.

De�nition 4.3 (well-de�ned substitution) A substitution for type variables
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S

�

is well-de�ned if and only if for all non-O type variables ��, S

�

�� 6� O holds. A

type-use substitution (S

�

; S

�

) is well-de�ned if and only if S

�

is well-de�ned.

We assume all substitutions are well-de�ned in this thesis.

The whole typing rules are described in Figure 4.1. clos(�; �) denotes the type

scheme 8�

1

: : : 8�

n

:� where the �

i

's are type variables that appear free in � but

not in �. We explain several notable rules.

(ETu-Plus) This rule requires both of two integers e

1

and e

2

to have uses greater

than 0.

(ETu-Abs) Since the type �

1

(0;�)

�! �

2

means that the function �x:e can be invoked

� times, each binding in the type environment � used in the body may be

used � times. Therefore, we need totally the summation of � copies as the

type environment at least.

(ETu-Recon) A record of type fl

1

: �

1

; : : : ; l

n

: �

n

g

�

allows us to use at most �

copies of the value of the type �

i

stored in the �eld l

i

. Therefore, it must be

that each element can be used as a value of type � � �

i

.

4.1.3 Type Reconstruction Algorithm for the Extended Language

By introducing use expressions and use constraint sets, the typing rules presented

in the previous subsection are easily modi�ed for reconstruction in the same man-

ner as in Chapter 3. We do not present the typing rules for reconstruction because

they are trivial. The each name of the typing rule modi�ed from (ETu-: : : ) is

(ETru-: : : ), respectively. In this chapter, henthforce, � `

ET U

e : � means that

� ` e : � is derivable from the typing rules (ETu-: : : ) and �;� `

ET RU

e : � means

�;� ` e : � is derivable from (ETru-: : : ).

Equivalence of the two typing rules is stated in the similar manner to Theo-

rem 3.1.
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S

�

� � �

0

for some substitution S

�

= [�

1

=�

1

; : : : ; �

n

=�

n

]

�; x : 8�

1

: � � � 8�

n

:� ` x : �

0

(ETu-Var)

� ` i

�

: int

�

(ETu-Int)

�

1

` e

1

: int

�

1

�

2

` e

2

: int

�

2

�

1

� 1 �

2

� 1

�

1

+ �

2

` e

1

+

�

e

2

: int

�

(ETu-Plus)

�

1

` e

1

: �

1

(�

1

;�

2

)

�! �

2

�

2

� 1 �

1

6� O �

2

` e

2

: �

1

�

1

+ �

2

` e

1

e

2

: �

2

(ETu-App/Send)

�fx : �

1

g ` e : �

2

�

0

� � � �

�

0

` �x:e : �

1

(0;�)

�! �

2

(ETu-Abs)

�ff : �

1

(0;!)

�! �

2

; x : �

1

g ` e : �

2

�

0

� ! � �

�

0

` rec f(x) = e : �

1

(0;!)

�! �

2

(ETu-Fix)

�

1

` e

1

: �

0

1

�

0

1

� � � �

1

: : : �

n

` e

n

: �

0

n

�

0

n

� � � �

n

�

1

+ : : :+ �

n

` fl

1

= e

1

; : : : ; l

n

= e

n

g : fl

1

: �

1

; : : : ; l

n

: �

n

g

�

(ETu-Recon)

�

1

` e

0

: fl

1

: �

1

; : : : ; l

n

: �

n

g

�

� �

�

1

�

2

fx

1

: �

1

; : : : ; x

n

: �

n

g ` e : � �

1

6� O : : : �

n

6� O

�

1

+ �

2

`match fl

1

= x

1

; : : : ; l

n

= x

n

g = e

0

in e end : �

(ETu-Match)

�

1

` e

1

: �

0

�

0

6� O �

2

fx : clos(�

1

; �

0

)g ` e

2

: �

�

1

+ �

2

` let x = e

1

in e

2

end : �

(ETu-Let)

�

1

` e

1

: O �

2

` e

2

: O

�

1

+ �

2

` e

1

j e

2

: O

(ETu-Par)

�

1

` e

1

: O �

2

` e

2

: O

�

1

t �

2

` e

1

& e

2

: O

(ETu-Choice)

�

1

� 1 �

2

fy : �g ` e : O

fx : �

(�

1

;�

2

)

�! Og+ �

2

` x(y)) e : O

(ETu-Recv)

�fx : (�

(�

1

;�

2

)

�! O)g ` e : O

� ` new x

(�

1

;�

2

)

in e end : O

(ETu-New)

Figure 4.1: Typing Rules with Uses for the Extended Language
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Theorem 4.1 (Equivalence of ET U and ET RU) If �;� `

ET RU

e : � , then

S

�

� `

ET U

S

�

e : S

�

� for any ground substitutions S

�

for use variables such that

; j= S

�

� where ; is the empty constraint set (i.e., S

�

� is satis�ed). Conversely,

If � `

ET U

e : � , then �; ; `

ET RU

e : � where ; is the empty constraint set.

Proof Similar to the proof of Theorem 3.1. 2

Principal typing of the type system for the extended language is de�ned as a

triple consisting of a type environment, a use constraint set and a type.

De�nition 4.4 (principal typing) (�;�; �) is the principal typing of e if the

triple satis�es the following conditions:

1. The range of � is only types (not including type schemes).

2. �;� `

ET RU

e : �

3. If �

0

;�

0

`

ET RU

e : �

0

where the range of �

0

is only types, there exists a

substitution S such that �

0

j= S�, �

0

� S�, and �

0

� S� .

Before describing type reconstruction for the modi�ed typing rules, we must

mention uni�cation. In our system, we deal with type schemes in type environ-

ments, so uni�cation between type schemes is required. Besides ordinary uni�ca-

tion , we must check whether bound type variables corresponds each other. Two

type schemes 8�

1

: : : 8�

n

:�

1

and 8�

1

: : : 8�

m

:�

2

are uni�ed as follows:

1. Let �

0

1

= [


1

=�

1

; : : : ; 


n

=�

n

]�

1

where each 


i

is a fresh type variable, and

�

0

2

= [�

1

=�

1

; : : : ; �

m

=�

m

]�

2

where each �

i

is a fresh eigen type variable, i.e., a

type variable for which no other types can be substituted.

2. Apply �rst-order uni�cation to the pair (�

0

1

; �

0

2

).

3. Let S be the most general uni�er of the pair. Check whether f


i

7! S(


i

) j 


i

2

dom(S)g is a 1-to-1 mapping to f�

1

; : : : ; �

m

g.

41



Therefore, the existence of the uni�cation algorithm for the set of pairs of type

schemes can be stated in a similar manner to Theorem 3.2.

Theorem 4.2 (Uni�cation (2)) Given f(�

11

; �

12

); : : : ; (�

n1

; �

n2

)g where every

use in �

ij

is either a constant or a variable, there exists an algorithm U which

computes the most general uni�er of the set f(�

11

; �

12

); : : : ; (�

n1

; �

n2

)g, or reports

failure if it does not exist.

Then, the subprocedures

L

,

J

and

F

de�ned in the previous section, are

extended straightforwardly.

The type reconstruction algorithm, called PTUV , is shown in Figure 4.2, Fig-

ure 4.3, Figure 4.4, and Figure 4.5. PTUV takes not only e but also a map-

ping from variables to type schemes As. The additional argument As keeps type

schemes of variables declared by let. Since the algorithm may give incorrect results

if both let-bound and �-bound, we assume that the input to PTUV is a preterm

with all bound variables renamed to be distinct.

The soundness theorem of PTUV is stated below.

Theorem 4.3 (PTUV) If �

0

;�

0

`

ET RU

e : �

0

where the range of �

0

is only types,

then PTU(e; ;) computes the principal typing of e where ; is the empty mapping.

Proof See Appendix A.3. 2

4.1.4 Further Optimization by Analysis of Uses of Values

With the language extension, further optimization by linear channels is possible.

Consider the following example

2

of Fibonacci function

3

.

rec fib(n; c) =

2

Several primitives like if are added to the language

3

This function computes the two recursive calls sequentially.
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PTUV (x;As) = if As(x) = 8�

1

: : : 8�

n

:�

then (x : 8�

1

: : : 8�

n

:�

(j;k)

; fj � l; k � mg; x; S�

(l;m)

)

where S = [�

1

=�

1

; : : : ; �

n

=�

n

], the �

i

's are fresh type variables,

and j; k; l and m are fresh use variables

else (x : _�

(j;k)

; ;; fj � l; k � mg; x; _�

(l;m)

)

where _�; j; k; l;m are fresh type/use variables

PTUV (i

�

; As) = (;; ;; i

�

; int

�

)

PTUV (e

1

+

�

e

2

; As) = let

(�

1

;�

1

; e

1

; �

1

) = PTUV (e

1

; As)

(�

1

;�

2

; e

2

; �

2

) = PTUV (e

2

; As)

(S

1

;�

0

;�

0

) =

L

(f(�

1

;�

1

); (�

2

;�

2

)g)

S

2

= U(f(�

1

; int

k

); (�

2

; int

l

)g)

in (S

2

�

0

; S

2

(�

0

[ fk � 1; l � 1g); e

1

+

�

e

2

; int

�

)

where j; k and l are fresh use variables.

PTUV (e

1

e

2

; As) = let

(�

1

;�

1

; e

1

; �

1

) = PTUV (e

1

; As)

(�

2

;�

2

; e

2

; �

2

) = PTUV (e

2

; As)

(S

1

;�

0

;�

0

) =

L

(f(�

1

;�

1

); (�

2

;�

2

)g)

S

2

= U(f(S

1

�

1

; (S

1

�

2

)

(j;k)

�!

_

�

(l;m)

); (S

1

�

2

; �


(n;p)

)g)

in (S

2

�

0

; S

2

(�

0

[ fk � 1g); e

1

e

2

; S

2

_

�

(l;m)

)

where �
;

_

�; j; k; l;m; n; p are fresh type/use variables

Figure 4.2: Type Reconstruction Algorithm PTUV (part 1)
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PTUV ((�x:e)

�

; As) = let (�;�; e; �) = PTUV (e; As)

in if x 2 dom(�)

then (�

0

;�

0

; (�x:e)

�

; �

0

(0;�)

�! �)

where (�

0

;�

0

) =

J

(� n x : �

0

;�; �)

else (�

0

;�

0

; (�x:e)

�

; _�

(j;k)

(0;�)

�! � )

where _�; j; k are fresh type/use variables and

(�

0

;�

0

) =

J

(�;�; �)

PTUV ((rec f(x) = e)

!

; As) =

let (�;�; e; �) = PTUV (e; As)

in if x 2 dom(�) ^ f 2 dom(�)

then let S = U(f(�

f

; �

x

(0;!)

�! � )g)

where �

f

= �(f); �

x

= �(x)

(�

0

;�

0

) =

J

(S(� n (x : �

x

; f : �

f

)); S�; !)

in (�

0

;�

0

; (rec f(x) = e)

!

; S�

f

)

else if x 2 dom(�) ^ f 62 dom(�)

then (�

0

;�

0

; (rec f(x) = e)

!

; �

x

(0;!)

�! �)

where (�

0

;�

0

) =

J

(� n x : �

x

;�; !)

else if x 62 dom(�) ^ f 2 dom(�)

then let S = U(f(�

f

; _�

(j;k)

(0;!)

�! � )g)

where _�; j; k are fresh and �

f

= �(f)

(�

0

;�

0

) =

J

(S(� n f : �

f

); S�; !)

in (�

0

;�

0

; (rec f(x) = e)

!

; S�

f

)

else (�

0

;�

0

; (rec f(x) = e)

!

; _�

(j;k)

(0;!)

�! �)

where (�

0

;�

0

) =

J

(�;�; !) and _�; j; k are fresh

Figure 4.3: Type Reconstruction Algorithm PTUV (part 2)
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PTUV (fl

1

= e

1

; : : : ; l

n

= e

n

g

�

; As) =

let (�

1

;�

1

; e

1

; �

(�

11

;�

12

)

1

) = PTUV (e

1

; As)

.

.

.

(�

n

;�

1

; e

n

; �

(�

n1

;�

n2

)

n

) = PTUV (e

n

; As)

(S;�

0

;�

0

) =

L

(f(�

1

;�

1

); : : : ; (�

n

;�

n

)g)

�

00

= �

0

[ S(f�

11

� � � l

11

; : : : ; �

n1

� � � l

n1

g

[f�

12

� � � l

12

; : : : ; �

n2

� � � l

n2

g)

where l

i1

's and l

i2

's are fresh

in (�

0

;�

00

; fl

1

= e

1

; : : : ; l

n

= e

n

g

�

; fl

1

: S�

(l

11

;l

12

)

1

; : : : ; l

n

: S�

(l

n1

;l

n2

)

n

g

�

)

PTUV (match fl

1

= x

1

; : : : ; l

n

= x

n

g = e

1

in e

2

end; As) =

let (�

1

;�

1

; e

1

; �

0

) = PTUV (e

1

; As)

(�

2

;�

2

; e

2

; �) = PTUV (e

2

; As)

(S

1

;�

0

;�

0

) =

L

(�

1

;�

1

;�

2

n (x

i

: �

i

s.t. x

i

2 dom(�

2

));�

2

)

S

2

= U(f(fl

1

: ��

(k

1

;l

1

)

1

; : : : ; l

n

: ��

(k

n

;l

n

)

n

g

j

; S

1

�

0

)g

[f(S

1

�

i

; ��

(k

i

;l

i

)

i

)jx

i

2 dom(�

2

)g)

where j, ��

i

's, k

i

's and l

i

's are fresh

in (S

2

�

0

; S

2

(�

0

[ fj � 1g);

match fl

1

= x

1

; : : : ; l

n

= x

n

g = e

1

in e

2

end; S

2

S

1

�)

PTUV (let x = e

1

in e

2

end; As) =

let (�

1

;�

1

; e

1

; �

1

) = PTU(e

1

; As)

As

0

= As [ fx : clos(�

1

; �

1

)g

(�

2

;�

2

; e

2

; �

2

) = PTU(e

2

; As

0

)

in if x 2 dom(�

2

) then

then (S

2

�

0

; S

2

�

0

; let x = e

1

in e

2

end; S

2

S

1

�

2

)

where (S

1

;�

0

;�

0

) =

L

(f(�

1

;�

1

); (�

2

n x : �

x

;�

2

)g)

S

2

= U(f(S

1

clos(�

1

; �

1

); S

1

�

x

); (��

(j;k)

; S

1

�

1

)g)

��; j; k are fresh (type/use) variables

else (S

2

�

0

; S

2

�

0

; let x = e

1

in e

2

end; S

2

S

1

�

2

)

where (S

1

;�

0

;�

0

) =

L

(f(�

1

;�

1

); (�

2

;�

2

)g)

S

2

= U(f(��

(j;k)

; S

1

�

1

)g)

��; j; k are fresh

Figure 4.4: Type Reconstruction Algorithm PTUV (part 3)
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PTUV (e

1

j e

2

; As) = let

(�

1

;�

1

; e

1

; �

1

) = PTUV (e

1

; As)

(�

2

;�

2

; e

2

; �

2

) = PTUV (e

2

; As)

(S

1

;�

0

;�

0

) =

L

(f(�

1

;�

1

); (�

2

;�

2

)g)

S

2

= U(f(S

1

�

1

; O); (S

1

�

2

; O)g)

in (S

2

�

0

; S

2

�

0

; e

1

j e

2

; O)

PTUV (e

1

&e

2

; As) = let

(�

1

;�

1

; e

1

; �

1

) = PTUV (e

1

; As)

(�

2

;�

2

; e

2

; �

2

) = PTUV (e

2

; As)

(S

1

;�

0

;�

0

) =

F

(f(�

1

;�

1

); (�

2

;�

2

)g)

S

2

= U(f(S

1

�

1

; O); (S

1

�

2

; O)g)

in (S

2

�

0

; S

2

�; e

1

& e

2

; O)

PTUV (x(y)) e;As) = let

(�

2

;�

2

; e; �

2

) = PTUV (e;As)

in if y 2 dom(�

2

) then

(S

2

�

0

; S

2

�

0

; x(y)) e;O)

where (S

1

;�

0

;�

0

) =

L

(f(x : _�

(l;m)

(j;k)

�! O; fj � 1g);

(�

2

n y : �

0

;�

2

)g)

S

2

= U(f(S

1

( _�

(l;m)

); S

1

�

0

); (S

1

�

2

; O)g)

_�; j; k; l;m are fresh

else (S

2

�

0

; S

2

�

0

; x(y)) e;O)

where (S

1

;�

0

;�

0

) =

L

(f(x : _�

(l;m)

(j;k)

�! O; fj � 1g); (�

2

;�

2

)g)

S

2

= U(f(S

2

�

2

; O)g)

_�; j; k; l;m are fresh

PTUV (new x

(�

1

;�

2

)

in e end; As) =

let (�;�; e; �) = PTUV (e; As)

in if x 2 dom(�) then

(S(� n x : �

x

); S�;new x

(�

1

;�

2

)

in e end; O)

where S = U (f(�

x

; _�

(l;m)

(�

1

;�

2

)

�! O); (�; O)g)

_�; l;m are fresh

else (S�; S�;new x

(�

1

;�

2

)

in e end; O)

where S = U(f(�; O)g)

Figure 4.5: Type Reconstruction Algorithm PTUV (part 4)
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if n < 2 then c(1)

else new c1; c2 in

(fib(n� 1; c1) j c1(x)) (fib(n� 2; c2) j c2(y)) c(x+ y)))

end

By solving the use constraint set of the principal typing obtained by PTUV , our

analysis concludes c1 and c2 are linear. Then, the second argument of the recursive

calls can be replaced with functions which behave as same as after receiving from

linear channels, that is, c2 in fib(n � 1; c2) is replaced with �y:c(x + y). As a

result, the optimized term will be

rec fibopt(n; c) =

if n < 2 then c(1)

else fibopt(n� 1; �x:(fibopt(n� 2; �y:c(x+ y))))

The optimized term corresponds to the continuation passing style[2] represen-

tation of the functional Fibonacci program.

4.2 Correctness of Uses of Values

In this section, we prove the correctness of uses of values. To handle the uses of val-

ues in operational semantics, the notion of heap, which is an abstraction of memory

space, is introduced. Formally, heap is a mapping from variables to pairs of a heap

value, which is a value of a restricted form, and its use. A snapshot of execution is

represented as a pair of a heap and a preterm, and the reduction relation is de�ned

as a relation between such two pairs. As uses of free channels are decreased in the

type environment, uses of other values are decreased in the heap during reduction.

As in Section 2.3, correctness is shown through Subject Reduction Theorem (3)

(Theorem 4.4) and Run-time Safety Theorem (2) (Theorem 4.5).
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4.2.1 Heap

The formal de�nitions of heap values and heap are given as follows:

De�nition 4.5 (heap values, heap) The set of heap values, ranged over by h,

is a subset of the set of values v. A heap value is either a integer, a �-abstraction,

a recursive function, or a record whose elements are all variables. A heap H is a

mapping from variables to pairs of a heap value and a use.

h ::= ij�x:ejrec f(x) = ejfl

1

= x

1

; : : : ; l

n

= x

n

g

H ::= x

1

= h

�

1

1

; : : : ; x

n

= h

�

n

n

Intuitively, heap values are values (other than channels) which can be allocated

to memory spaces. Hence, a record is restricted to consist of variables, which can

be considered as pointers to other values. The de�nitions of H;x = h and dom(H)

are obtained in the similar manner to type environments.

4.2.2 Operational Semantics with Heap

Structural congruence relation is de�ned same as before (See De�nition 2.3).

Before describing the whole reduction relation, the reduction relation corre-

sponding actions other than communications, which includes function applica-

tion, extraction from a record, etc., is described. The relation has the form

letrec H in e�!

�

letrec H

0

in e

0

. letrec H in e represents the snapshot of

an execution where a free variable x of e can be used � times as the heap value h

if H(x) = h

�

.

The below de�nition of evaluation contexts (E) represents that such execution

steps are done from left to right, i.e., in the call-by-value manner. An instruction

(I), which is a redex of the reduction, is either (heap-allocated) function applica-

tion to a value, summation of two (heap-allocated) integers, heap values (with its

use), let declaration which completes the evaluation of the locally-bound value, or

extraction from a (heap-allocated) record.
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De�nition 4.6 (Evaluation Context, Instruction)

E ::= [ ] j E + e j x + E j Ee j xE j let x = E in e end

j fl

1

= x

1

; : : : l

i�1

= x

i�1

; l

i

= E; l

i+1

= e

i+1

; : : : ; l

n

= e

n

g

j match fl

1

= x

1

; : : : ; l

n

= x

n

g = E in e end

I ::= x y j x+ y j h

�

j let x = y in e end

j match fl

1

= x

1

; : : : ; l

n

= x

n

g = y in e end

The reduction relation for sequential execution is de�ned as follows where we

write E[e] for the preterm obtained by substituting e for [] in E.

De�nition 4.7 (reduction relation letrec H in e

~x

�!

�

letrec H

0

in e

0

) The

reduction relation letrec H in e

~x

�!

�

letrec H

0

in e

0

is the least relation closed

under the following rules.

(L-Alloc) letrec H in E[h

�

]

�!

�

letrec H;x = h

�

in E[x]

(L-Plus) letrec H;x = i

�

1

1

; y = i

�

2

2

in E[x+

�

y]

x;y

�!

�

letrec H;x = i

�

1

1

; y = i

�

2

2

; z = (i

1

+ i

2

)

�

in E[z]

where i

1

+ i

2

denotes the mathematical summation of two integers i

1

and i

2

.

(L-App) letrec H;x = (�z:e)

�

in E[xy]

x

�!

�

letrec H;x = (�z:e)

�

in E[[y=z]e]

(L-Fix) letrec H;x = (rec f(z) = e)

�

in E[xy]

x

�!

�

letrec H;x = (rec f(z) = e)

�

in E[[y=z; x=f ]e]

(L-Let) letrec H in E[let x = y in e end]

�!

�

letrec H in E[[y=x]e]

(L-Match) letrec H; y = fl

1

= z

1

; : : : ; l

n

= z

n

g

�

in E[match fl

1

= x

1

; : : : ; l

n

= x

n

g = y in e end]

y

�!

�

letrec H; y = fl

1

= z

1

; : : : ; l

n

= z

n

g

�

in E[[z

1

=x

1

; : : : ; z

n

=x

n

]e]

The rule (L-Alloc) models the allocation of a (heap) value by binding the

value to a new variable. The variables on the arrow denotes the used heap values

in the reduction. The rule (L-Plus) represents that two integers x and y are

used. Similarly, a function and a record are used by applications and extraction,

respectively.
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The summation of two heaps H

1

+H

2

used in the de�nition of the reduction

relation below is de�ned as follows:

(H

1

+H

2

)(x) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

h

�

1

+�

2

if x 2 (dom(�

1

) \ dom(�

2

))

and H

1

(x) = h

�

1

; H

2

(x) = h

�

2

H

1

(x) if x 2 (dom(H

1

) n dom(H

2

))

H

2

(x) if x 2 (dom(H

2

) n dom(H

1

))

The whole reduction relation is de�ned as the straightforward extension of

De�nition 2.10. The label " : ~xmeans not only communication on a bound channel,

but also a reduction other than communications derived from

~x

�!

�

.

De�nition 4.8 (reduction relation � ` letrec H in e

l

�! letrec H

0

in e

0

)

�

1

� 1 �

2

� 1

�; x : �

(�

1

;�

2

)

�! O ` letrec H in ((x(y)) e)&e

0

) jx(z)

x

�! letrec H in [z=y]e

(ERu-Comm)

e

1

�

=

e

2

� ` letrec H in e

1

l

�! letrec H

0

in e

0

1

e

0

1

�

=

e

0

2

� ` letrec H in e

2

l

�! letrec H

0

in e

0

2

(ERu-Cong)

letrec H in e

~x

�!

�

letrec H

0

in e

0

� ` letrec H in e

":~x

�! letrec H

0

in e

0

(ERu-Lamb)

�

1

` letrec H

1

in e

1

l

�! letrec H

0

1

in e

0

1

�

1

+ �

2

` letrec H

1

+H

2

in e

1

j e

2

l

�! letrec H

0

1

+H

2

in e

0

1

j e

2

(ERu-Par)

�; x : �

(�

1

;�

2

)

�! O ` letrec H in e

x

�! letrec H in e

0

� ` letrec H in new x

(�

1

;�

2

)

in e end

"

�! letrec H in new x

(�

�

1

;�

�

2

)

in e

0

end

(ERu-New1)

�; x : �

(�

1

;�

2

)

�! O ` letrec H in e

l

�! letrec H

0

in e

0

x 6= l

� ` letrec H in new x

(�

1

;�

2

)

in e end

l

�! letrec H

0

in new x

(�

1

;�

2

)

in e

0

end

(ERu-New2)

4.2.3 Correctness

To state the subject reduction theorem about this operational semantics, the de�-

nition of well-typedness of letrec H in e is given after the following preliminary

de�nition.

De�nition 4.9 Type environment � is split into �

1

and �

2

with respect to a heap

H if and only if � = �

1

+�

2

, dom(�

1

)\ dom(H) = ; and dom(�

2

) � dom(H), for
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which we write � = �

1

]

H

�

2

.

The following lemma is trivial.

Lemma 4.1 Given H and �, there uniquely exist �

1

and �

2

such that � = �

1

]

H

�

2

.

The well-typedness of letrec H in e is de�ned by the following rule.

�

e

` e : � �

e

= �

e

1

]

H

�

e

2

8x 2 dom(H):

0

B

@

�

x

` H(x) : �

x

�(x) = clos(�

x

; �

x

)

�

x

= �

x1

]

H

�

x2

1

C

A

� = �

x

1

2

+ � � �+ �

x

n

2

+ �

e2

dom(H) = fx

1

; : : : ; x

n

g

�

x

1

1

+ � � �+ �

x

n

1

+ �

e

1

` letrec H in e : �

(ETu-Heap)

Intuitive meanings of the conditions are:

1. e must be well-typed.

2. All heap values bound in H must be well-typed.

3. � keeps total use information on (heap-allocated) values used in other heap

values and e. Therefore, uses of �(x) and H(x) must be the same.

�

x

i

1

's and �

e1

are type environments whose domain have no intersection with the

heap, that is, the variables in these type environments can be possibly used as free

channels.

H

�l

, de�ned below, denotes the heap after the reduction.

De�nition 4.10 H

�l

is de�ned by: H

�l

= H, H

�"

= H, (H; x = h

�

)

�":x;~y

=

(H; x = h

�

�

)

�":~y

.

Now, we state subject reduction theorem and run-time safety theorem.

Theorem 4.4 (Subject Reduction (3)) If � ` letrec H in e : � and � `

letrec H in e

l

�! letrec H

0

in e

0

, then �

�l

` letrec H

0�l

in e

0

: � .
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Proof Structural induction on the proof of � ` letrec H in e

l

�!

letrec H

0

in e

0

. See Appendix A.4 for the detailed proof. 2

Theorem 4.5 (Run-time Safety (2)) A term has no immediate possibilities of

misuse of channels or values. More formally, if ` letrec H in e : � and e

�

=

new x

(�

11

;�

12

)

1

; : : : ; x

(�

n1

;�

n2

)

n

in (e

1

fj e

2

g) end then:

1. If e

1

is x(y) j ((x(z) ) e

00

)&r), then for the use pair (�

1

; �

2

) of the binding

of x in either � or new, (�

1

; �

2

) � (1; 1).

2. If e

1

is x y and x 62 dom(H), then the send use of the binding of x is greater

than 0.

3. If e

1

is (x(y)) e

0

)&r, then the receive use of the binding of x is greater than

0.

4. If e

1

is x y j x z and x 62 dom(H), then the send use of the binding of x is !.

5. If e

1

is ((x(y) ) e

0

)&r

1

) j ((x(z) ) e

00

)&r

2

) then the receive use of the

binding of x is !.

6. If e

1

= E[xy] for some E and H(x) = (�z:e)

�

, then � � 1.

7. If e

1

= E[xy] for some E and H(x) = (rec f(z) = e)

�

, then � = !.

8. If e

1

= E[x + y] for some E, then H(x) = i

�

x

1

, H(y) = i

�

y

2

, �

x

� 1, and

�

y

� 1.

9. If e

1

= E[match fl

1

= x

1

; : : : ; l

n

= x

n

g = y in e end] for some E, then the

use of H(y) is greater than 0.

Proof Trivial from typing rules. 2
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4.3 Summary

The target language has been extended from a pure process calculus to a process

calculus equipped with integers, functions, data constructors such as records, and

let-polymorphism. A type system with uses for the extended language and a

type reconstruction algorithm has been described. It enables detection of not

only linear channels but also other used-once values and further optimizations for

concurrent programming languages. Also, the soundness of the type system has

been proved. To handle the uses of values, the notion of heap has been introduced

into operational semantics.
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Chapter

5

Experimental Results

In this chapter, the experimental results about the e�ects of optimization and the

cost of the analysis are shown.

5.1 Evaluation of Optimization

In this section, we show results of simple experiments with HACL compiler

1

to

evaluate how much the results of our analysis can improve performance of con-

current programs. Application programs are the example of Fibonacci function

described in the previous chapter, and concurrent objects expressed by HACL.

Before showing the results, we mention encoding of concurrent objects �rst.

5.1.1 Encoding and its Optimization of Concurrent Objects

We explain how concurrent objects are realized in our language, and what opti-

mization we can do for the resulting code. The state of a concurrent object is

implemented by a channel, while each method is implemented by a process which

�rst extracts the current state from the channel, executes the method, replies a

1

The HACL compiler that translates HACL programs to C codes in a similar manner to

sml2c. The compiler is available both for a single processor workstation and for a network of

workstations. We show just performance on a single processor workstation.
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result, and puts back the new state into the channel. So, the following fragment

of a preterm corresponds to a typical method de�nition:

let m = rec m(arg; r) =

state(s)) (: : : j r(result) j state(news))

in : : :

A caller of the method is typically of the form:

new r

(j;k)

in (m(v; r) j r(x)) e) end

With our analysis, it can be translated to m(v; �x:e) in most cases.

5.1.2 Experiment Results and Evaluation

We evaluate e�ect of optimization through four kinds of programs: a sequential

Fibonacci program (the one shown in the optimization example where n = 25), a

parallel Fibonacci program (which performs recursive calls in parallel), a counter

increment program (which creates a counter object and increments its value 10000

times), and a tree summation program (which creates a binary tree of which

each node is a concurrent object, and computes a summation of values of its

leaf nodes). Each row in Table 5.1 shows the result for each program. The �rst

column (\naive") shows the running times of unoptimized programs written with

concurrency primitives, and the second column (\optimized") shows the running

times of optimized programs by our analysis. The rightmost column (\speedup")

shows speedup per one function call or method invocation, which is calculated by

(naive � optimized)=(# of communications on linear channels). In addition, we

list in the third column the running time of a program written with function prim-

itives for the sequential Fibonacci. Note that all programs are executed on a single

processor machine.

2

Therefore parallel �bs are slower than sequential �bs because

of overheads.

2

SS20 (Hyper SPARC 150Mhz)
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naive (sec) optimized (sec) function (sec) speedup (�sec)

sequential �b 1.45 0.57 0.41 3.6

parallel �b 1.76 0.93 | 3.4

counter 0.26 0.17 | 9.0

tree14 1.55 1.36 | 5.8

Table 5.1: Running time and speedup for Fibonacci, counter and tree14

The result of the sequential Fibonacci program indicates that even if program-

mers encode functional computations with concurrency primitives, the compiler

can generate an optimized code which is comparable to those written directly

using function primitives. The speedup rate of the parallel Fibonacci program

is relatively smaller because of overheads of multi-threading, but it is still large.

Note that the speedup rate (100-200%) in this experiment itself should not be

taken important, because the execution time of the Fibonacci program is dom-

inated by communications and/or function calls rather than local computations

(integer comparison and summation). For more general programs, the speedup

rate will be much smaller.

The last two programs (counter and tree14) are measured to estimate e�ect

of our optimization for typical concurrent object-oriented programs. In counter,

method invocations are much more frequent than creations of concurrent objects,

while in tree14, creations of concurrent objects happen as frequent as method

invocations do. The �gures of the table show that the speedup per one communi-

cation on a linear channel is larger than for Fibonacci programs.
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Reconstruction with Uses Constraint solving Standard RecostructionTotal

sec

Size of a program
           (nodes)0.00

0.50

1.00

200.00 400.00 600.00 800.00

Figure 5.1: Elapsed time for Our Analysis and Ordinary Type Reconstruction

5.2 Cost of Analysis

In this section, we compare the cost of our analysis with standard type reconstruc-

tion (not including use information). The cost of our analysis consists of that of

type reconstruction and that for solving a use constraint set. We show the elapsed

(system) time for several programs in the Figure 5.1. The analysis program is im-

plemented with Standard ML of New Jersey 0.93 and the elapsed time is measured

on SS20 (Hyper SPARC 150Mhz).

The horizontal and vertical axis represents the size of the syntax tree of a

term and the elapsed time, respectively. The solid line connected with � denotes

the elapsed time for type reconstruction with uses while the broken line with �

does for standard type reconstruction. The broken line connected with 2 denotes

one for solving the obtained use constraint sets. The total time of our analysis

is represented as the bold line connected with �. This results tells us that type

reconstruction with uses is e�cient enough for practice although the complexity

of type reconstruction is theoretically exponential. Moreover, the cost of solving a

use constraint set, to be seen later that its complexity is polynomial, is much less
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than that of type reconstruction.
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Chapter

6

Discussion

In this chapter, we give several discussions. In Section 6.1, to re�ne the analysis,

subtyping and polymorphism on uses are discussed as extensions of the type sys-

tem. In Section 6.2, we discuss several implementation issues about linear values.

In Section 6.3, we see the computational complexity of our analysis is polynomial

in the size of preterms.

6.1 Subtyping and Polymorphism

Our simple type system often su�ers from worse result of the analysis than ex-

pected. It is mainly derived from (ETu-App/Send) rule, which tells us the type

of the value to be sent must be the same as the domain type of the channel in-

cluding use information. It often makes too many channels have the same (bare)

type. For example, consider the following term:

let x = rec x(y) = y e in

let z = rec z(y) = (y e

1

j y e

2

) in

m x jm z j new u in (x u j u(y)) e

3

) end

end end

Since y in rec z(y) = : : : is used for sending twice, the type of z is, for example,

(�

(0;!)

�! O)

(0;!)

�! O. Our typing rules force x to have the same type as z. As
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a result, our type system concludes u, which is passed along x, is not a linear

channel, though it will be used only once for sending and receiving, respectively.

This example shows the possibility that only one misuse (or maybe intentional use)

of channels leads many channels to be non-linear channels. As another example,

uniform lists, which consists of elements of a uniform type, can cause the same

kind of problems.

Subtyping To avoid these problems, we could introduce a subtyping relation and

modify the typing rule for application. For instance, the rules for the subtyping

relation �

1

� �

2

, and the typing rule for application would be below.

� � � (S-Refl)

�

1

� �

2

�

2

� �

3

�

1

� �

3

(S-Tran)

(�

1

; �

2

) � (�

3

; �

4

)

�

(�

1

;�

2

)

� �

(�

3

;�

4

)

(S-Use)

�

3

� �

1

�

2

� �

4

�

1

(0;�)

�! �

2

� �

3

(0;�)

�! �

4

(S-Fun1)

�

1

� �

2

�

1

(�;0)

�! O � �

2

(�;0)

�! O

(S-Fun2)

�

1

` e

1

: �

1

(�

1

;�

2

)

�! �

2

�

2

� 1 �

3

6� O �

2

` e

2

: �

3

�

3

� �

1

�

1

+ �

2

` e

1

e

2

: �

2

(ETu-App/Send)

The �rst two rules represent re
ectivity and transitivity of the subtyping rela-

tion. (S-Use) rule allows us to regard �

(�

1

;�

2

)

as the type whose uses are smaller

than (�

1

; �

2

), that is, it tells us, for example, \the value which can be used an

arbitrary number of times is regarded as used at most once." (S-Fun1) rule is

the same as the standard subtyping relation between function types. (S-Fun2)

rule represents that the channel to receive � type values can be used as the channel

to receive values of its supertype.

Since (�

(0;1)

�! O)

(0;!)

�! O � (�

(0;!)

�! O)

(0;!)

�! O could be derived from these rules,

even if z has the type (�

(0;!)

�! O)

(0;!)

�! O, we could give the type (�

(0;1)

�! O)

(!;0)

�! O

to x and conclude u is linear.

By introducing subtyping, a type reconstruction algorithm would output

(�;�;�; e; �) where � is subtyping constraint which should be satis�ed by � and
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the types in the �. Although the type reconstruction algorithm itself would not re-

quire so much modi�cation, it would be complex to solve the subtyping constraint.

The complexity is derived from subtyping rules for function types. For example,

consider the following subtyping relation �

1

(�

1

;�

2

)

�! �

2

� �

3

(�

3

;�

4

)

�! �

4

. Applicable

subtyping rules depends on the uses of the types, that is, (S-Fun1) rule can be

applied only when �

1

= �

3

= 0 and so forth.

Polymorphism on Use Variables Another solution for the problems is to

allow polymorphism not only on type variables but also on use variables. For

instance, the type scheme of x in the above example would be expressed as:

�

(j;k)

�! O

(0;!)

�! O

where

fk � 1g

It means that x is used as a function whose type is (�

(�

1

;�

2

)

�! O)

(0;!)

�! O for any �

i

such that �

2

� 1. Polymorphism on use variables would allow x and z, which are

sent to m, to have di�erent types and u to be a linear channel.

Theoretically, however, introduction of use polymorphism makes the size of

a use constraint set in type judgements exponential for the same reason in the

case of polymorphism on type variables. Besides the compiler needs to generate

di�erent versions of a polymorphic function for di�erent instantiations of the use

variables. Further experiments will be necessary to evaluate the trade-o� about

polymorphism on uses.

6.2 How to Utilize Use Information

We discuss how the compiler utilizes uses of values for optimization. As is shown

through the examples until now, uses of channels enable program transformation.

Besides, we reduce the cost of garbage collection by releasing the memory space

for linear values immediately after they are used.

It is not straightforward, however, to implement such optimization because our
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type system allows for non-linear values to be mingled with linear values. In other

words, even if a function has a type int

1

(�

1

;�

2

)

�! � , it is ensured only that the passed

integer will be used at most once in the body. The integer may be used in other

places. Fortunately, such mixture does not matter so much for implementation

of channels (closures). In the implementation of HACL, the data structure for

channels includes the pointer to the code for communication where such explicit

release of memory can be embedded. Therefore, the di�erence between linear

channels (closure) and non-linear ones can be encapsulated in their data structure

and they can be treated in a uniform manner in the generated code. In order

to distinguish records, however, a run-time tag, which represents their uses, is

required to the data structure for records.

To avoid such mixture by a type system, we would modify the typing rules.

For example, (ETu-Var) would be:

S

�

is a substitution [�

1

=�

1

; : : : ; �

n

=�

n

]

�; x : 8�

1

: � � � 8�

n

:� ` x : S

�

�

(ETu-Var)

According to this typing rule, the type judgement like x : int

!

` x : int

1

is not

allowed, that is, the value of ! cannot be regarded as a value of 1. Also, the

de�nition of + must be modi�ed. 1 + 1 = ! represents the fact that \a non-

linear value can be used as a linear value in subexpressions." So, for the intended

purpose, summation of such uses, i.e., 1+1, 1+! and !+1, should be unde�ned.

For the similar reason, 1 t ! and ! t 1 also should not be de�ned.

With this modi�cation, use constraint would be a system of equations on use

variables. It would be more complex to solve than that of our system.

6.3 Computational Complexity of Analysis

It is well-known that the complexity of type reconstruction for languages, includ-

ing our target language, with lambda abstraction, function application, and let-

polymorphism is exponential in the size of a program[12]. In this section, we see
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that the additional cost for the analysis, that is, the time complexity for solving

the use constraint set of the principal typing is polynomial in the preterm.

First, we give several preliminary de�nitions. The size of a use expression

size(�) is de�ned as 1 if � is either a constant or a variable and 1 + size(�

1

) +

size(�

2

) if � is �

1

+ �

2

, �

1

t �

2

, or �

1

� �

2

. size(�), #(s), and #

FV

(e) denote the

number of inequalities in �, the number of variables in s, and the number of free

variables of e, respectively.

Let fj

1

� �

1

; : : : ; j

n

� �

n

g be the use constraint set to be solved

1

. Since

j

1

= � � � = j

n

= ! is always the solution and ~�

(i)

is monotonously increased from

(0; : : : ; 0), the number of steps of iterations is at most 2 �n. In each iteration step,

the cost for computing ~�

(m+1)

is O(

X

i

size(�

i

))(� O(n �max

i

(size(�

i

)))).

Then, we estimate n and max

i

(size(�

i

)) of a use constraint set generated by

PTUV . For example, consider the case of e = e

1

+

�

e

2

. Let (�

1

;�

1

; : : :) and

(�

2

;�

2

; : : :) be obtained from PTUV (e

1

; As) and PTUV (e

2

; As), respectively.

The size of the use constraint set generated by

L

(f(�

1

;�

1

); (�

2

;�

2

)g) is equal

to 2 �#(dom(�

1

) [ dom(�

2

)) + size(�

1

) + size(�

2

) by the de�nition of

L

. Note

that #(dom(�

1

)[dom(�

2

)) is equal to #

FV

(e). As a result, the size of � obtained

from PTUV (e

1

+

�

e

2

; As) will be:

size(�) = 2 �#

FV

(e) + size(�

1

) + size(�

2

) + 2

By similar case analyses, we conclude that size(�) obtained from PTUV (e; As) is

O(n

2

) where n is the size of a preterm e. The maximal size of the use expressions

in � is equal to the maximal number of children of the nodes of the syntax tree

of e.

As a result, the computational complexity for solving the constraint set is

polynomial in the size of a preterm. Note that this estimation of the order is very

rough and there is better upper bound. Indeed, the experimental results in the

Chapter 5 shows the cost for solving is almost linear.

1

We use the notations in Theorem 3.4.
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Chapter

7

Related Work

The most closely related work are Turner, Wadler, and Mossin's work on analysis

of linearity for (lazy) functional programming languages[24], and recent work on

analysis of communication for concurrent programming languages[16, 7]. In fact,

the type system presented in this study was partially inspired by [24] and [7]. In

[24], the use can only be either 1 or !. As a result, in their system, if a variable

has more than one syntactic occurrence, its use is inferred to be !. For example,

the use of y in let f = �x:1 in (fy) + y end is ! in their system, although y is

actually used just once. This roughness of the analysis causes serious damage in

the analysis of uses of communication channels, because channels have normally

at least two syntactic occurrences, as already mentioned.

Nielson and Nielson[16] proposed another technique that can �nd some of

linear channels using results of their e�ect-based analysis[15]. However, their

technique behave poorly in �nding linear channels, because it counts opera-

tions on channels region-wise, where a region is a set of (possibly in�nite)

communication channels, rather than channel-wise. For example, in the term

let f = (rec f() = m(x)) (x() j f())) in (f() jm(n)) end, the number of send

operations performed to the channel x is counted as ! in their analysis while

counted as 1 in our type-based analysis. Kobayashi, Nakade and Yonezawa[7]

solved this problem partially, and proposed a better (but more costly) analysis to
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�nd linear channels (as well as an analysis to �nd linearized[8] channels). How-

ever, as far as linear channels are concerned, our type-based analysis presented

here gives more accurate results for typical programs with much less costs.

As another approach to determine the lifetimes of values, Baker's Linear Lisp[3]

forces programmers to use each variable exactly once. But this restriction on

programmers is too severe. Above all, the restriction cannot be applied to usage

of channels for the same reason as above.

Recently, Kobayashi advanced the linear channel type system of [8] to a type

system, which ensures partial deadlock-freedom of processes[6]. In that work, a

class of channels, called reliable channels, are introduced. If a process is proved

to be using only reliable channels by the type system, it never causes deadlock.

Conversely, if deadlock occurs, it happens on unreliable channels, which are the

other channels than reliable ones. Moreover, a process using a subclass of reliable

channels has no non-determinism. In addition to uses, the key idea of that type

system is to keep ordering of channel uses as a part of type information. Our

technique would be applicable to the type reconstruction for this type system.
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Chapter

8

Conclusions

In this thesis, we have proposed a type-based analysis to �nd use-once values,

including linear channels, for concurrent programming languages. This analysis

enables several optimizations such as program transformation and reduction of

run-time costs for communications. The program transformation includes tail-call

optimization of concurrent programs, which is enabled only by nontrivial global

analysis unlike that in functional programming.

8.1 Contributions

� We have improved the linear channel type system of [8] and developed a type

system which judges how many times each value is used for a realistic core of

concurrent programming languages. The soundness of the type system has

been proved with respect to the operational semantics.

� A type reconstruction algorithm for the type system and a method for de-

tecting used-once values, including linear channels, have been developed. By

the analysis, we can detect used-once values with no declarations about types

in programs. Although we presented the analysis through a core of concur-

rent programming languages, the technique proposed here could be applied

to other concurrent programming languages, including functional program-
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ming languages extended with concurrency primitives[20], concurrent object-

oriented programming languages[27, 26], and concurrent languages based on

process calculi[19].

� We have implemented the proposed analysis method for a concurrent pro-

gramming language HACL and showed that our analysis is practically e�-

cient through several experiments, though the cost is theoretically exponen-

tial in the size of program.

� We have showed that the results of preliminary experiments on the reduced

costs of operations on channels are promising.

8.2 Future Work

� Extension of the type system. As discussed in Chapter 6, we often su�er

from roughness of the analysis due to the simplicity of our type system.

Thus, in order to re�ne the analysis, extensions of the type system, including

subtyping and polymorphism on use, should be considered.

� Further performance evaluation (especially in distributed environments). In

distributed environments, the tail-call optimization presented in this the-

sis often changes behaviors of programs because the computation site may

change by passing (continuation) closures. For example, in HACL for dis-

tributed environments, new r in m(e

1

; r) j r(x)) e

2

end computes e

2

at

the site where r is created, while its tail-call optimized form m(e

1

; �x:e

2

)

computes e

2

at the site of m. Thus, performance of optimization should be

evaluated through more realistic applications.

� Implementation issues on how to utilize linearity information on closures

or other values. As discussed in Chapter 6, it is not straightforward to
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use linearity information on values for optimization. Thus, implementation

technique for linear values should be studied.

� Type system with uses for dynamically-typed languages. We consider our

analysis technique can be applied to dynamically-typed languages such as

Scheme by improving type systems for such languages[25]. So, future work

also includes development of a type system with uses for a dynamically-typed

language.
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Appendix A

Proofs

A.1 Proof of Subject Reduction Theorem (2) (Theo-

rem 2.4)

We need several lemmas to prove the subject reduction theorem. These lemmas

are proved by straightforward induction on type derivations.

Lemma A.1 (Weakening on Uses (1)) If � ` e, then for �

0

such that �

0

� �,

�

0

` e holds.

Lemma A.2 If � ` e and e

�

=

e

0

, then � ` e

0

holds.

Proof of Subject Reduction Theorem (2) We prove by induction on the

proof of � ` e

l

�! e

0

with case analysis on the last rule used.

(Ru-Comm) Suppose �; x : [~� ]

(�

1

;�

2

)

` ((x(~y) ) e)&e

0

) jx(~z) and the following

type derivation.

�

1

; ~y : ~� ` e �

11

� 1

�

1

+ x : [~� ]

(�

11

;�

21

)

` x(~y) ) e �

2

` e

0

(�

1

+ x : [~� ]

(�

11

;�

21

)

) t �

2

` (x(~y) ) e)&e

0

�

22

� 1 ~�

0

� ~�

�

3

+ x : [~� ]

(�

12

;�

22

)

; ~z : ~�

0

` x(~z)

�; x : [~� ]

(�

1

;�

2

)

` ((x(~y) ) e)&e

0

) jx(~z)
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where �; x : [~� ]

(�

1

;�

2

)

= ((�

1

+x : [~�

1

]

(�

11

;�

21

)

)t�

2

)+�

3

+x : [~�

1

]

(�

12

;�

22

)

; ~z : ~�

0

.

From �

11

� 1 and �

22

� 1, (�

1

; �

2

) � (1; 1) holds.

Consider the case of x 2 dom(�

1

). Let the use pair of �

1

(x) be (�

0

1

; �

0

2

).

First, we consider only receive uses. If (�

1

; �

2

) = (1; 1), then the uses of

�

1

(x) is equal to (0; 0), that is, (�

�

1

; �

�

2

) � (�

0

1

; �

0

2

) holds. In the other cases,

(�

�

1

; �

�

2

) � (�

0

1

; �

0

2

) is easily obtained. Therefore, �; x : [~� ]

(�

�

1

;�

�

2

)

� �

1

f~z : ~�

0

g

holds even if x 62 dom(�

1

). By Lemma A.1 and renaming of free variables

y

1

; : : : ; y

n

in e to z

1

; : : : ; z

n

, respectively, �; x : [~� ]

(�

�

1

;�

�

2

)

` [~z=~y]e holds.

(Ru-RComm) Suppose �; x : [~� ]

(!;�)

` x

�

(y

1

; : : : ; y

n

)) e j x(~z) and the following

type derivation.

�

0

1

; ~y : ~� ` e �

1

� ! � �

0

1

�

1

+ x : [~� ]

(!;�

1

)

` x

�

(~y) ) e

�

3

� 1 ~�

0

� ~�

�

2

+ x : [~� ]

(�

2

;�

3

)

; ~z : ~�

0

` x(~z)

�; x : [~� ]

(!;�)

` x

�

(~y) ) e jx(~z)

where �; x : [~� ]

(!;�)

= �

1

+ x : [~� ]

(!;�

1

)

+ �

2

+ x : [~� ]

(�

2

;�

3

)

; ~z : ~� . From

�

3

� 1, � � 1 holds. Therefore, �; x : [~� ]

(!;�

�

)

is well-de�ned and �; x :

[~� ]

(!;�

�

)

� �

1

+ �

0

1

; ~z : ~�

0

+ x : [~� ]

(!;�

1

)

holds whether � = 1 or !. (Note that

�

1

= �

00

1

+ ! � �

0

1

for some �

00

1

and (! � �

0

1

) + �

0

1

= ! � �

0

1

.) By Lemma A.1

and renaming, we have �

0

1

; ~z : ~�

0

` [~z=~y]e. From (Tu-Par) and Lemma A.1,

�; x : [~� ]

(!;�

�

)

` [~z=~y]e j x

�

(~y)) e is derived.

(Ru-Cong) Follow from Lemma A.2.

(Ru-Par) Suppose � ` e

1

j e

2

. From (Tu-Par) rule, for some �

1

and �

2

such

that � = �

1

+ �

2

, �

1

` e

1

and �

2

` e

2

By induction hypothesis, �

�x

1

is

well-de�ned and �

�x

1

` e

0

1

holds. It is trivial that (�

1

+ �

2

)

�x

� �

�x

1

+ �

2

holds. Hence �

�x

` e

0

1

j e

2

is derived from Lemma A.1.

(Ru-New1) Suppose � ` new x

(�

1

;�

2

)

in e end. From (Tu-New) rule, �; x :

[~� ]

(�

1

;�

2

)

` e. By induction hypothesis, �; x : [~� ]

(�

�

1

;�

�

2

)

` e

0

holds. Therefore,

�(= �

�"

) ` new x

(�

�

1

;�

�

2

)

in e

0

end.
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(Ru-New2) Suppose � ` new x

(�

1

;�

2

)

in e end. From (Tu-New) rule, �; x :

[~� ]

(�

1

;�

2

)

` e. By induction hypothesis, (�; x : [~� ]

(�

1

;�

2

)

)

�l

` e

0

holds. Because

l 6= x, (�; x : [~� ]

(�

1

;�

2

)

)

�l

= �

�l

; x : [~� ]

(�

1

;�

2

)

and �

�l

` new x

(�

1

;�

2

)

in e

0

end

holds.

2

A.2 Proof of Theorem 3.3

To prove Theorem 3.3, we need the following lemmas on the subprocedures

L

;

J

,

and

F

.

Lemma A.3 (function

L

(1)) Given f(�

1

;�

1

); : : : ; (�

n

;�

n

)g, suppose that

(S

0

;�

0

;�

0

1

; : : : ;�

0

n

;�

0

) satis�es �

0

�

�

0

�

0

1

+ : : : + �

0

n

and that for all i: (1)

�

0

i

� S

0

�

i

, and (2) �

0

j= S

0

�

i

. Then,

L

(f(�

1

;�

1

); : : : ; (�

n

;�

n

)g) succeeds

without failure and outputs (S;�;�) which satis�es the following conditions: (1)

� �

�

S�

1

+ : : : + S�

n

, (2) 8i:� j= S�

i

, (3) there exists a substitution S

00

such

that S

0

= S

00

S, �

0

� S

00

�, and �

0

j= S

00

�.

Lemma A.4 (function

J

(1)) Given (�;�; �), suppose that (S;�

0

;�

00

;�

0

) sat-

is�es: (1) �

00

�

�

0

� � �

0

, (2) �

0

� S�(x), and (3) �

0

j= S

0

�. Then,

J

(�;�; �)

succeeds without failure and outputs (�

1

;�

1

) which satis�es the following condi-

tions: (1) �

1

�

�

1

� � �, (2) �

1

j= �, and (3) �

00

� S�

1

(x).

Lemma A.5 (function

F

(1)) Given f(�

1

;�

1

); : : : ; (�

n

;�

n

)g, suppose that

(S

0

;�

0

;�

0

1

; : : : ;�

0

n

;�

0

) satis�es �

0

�

�

0

�

0

1

t: : :t�

0

n

and that for i: (1) �

0

i

� S

0

�

i

, and

(2) �

0

j= S

0

�

i

. Then,

F

(f(�

1

;�

1

); : : : (�

n

;�

n

)g succeeds without failure and out-

puts (S;�;�) which satis�es the following conditions: (1) � �

�

S�

1

t : : : t S�

n

,

(2) 8i:� j= S�

i

, and (3) there exists a substitution S

00

such that S

0

= S

00

S,

�

0

� S

00

�(x), and �

0

j= S

00

�.

These lemmas are trivial from their de�nitions and Theorem 3.2.
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Proof of Theorem 3.3 Structural induction on the proof of �;� `

T RU

e with

case anlysis on the last rule used.

(Tru-Send) Suppose that �

0

;�

0

`

T RU

x(y

1

; : : : ; y

n

). Let (�;�; x(y

1

; : : : ; y

n

)) be

PTU(x(y

1

; : : : ; y

n

)). It is trivial that �;� `

T RU

x(y

1

; : : : ; y

n

). From (Tru-

Send) rule, we have �

0

(x) = [�

(�

11

;�

12

)

1

; : : : ; �

(�

n1

;�

n2

)

n

], �

0

(y

i

) = �

(�

0

i1

;�

0

i2

)

i

such

that (�

0

i1

; �

0

i2

) �

�

(�

i1

; �

i2

) for all i 2 f1; : : : ; ng. Let S = (S

�

; S

�

) where

S

�

= [�

1

=�

1

; : : : ; �

n

=�

n

] and S

�

= [�

11

=j

11

; : : : ; �

n2

=j

n2

; �

0

11

=k

11

; : : : ; �

0

n2

=k

n2

].

It satis�es the second condition of the principal typing.

(Tru-Par) Suppose that �

0

;�

0

`

T RU

e

1

j e

2

. From (Tru-Par) rule, we have

�

0

1

;�

0

`

T RU

e

1

, �

0

2

;�

0

`

T RU

e

2

and �

0

�

�

�

0

1

+�

0

2

. By induction hypothesis,

PTU(e

1

) and PTU(e

2

) succeeds and outputs (�

1

;�

1

; e

1

) and (�

2

;�

2

; e

2

),

respectively. Moreover, for each results, there exist substitutions S

1

and S

2

which satisfy the second condition of De�nition 3.5. Let S

0

= S

1

S

2

. S

0

satis�es the assumption of Lemma A.3. Therefore,

L

(f(�

1

;�

1

); (�

2

;�

2

)g)

succeeds and outputs (S;�;�) such that � �

�

S�

1

+ S�

2

, � j= S�

i

for i =

1; 2. By Lemma 3.4, 3.3, for i = 1; 2, we obtain S�

i

;� `

T RU

e

i

. Therefore,

�;� `

T RU

e

1

j e

2

is derived from (Tru-Par) rule.

By Lemma A.3, there exists S

00

such that S

0

= S

00

S, �

0

� S

00

�, and �

0

j=

S

00

�.

(Tru-Choice) Similar to the case of (Tru-Par) rule.

(Tru-Recv) Suppose that �

0

+ x : [�

(�

0

11

;�

0

12

)

1

; : : : ; �

(�

0

n1

;�

0

n2

)

n

]

(�

0

1

;�

0

2

)

;�

0

`

T RU

x(y

1

; : : : ; y

n

)) e. By (Tru-Recv) rule, we obtain

1. �

00

; y

1

: �

(�

0

11

;�

0

12

)

1

; ldots; y

n

: �

(�

n1

;�

n2

)

n

;�

0

`

T RU

e

2. �

0

x1

�

�

0

1

3. �

0

�

�

0

�

00
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By induction hypothesis, PTU(e) succeeds without failure and outputs

(�;�; e). Let S

0

be the substitution referred in the second condition of De�ni-

tion 3.5 and S = S

0

([�

1

=�

1

; : : : ; �

n

=�

n

]; [�

0

1

=j; �

0

11

=j

1

; : : : ; �

0

1n

=j

n

; �

0

12

=k

1

; : : : ; �

0

n2

=k

n

]).

By Lemma A.3,

L

(f(x : [�

(j

1

;k

1

)

1

; : : : ; �

(j

n

;k

n

)

n

]

(j;k)

; fj � 1g); (� n (y

i

: �

0

i

jy

i

2

dom(�));�)g) succeeds and outputs (S

1

;�

1

;�

1

) such that: 1) �

1

�

�

1

S

1

(x :

[�

(j

1

;k

1

)

1

; : : : ; �

(j

n

;k

n

)

n

]

(j;k)

) + S

1

(� n (y

i

: �

0

i

jy

i

2 dom(�))), 2) there exists S

2

such that S = S

2

S

1

, �

0

+ x : [~� ]

(�

0

1

;�

0

2

)

� S

2

�

1

, and �

0

j= S

2

�

1

.

By Lemma 3.2, U(f(S

1

�

(j

i

;k

i

)

i

; S

1

�

i

)jy

i

2 dom(�)g) outputs its most general

uni�er S

3

and there exists S

4

such that S

2

= S

4

S

3

.

Now, we have S

3

�

1

; S

3

�

1

`

T RU

e by Lemma 3.4, 3.3, S

3

S

1

j �

�

1

1, and

S

3

� �

�

1

S

3

�. Therefore, S

3

�

1

; S

3

�

1

`

T RU

x(~y) ) e. S

4

is the substitution

which satis�es the second condition of the principal typing.

(Tru-RRecv) Similar to the case of (Tru-Recv).

(Tru-New) Suppose that �

0

;�

0

`

T RU

new x

(�

1

;�

2

)

in e end. From (Tru-

New) rule, we have �

00

; x : [~�

0

]

(�

1

;�

2

)

;�

0

`

T RU

e. By induction hypothe-

sis, PTU(e) succeeds without failure and outputs (�;�; e). Let S be the

substitution in De�nition 3.5.

Consider the case of x 2 dom(�). By Theorem 4.2, U(�(x); �

(�

1

;�

2

)

) succeeds

and outputs S

0

. Therefore, S

0

(� n x : �

x

); S

0

� `

T RU

new x

(�

1

;�

2

)

in e end

is derived. By the property of the most general uni�er, S = S

00

S

0

, �

0

�

S

00

S

0

(� n x : �

x

) and �

0

j= S

00

(S

0

�).

The case of x 62 dom(�) is similar.

2
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A.3 Proof of Theorem 4.3

To prove Theorem 4.3, we need to strengthen the theorem so that induction works.

Theorem 4.3 is then obtained as a special case of the strengthened theorem (The-

orem A.1).

We give several preliminary de�nitions before stating the strengthened theo-

rem.

De�nition A.1 A type scheme 8�

1

: : : 8�

n

:�

1

is more general than 8�

1

: : :8�

m

:�

2

if [�

1

=�

1

; : : : ; �

n

=�

n

]�

1

= �

2

for some �

1

; : : : ; �

n

.

Intuitively, a type scheme � is more general than �

0

if every simple type obtained

from �

0

is also obtained from �.

The following condition \� respects As" means that all the non-simple types

in � are less general than those in As.

De�nition A.2 � respects � if there exists a substitution S such that for all

x 2 dom(�), if �(x) is a type scheme 8�

1

: : :8�

n

:�

(�

1

;�

2

)

1

(n � 1), then:

1. x 2 dom(�)

2. if �(x) = 8�

1

: : :8�

m

:�

(�

3

;�

4

)

2

, S8�

1

: : : 8�

m

:�

(�

1

;�

2

)

2

is more general than �(x).

Now, we state Theorem A.1. When PTU(e; ;) is invoked, it recursively calls

itself for each subterm of e, with the second argument As being augmented with

bindings of let-variables to type schemes. So, in order to make induction steps

work, intuitively we want to prove that, if As gives most general possible type

schemes for variables bound by outer let expressions, then PTU(e; As) gives a

most general typing among all the valid typings. By the condition \As gives most

general possible type schemes for variables bound by outer let expressions," it

su�ces to show that PTU(e; As) is most general only among typings whose type

environment \respects" As. Note that Theorem 4.3 is obtained as a special case

since \� respects ;" if and only if \� contains only simple types."
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Theorem A.1 Suppose that �

0

;�

0

`

ET RU

e : �

0

and �

0

respects As. Then,

PTU(e; As) succeeds. Moreover, let (�;�; e; �) = PTU(e; As). The quadruple

satis�es the following three conditions:

1. �;� `

ET RU

e : �

2. If �(x) is 8�

1

: : : 8�

n

:�

(�

1

;�

2

)

(n � 1), then x 2 dom(As) and there exists a

substitution S

0

whose domain does not includes any free (type/use) variable

in (�;�; e; �) such that S

0

8�

1

: : : 8�

n

:�

0(�

1

;�

2

)

= 8�

1

: : : 8�

n

:�

(�

1

;�

2

)

where

As(x) = 8�

1

: : :8�

n

:�

0(�

0

1

;�

0

2

)

.

3. There exists a substitution S such that

(a) S�(x) is more general than �

0

(x) for all x 2 dom(�).

(b) �

0

j= S�

(c) �

0

� S�

The following lemmas for the subprocedures are obtained from Lemmas A.3{

A.5 by replacing the statement like �

0

� S� with \S�(x) is more general than

�

0

(x) for all x 2 dom(�)."

Lemma A.6 (function

L

(2)) Given f(�

1

;�

1

); : : : ; (�

n

;�

n

)g, suppose that

(S

0

;�

0

;�

0

1

; : : : ;�

0

n

;�

0

) satis�es �

0

�

�

0

�

0

1

+ : : : + �

0

n

and that for all i: (1)

S

0

�

i

(x) is more general than �

0

i

(x) for all x 2 dom(�

i

), (2) �

0

j= S

0

�

i

. Then,

L

(f(�

1

;�

1

); : : : ; (�

n

;�

n

)g) succeeds without failure and outputs (S;�;�) which

satis�es the following conditions: (1) � �

�

S�

1

+ : : : + S�

n

, (2) 8i:� j= S�

i

, (3)

there exists a substitution S

00

such that

1. S

0

= S

00

S

2. S

00

�(x) is more general than �

0

(x) for all x 2 dom(�).

3. �

0

j= S

00

�
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Lemma A.7 (function

J

(2)) Given (�;�; �), suppose that (S;�

0

;�

00

;�

0

) sat-

is�es: (1) �

00

�

�

0

� � �

0

, (2) S�(x) is more general than �

0

(x) for all x 2 dom(�),

and (3) �

0

j= S

0

�. Then,

J

(�;�; �) succeeds without failure and outputs (�

1

;�

1

)

which satis�es the following conditions: (1) �

1

�

�

1

� � �, (2) �

1

j= �, and (3)

S�

1

(x) is more general than �

00

(x) for all x 2 dom(�

1

).

Lemma A.8 (function

F

(2)) Given (�

1

;�

1

;�

2

;�

2

), suppose that (S

0

;�

0

;�

0

1

;�

0

2

;�

0

)

satis�es �

0

�

�

0

�

0

1

t �

0

2

and that for i = 1; 2: (1) S

0

�

i

(x) is more general than

�

0

i

(x) for all x 2 dom(�

i

), (2) �

0

j= S

0

�

i

. Then,

F

(�

1

;�

1

;�

2

;�

2

) succeeds

without failure and outputs (S;�;�) which satis�es the following conditions: (1)

� �

�

S�

1

tS�

2

, (2) 8i:� j= S�

i

, and (3) there exists a substitution S

00

such that

1. S

0

= S

00

S

2. S

00

�(x) is more general than �

0

(x) for all x 2 dom(�).

3. �

0

j= S

00

�

Proof of Theorem A.1 We prove by induction on the structure of the proof

of �;� `

ET RU

e : � with case analysis on the last rule used. We show only the

several main cases.

(ETru-Var) Suppose that �

0

;�

0

`

ET RU

x : �

0(�

3

;�

4

)

and that �

0

respects As. We

have two cases.

� x 2 dom(As). By (ETru-Var) rule, we have [�

0

1

=�

1

; : : : ; �

0

m

=�

m

]�

00(�

1

;�

2

)

�

�

0

�

0(�

3

;�

4

)

where �

0

(x) = 8�

1

: : : 8�

m

:�

00(�

1

;�

2

)

.

Let S

1

be [�

0

1

=�

1

; : : : ; �

0

m

=�

m

]. Because �

0

respects As, there exists

S

2

such that S

2

8�

1

: : :8�

n

:�

(�

1

;�

2

)

is more general than �

0

(x), that

is, for some �

1

; : : : ; �

n

, [�

1

=�

1

; : : : ; �

n

=�

n

]S

2

�

(�

1

;�

2

)

= �

00(�

1

;�

2

)

where

As(x) = 8�

1

: : :8�

n

:�

(�

0

1

;�

0

2

)

. Let S

3

= [�

1

=�

1

; : : : ; �

n

=�

n

], � = x :

8�

1

: : : 8�

n

:�

(j;k)

, � = fj � l; k � mg and S

4

= [


1

=�

1

; : : : ; 


n

=�

n

]
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where j; k; l;m are fresh use variables, and the 


i

's are fresh type vari-

ables whose kinds (usual or non-O) are the same as those of the �

i

's,

respectively. For (�;�; x; S

4

�

(l;m)

), we have �;� `

ET RU

x : S

4

�

(l;m)

. It

is trivial that the second condition in the theorem is satis�ed. More-

over, S(= S

1

S

3

S

2

[�

1

=


1

; : : : ; �

n

=


n

; �

1

=j; �

2

=k; �

3

=l; �

4

=m]) satis�es the

following conditions:

1. S8�

1

: : : 8�

n

:�

(j;k)

is more general than �

0

(x) because S8�

1

: : :8�

n

:�

(j;k)

=

S

2

8�

1

: : :8�

n

:�

(�

1

;�

2

)

.

2. �

0

j= S�

3. SS

4

�

(l;m)

� S

1

S

3

S

2

�

(�

3

;�

4

)

� �

0(�

3

;�

4

)

� x 62 dom(As). In this case, �

0

(x) must be a simple type and the type

judgement can be written as (�

00

; x : �

0(�

00

1

;�

00

2

)

);�

0

`

ET RU

x : �

0(�

0

1

;�

0

2

)

where (�

00

1

; �

00

2

) �

�

0

(�

0

1

; �

0

2

). PTU(x;As) always succeeds and outputs

(�;�; x; _�

(l;m)

) where � = x : _�

(j;k)

and � = fj � l; k � mg with use

fresh variables j; k; l;m. We have x : _�

(j;k)

;� `

ET RU

_�

(l;m)

and there

exists S = [�

00

1

=j; �

00

2

=k; �

0

1

=l; �

0

2

=m; �

0

1

= _�] such that

1. �

0(�

0

1

;�

0

2

)

� S _�

(j;k)

i.e., S�(x) is more general than �

0

(x) for all x 2

dom(�).

2. �

0

j= S�

(ETru-App/Send) Suppose that �

0

;�

0

`

ET RU

e

1

e

2

: �

(�

3

;�

4

)

and that �

0

respects

As. By (ETru-App/Send), we have �

0

1

;�

0

`

ET RU

e

1

: �

(�

5

;�

6

)

1

(�

1

;�

2

)

�! �

(�

3

;�

4

)

,

�

0

2

;�

0

`

ET RU

e

2

: �

(�

5

;�

6

)

1

, �

2

�

�

0

1, �

(�

5

;�

6

)

1

6� O and �

0

�

�

0

�

0

1

+ �

0

2

.

Both �

0

1

and �

0

2

respect As. By induction hypothesis, PTU(e

1

; As) succeeds

and the outputted quadruple (�

1

;�

1

; e

1

; �

1

) satis�es the three conditions of

the theorem. In particular, �

1

;�

1

`

ET RU

e

1

: �

1

holds and there exists a

substitution S

1

such that:

1. S

1

�

1

(x) is more general than �

0

1

(x) for all x 2 dom(�

1

).

81



2. �

0

j= S

1

�

1

3. �

(�

5

;�

6

)

1

(�

1

;�

2

)

�! �

(�

3

;�

4

)

� S

1

�

1

Similary, PTU(e

2

; As) succeeds and the outputted quadruple (�

2

;�

2

; e

2

; �

2

)

satis�es the three conditions of the theorem. In particular �

2

;�

2

`

ET RU

e

2

:

�

2

holds and there exists a substitution S

2

such that:

1. S

2

�

2

(x) is more general than �

0

2

(x) for all x 2 dom(�

2

).

2. �

0

j= S

2

�

2

3. �

(�

5

;�

6

)

1

� S

2

�

2

Let S = S

1

S

2

[�

1

=j; �

2

=k; �

3

=l; �

4

=m; �

5

=n; �

6

=p; �=

_

�; �

1

=�
] where j; k; l;m; n; p

are fresh use variables and

_

�; �
 are fresh type variables. By Lemma A.6,

L

(f(�

1

;�

1

); (�

2

;�

2

)g) outputs (S

3

;�

3

;�

3

) without failure. The triple sat-

is�es the following conditions:

1. �

3

�

�

3

S

3

�

1

+ S

3

�

2

, �

3

j= S

3

�

1

and �

3

j= S

3

�

2

hold.

2. There exists a substitution S

4

such that

(a) S = S

4

S

3

(b) S

4

�

3

(x) is more general than �

0

(x) for all x 2 dom(�

3

).

(c) �

0

j= S

4

�

3

By Theorem 4.2, U(f(S

3

�

1

; (S

3

�

2

)

(j;k)

�!

_

�

(l;m)

); (S

3

�

2

; �


(n;p)

)g) succeeds with-

out failure and outputs S

5

which satis�es S

5

(S

3

�

1

) � S

5

((S

3

�

2

)

(j;k)

�!

_

�

(l;m)

); S

5

(S

3

�

2

) � S

5

�


(n;p)

and 9S

6

:(S

4

= S

6

S

5

).

For �

5

= S

5

(�

3

[ fk � 1g), now we have S

5

S

3

�

1

;�

5

`

ET RU

e

1

: S

5

S

3

�

1

,

S

5

S

3

�

2

;�

5

`

ET RU

e

2

: S

5

S

3

�

2

, S

5

S

3

�

2

(= S

5

�


(n;p)

) 6� O, S

5

k �

�

5

1,

S

5

�

3

�

�

5

S

5

S

3

�

1

+S

5

S

3

�

2

and S

5

(S

3

�

1

) � S

5

((S

3

�

2

)

(j;k)

�!

_

�

(l;m)

). By (ETru-

App/Send), we have S

5

�

3

;�

5

`

ET RU

e

1

e

2

: S

5

_

�

(l;m)

. It is trivial that the
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second condition of the theorem is satis�ed for S

5

�

3

and As. We have also

S

6

such that

1. S

6

S

5

�

3

(x)(= S

4

�

3

(x)) is more general than �

0

(x) for all x 2 dom(�

3

).

2. �

0

j= S

6

�

5

3. �

(�

3

;�

4

)

� S

6

S

5

_

�

(l;m)

(ETru-Abs) Suppose that �

0

;�

0

`

ET RU

(�x:e

0

)

�

0

: �

0(�

0

1

;�

0

2

)

1

(0;�

0

)

�! �

0

2

and that �

0

respects As. By (ETru-Abs), we have �

00

; x : �

0(�

0

1

;�

0

2

)

1

;�

0

`

ET RU

e

0

: �

0

2

and �

0

�

�

0

�

0

� �

00

. It is triviall that �

00

; x : �

0(�

0

1

;�

0

2

)

1

also respects As. By

induction hypothesis, PTU(e

0

; As) succeeds and the outputted quadruple

(�

1

;�

1

; e

0

; �

2

) satis�es the three conditions. In particular, �

1

;�

1

`

ET RU

e

0

:

�

2

holds and there exists a substitution S

1

such that:

1. S

1

�

1

(y) is more general than (�

00

; x : �

0(�

0

1

;�

0

2

)

1

)(y) for all y 2 dom(�

2

).

2. �

0

j= S

1

�

1

3. �

0

2

� S

1

�

2

We have two cases here.

� x 2 dom(�

1

). Let S = S

1

. By Lemma A.7,

J

(�

1

nx : �

1

;�

1

; �

0

) outputs

(�

2

;�

2

) with no failure. This pair satis�es the following conditions:

1. �

2

�

�

2

j � (�

1

n x : �

1

)

2. �

2

j= �

1

3. S�

2

(y) is more general than �

0

(y) for all y 2 dom(�

2

).

4. �

0

j= S�

2

By (ETru-Abs), we have �

2

;�

2

`

ET RU

(�x:e

0

)

�

0

: �

1

(0;�

0

)

�! �

2

. �

2

and

As satis�es the second condition of the theorem. We have, S which

satis�es the third condition of the theorem.
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� x 62 dom(�

1

). Let S = S

1

[�

0

1

=j; �

0

2

=k; �

0

1

= _�] with a fresh _�; j, and k. By

Lemma A.7,

J

(�

1

;�

1

; �

0

) outputs (�

2

;�

2

) with no failure. This pair

satis�es the following conditions:

1. �

2

�

�

2

�

0

� �

1

2. �

2

j= �

1

3. S�

2

(y) is more general than �

0

(y) for all y 2 dom(�

2

).

4. �

0

j= S�

2

By (ETru-Abs), we have �

2

;�

2

`

ET RU

(�x:e

0

)

�

0

: _�

(j;k)

(0;l)

�! �

2

. �

2

and As satis�es the second condition of the theorem. We have S, which

satis�es the third condition of the theorem.

(ETru-Let) Given e and As, suppose that �

0

;�

0

`

ET RU

let x = e

1

in e

2

end :

�

0

and that �

0

respects As. By (ETru-Let), we have �

0

1

;�

0

`

ET RU

e

1

:

�

0(�

0

1

;�

0

2

)

1

, (�

0

2

; x : clos(�

0

1

; �

0(�

0

1

;�

0

2

)

1

));�

0

`

ET RU

e

2

: �

0

, �

0(�

0

1

;�

0

2

)

1

6� O and �

0

�

�

0

�

0

1

+�

0

2

. �

0

1

also respects As. By induction hypothesis, PTU(e

1

; As) succeeds

and outputs a quadruple (�

1

;�

1

; e

1

; �

(�

1

;�

2

)

1

) satis�es the three conditions of

the theorem. In particular, �

1

;�

1

`

ET RU

e

1

: �

(�

1

;�

2

)

1

holds and there exists

a substitution S

1

such that:

1. S

1

�

1

(y) is more general than �

0

1

(y) for all y 2 dom(�

1

).

2. �

0

j= S

1

�

1

3. �

0(�

0

1

;�

0

2

)

1

� S

1

�

(�

1

;�

2

)

1

Because �

0(�

0

1

;�

0

2

)

1

� S

1

�

(�

1

;�

2

)

1

, �

0

2

; x : clos(�

0

1

; �

0(�

0

1

;�

0

2

)

1

) respects As

0

(= As [

fx : clos(�

1

; �

(�

1

;�

2

)

1

)g). By induction hypothesis, PTU(e

2

; As

0

) succeeds

and outputs a quadruple (�

2

;�

2

; e

2

; �

2

) which satis�es the three conditions

of the theorem. In particular, �

2

;�

2

`

ET RU

e

2

: �

2

holds, and there exists a

substitution S

2

such that:
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1. S

2

�

2

(y) is more general than (�

0

2

; x : clos(�

0

1

; �

0(�

0

1

;�

0

2

)

1

))(y) for all y 2

dom(�

2

).

2. �

0

j= S

2

�

2

3. �

0

� S

2

�

2

We have two cases here.

� x 2 dom(�

2

). For (�

2

;�

2

; e

2

; �

2

), from the second conditon of

the theorem, there exists a substitution S

0

such that �

2

(x) �=

S

0

(clos(�

0

1

; �

0(�

1

;�

2

)

1

)) Let S = S

1

S

2

S

0

[�

0

1

=��; �

0

1

=j; �

0

2

=k]. By Lemma A.6,

L

(f(�

1

;�

1

); ((�

2

n x : 8�

1

: : : 8�

n

:�

(�

x1

;�

x2

)

x

);�

2

)g) outputs (S

3

;�

3

;�

3

)

without failure. The triple satis�es the following conditions:

1. �

3

�

�

3

S

3

�

1

+ S

3

(�

2

n x : 8�

1

: : : 8�

n

:�

(�

x1

;�

x2

)

x

), �

3

j= S

3

�

1

and

�

3

j= S

3

�

2

hold.

2. There exists a substitution S

4

such that

(a) S = S

4

S

3

(b) S

4

�

3

(y) is more general than �

0

(y) for all y 2 dom(�

3

).

(c) �

0

j= S

4

�

3

By Theorem 4.2, U(f(��

(j;k)

; S

3

�

0(�

0

1

;�

0

2

)

1

); (S

3

clos(�

0

1

; �

(�

1

;�

2

)

1

); S

3

�

2

(x))g)

succeeds without failure and outputs (S

5

;�

5

) which satis�es S

5

(��

(j;k)

) �

S

5

(S

3

�

0(�

0

1

;�

0

2

)

1

), S

5

(S

3

clos(�

0

1

; �

(�

1

;�

2

)

1

)) � S

5

(S

3

�

2

(x)), and 9S

6

:(S

4

=

S

6

S

5

).

Now we have S

5

S

3

�

1

; S

5

�

3

`

ET RU

e

1

: S

5

S

3

�

(�

1

;�

2

)

1

, S

5

S

3

�

2

; S

5

�

3

`

ET RU

e

2

: S

5

S

3

�

2

. S

5

S

3

�

(�

1

;�

2

)

1

(= S

5

��

(S

3

�

1

;S

3

�

2

)

) 6� O and S

5

�

3

�

S

5

�

3

S

5

S

3

�

1

+ S

5

S

3

�

2

. By (ETru-Let), we have S

5

�

3

; S

5

�

3

`

ET RU

let x = e

1

in e

2

end : S

5

S

3

�

2

. It is trivial that the second condition of

the theorem is satis�ed for S

5

�

3

and As. We have S

6

such that
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1. S

6

S

5

�

3

(y)(= S

4

�

3

(y)) is more general than �

0

(y) for all y 2

dom(�

3

).

2. �

0

j= S

6

�

5

3. �

0

2

� S

6

(S

5

S

3

�

2

)

� x 62 dom(�

2

). We can discuss similarly by replacing �

2

n x :

8�

1

: : : 8�

n

:�

(�

x1

;�

x2

)

x

with �

2

.

2

Proof of Theorem 4.3 Because the range of �

0

is only types, �

0

respects ;.

So, PTU(e; ;) succeeds. Let (�;�; e; �) = PTU(e; ;). We have no x such that

�(x) = 8�:� because As = ;. So, the range of � is only types. �;� `

ET RU

e : �

holds and there exists a substitution S such that �

0

j= S�, �

0

� S� and �

0

� S�

from Theorem A.1. 2

A.4 Proof of Subject Reduction Theorem (3) (Theo-

rem 4.4)

We need several lemmas to prove the subject reduction theorem. Lemma A.13 is

especially important because it ensures that the well-typedness of letrec H in e

is preserved if a reduction is derived from �!

�

.

Lemma A.9 (Weakening on Uses (2)) If � `

ET U

e : � , then for �

0

such that

�

0

� �, �

0

`

ET U

e : � .

Proof Structural induction on the proof of � `

ET U

e : � . 2

Lemma A.10 (Term Substitution) Given �

y

, if (1) � + y : 8�

1

: : : 8�

n

:�

y

is

well-de�ned, (2) �; z : �

z

`

ET U

e : � holds, and (3) there exists a well-de�ned sub-

stitution S

y

(= [�

1

=�

1

; : : : ; �

n

=�

n

]) s.t. S

y

�

y

� �

z

, then � + y : 8�

1

: : : 8�

n

:�

y

`

ET U

[y=z]e : � holds.
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Proof We prove by induction on the structure of the proof of �; z : �

z

`

ET U

e : �

with case analysis on the last rule used.

(ETu-Var) There are two cases. If e = z, the last proof step is

�

z

� �

�; z : �

z

` z : �

By the assumption (1), we have a well-de�ned substitution S

y

such that

S

y

�

0

y

� � where �

0

y

= (� + y : 8�

1

: : : 8�

n

:�

y

)(y). Therefore, � + y :

8�

1

: : : 8�

n

:�

y

` y : � holds.

If e = x 6= z, Trivial from [y=z]x = x.

(ETu-App/Send) The last proof step is

�

1

; z : �

z

1

` e

1

: �

1

(�

1

;�

2

)

�! �

2

�

2

� 1 �

1

6� O �

2

; z : �

z

2

` e

2

: �

1

(�

1

+ �

2

); z : (�

z

1

+ �

z

2

) ` e

1

e

2

: �

2

We can easily obtain �

y

1

and �

y

2

such that �

y

= �

y

1

+ �

y

2

, S

y

�

y

1

� �

z

1

,

and S

y

�

y

2

� �

z

2

hold. By the induction hypothesis, we have �

1

+ y :

8�

1

: : : 8�

n

:�

y

1

` [y=z]e

1

: �

1

(�

1

;�

2

)

�! �

2

and �

2

+ y : 8�

1

: : : 8�

n

:�

y

2

` [y=z]e

2

:

�

1

. By (ETu-App/Send) rule, �

1

+ �

2

+ y : 8�

1

: : : 8�

n

:�

y

2

` e

1

e

2

: �

2

holds.

The other induction steps are similar to the case of (ETu-App/Send). 2

Lemma A.11 (Heap Allocation) Suppose that if �

h

` h

�

: �

h

, then � ` E[h

�

] :

� . Then, there exists some �

0

such that � = �

0

+�

h

and �

0

; x : clos(�

h

; �

h

) ` E[x] :

� .

Proof We prove by straightforward induction on the structure of the context E.

We show several main cases.

(E = []) Trivial. (�

0

= ;).
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(E = E

0

e) From � ` E[h

�

] : � and (ETu-App/Send) rule, we have: 1) �

1

`

E

0

[h

�

] : �

1

(�

1

;�

2

)

�! � , 2) �

2

` e : �

1

, 3) �

2

� 1, 4) �

1

6� O, and 5) � = �

1

+ �

2

.

By induction hypothesis, we have �

0

1

such that �

1

= �

0

1

+ �

h

and �

0

1

; x :

clos(�

h

; �

h

) ` E

0

[x] : �

1

(�

1

;�

2

)

�! � . By associativity of +, � = (�

0

1

+ �

2

) + �

h

holds. By (ETu-App/Send) rule, we have �

0

1

+ �

2

such that (�

0

1

+ �

2

); x :

clos(�

h

; �

h

) ` E[x] : � .

The other induction steps are similar. 2

Lemma A.12 Suppose that if �+�

e

` e : �

e

, then �

E

` E[e] : � for some context

E, and that � + �

e

0

` e

0

: �

e

holds. Then, there exists some type environment �

0

E

such that �

0

E

+ �

e

0

` E[e

0

] : � and �

0

E

+ �

e

= �

E

holds.

Proof Straightforward induction on the structure of the context E. 2

Lemma A.13 If � ` letrec H in e : � and letrec H in e

~x

�!

�

letrec H

0

in e

0

,

then � ` letrec H

0�":~x

in e

0

: � .

Proof We prove with case analysis on the reduction rule used.

(L-Alloc) From (ETu-Heap) rule, we have �

e

` E[h

�

] : � . We obtain �

x

` h

�

:

�

x

from its type derivation tree. By Lemma A.11, there exists �

0

such that

�

e

= �

0

+ �

x

and �

0

; x : clos(�

x

; �

x

) ` E[x] : � hold. By Lemma 4.1, we can

obtain (�

0

1

;�

0

2

) and (�

x1

;�

x2

) such that �

0

= �

0

1

]

H

�

0

2

and �

x

= �

x1

]

H

�

x2

,

respectively. Now, we have (�

0

1

+ �

0

2

); x : clos(�

x1

+ �

x2

; �

x

) ` E[x] : � . Let

�

00

= �

x

1

+ � � �+�

x

n

+�

x

+�

0

1

+(�

0

2

; x : clos(�

h

; �

h

)). For all y 2 dom(H; x =

h

�

), we have �

y

` (H; x = h

�

)(y) : �

y

, and �

00

(y) = clos(�

y

; �

y

). Therefore,

we have �

x

1

1

+ � � ��

x

n

1

+ �

x1

+ �

0

1

` letrec H; x = h

�

in E[x] : � because

�

h1

+ �

0

1

= �

e1

.

(L-App) By (ETu-Heap) rule, we have �

e

; x : clos(�

x

; �

1

(0;�)

�! �

2

) ` E[xy] : �

and �

x

` (�z:e)

�

: �

1

(0;�)

�! �

2

. From the derivation tree of the �rst type
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judgement, we have �

xy

` xy : �

xy

. By (ETu-App/Send) rule and (ETu-

Var) rule, there exist substitutions S

x

= [�

x1

=�

1

; : : : ; �

xn

=�

n

] and S

y

=

[�

y1

=�

1

; : : : ; �

ym

=�

m

] such that:

1. �

1

; x : 8�

1

: : :8�

n

:�

1

(0;�

1

)

�! �

2

` x : S

x

(�

1

(0;�

0

1

)

�! �

2

)

2. �

2

; y : 8�

1

: : : 8�

m

:�

3

` y : �

0

3

3. S

y

�

3

� �

0

3

� S

x

�

1

4. �

1

� �

0

1

� 1

5. �

xy

= (�

1

x : 8�

1

: : : 8�

n

:�

1

(0;�

1

)

�! �

2

) + (�

2

; y : 8�

1

: : : 8�

m

:�

3

)

6. S

x

�

2

� �

xy

Meanwhile, from �

x

` (�z:e)

�

: �

1

(0;�)

�! �

2

, (ETu-Abs) rule and Lemma 3.4,

we have S

x

(�

0

x

; z : �

1

) ` e : S

x

�

2

and �

x

� � � �

0

x

. By Lemma A.10,

S

x

�

0

x

+ y : 8�

1

: : : 8�

m

:�

3

` [y=z]e : �

xy

holds. Let �

00

1

be �

1

if � = !, or 0

otherwise. By Lemma A.9, we have (�

1

; x : 8�

1

: : : 8�

n

:�

1

(0;�

00

1

)

�! �

2

) + (�

2

; y :

8�

1

: : : 8�

m

:�

3

) + S

x

�

0

x

` [y=z]e : �

xy

. By Lemma A.12, S

x

�

0

x

+ (�

e

; x :

clos(�

x

; �

1

(0;�

�

)

�! �

2

)) ` E[[y=z]e] : � holds. We have S

x

�

0

x

= �

0

x

because no

bound type variables �

1

; : : : ; �

n

of clos(�

x

; �

1

(0;�)

�! �

2

) is free in �

0

x

by the de�-

nition of clos. We can easily obtain

~

�

x

,

~

�

x1

and

~

�

x2

such that

~

�

x

=

~

�

x1

]

H

~

�

x2

and

~

�

x

+ �

0

x

= �

x

. By (ETu-Abs) rule,

~

�

x

` (�z:e)

�

�

: �

1

(0;�

�

)

�! �

2

because

~

�

x

� �

�

��

0

x

holds. Let �

x

= �

x1

]

H

�

x2

and �

0

x

= �

0

x1

]

H

�

0

x2

. It su�ces that

~

�

x

1

+ �

0

x1

= �

x1

. Therefore, � ` letrec H;x = (�z:e)

�

�

in E[[y=z]e] : � is

derived from (ETu-Heap) rule.

About the other rules, proved similarly. 2

Proof of Subject Reduction Theorem (3) We prove by induction on the

proof of � ` letrec H in e

l

�! letrec H

0

in e

0

with case analysis on the last

rule used.
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(ERu-Lamb) Follow from Lemma A.13.

For the cases of the other rules obtain �

e

`

ET U

e : O by (ETu-Heap) and

we can discuss similarly to the proof of Subject Reduction Theorem (2) (Ap-

pendix A.1). 2
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