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Abstract

The notion of MyType has been proposed to promote type-safe reuse of binary methods and recently extended
to mutually recursive definitions. It is well known, however, that MyType does not match with subtyping
well. In the current type systems, type safety is guaranteed at the expenses of subtyping, hence dynamic
dispatch. In this article, we propose two mechanisms, namely, nonheritable methods and exact statements
to remedy the mismatch between MyType and subtyping. We rigorously prove their safety by modeling
them in a small calculus.
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1. Introduction

1.1. Background
It is a well-known problem that it is difficult to safely reuse recursive classes (ones that refer to one

another among them) by inheritance in simple type systems such as Java’s (without generics). The classical
problem is found in a self-recursive class, whose methods are expected to accept the objects from the same
class as arguments. Such methods like equals() are called binary methods [5]. Ideally, the parameter
types of binary methods covariantly change as the class is extended so that subclasses are again recursive.
However, it is not safe to allow such covariant change without any restrictions and so Java and C++ disallow
it. As a result, the parameter types of binary methods are fixed to particular class names and this mismatch
is often sidestepped by using typecasting. The use of typecasting, however, is not a solution since it may fail
at run time, if used carelessly. A similar problem occurs when two or more classes are involved: paradigmatic
examples are found in the implementation of node and edge classes for graphs [13] and also in the expression
problem [33].

Over the last two decades, there have been many proposals to solve the problem above; a common key idea
is to provide types that can be used to write recursive dependencies among the interfaces of related classes
and inheritance mechanisms that keep such dependencies. According to how dependencies are expressed in
type systems, these proposals can be classified into two: one with dependent types [13, 14, 21, 22, 12, 25]
and one without [3, 19, 30, 18, 6, 7, 9, 4, 29] 1. This paper focuses on the latter, which is admittedly less
expressive but simpler and usually expressive enough.

1.2. MyType and its Extensions
The notion of MyType [3] is proposed as a means to write the dependencies in self-recursive classes. Since

MyType refers to the declaring class and changes its meaning covariantly as classes extend, it can be used
for the parameter types of binary methods.
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1In spite of what the title of the paper [19] suggests, Concord is not really equipped with dependent types in the traditional

type-theoretic sense.
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Although MyType in earlier proposals can express only self-recursion within a single class, it has been
extended to more general settings: mutually recursive classes [30, 7, 9, 4], class hierarchies [19], and arbi-
trarily nested groups of classes [18]. A very recent extension deals with a generic class that refers to itself
recursively but with different type instantiations [29].

1.3. Mismatch between MyType and Subtyping
It is also well known that if we gave the type system with MyType naively, type safety would be lost.

The languages with MyType (e.g., LOOM [8], LOOJ [6], Concord [19], .FJ [30], and ˆFJ [18]) have sound
type systems by imposing some restrictions on their type systems. These restrictions, however, sacrifice
subtyping, hence dynamic dispatch, an important feature of object-oriented programming. There are two
issues: (1) it is impossible to invoke binary methods unless the run-time types of the receivers are statically
known; and (2) it is difficult to implement a method, with MyType being its return type, that returns a new
object that is of the same type as the receiver, such as clone(), if objects have to be created by specifying
a concrete class name (or type) [30, 18, 6, 8].

In summary, in the languages with MyType, programs, especially client code, are often tied to a specific
implementation. We want to relax this restriction and make a more object-oriented style of programming
possible, in the sense that dynamic dispatch is used in more occasions.

1.4. Contributions of the Article
In this article, we propose two mechanisms, namely exact statements and nonheritable methods, for

languages with MyType to remedy the mismatch between MyType and subtyping.
To show that our proposed features are safe, we extend Featherweight Java [16], or FJ in short, with

exact statements and nonheritable methods and prove its type soundness.
We summarize our technical contributions as follows:

• introduction of the new features, namely, exact statements and nonheritable methods;

• a formalization of the type system of these features; and

• a proof of type soundness.

In this article, we extend LOOJ [6], which is a typical language that has (the unextended) MyType.
Nevertheless, similar techniques can be used for other languages with MyType and its extensions. In fact,
we have shown that exact statements and nonheritable methods are useful for self type constructors [29].

This article is a revised version of the conference paper [28], with details of the proof of type soundness.

Structure of the Article. Section 2 examines the mismatch between MyType and subtyping after reviewing
MyType in LOOJ. Section 3 proposes the two features to remedy the mismatch. Section 4 gives a formal
core calculus for them and proves a type soundness property. Section 5 discusses related work and Section 6
concludes. Hereafter, we write This, as done in [18, 29], for MyType.

2. Mismatch between This and Subtyping

In this section, we briefly review This and exact types [6, 18, 29], which are required for the type system
to be sound, through an example of extensible self-recursive classes and then examine their problems in the
current type systems such as LOOJ’s.
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2.1. This and Exact Types
This represents the class in which This appears and its subclasses. Since the meaning of This changes

along with class extension, This is used to write binary methods. Consider the following class definitions:

class C {
int field1;
boolean isEqual(This that){

return this.field1 == that.field1;
}

}
class D extends C {

int field2;
boolean isEqual(This that){

return super.isEqual(that) && this.field2 == that.field2;
}

}

Class C declares binary method isEqual() and its subclass D overrides it. This refers to class C in class C
whereas This refers to class D in class D. So, the field access that.field2 in isEqual() in class D is legal. If
we wrote isEqual() with the parameter type being C as boolean isEqual(C that){...}, the field access
would be illegal since D has to override the method with the same signature, but C does not have field2.
This in the signature of isEqual() called via super in class D is interpreted as D—the signatures of super
calls are resolved with the names of the subclasses that use super.

If we gave the type system naively, type safety would be lost. The naive rule is that the invocation of a
binary method is well typed only if the argument type is a subtype of the parameter type which is obtained
by replacing This by the receiver type. The following example illustrates this:

C c1, c2;
...
c1.isEqual(c2); // unsafe

This method invocation seems well typed because both parameter and receiver types are C, but it can fail at
run time—if c1 refers to an object of class D and c2 refers to that of class C, then the overriding definition
of isEqual() will be executed and the field access that.field2 fails since c2 does not have field2. The
problem here is that the run-time signature of isEqual() can be different from the compile-time one.

Exact types [6, 18, 29] are introduced into LOOJ in order to guarantee the safe invocations of binary
methods such as isEqual(). They are used to determine run-time types statically. An exact type @C
represents the object of class C exactly, excluding its proper subclasses. In other words, @C assures that the
run-time object is always an instance of class C. With the help of exact types, there is a restriction for safe
invocation of binary methods, that is, “the receivers of binary methods should have exact types.” Consider
the following code:

@C c3; C c4, c5;
c3.isEqual(c5); // 1: allowed
c4.isEqual(c5); // 2: not allowed

The first call is legal since the receiver has @C, an exact type, and the argument type C is a subtype of the
parameter type C. (The parameter type is obtained by replacing This with the receiver’s class name.) The
second call is illegal since the receiver’s type is not exact. If the second were allowed, the execution could
get stuck since c4 might refer to the object of class D, dispatching the overridden isEqual(), although c5
might refer to that of class C, which does not have field2. Hereafter, we call types without @ inexact. For
example, C is an inexact type.

2.2. Problem Description
We examine the two problems that we tackle in this paper. Figure 1 shows our running example adapted

from Bruce, Petersen and Fiech [8].
Assume that we develop singly-linked lists, where each node is represented by an object, and then develop

doubly-linked lists by reusing the definition of the node for the singly-linked lists. Class LinkedNode<E>
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class LinkedNode<E> {
E elem;
@This next;
void insert(@This that){

@This tmp=this.next;
this.next = that;
that.next = tmp;

}
void insertElem(E e){

@This newNode=this.makeNode();
newNode.elem = e;
this.insert(newNode);

}
@This makeNode(){ ... }

}
class DoublyLinkedNode<E> extends LinkedNode<E> {

@This previous;
void insert(@This that){

super.insert(that);
that.previous = this;
that.next.previous = that;

}
@This makeNode(){ ... }

}

Figure 1: LinkedNode and DoublyLinkedNode classes.

defines nodes for singly-linked lists. (It is not important that the class is parameterized [2] with the element
type E for the field elem and we sometimes omit the argument for it.) The class has a field next, which
points to the next node. The type of next is @This, referring to LinkedNode exactly (and not to its proper
subclasses). Class DoublyLinkedNode<E> for doubly-linked lists is defined as an extension of LinkedNode<E>.
This class has an extra field previous with the type @This to point its previous node. Note that the inherited
field next now refers to DoublyLinkedNode in the class.

The use of type @This for next and previous brings the following property: a singly-linked list consists
of only the objects of LinkedNode; a doubly-linked list consists of only those of DoublyLinkedNode. So,
whether a list is singly or doubly linked, we at least know that the linked objects are from the same class.

2.2.1. Binary Methods to be Dispatched Must be Always Statically Determined
As mentioned before, binary methods should be invoked on the receivers of exact types. Obviously, the

benefit of dynamic dispatch is lost due to this restriction. Consider the following client code:

LinkedNode<Integer> head;
head.next.insert(head); // ill-typed

The invocation above attempts to swap the head node and its next node, where we are not sure whether
head is a singly or doubly-linked node. The type of head.next is inexact type LinkedNode<Integer>, but
not @LinkedNode<Integer> even though the type of next is exact @This. This is because the receiver head
is inexact. Since insert() is a binary method and head.next is not of exact type, this call is not allowed.
However, this call could be executed safely because whether head refers to a singly or doubly-linked list, the
run-time types of the receiver and argument are the same. The correct implementation would be dispatched,
depending on the receiver type.

One might expect that the code above can be well typed by rewriting it into a parameterized method [8]:

<N extends LinkedNode<Integer>>void swap(@N head){
head.next.insert(head);

}

Although the method declaration is well typed, its invocation swap(head) is not since there is no type that
instantiates the type variable N. So, this is not the solution that we want.
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2.2.2. Methods Cannot be Specialized to the Declaring Classes
In the current type system, the name of a class is not a subtype of This in the class since This changes its

meaning by inheritance. The inconvenience coming from this restriction is typically seen in writing factory
methods [15] or cloning methods.

In Figure 1, in insertElem(), the factory makeNode() is invoked to create a new node, which initializes
a variable newNode with type @This. So, the return type of makeNode() must be @This. Naive definitions
of makeNode() would be:

class LinkedNode<E> {
...
@This makeNode(){

return new LinkedNode<E>();
} // ill-typed

}
class DoublyLinkedNode<E> extends LinkedNode<E> {

...
@This makeNode(){

return new DoublyLinkedNode<E>();
} // ill-typed

}

Each method returns a new object created by the class name. However, both are ill-typed, since, for ex-
ample, the type @LinkedNode<E> of the new object is not a subtype of @This in class LinkedNode<E>.
If this method were inherited to DoublyLinkedNode and called on its object, LinkedNode would ap-
pear where DoublyLinkedNode is expected. (It is not allowed to give exact types @LinkedNode<E> and
@DoublyLinkedNode<E> to these methods as their return types since @DoublyLinkedNode<E> is not a sub-
type of @LinkedNode<E>—the return types are not covariantly refined.)

The ill-typed example above shows a fundamental difference between the purpose of the return type This
and that of object creation by a concrete class name: the use of This means that the method is reusable in
or polymorphic over subclasses whereas object creation makes code specialized for that very class, that is,
not reusable for its subclasses.

In general, due to the restriction, it is impossible to write a method such that its implementation is
specialized to the declaring class and, at the same time, its interface is written by using This2.

Although the methods of makeNode() above are ill-typed, they seem to return an object of the same
type as the receiver correctly.

3. Our Proposals

In this section, we propose two language features, namely, exact statements (Section 3.1) and non-
heritable methods (Section 3.2). These features solve the problems described in Sections 2.2.1 and 2.2.2,
respectively. Figure 2 shows the complete definition of the classes in Figure 1. The new code is the same
except that methods makeNode() are declared by using nonheritable methods.

3.1. exact Statements
We propose the typing feature exact statements3 to enable the invocation of a binary method even if

the run-time type of the receiver is not identified, while we keep the restriction that “binary methods should
be called on exact types.” We get our idea from the context of existential types [26]. We regard an inexact
type C as ∃X<:C.@X, where X can be thought of a run-time class. With this feature, the expression of an
inexact type is unpacked and made temporarily exact in a local scope.

The syntax of exact statements is:

2Such methods can be implemented by using the abstract factory pattern [15, 6], which will be discussed in Section 5.
3In the conference paper [28], they were called local exactization.
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class LinkedNode<E> {
E elem;
@This next;
void insert(@This that){

@This tmp=this.next;
this.next = that;
that.next = tmp;

}
void insertElem(E e){

@This newNode=this.makeNode();
newNode.elem = e;
this.insert(newNode);

}
nonheritable @This makeNode(){

return new LinkedNode<E>();
}

}
class DoublyLinkedNode<E> extends LinkedNode<E> {

@This previous;
void insert(@This that){

super.insert(that);
that.previous = this;
that.next.previous = that;

}
nonheritable @This makeNode(){

return new DoublyLinkedNode<E>();
}

}

Figure 2: LinkedNode and DoublyLinkedNode classes with nonheritable methods.

exact <X extends C>(@X x = target) {
...

}

“<X extends C>” after the keyword exact declares a type variable X to be used in the type declarations for
x and the body (inside the braces). The expression target is that of an inexact type. At compile time, the
type variable X is assumed to extend the type of target, C here, and the type of x is an exact type @X. At
run time, the body is executed where x is initialized to the value of target.

The ill-typed invocation of insert() in Section 2.2.1 can be revised with exact as follows:

LinkedNode<Integer> head;
exact <X extends LinkedNode<Integer>>(@X x = head) {

x.next.insert(x); // well-typed
}

The invocation is now well typed since the receiver x.next and argument x are of the same exact type @X.
In the body, the introduced type variable X is used as if it is an ordinary type. For example, we can

write as follows:

exact <X extends LinkedNode<Integer>>(@X x = head) {
@X n = x.makeNode();
n.insert(n); // well-typed

}

Since the scope of the type variable X introduced by an exact statement is limited only within { }, the
type system will forget the fact that objects (for example, x and x.next in the example above) of type @X
are instances of the same (but unknown) class. Consider the following code to get the last two nodes of
head in the exact statement.
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LinkedNode<Integer> n1, n2;
exact <X extends LinkedNode<Integer>>(@X x = head) {

n1 = head.getLast();
n2 = head.getLast();

}

The method getLast() returns the last node reached from the receiver through the link. Inside the exact
statement, the return types of both calls of getLast() are the same @X. However, as the two nodes are
assigned to n1 and n2, which are declared outside the exact statement, the fact that they come from the
same class is lost because the type of n1 and n2 is an inexact type. Note that there is no suitable exact type
for n1 and n2 outside the exact statement.

We can actually avoid this unpleasant situation by using other advanced features such as generics [2]
and wildcards [32].4 First, we need a generic collection of exact types.5

class ExactList<X> {
...
void add(@X x){ ... }
@X get(int i) { ... }

}

X is a type parameter and the collection can contain only the objects of type @X. With this class, the code
above is revised as follows:

ExactList<? extends LinkedNode<Integer>> s1;
exact <X extends LinkedNode<Integer>>(@X x = head) {

ExactList<X> s2=new ExactList<X>();
s2.add(head.getLast());
s2.add(head.getLast());
s1 = s2;

}

Inside the exact statement, an instance s2 of ExactList is created with the type parameter being X and then
the two last nodes are pushed into it. Finally, s2 is assigned to s1, which has a wildcard type ExactList<?
extends LinkedNode<Integer>>. It means a list of the instances of the same class, which is an unknown
subclass of LinkedNode. So, even outside of the exact statement, the type system knows the two nodes in
s1 are the objects of the same class (even though it is not really known).

3.2. Nonheritable Methods
We propose the feature nonheritable methods6 to allow a class name to be a subtype of This in that

class under a certain condition. The key observation is that it is safe to allow a method whose signature
contains This to have a specialized implementation as long as the specialized implementation is not reused
in the subclasses. Nonheritable methods have the following characteristics:

1. a nonheritable method is not inherited to subclasses, in which it is impossible to call it by super;
2. the subclasses must override the method with the same signature;
3. This in the signature of a nonheritable method is replaced with the name of the declaring class when

the method is typed; and
4. it is not necessary that methods overriding nonheritable methods are nonheritable.

4Dependent types [21, 23] can also be used to solve the problem. See Section 5.
5Our language design, which follows LOOJ’s, does not allow type parameters to be instantiated with an exact type like

List<@Integer>. So, we need another, very similar class definition, in which @ is attached to type parameters.
6Do not confuse with NotInheritable in Visual Basic, a modifier for classes. It prevents the classes from being extended,

corresponding to Java’s final.
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The first and second force each of a class and its subclasses to have its own implementation of the method.
The third allows This and the class name to be compatible so that the method will be appropriate for the
class. The fourth is mainly for convenience: we can stop the overriding chain in subclasses if we want.

In Figure 2, each of LinkedNode and DoublyLinkedNode implements the nonheritable method makeNode(),
modified by nonheritable. Both are well typed since, for example, in LinkedNode, This in the return
type @This is replaced with LinkedNode and its result @LinkedNode is a (trivial) supertype of the type
@LinkedNode of the new object. If DoublyLinkedNode did not override makeNode(), it would be ill-typed
and in fact should be as we have seen in Section 2.2.2.

Using nonheritable, the cloning method, which returns the shallow copy of the receiver object, can be
defined as follows:

class LinkedNode<E> {
...
nonheritable @This clone() {

@This copy=new LinkedNode<E>();
copy.next = this.next;
return copy;

} }
class DoublyLinkedNode<E> extends LinkedNode<E> {

...
nonheritable @This clone() {

@This copy=new DoublyLinkedNode<E>();
copy.next = this.next;
copy.previous = this.previous;
return copy;

} }

In the methods clone() above, objects are created by the class names and the pointers to the next and
previous objects are copied. Note that in this definition the code copy.next = this.next; is not reused
since nonheritable methods are not allowed to be called by super for type safety. Actually, if we wrote
clone() in DoublyLinkedNode with super.clone() as below, calling the overridden clone() would result
in throwing NoSuchFieldException because copy refers to the object of LinkedNode, which does not have
previous.

class DoublyLinkedNode<E> extends LinkedNode<E> {
...
nonheritable @This clone() {

@This copy=super.clone();
copy.previous = this.previous;
return copy;

} }

More code reuse is possible by extracting class-specific behavior in clone() as a separate nonheritable
method. In fact, using makeNode(), we can write clone(), independent from specific class names, as follows:

class LinkedNode<E> {
...
@This clone() {

@This copy=this.makeNode();
copy.next = this.next;
return copy;

} }
class DoublyLinkedNode<E> extends LinkedNode<E> {

...
@This clone() {

@This copy=super.clone();
copy.previous = this.previous;
return copy;

} }

Here, the code copy.next = this.next; is reused in DoublyLinkedNode. However, it is a responsibility of
the programmers to make sure to override clone(), which is not nonheritable.
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4. A Formal Core Calculus

In this section, we formalize the ideas described in the previous section as a small calculus based on
Featherweight Java [16], a functional core of class-based object-oriented languages. What we model here
includes This, exact types, exact statements, and nonheritable methods, as well as the usual features of
calculi of the FJ family, that is, fields, methods, object creations and recursion by this. Since this calculus is
functional, mutable fields are not formalized. Section 4.1 defines the syntax; Sections 4.2 and 4.3 define the
type system; Section 4.4 defines the operational semantics. Finally, we show type soundness in Section 4.5.

4.1. Syntax
The abstract syntax of types, class declarations, method declarations, expressions, and values is given

below. In method declarations, the modifier nonheritable is optional. The metavariables C, D, and E range
over class names; X and Y range over type variables; f and g range over field names; m ranges over method
names; x and y range over variables.

G, H, I ::= X | C inexact types
S, T, U ::= H | @H types

L ::= class C extends C{T f; M} class declarations
M ::= [nonheritable] T m(T x){ return e; } method declarations

d, e ::= x | e.f | e.m(e) | new C(e) | exact e as x, X in e expressions
v ::= new C(v) values

Following the custom of FJ, we put a line over a metavariable to denote a possibly empty sequence. Fur-
thermore, we abbreviate pairs of sequences in a similar way, writing “T f;” for “T1 f1;. . . Tn fn;”, where
n is the length of T and f. Sequences of field declarations, parameter names, and method definitions are
assumed to contain no duplicate names. We write the empty sequence as • and concatenation of sequences
using a comma. As in FJ, every class has a single constructor that takes initial values of all the fields and
assigns them; we omit constructor declarations for simplicity. Also for simplicity, generics is not supported,
unlike LOOJ. Typecasts are dropped since we aim at safe and extensible programming without typecasting,
a possibly unsafe operation. We omit super calls for brevity.

An inexact type is either a type variable or a class name. A type is either an inexact type or an exact
type, which is obtained by adding @ to an inexact type. Since this language is expression-based, the body
of a method is a single return statement, rather than a compound statement as in the examples in the
previous section. An expression is either a variable, a field access, a method invocation, an object creation,
or an exact expression, whose body is an expression. We assume that the set of variables includes the
special variable this, which cannot be used as the name of a parameter to a method, and that the set of
type variables includes the special type variable This.

We use a different syntax for exact expressions to simplify the notation. An exact statement

exact <X extends C>(@X x = target) { body }

corresponds to exact target as x, X in body here. (The upper bound of X will be determined by the
type of target.) The variables x and X in exact e0 as x, X in e1 are bound in the body expression e1.

A class table CT is a finite mapping from class names C to class declarations L and is assumed to satisfy
the following sanity conditions: (1) CT (C) = class C ... for every C ∈ dom(CT ); (2) Object 6∈ dom(CT );
(3) for every class name C (except Object) appearing anywhere in CT , we have C ∈ dom(CT ); and (4) there
are no cycles in the inheritance relation induced by CT . A program is a pair (CT , e). In what follows, we
assume a fixed class table CT to simplify the notation.

4.2. Lookup Functions
We give functions to look up field or method definitions. The function fields(C) returns a sequence T f

of field names of the class C with their types. The function mtype(m, C) takes a method name and a class
name as input and returns the corresponding method signature of the form T→T0. They are defined by the
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rules below. Unlike LOOJ, type substitution for This is not performed in the definitions—it is performed
in the typing rules. So, the definitions are the same as those in FJ [16] except that mtype accounts the
optional modifier nonheritable. Here, m 6∈ M means the method of name m does not exist in M.

fields(Object) = • class C extends D{T f;...} fields(D) = U g

fields(C) = U g, T f

class C extends D {...M}
[nonheritable] T0 m(T x){ return e; } ∈ M

mtype(m, C) = T→T0

class C extends D{...M}
m 6∈ M mtype(m, D) = T→T0

mtype(m, C) = T→T0

4.3. Type System
The main judgments of the type system consist of ∆ ` S<:T for subtyping, ∆ ` T ok for type well-

formedness, and ∆; Γ ` e:T for expression typing. Here, ∆ is a bound environment, which is a finite mapping
from type variables to their bounds, written X<:H. The scope of a type variable in a bound environment is
the following type variable declarations. Γ is a type environment, which is a finite mapping from variables
to types, written x:T. The concatenation ∆1, ∆2 of bound environments ∆1 and ∆2 is defined, when
their domains are disjoint, as follows: dom(∆1, ∆2) = dom(∆1) ∪ dom(∆2) and (∆1,∆2)(X) = ∆1(X) if
X ∈ dom(∆1) and (∆1, ∆2)(X) = ∆2(X) if X ∈ dom(∆2). The concatenation Γ1,Γ2 of type environments is
defined similarly. We abbreviate a sequence of judgments: ∆ ` S1<:T1, . . . , ∆ ` Sn<:Tn to ∆ ` S<:T, and
∆ ` T1 ok, . . . , ∆ ` Tn ok to ∆ ` T ok, and ∆; Γ ` e1:T1, . . . , ∆;Γ ` en:Tn to ∆; Γ ` e:T. We write [H/X]
for the simultaneous substitution of H1 for X1, . . . , and of Hn for Xn. We assume that ∆; Γ ` e : T implies
∆ ` Γ(x) ok for all x ∈ dom(Γ).

4.3.1. Bounds of Types
The function bound∆(H), defined below, takes an inexact type as input and returns a class name C, which

is the least upper bound of the input type.

bound∆(X) = bound∆(∆(X)) bound∆(C) = C

If the input is a type variable, the function is recursively applied to the output, which, again, can be a type
variable.

4.3.2. Subtyping
The subtyping judgment ∆ ` S<:T, read as “S is a subtype of T under ∆,” is defined below. This relation

is the reflexive and transitive closure of the extends relation with the rule that an exact type is a subtype
of its inexact version. Note that @C 6<: @D even if class C extends D{..}. So, this subtyping relation is
actually matching [8] since C<:D does not always mean that an object of class C, which is of type @C, is
substitutable for one of class D, which is of type @D.

∆ ` T<:T ∆ ` X<:∆(X) ∆ ` @H<:H

class C extends D{...}

∆ ` C<:D

∆ ` S<:T ∆ ` T<:U

∆ ` S<:U

4.3.3. Type Well-formedness
The type well-formedness judgment ∆ ` T ok, read as “T is a well-formed type under ∆,” is defined

below. Object and class names in CT are well formed. Type X is well formed if it is in the domain of ∆.
Finally, an exact type @H is well formed if so is its inexact version H.

∆ ` Object ok
class C extends D{..}

∆ ` C ok
X ∈ dom(∆)

∆ ` X ok
∆ ` H ok
∆ ` @H ok

10



4.3.4. Expression Typing
The typing judgment for expressions is of the form ∆;Γ ` e:T, read as “under bound environment ∆

and type environment Γ, expression e has type T,” defined by the following rules:

∆; Γ ` x : Γ(x) (T-Var)

∆; Γ ` e0 : @H0 fields(bound∆(H0)) = T f

∆;Γ ` e0.fi : [H0/This]Ti

(T-Field-E)

∆; Γ ` e0 : H0 fields(bound∆(H0)) = T f ∆, This<:H0 ` Ti<:T ∆ ` T ok
∆; Γ ` e0.fi : T

(T-Field-I)

∆; Γ ` e0 : @H0 mtype(m, bound∆(H0)) = T→T0 ∆;Γ ` e : U ∆ ` U <: [H0/This]T
∆;Γ ` e0.m(e) : [H0/This]T0

(T-Invk-E)

∆; Γ ` e0 : H0 mtype(m, bound∆(H0)) = T→T0 T do not contain This
∆;Γ ` e : U ∆ ` U <: T ∆, This<:H0 ` T0<:T ∆ ` T ok

∆; Γ ` e0.m(e) : T
(T-Invk-I)

∆ ` C0 ok fields(C0) = T f ∆;Γ ` e : U ∆ ` U <: [C0/This]T
∆;Γ ` new C0(e) : @C0

(T-New)

∆; Γ ` e1 : H ∆, X<:H; Γ, x : @X ` e0 : U0 ∆, X<:H ` U0<:T0 ∆ ` T0 ok
∆; Γ ` exact e1 as x, X in e0 : T0

(T-Exact-I)

∆; Γ ` e1 : @H ∆;Γ, x : @H ` e0 : U0

∆;Γ ` exact e1 as x, X in e0 : U0

(T-Exact-E)

There are two rules for field accesses and method invocations, respectively, depending on weather the
receivers are of exact or inexact types. The rule T-Field-E is for field accesses on exact types. In this case
the type of field access e0.fi is obtained by looking up field declarations from the bound of H0 and then
substituting H0 for This in the type Ti corresponding to fi. The rule T-Field-I is for receivers of inexact
types. In this rule, the type of the whole expression is a “This-free” supertype T of Ti so that This does
not escape from its scope (that is, the receiver’s class). The last premise ensures that T does not contain
This. (As we will see in method typing, when the expression appears in a method, ∆ already contains This
in its domain. So, strictly speaking, implicit renaming of type variables—that is, This—in the judgments
is assumed here, to avoid confusing the two kinds of This: one in ∆ for the class in which this expression
appears and the other from the receiver’s class.)

The rule T-Invk-E for method invocations on exact types is defined similarly to T-Field-E: the method
type is retrieved from the receiver’s type; then, it is checked if the types of actual arguments are subtypes
of those of the formal parameters. The rule T-Invk-I, for invocations on inexact types, is defined similarly
to T-Field-I. The condition that T do not contain This expresses that binary methods cannot be invoked
on inexact types.

The rule T-New says that the type of a new expression is the exact type of the class being instantiated.
There are two rules for exact expressions, depending on whether the type of expression e1 is inexact H

or exact @H. The rule T-Exact-I means that if e1 is of type H, the body expression e0 is typed under ∆
extended by X<:H and Γ extended by x:@X. Note that variable x is of type @X, an exact type. Since the
result type U0 may contain the type variable X, the type of the whole expression is obtained by taking a
supertype T0 of U0 so that T0 does not contain X, preventing X from escaping. The rule T-Exact-E, which
will not be used in ordinary programs, is required to show the subject reduction property since an expression
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of inexact type eventually reduces to one (typically a value) of an exact type at run time. In this rule, the
body expression is typed under ∆ unextended and Γ extended by x:@H since there is no proper subtype of
@H.

We show the typing examples of field accesses on exact and inexact types. Assume that fields(LinkedNode)
contains @This next. The following derivation tree is an example of field access on an exact type:

∆; Γ ` n : @LinkedNode @This next ∈ fields(bound∆(LinkedNode))
∆; Γ ` n.next : @LinkedNode(= [LinkedNode/This]@This) T-Field-E

The next tree D1 is one on an inexact type:

∆; Γ ` n:LinkedNode D2 ∆, This<:LinkedNode ` @This<:LinkedNode D3

∆;Γ ` n.next:LinkedNode
T-Field-I

where D2 is @This next ∈ fields(bound∆(LinkedNode)) and D3 is ∆ ` LinkedNode ok.
By inserting exact, the member access on inexact LinkedNode above can be derived by the combination

of rules T-Field-E and T-Exact-I, as the following tree D4 shows:

∆; Γ ` n : LinkedNode D5 ∆, X<:LinkedNode ` @X<:LinkedNode ∆ ` LinkedNode ok
∆; Γ ` exact n as x, X in x.next : LinkedNode T-Exact-I

where D5 is

∆, X<:LinkedNode; Γ, x : @X ` x : @X fields(bound∆,X<:LinkedNode(X)) = fields(LinkedNode)
∆, X<:LinkedNode; Γ, x : @X ` x.next : @X(= [X/This]@This) T-Field-E

In the conclusion, exact is inserted before accessing the field. By comparing the derivations D1 and D4, one
can find that the rules T-Field-I/T-Invk-I can be considered as the combination of T-Field-E/T-Invk-E
and T-Exact-I, in which exact expressions are dropped from the conclusions.

4.3.5. Closing of Types
In the rule T-Exact-I, T0 is not unique for given X, H, U0 and ∆. It is easy to give a set of rules to

determine a minimal X-free supertype of U0. We introduce the judgment closing of types, written S ⇓X<:H T,
meaning that “T is a minimal supertype of S without X”. We also say that “type S is closed to T under
X<:H” [17]. In T-Exact-I, U0 ⇓X<:H T0 can be used for ∆, X<:H ` U0<:T0 and ∆ ` T0 ok. Similarly, Ti ⇓X<:H T
for ∆, X<:H ` Ti<:T and ∆ ` T ok in T-Field-I and T0 ⇓X<:H T for ∆, X<:H ` T0<:T and ∆ ` T ok in T-Invk-I.
Separating this judgment from typing rules makes the proof of subject reduction more concise.

The rules for closing of types are as follows:

T 6= X T 6= @X

T ⇓X<:H T X ⇓X<:H H @X ⇓X<:H H

The left rule says that if type T does not contain type variable X, the result is the same T. The other rules
say that both X and @X close to H under X<:H. Note that @X does not close to @H since the subtyping relation
that holds is @X<:X<:H, but @X 6<:@H.

4.3.6. Method Typing
The typing judgment for method declarations is written C ` M ok. There are two rules, T-Method for

usual methods and T-NHMethod for nonheritable methods. In each rule, the last premise is to check if
the method correctly overrides (if it does) the method of the same name in the superclass with the same
signature. A further explanation is given only for the latter since the former is straightforward. In premises,
This that appears in the signature is replaced with the class name C as well as this is of type @C (=
[C/This]@This) in the expression typing judgment. As a result, the method declaration is safe only for the
declaring class and would be unsafe if its subclasses inherited it.

12



∆ = {This<:C} Γ = {x : T, this : @This} ∆;Γ ` e0:U0 ∆ ` U0 <: T0

∆ ` T0, T ok class C extends D{...} mtype(m, D) = S→S0 implies (S, S0) = (T, T0)
C ` T0 m(T x){ return e0; } ok

(T-Method)

Γ = {x : T, this : @This} ∅; [C/This]Γ ` e0:U0 ∅ ` U0 <: [C/This]T0

∅ ` [C/This](T0, T) ok class C extends D{...}
mtype(m, D) = S→S0 implies (S, S0) = (T, T0)

C ` nonheritable T0 m(T x){ return e0; } ok
(T-NHMethod)

4.3.7. Class Typing
The typing judgment for class declarations is written ` L ok. The rule T-Class checks if the field types

are well formed and if the method declarations are ok, as done in FJ. The introduction of nonheritable
methods requires an additional check to make sure that all the nonheritable methods in the superclass are
overridden. Here, m ∈ M means that the method of name m exists in M.

C ` M ok This<:C ` T, D ok
if D 6= Object and class D extends E{..M′},

then for each nonheritable U0 m(U x){..} ∈ M′, m ∈ M

` class C extends D{T f; M} ok
(T-Class)

A program (CT , e) is ok if all definitions in CT are ok and ∅; ∅ ` e : T for some T.

4.4. Operational Semantics
The operational semantics is given by the reduction relation of the form e−→e′, read “expression e

reduces to e′ in one step.” We require another lookup function mbody(m, C) for method body with formal
parameters, written x.e, of given method and class names.

The reduction rules are given below. We write [d/x, e/y] for the capture-avoiding simultaneous substi-
tution of d1 for x1, ..., of dn for xn, and of e for y. The rule R-Exact means that when the target of an
exact expression is a new expression, the body e0 is evaluated where x is bound to new C(e) and X is bound
to C. Note that the application of type substitution [C/X] to e0 is omitted since no type variables appear in
expressions. Similarly, [C/This] is omitted in R-Invk. The reduction rules may be applied at any point in
an expression, so we also need the congruence rules. We write −→∗ for the reflexive and transitive closure
of −→.

class C extends D{...M} [nonheritable] T0 m(T x){ return e0; } ∈ M

mbody(m, C) = x.e0

(MB-Class)

class C extends D {...M} m 6∈ M mbody(m, D) = x.e0

mbody(m, C) = x.e0

(MB-Super)

fields(C) = T f

new C(e).fi −→ ei

(R-Field)

mbody(m, C) = x.e0

new C(e).m(d) −→ [d/x, new C(e)/this]e0

(R-Invk)

exact new C(e) as x, X in e0 −→ [new C(e)/x]e0

(R-Exact)

e0 −→ e0
′

e0.f −→ e0
′.f

(RC-Field)
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e0 −→ e0
′

e0.m(e) −→ e0
′.m(e)

(RC-Invk-Recv)

ei −→ ei
′

e0.m( . . . ,ei, . . . ) −→ e0.m( . . . ,ei
′, . . . )

(RC-Invk-Arg)

ei −→ ei
′

new C( . . . ,ei, . . . ) −→ new C( . . . ,ei
′, . . . )

(RC-New-Arg)

e0 −→ e0
′

exact e0 as x, X in e1 −→ exact e0
′ as x, X in e1

(RC-Exact)

e1 −→ e1
′

exact e0 as x, X in e1 −→ exact e0 as x, X in e1
′ (RC-Exact-Body)

4.5. Properties
The type system is sound with respect to the operational semantics, as expected. Type soundness

is proved in the standard manner via subject reduction and progress [35, 16]. Here, we show only the
statements. See Appendix A for the required lemmas and proof sketches of the theorems.

Theorem 1 (Subject Reduction). If ∆; Γ ` e : T and e−→e′, then ∆;Γ ` e′ : T′, for some T′ such that
∆ ` T′<:T.

Proof. See Appendix A. ¤

Theorem 2 (Progress). If ∅; ∅ ` e : T and e is not a value, then e−→e′, for some e′.

Proof. See Appendix A. ¤

Theorem 3 (Type Soundness). If ∅; ∅ ` e : T and e−→∗e′ with e′ a normal form, then e′ is a value v
with ∅; ∅ ` v : T′ and ∆ ` T′<:T.

Proof. Immediate from Theorems 1 and 2. ¤

5. Related Work

The first two subsections discuss the work related to exact statements whereas the next five discuss that
to nonheritable methods. The last subsection discusses how to simulate nonheritable methods and exact
statements in current Java.

5.1. Existential Types in Java
In our type system, inexact types are treated as existential. Java is already equipped with a kind of

existential types for generics [2], called wildcard types [32], derived from variant parametric types [17].
While type arguments for a parameterized class are abstracted in wildcard types in Java, run-time classes
are abstracted in inexact types in our language. Cameron and Drossopoulou [10] formalize the calculus ∃FJ,
in which all types are considered existential as our inexact types.

Pizza [24], one of the earliest proposals of adding generics to Java, also has existential types (only in-
ternally, though, in the sense that programmers cannot write down existential types in their programs).
The unpacking construct is integrated into the switch statement, which makes branches by pattern match-
ing; here, a pattern to test the run-time class of an object may contain type variables, which stand for
(existential) type arguments to the generic class of the matching object.
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5.2. Dependent Type Systems
In the languages [13, 21, 22, 12, 25] using dependent types, it is possible to dynamically dispatch binary

methods since it is easy to check that both receiver and argument depend on the same object. In Jx [21],
x.class is a dependent type, meaning the run-time type of the object that x refers to. For example, the
return type of makeNode() would be given this.class, which means that the run-time type of the receiver.
For type safety, the variable before .class must be immutable as in the following example using Jx syntax:

final LinkedNode<Integer> head = ...;
head.class n1 = head.makeNode();
head.class n2 = head.makeNode();
n1.insert(n2);

Here, head is immutable by the modifier final. So, the invocation of insert() is legal. However, if head
were mutable, the type head.class would be illegal since an assignment on head between the declarations
of n1 and n2 would be possible, resulting in the unsafe method invocation. In our type system, immutability
would not be required even if the language had side-effects.

5.3. Object Creation with Abstract Types
In C#, in parameterized classes, a type parameter can be instantiated with no arguments if it has a

constraint new(). For example:

class C<E> where E : new() {
void method(){ ... new E(); ... } // allowed

}

In the code above, E’s object can be created. For type safety, the type argument for E is legal only if it has
a constructor with no parameters.

This idea can be adapted to the context of This, as can be seen in BETA [20], Concord [19] and an early
version of LOOJ: if each of a class and its subclasses has a constructor with no parameters, it is safe to create
a new object by new This() in that class. Our proposal of nonheritable methods can simulate the idea of
new This() by declaring factory methods with the return type of @This such as those in Figure 2. Other
differences are: (1) nonheritable methods allow arbitrary code specialized for the declaring class, not only
object creation; (2) they give a better control on the duty imposed in subclassing: overriding nonheritable
methods in subclasses does not require the overridden methods to be nonheritable so that further subclassing
can be free from overriding, whereas object creation with type variables requires all classes to override the
constructors if constructors are not inherited.

In Jx [21] and J& [22], object creation with dependent types such as new n.class(...), with arguments,
is allowed if the type of n has a corresponding constructor. In Jx, constructors are inherited to subclasses,
unlike Java. If final fields are added to a subclass, all the constructors inherited must be overridden in the
subclass so that the final fields are initialized.

5.4. Abstract Factory Pattern
Even when nonheritable methods are not supported, factory methods and clone() can be implemented

by using the abstract factory pattern [15, 6], as follows:

interface Factory<T> {
@T create();

}
class LinkedNodeFactory<E> implements Factory<LinkedNode<E>>{

@LinkedNode<E> create(){
return new LinkedNode<E>(this);

}
}
class LinkedNode<E> {

Factory<This> factory;

LinkedNode(Factory<This> f){
15



this.factory = f;
}

@This makeNode() { return factory.create(); }
}

In this programming style, a factory class must be defined for each of class LinkedNode and its extensions.
This is similar to the fact that all subclasses must override nonheritable methods. In a nutshell, nonheritable
methods are the trick that allows object creations written in factory classes such as LinkedNodeFactory to
be put into factory methods such as makeNode().

5.5. Template Specialization
Template specialization in C++ allows us to give a definition for the template instantiated with a certain

type. For example, Vector<boolean> is defined in isolation from the definition of template Vector<T> so
as to be space-efficient by using bit operations. It has a similarity with our nonheritable methods in that
we can give a definition specialized to a certain instantiation of type variables (in our case, This).

5.6. Explicit Self Typing in Scala
In Scala [25], we can give a class an arbitrary self type explicitly. For type safety, it is checked if a class

being instantiated in a new expression is a subtype of the self type of the class. This mechanism is similar
to our nonheritable methods in that the given self type is different from the default. A difference is that
the given self type in our proposal is limited to the class name whereas it is arbitrary in Scala. Another
difference is that in our proposal the nonheritable modifier affects a single method whereas Scala’s explicit
self typing affects a whole class definition.

5.7. Special Typing Scheme for Methods that Return New Instances
Winter [34] proposes a feature similar to nonheritable methods for Abadi and Cardelli’s object calculus

O-3 with self types and matching [1]. In his proposal, there are two kinds of self types: one is Self, which
corresponds to our This, and the other is called This.7 When This is used in a method, the method is
typed under the condition that This and the class type are equal just as in nonheritable methods. So,
methods like clone() would return This rather than Self.

An interesting difference is that a method whose signature contains This does not have to be overridden
in subclasses. A subclass can inherit such a method but, in this case, This in its signature is replaced with
the object type from the superclass and, as a result, a subclass may lose matching with its superclass. In
our proposal, nonheritable methods must be overridden in the subclasses so that the inheritance relation
always implies matching, which is called subtyping in our setting (see Section 4.3.2).

5.8. Simulating Nonheritable Methods and exact Statements in Current Java
There is a simulation technique [7, 31, 27] of This by using generics [2] and F-bounded polymorphism [11],

with which current Java is equipped. Within this programming style, nonheritable methods can be easily
simulated. Moreover, Java has wildcards, a kind of existential types, and wildcard capture, corresponding
to the operation to open existential types. With them, exact statements can be also simulated. First, we
rewrite the class definitions in Figure 2, as follows:

abstract class LinkedNode<E, Self extends LinkedNode<E,Self>> {
E elem;
Self next;
void insert(Self that){ ... }
void insertElem(E e){ ... }
abstract Self makeNode();
abstract Self getThis();

7These keywords are typeset in the typewriter font in Winter [34]; we change the font to avoid confusion with our types.
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}
abstract class DoublyLinkedNode<E, Self extends DoublyLinkedNode<E,Self>>

extends LinkedNode<E,Self> {
Self previous;
void insert(Self that){ ... that.previous = getThis(); ... }

}

Each class has one more type parameter Self, which simulates This. The upper bound of Self is the
declaring class and covariantly refined when the class is inherited so that Self in subclasses refer to the
subclasses. The method makeNode() is abstract—it is impossible to create and return a new object of the
declaring class since Self is not a supertype of the class names, for example, LinkedNode<E,Self> 6<: Self.
Giving abstract method getThis() is a technique [7] to give this the correct (self) types, in this case
Self. We give the fixed point classes for these classes, as follows:

class LinkedNodeFix<E> extends LinkedNode<E, LinkedNodeFix<E>>{
LinkedNodeFix<E> makeNode(){ return new LinkedNodeFix<E>(); }
LinkedNodeFix<E> getThis(){ return this; }

}
class DoublyLinkedNodeFix<E> extends DoublyLinkedNode<E, DoublyLinkedNodeFix<E>>{

DoublyLinkedNodeFix<E> makeNode(){ return new DoublyLinkedNodeFix<E>(); }
DoublyLinkedNodeFix<E> getThis(){ return this; }

}

Above, the concrete makeNode() and getThis() are given. Note that these classes are not in the inheritance
relation. So, makeNode() is not inherited from the former to the latter, as nonheritable methods.

The fixed point classes play the role of object generators. More precisely, class LinkedNodeFix<E> cor-
responds to class LinkedNode<E> in Figure 2 and DoublyLinkedNodeFix<E> to DoublyLinkedNode<E>. In
terms of types, LinkedNodeFix<E> corresponds to exact type @LinkedNode<E> and DoublyLinkedNodeFix<
E> to @DoublyLinkedNode<E>. Wildcard types can correspond to inexact types. LinkedNode<Integer,?>,
for example, corresponds to LinkedNode<Integer>, which represents a common supertype of fixed point
classes LinkedNodeFix< Integer>, DoublyLinkedNodeFix<Integer> and so on. Similarly, wildcard type
DoublyLinkedNode<Integer,?> corresponds to DoublyLinkedNode<Integer>. Note that there is a subtyp-
ing relation between these wildcard types, i.e., DoublyLinkedNode<Integer,?> is a subtype of LinkedNode<
Integer,?>.

Now, we simulate exact statements, in particular the example at the end of Section 3.1. First, we
assume:

LinkedNode<Integer,?> head;

Then, we need to separate the exact statement into a method declaration and its invocation since wildcard
capture only works when methods are invoked, as follows:

static <X extends LinkedNode<Integer, X>> void body(LinkedNode<Integer,X> tmp){
X x=tmp.getThis();
x.next.insert(x);

}

body(head);

The method body() has a parameter tmp whose type is LinkedNode<Integer,X>, in which X will capture
wildcards. Inside the method, tmp’s type LinkedNode<Integer,X> is coerced to a narrower type X, which
is an abstraction of tmp’s run-time type, through method getThis(). The method invocation body(head)
is well typed, as desired.

6. Conclusion

We propose two mechanisms, namely, exact statements and nonheritable methods for the languages
with This and exact types such as LOOJ. The features remedy the mismatch between This and subtyping.
As a result, programming relying on dynamic dispatch becomes possible in the presence of This.
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Although the proposed mechanisms enhance programming with This, it is cumbersome to choose correct
types, insert exact statements, or specify the nonheritable modifier in writing a program. For example,
in writing class C, we have four choices, i.e., @C, C, @This, and This, for variables that would have been
given type C in plain Java. We are developing an inference algorithm to suggest nonheritable annotations
and correct types for what seems self-recursive references.

Other future work is to generalize the proposals for the extensions of This with grouping mechanisms [30,
18]. The integration with generics has been discussed in the context of self type constructors [29], in which
exact statements are slightly extended and are formalized in FGJstc.
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A. Proof of Theorems 1 and 2

We sketch the proof of Theorems 1 and 2. The structure of the proof of subject reduction is similar
to those for Featherweight Java and Featherweight GJ [16]. So, we first prove various substitution lemmas
with other auxiliary lemmas. The notable change from FJ’s proof can be found in Lemma 12 to deal with
nonheritable methods.

Lemma 1 (Weakening). Assume that X 6∈ dom(∆) and x 6∈ dom(Γ), then

1. If ∆ ` S<:T, then ∆, X<:H ` S<:T.
2. If ∆ ` S ok, then ∆, X<:H ` S ok.
3. If ∆;Γ ` e:T, then ∆, X<:H; Γ ` e:T and ∆;Γ, x:S ` e:T.

Proof. Each can be proved by straightforward induction on the derivation of ∆ ` S<:T, ∆ ` S ok and
∆; Γ ` e:T, respectively. ¤

Lemma 2. Let ∆ = ∆1, X<:I, ∆2. If ∆ ` H ok and ∆1 ` G<:I, then ∆1, [G/X]∆2 ` bound∆1,[G/X]∆2([G/X]H) <:
bound∆(H).

Proof. Case analysis on H. ¤

Lemma 3. If ∆ ` S<:T and fields(bound∆(T)) = T f, then fields(bound∆(S)) = T f, U g for some U and
g.

Proof. By induction on the derivation of ∆ ` S<:T. ¤

Lemma 4. If ∆ ` S<:T and mtype(m, bound∆(T)) = T→T0, then mtype(m, bound∆(S)) = T→T0.

Proof. By induction on the derivation of ∆ ` S<:T. ¤

Lemma 5 (Type Substitution Preserves Subtyping). If ∆1, X<:H, ∆2 ` S<:T and ∆1 ` G ok and ∆1 `
G<:H, then ∆1, [G/X]∆2 ` [G/X]S<:[G/X]T.

Proof. By induction on the derivation of ∆1, X<:H, ∆2 ` S<:T. ¤

Lemma 6 (Type Substitution Preserves Type Well-formedness). If ∆1, X<:H,∆2 ` T ok and ∆1 `
G ok and ∆1 ` G<:H, then ∆1, [G/X]∆2 ` [G/X]T ok.

Proof. By induction on the derivation of ∆1, X<:H, ∆2 ` T ok. ¤
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Lemma 7. If ∆ ` C ok and fields(C) = T f, then ∆, This<:C ` T ok.

Proof. By induction on the derivation of ∆ ` C ok using Lemma 6. ¤

Lemma 8. If ∆ ` C ok and mtype(m, C) = T→T0, then ∆, This<:C ` T, T0 ok.

Proof. By induction on the derivation of ∆ ` C ok using Lemma 6. ¤

Lemma 9 (Well-typed Term is of Well-formed Type). If ∆;Γ ` e : T, then ∆ ` T ok.

Proof. By induction on the derivation of ∆; Γ ` e : T using Lemmas 6, 7 and 8. ¤

Lemma 10 (Type Substitution Preserves Typing). If ∆1, X<:I, ∆2; Γ ` e:T and ∆1 ` H ok and ∆ `
H<:I, then ∆1, [H/X]∆2; [H/X]Γ ` e:S for some S such that ∆1, [H/X]∆2 ` S<:[H/X]T.

Proof. By induction on the structure of e.
Case: e = x or e = new C(e)

Easy.
Case: e = e0.fi

Case analysis on the last rule used.
Subcase T-Field-E: ∆1, X<:I, ∆2; Γ ` e0:@H0 fields(bound∆1,X<:I,∆2(H0)) = T f

T = [H0/This]Ti

By the induction hypothesis, ∆1, [H/X]∆2; [H/X]Γ ` e0:S0 for some S0 such that ∆1, [H/X]∆2 ` S0<:[H/X]@H0.
It is clear that S0 = [H/X]@H0 (= @[H/X]H0). By Lemma 2, we have ∆1, [H/X]∆2 ` bound∆1,[H/X]∆2([H/X]H0)<:
bound∆1,X<:I,∆2(H0). By Lemma 3 and T-Field-E, ∆1, [H/X]∆2; [H/X]Γ ` e0.fi : [[H/X]H0/This]Ti. Since Ti

does not contain X, [[H/X]H0/This]Ti = [H/X][H0/This]Ti. Letting S = [H/X][H0/This]Ti finishes the case.
Subcase T-Field-I: ∆1, X<:I, ∆2; Γ ` e0:H0 fields(bound∆1,X<:I,∆2(H0)) = T f

∆1, X<:I, ∆2, This<:H0 ` Ti<:T ∆1, X<:I,∆2 ` T ok
By the induction hypothesis, ∆1, [H/X]∆2; [H/X]Γ ` e0:S0 for some S0 such that ∆1, [H/X]∆2 ` S0<:[H/X]H0.
By Lemma 5, we have ∆1, [H/X]∆2, This<:[H/X]H0 ` [H/X]Ti<:[H/X]T. By Lemma 2, we have ∆1, [H/X]∆2 `
bound∆1,[H/X]∆2([H/X]H0)<:bound∆1,X<:I,∆2(H0). Case analysis on S0 whether S0 = G0 or S0 = @G0. In
both cases, it is easy to show that ∆1, [H/X]∆2 ` bound∆1,[H/X]∆2(G0)<:bound∆1,[H/X]∆2([H/X]H0) and thus
fields(bound∆1,[H/X]∆2(G0)) = T f, U g for some U and g by Lemma 3.
Subsubcase: S0 = G0

By Lemmas 1.(3) and 5, ∆1, [H/X]∆2, This<:G0 ` [H/X]Ti<:[H/X]T. By Lemmas 1.(2) and 6, we have
∆1, [H/X]∆2 ` [H/X]T ok. By T-Field-I, letting S = [H/X]T finishes the case.
Subsubcase: S0 = @G0

By Lemma 5, we have ∆1, [H/X]∆2 ` [G0/This][H/X]Ti<:[G0/This][H/X]T. Note that [G0/This][H/X]T = [H/X]T.
By T-Field-E, letting S = [G0/This][H/X]Ti finishes the case.
Case: e = e0.m(e)

Similar to the case e = e0.fi by using Lemma 4.
Case: e = exact e1 as y, Y in e0

There are two cases depending on the last rules to derive ∆1, X<:H, ∆2; Γ ` e:T. Here, we show only the
case of T-Exact-I since the other of T-Exact-E is easy. By T-Exact-I, we have ∆1, X<:I,∆2; Γ ` e1:H1

and ∆1, X<:I,∆2, Y<:H1; Γ, y : @Y ` e0:T0 and ∆1, X<:I, ∆2, Y<:H1 ` T0<:U0 and ∆1, X<:I,∆2 ` U0 ok and
T = U0. By the induction hypothesis, we have that ∆1, [H/X]∆2; [H/X]Γ ` e1:S1 for some S1 such that
∆1, [H/X]∆2 ` S1<:[H/X]H1, and that ∆1, [H/X]∆2, Y<:[H/X]H1; [H/X]Γ, y:@Y ` e0:T0

′ for some T0
′ such that

∆1, [H/X]∆2, Y<:[H/X]H1 ` T0
′<:[H/X]T0. Case analysis on whether S1 is inexact or exact.
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Subcase: S1 = G1

By Lemma 1.(3) and the induction hypothesis, ∆1, [H/X]∆2, Y<:S1; [H/X]Γ, y:@Y ` e0:T0
′′ for some T0

′′

such that ∆1, [H/X]∆2, Y<:S1 ` T0
′′<:T0

′. By Lemmas 1.(1) and 5, ∆1, [H/X]∆2, Y<:S1 ` T0
′<:[H/X]T0 and

∆1, [H/X]∆2, Y<:S1 ` [H/X]T0<:[H/X]U0. By S-Trans, ∆1, [H/X]∆2, Y<:S1 ` T0
′′<:[H/X]U0. By T-Exact-I,

∆1, [H/X]∆2; [H/X]Γ ` exact e1 as y, Y in e0 : [H/X]U0. By Lemma 6, ∆1, [H/X]∆2 ` [H/X]U0 ok. Letting
S = [H/X]U0 finishes the case.
Subcase: S1 = @G1

By the induction hypothesis, ∆1, [H/X]∆2; [H/X]Γ, y:@G1 ` e0:T0
′′ for some T0

′′ such that ∆1, [H/X]∆2 `
T0
′′<:[G1/Y]T0

′. By Lemma 5, ∆1, [H/X]∆2,` [G1/Y]T0
′<:[G1/Y][H/X]T0 and ∆1, [H/X]∆2,` [G1/Y][H/X]T0<:

[G1/Y][H/X]U0. Since [G1/Y][H/X]U0 = [H/X]U0, by S-Trans ∆1, [H/X]∆2,` T0
′′<:[H/X]U0. By T-Exact-E,

∆1, [H/X]∆2; [H/X]Γ ` exact e1 as y, Y in e0:T0
′′. Letting S = T0

′′ finishes the case. ¤

Lemma 11 (Term Substitution Preserves Typing). If ∆;Γ, x:T ` e:T and ∆;Γ ` d:S and ∆ ` S<:T,
then ∆;Γ ` [d/x]e:S for some S such that ∆ ` S<:T.

Proof. By induction on the structure of e.
Case: e = x or e = new C(e)

Easy.
Case: e = e0.fi

Case analysis on the last rule used.
Subcase T-Field-E: ∆;Γ, x:T ` e0:@H0 fields(bound∆(H0)) = U f T = [H0/This]Ui.

By the induction hypothesis, we have ∆; Γ ` [d/x]e0:S0 for some S0 such that ∆ ` S0<:@H0. It is easy to
show S0 = @H0. By T-Field-E, ∆; Γ ` ([d/x]e0).fi : [H0/This]Ui. Letting S = T finishes the case.
Case T-Field-I: ∆;Γ, x:T ` e0:H0 fields(bound∆(H0)) = U f

∆, This<:H0 ` Ui<:T ∆ ` T ok

By the induction hypothesis, we have ∆; Γ ` [d/x]e0:S0 for some S0 such that ∆ ` S0<:H0. Case analysis on
whether S0 = G0 or S0 = @G0. In both cases, it is easy show that Ui fi ∈ fields(bound∆(G0)) by Lemma 3.
Case: S0 = G0

By Lemmas 1.(1) and 5, ∆, This<:G0 ` Ui<:T. By T-Exact-I, letting S = T finishes the case.
Case: S0 = @G0

By Lemma 5, ∆ ` [G0/This]<:T. By T-Exact-E, letting S = [G0/This]Ui finishes the case.
Case: e = e0.m(e)

Similar to the case where e = e0.fi.
Case: e = exact e1 as y, Y in e0

There are two cases depending on the last rules to derive ∆; Γ ` e:T. Here, we show only the case
of T-Exact-I since the other of T-Exact-E is easy. By T-Exact-I, we have ∆; Γ, x:T ` e1:H1 and
∆, Y<:H1; Γ, x:T, y:@Y ` e0:T0 and ∆, Y<:H1 ` T0<:U0 and ∆ ` U0 ok and T = U0. By the induction hypoth-
esis, we have ∆; Γ ` [d/x]e1:S1 for some S1 such that ∆ ` S1<:H1, and ∆, Y<:H1; Γ, y:@Y ` [d/x]e0:T0

′ for
some T0

′ such that ∆, Y<:H1 ` T0
′<:T0. By S-Trans, ∆, Y<:H1 ` T0

′<:U0. Case analysis on whether S1 is
inexact or exact.
Subcase: S1 = G1

By Lemmas 1.(3) and 10, ∆, Y<:G1; Γ, y : @Y ` [d/x]e0:T0
′′ for some T0

′′ such that ∆, Y<:G1 ` T0
′′<:T0

′.
By Lemmas 1.(1) and 5, ∆, Y<:G1 ` T0

′<:U0. By S-Trans, ∆, Y<:G1 ` T0
′′<:U0. By T-Exact-I, ∆; Γ `

exact [d/x]e1 as y, Y in [d/x]e0:U0. Letting S = U0 finishes the case.
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Subcase: S1 = @G1

By Lemma 10, ∆; Γ, y : @G1 ` [d/x]e0 : T0
′′ for some T0

′′ such that ∆ ` T0
′′<:[G1/Y]T0

′. By Lemma 5,
∆ ` [G1/Y]T0

′<:[G1/Y]U0. Since [G1/Y]U0 = U0, by S-Trans, ∆ ` T0
′′<:U0. By T-Exact-E, ∆; Γ ` exact

[d/x]e1 as y, Y in [d/x]e0:T0
′′. Letting S = T0

′′ finishes the case.
¤

Lemma 12. If mbody(m, C) = x.e0 and mtype(m, C) = T→T0 where ∆ ` C ok, then either

1. there exist some D and U0 such that ∅ ` C<:D and This<:D ` D, U0 ok and This<:D ` U0<:T0 and
This<:D; x:T, this: @This ` e0 : U0, or

2. class C extends D{..M} and nonheritable T0 m(T x){..} ∈ M and ∅; x:[C/This]T, this:@C `
e0:U0 and ∅ ` U0<:[C/This]T0.

Proof. By induction on the derivation of mbody(m, C) = x.e0.
Case MB-Class:
Case analysis on whether the method is nonheritable or not.
Subcase: class C extends D{..M} T0 m(T x){ return e0;} ∈ M

By T-Method, This<:C; x:T, this : @This ` e0 : S0 for some S0 such that This<:C ` S0<:T0. Letting U0 =
S0 and D = C finishes the case.
Subcase: class C extends D{..M} nonheritable T0 m(T x){ return e0;} ∈ M

By T-NHMethod, ∅; x : [C/This]T, this : @C ` e0 : S0 for some S0 such that ∅ ` S0<:[C/This]T0. Letting
U0 = S0 finishes the case.
Case MB-Super: class C extends D{..M} m 6∈ M mbody(m, D) = x.e0

By the induction hypothesis, we have the following two cases:
Subcase: This<:E ` D<:E, S0<:T0 This<:E ` E, S0 ok This<:E; x:T, this : @This ` e0 : S0

By Lemmas 1.(3) and 10, This<:D; x:T, this : @This ` e0 : S0
′ for some S0

′ such that This<:D ` S0
′<:S0.

Letting U0 = S0
′ finishes the case.

Subcase: class D extends E{..M′} nonheritable T0 m(T x){..} ∈ M′

Cannot happen since m 6∈ M contradicts m ∈ M in the derivation of ` class C extends D{..M} ok by T-
Class. ¤

A.1. Proof of Theorem 1
By induction on the derivation of e−→e′ with a case analysis on the reduction rule used.

Case R-Field: e = new C(e).fi fields(C) = T f e′ = ei

By the rules T-Field-E and T-New, we have

∆; Γ ` new C(e) : @C ∆;Γ ` e : U ∆ ` U<:[C/This]T T = [C/This]Ti

In particular, ∆; Γ ` ei : Ui. Letting T′ = Ui finishes the case.
Case R-Invk: e = new C(e).m(d) mbody(m, C) = x.e0 e′ = [d/x, new C(e)/this]e0

By the rules T-Invk-E and T-New, we have

∆; Γ ` new C(e) : @C mtype(m, C) = U→U0 ∆;Γ ` d : S
∆ ` S<:[C/This]U T = [C/This]U0 ∆ ` C ok

By Lemma 12, we have either

1. This<:D; x:U, this : @This ` e0 : S0 such that This<:D ` C<:D, S0<:U0 and This<:D ` D, S0 ok. Without
loss of generality, we can assume that the domain of ∆ does not contain This and that the domain
of Γ and the set of the variables x and this are disjoint. By Lemmas 1.(3), 10 and 11, ∆; Γ `
[d/x, new C(e)/this] e0 : S0

′ for some S0
′ such that ∆ ` S0

′<:[C/This]S0. By Lemmas 1.(1) and 5,
∆ ` [C/This]S0<:[C/This]U0. By S-Trans, ∆ ` S0

′<:[C/This]U0. Letting T′ = S0
′ finishes the case.
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2. there exists S0 such that ∅; x : [C/This]U, this:@C ` e0:S0 and ∅ ` S0<:[C/This]U0. Without loss of
generality, we can assume that the domain of Γ and the set of the variables x and this are disjoint.
By Lemmas 1.(3) and 11, ∆; Γ ` [d/x, new C(e)/this]e0 : S0

′ for some S0
′ such that ∆ ` S0

′<:S0. By
S-Trans, ∆ ` S0

′<:[C/This]U0. Letting T′ = S0
′ finishes the case.

Case R-Exact: e = exact new C(e) as x, X in e0 e′ = [new C(e)/x]e0

By the rules T-Exact-E and T-New, we have

∆; Γ ` new C(e) : @C ∆ ` @C ok ∆; Γ, x : @C ` e0 : U0 T = U0

By Lemma 11, ∆; Γ ` e′ : U0
′ such that ∆ ` U0

′<:U0. Letting T′ = U0
′ finishes the case.

Case RC-Field: e = e0.f e′ = e0
′.f e0−→e0

′

Case analysis on the typing rule used.
Subcase T-Field-E: ∆;Γ ` e0 : @H0 fields(bound∆(H0)) = T f T = [H0/This]Ti

By the induction hypothesis, ∆; Γ ` e0
′ : T0

′ for some T0
′ such that ∆ ` T0

′<:@H0. Since T0
′ = @H0,

∆; Γ ` e0
′.f : [H0/This]Ti by T-Field-E. Letting T′ = [H0/This]Ti finishes the case.

Subcase T-Field-I: ∆;Γ ` e0 : H0 fields(bound∆(H0)) = T f
∆, This<:H0 ` Ti<:T ∆ ` T ok

By the induction hypothesis, ∆; Γ ` e0
′ : T0

′ for some T0
′ such that ∆ ` T0

′<:H0. Case analysis on T0
′.

Subsubcase: T0
′ = G0

By Lemmas 1.(3) and 5, we have ∆, This<:G0 ` Ti<:T. By T-Field-I, we have ∆; Γ ` e0.f:T. Letting
T′ = T finishes the case.
Subsubcase: T0

′ = @G0

By Lemma 3 and T-Field-E, we have ∆; Γ ` e0
′.f:[G0/This]Ti. By Lemma 5 and the fact that T is

This-free, we have ∆; Γ ` [G0/This]Ti<:T. Letting T′ = T finishes the case.
Case RC-Invk-Recv:
Similar to the case RC-Field.
Case RC-Exact: e = exact e0 as x, X in e1

e′ = exact e0
′ as x, X in e1

e0−→e0
′

Case analysis on the typing rule used.
Subcase T-Exact-I: ∆;Γ ` e0 : H0 ∆, X<:H0; Γ, x : @X ` e1 : U1

∆, X<:H0 ` U1<:S1 ∆ ` S1 ok T = S1

By the induction hypothesis, we have ∆; Γ ` e0
′ : T0 for some T0 such that ∆ ` T0<:H0. Case analysis on

whether T0 is inexact or exact.
Subsubcase: T0 = G0

By Lemmas 1.(3) and 10, ∆, X<:G0; Γ, x : @X ` e1 : U1
′ for some U1

′ such that ∆, X<:G0 ` U1
′<:U1. By

Lemmas 1.(1) and 5, ∆, X<:G0 ` U1<:S1. By S-Trans, ∆, X<:G0 ` U1
′<:S1. By T-Exact-I, ∆; Γ `

exact e0
′ as x, X in e1:S1. Letting T′ = S1 finishes the case.

Subsubcase: T0 = @G0

By Lemma 10, ∆; Γ, x : @G0 ` e1 : U1
′ for some U1

′ such that ∆ ` U1
′<:[G0/X]U1. By T-Exact-E, ∆; Γ `

exact e0
′ as x, X in e1 : U1

′. By Lemma 5, ∆ ` [G0/X]U1<:[G0/X]S1(= S1). By S-Trans ∆ ` U1
′<:S1.

Letting T′ = U1
′ finishes the case.

Subcase T-Exact-E:
Easy.
Case RC-Invk-Arg, RC-New-Arg, RC-Exact-Body:
Easy.
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A.2. Proof of Theorem 2
By induction on the derivation of ∅; ∅ ` e : T with a case analysis on the last rule used.

Case T-Var:

Cannot happen.
Case T-Field-E: e = e0.fi ∅; ∅ ` e0 : @C0 fields(C0) = T f

If e0 = new C0(e), then e0−→ei by R-Field. Otherwise, immediate from the induction hypothesis and
RC-Field.
Case T-Field-I: e = e0.fi ∅; ∅ ` e0 : C0

Immediate from the induction hypothesis and RC-Field since e0 is not a new expression.
Case T-Invk-E: e = e0.m(e)

If there is a non-value subexpression, then the conclusion is immediate from the induction hypothesis and
the rules RC-Inv-Recv and RC-Inv-Arg. Suppose that e0 and e are values v0 and v, respectively. Then,
by T-Invk-E,

∅; ∅ ` v0 : @C0 mtype(m, C0) = U→U0 ∅; ∅ ` v:C ∅ ` C<:[C0/This]U
∅; ∅ ` v0.m(v) : [C0/This]U0

From premises of the rule, the lengths of v, C and U are the same. Since mtype(m, C0) = U→U0, it is easy to
show that mbody(m, C0) = x.e0

′ for some x and e0
′, where the lengths of U and x are the same. Then, by

R-Invk, v0.m(v)−→[v/x, v0/this]e0
′.

Case T-Invk-I:

Similar to the case T-Field-I.
Case T-New: e = new C(e)

If one of e is not a value, apply the induction hypothesis with the rule RC-New-Arg. Otherwise e is a
value.
Case T-Exact-I: e = exact e0 as x, X in e1 ∅; ∅ ` e0 : C0

Since e0 is of an inexact type, e0 is not a value. So, the conclusion is immediate from the induction hypothesis
and the rule RC-Exact.
Case T-Exact-E: e = exact e0 as x, X in e1 ∅; ∅ ` e0 : @C0

Similar to the case T-Invk-E.
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