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Much recent work in the design of object-oriented program- ant path types

ming languages has been focusing on identifying suitable
features to support so-calledalable extensibilitywhere the 1. Introduction
usual extension mechanism by inheritance works in differ- Background Much recent work in the design of object-
ent scales of software components—that is, cllass.es, group$yriented programming languages has been focusing on iden-
of classes, groups of groups and so on. Its typing issues hagjqying suitable features to support extensibility not just for
usually been addressed by means of dependent type systemg,gividual classes, but also for groups of classes, groups of
where nested types are seen as properties of objects. In thig.o 55 and so on. This research direction is meant to make
work, we seek instead for a different solution, which can be object-oriented languages meet the requirementscai-
more easily applied to Java-like languages, in which nested 51 component-based applications: since a reusable piece of
types are considered properties of classes. , code (namely, a component) can be implemented as a group
We introduce the mechanismedriant path typeswhich ot cooperating classes, it would be useful to apply the tra-
provide a flexible means to express intra-group relationship giiional mechanism of inheritance to groups of classes. Re-
(among classes) that has to be preserved through extensionyearches on family polymorphism [12], higher-order struc-
In particular, improving and extending existing_ works on res [13], nested inheritance [25], and grouping mecha-
groups and exact types, we feature the new notioreatt  igms[3, 20, 30], all share this common goal, which we shall
andinexact qualificationsproviding rich abstractions to €x-  «fer to asscalable extensibilitythe term coined in the work
press various kinds of §et of objects, with a flexible 'subtyp— by Nystrom et al. [25]. In particular, for an object-oriented
ing scheme. We formalize a safe type system for variant path|angage supporting scalable extensibility, a number of fea-
types on top of Featherweight Java. Our development results; ;res must be provided, namel§) a mechanism for nest-
ina gomplete solution for scalable extensibility, similarly to ing classes at an arbitrary levéil) an inheritance construct
previous attempts based on dependent type systems. seamlessly working for both single classes and groups of
classes(iii) a flexible subtyping relation for nested class-

Categories and Subject DescriptordD.3.1 [Programmin . . .
Lang%age]s Formal :Deﬁnitionspand Theog;' % 3 ZP[o-g types_, andiv) a group-polymorphism mechanl_sr_n_.

na L L Classifi t" ' 'Ob' ¢ It is very well known that scalable extensibility suffers
gramming Languagg¢sLanguage Classifications—Object- from the covariance problem: in the standard framework of

oriented languages; D.3.Bfogramming Languagégd an- : ; . g
guage Constructs and Features—Classes and objects; Poly_lnherltance is subtyping” of object-oriented languages, the

. ) ) mutual inter-relationships of classes in the same group can-
morphism; F.3.3l[ogics and Meaning of PrograhsStud- :
. ) . t fel t L -
ies of Program Constructs—Object-oriented constructs; not be safely preserved by group extension. Languages sup

Tvpe structure porting scalable extensibility usually solve this problem by a
yp rather expressive dependent type (or class) system, as in JX
[25], Scala [28], orgbeta [13] (notable exceptions include
Bruce’s work [3] and Concord [20]). Although there are sev-
eral studies on simple core calculi for languages with depen-
dent types—such as for Scala agtsbta [27, 10, 14]—such
languages are typically more complex than the standard Java
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fore interesting to study whether scalable extensibility can  Full potential of the expressiveness of variant path types
be achieved in a language without dependent types, for pos-and applicability to mainstream languages like Java are yet
sibly easier application to mainstream Java-like languages,to be fully explored. Nevertheless, variant path types are
by starting from existing work on self-referencéyType, interesting for they support safe extensions of groups in a
grouping mechanisms, and exact types [5, 3, 20, 29]. fairly simple setting, and can then be considered as a basis
for a lightweight form of scalable extensibility.

Our Contributions In [29], we started approaching this This paper is an extended version of [19].

issue by seeking a minimal set of features for supporting

features related to family polymorphism [12] in the context Rest of This Paper Section 2 describes the basic frame-
of scalable eXtenSibi”ty at Only one level of neSting. This work of classes with arbitrary level of nesting and exten-
set includes an inheritance mechanism for group of classessjon; Section 3 introduces the informal syntax and semantics
decoupled from subtyping, a notion of relative path types of variant path types, mainly by means of examples. Then,
to express mutual dependency preserved by inheritance, angection 4 develops the formal core calculgs. Finally, Sec-

family polymorphic methods through type variables over tion 5 discusses related works, and Section 6 provides con-
groups—thereby, dependent types are avoided. cluding remarks.

In this paper, we advance this approach by supporting ar-
bitrary Ieyels of group hle_rarchles and by a new typlrjg con- 2. Class Nesting and Extension
struct which we nameariant path type§ which achieve
flexibility and expressiveness in both subtyping and acces- In this section, we briefly review how the notion of groups
sibility of the hierarchy. Based on our previous work [29], and their extension provide scalable extensibility, by consid-
this construct first extends the conceptelftive path types  ering a simplified setting without static types.
to work in a deeply nested structure. Then, generalizing the
notion of MyTypeand MyGroupin [2, 3], such types can 2.1 Grouping Classes by Nesting
express self reference and mutual reference among classegs in previous approaches [12, 13, 28, 25], we see a class
in a group, which have to be preserved by group extension.as both a mechanism to generate objects and one to group
In addition, such types feature two kinds of qualifications— classes. Considering the “graph” example [12], which is
the notation to access a nested clas@s a type) inside  described by a class definition like:

the class of a typ&—uwhich can be used in combination class Graph{

at any level of nestingexact(T@D) and inexactqualifica- class Node{

tions (T.D). While exact qualification supports safe poly- field edges;

morphism at the group level (or binary methods in a broad class Edge{

sense) by restricting subtyping, inexact qualification recov- field src, dst;

ers subtyping by preventing unsafe invocations of (binary) method connect(nodel, node2) {
methods. Thereby, they provide rich abstractions to express src=nadel; dst=mode2;

various kinds of set of objects with flexible subtyping. The }
name “variant” comes from the facts thé:. the two kinds

of qualifications can be seen as operators that, given a path 1
typeT, take a (nested) class na@and yield typegecC and .
T.C respectively; andii) such operators have variance prop- Here, we define group of classes: classé®de andEdge
erties concerning subtyping/subclassing similarly to variant 8¢ calledmemberclasses of thegroup classGraph. (In-
parametric types [18] (a.k.a. wildcards [32] in Java 5.0 [15]). order to concentrate on the semantics of groups and their

method createGraph(..){..}

More specifically, exact qualifications act as invariaen is inheritance, in this section we will use keywortiss1d and

a subtype of'eE only whenb = E; and inexact qualifications method, instead of types, for field/method dep_laratmn;) To

act as covariantr.D is a subtype of .E whenD extendsE denote a nested c;lass, we rely on the familiar nptat|on of

(inside the class of typ#). Cy.Cy. -+ .Cp, Which can be usgd e.g. to create instances
Our technical contributions can be summarized as fol- Out of member&dge andNode as in the following code:

lows: var e = new Graph.Edge(..);

var n = new Graph.Node(..);

¢ the introduction of the notion of variant path types for
safe scalable extensibility; and (Again, we use the keywordar for variable declarations.)

A new instance of membétdge (Node, resp.) inside class
Graph is assigned to variable (n, resp.).

A key idea of scalable extensibility is to extend the usual
class extension mechanism to allow a class to inherit not
1This name was derived from the metaphor of a nesting hierarchy of classesONIY fields and methods but also member classes, which can
as a directory structure in a file system. be further extendedFor example, below is the definition of

o formalization of a core languag&J extending Feather-
weight Java [17] (FJ) with a sound type system of variant
path types.




the new group clas@WGraph (a class for graphs of colored class AST{ '
nodes and weighted edges): field root;

class Expr extends Objectq{
class CWGraph extends Graph { method toString(){ return ""; }
class Node { }
field color; class Literal extends Expr {
field val;
class Edge { method toString(){ return val; }
field weight; }
method connect(nodel, node2) { class Plus extends Expr {
weight = ---; field opl, op2;
super.connect (nodel, node2); method toString(){
return this.opl.toString()+
} "+"+this.op2.toString();
} }

) ] method replaceOpi(e) { this.opl = e; }
CWGraph inherits methodcreateGraph() and member

. }
classesiode andEdge; furthermore, those member classes lass ASTeval extends AST {

are extended simultaneously with new fields and meth- class Expr extends Object{

ods such ascolor, weight, and an overriding method ) method eval(){ return 0; }

c_onnect(). Hence, an instance OfiGraph . Edge has three class Literal extends Expr{

fields: method eval(){ return val; }
var e = new CWGraph.Edge(..);

class Plus extends Expr{

e.weight --- e.src --- e.dst method eval(){
This extension mechanism is meant to work at any return this.opl.eval() + this.op2.eval();
depth in the structure of nesting. ¢taph.Edge itself de- } ¥
fines member classasandB, thenCWGraph.Edge.A and }
CWGraph.Edge .B automatically inherit from the original
versions ofs andB insideGraph . Edge. Figure 1. Simple Expressions

In standard single-inheritance languages such as Java and
Smalltalk, the “complete” definition of a subclass is obtained is explicit through theextends clause, inheriting from

by composing all of its superclasses by taking overriding , oy pys is implicit, as it is due to the enclosing group
into account. Here, the complete definition of a class is extension

obtained byrecursivelycomposing enclosing classes from As argued also in Nystrom et al. [25], however, we can

the top level down to the leaf of the nesting hierarchy [11]. . .4 problems that typically happen in ordinary multiple-

For example, the complete definition@Graph is obtam.e_d inheritance languages by hierarchical, recursive composition
by composingbject, Graph andCWiGraph in this order; it oq0rihaq above. To obtain a complete definitiorPbiis

composediode andEdge in Graph with those inClGraph, in ASTeval, for example, the top-leveASTeval is first

resulting in the expected group of classes. composed withAST, resulting in member classes each of
2.2 Extension inside Group which is composed with the member class of the same name

. . in AST. Then, the complete definition dflus is finally
As discussed elsewhere [13, 25], it is reasonable to ?XpeCtobtained by composingxpr and Plus in the composed
members of a class to extend another class. In particular

. "ASTeval. In this way, bodies of superclasses can be given
it would be useful to allow a member class to extend from a linear order y P 9

anothelr |n2tgess;1me gro:p o exlpress the so-called expression Note that in general, deeper nesting structures might lead
example [25, 31], as in Figure 1. a class to inherit from more than two classes, but the above

The group class\ST (which stands for abstract syntax discussion naturally extends to such cases, as formalized in
trees) has class@ésteral andPlus for abstract syntax tree Section 4

nodes that extend another memBepr of the same class.
Each member class is equipped with metho8tring () .
to return a string representation of an abstract syngtax tree.'?" Variant Path Types

In an extensionASTeval of AST, each member class is Built on top of this language fragment with class nesting
extended witheval () for evaluation. As in the previous and hierarchical composition, we introduce variant path
example ASTeval.Plus inherits fieldsop1 andop2 from types that allow a number of interesting relationships among
AST.Plus. This schema seems to naturally lead to a mul- classes in a group to be expressed.

tiple inheritance scenaridSTeval .Plus actually inherits )

from ASTeval .Expr andAST.Plus, and both of these in- 3.1 Absolute vs. Relative Path Types

herit from AST.Expr—thus leading to a typical diamond The ability to automatically inherit member classes (in gen-
structure. Notice that, while inheriting froasTeval . Expr eral a whole structure of nesting) is not sufficient per se to



provide a true scalable extensibility mechanism in a stati-
cally typed setting. If some relationship exists among mem-
bers inside a group—e.g., Graph we have that instances
of memberEdge should hold a reference to an instance of
membemode—then we want it to be preserved through ex-
tension. That is, the same relation must automatically hold
in classCWGraph as well. More concretely, we may require
instances ofGraph.Edge to hold references to instances
of Graph.Node, and instances ofWGraph.Edge to hold
references to instances OWGraph.Node, as also argued

in Ernst [12]. In other words, cross-group references such
as an instance ofWGraph.Node being a source node of
Graph.Edge must be disallowed. However, a naive type sys-
tem as in Java fails to express such an invariant: if we declare
src anddst to have typeGraph.Node, then those fields
would be inherited with the same type, resulting in cross-
group reference.

To express such relationship, we introduce a new kind
of types calledelative path type$§29], which refer to other
classes in a “relative” way from the class where that type
appears (as in relative path expressions in the UNIX file

class Graph {
class Node {
"This.Edge[] es=new ~This.Edgel[10];
int i=0;
void add("This.Edge e) { es[i++] = e; }
}
class Edge {
“This.Node src, dst;
void connect("This.Node s, “This.Node d) {
src = s; dst = d;
s.add(this); d.add(this);
+}

This.Node startNode;
boolean containsNode(This.Node n){..}
boolean containsEdge(This.Edge n){..}
}
class CWGraph extends Graph {
class Node {
Color color;

}
class Edge {
int weight;
void connect("This.Node s, “This.Node d) {
weight = colorToWeight(s.color, d.color);
super.connect (s, d);

3

system). Examples of relative path types Tti¢s, This. A,
This.A.B, “This, ~"This, "“This.A. Type This means
“the current class™—it is found in other languages [25, 4]
with a different name such adlyType[2]. Analogously,
type This.A means “memben inside the current class”,
and This.A.B “member B inside memberA inside cur-
rent class”. Type This means “the group of the current

Figure 2. Graph andCWGraph Classes

references: methodonnect () invoked throughCWGraph
must take two instances @fiGraph.Node, otherwise ac-
cessing fielccolor on them would fail.

As seen in previous section, relative path types are cou-

class” (or “the enclosing class of the current class”), type pled with types of the kind; . - - - .C,,—which we callab-
~~This “the group of the group of the current class”, and solute path typessince they denote a certain class indepen-

so on. Finally,"This.A is “memberA inside the group
of the current class”, which is a type used by a class

dently of the location where such a type is used.

A natural way to exploit the class structure seen above

to denote another member of its group. A general form through absolute types is as follows:

~..."This.C;.Cy. - -+ .C, Of relative path types is hence

understood as first going uptimes in the nesting structure

(k is the number of *”), and then going down through path
2

In the previous graph example, the intra-group relation-
ship betweerEdge and Node is expressed by using type
“This.Node, which meansGraph.Node in the class of

Graph g = new Graph( ---);
Graph.Node n = g.startNode;

CWGraph.Edge e;
CWGraph.Node nl1,n2;

e.connect(nl, n2);

Graph.Edge andCWGraph . Node in the class o€WGraph.Edge, Notice that the type ofstartNode is declared to be
and~This.Edge. Figure 2 shows a complete graph example This.Nede and accessed through the absolute path type
written in our language. Here, nodes hold a reference to anGraph yields typeGraph.Node by substituting the receiver

array of edges of typeThis.Edge and edges hold two ref-
erences to source and destination nodes of tfjhe s . Node

type Graph for This. Similarly, the argument types of
e.connect () become€WGraph . Node by replacing This

to express they are from the same kind of graph. In the classin the declared typeThis . Node with CWGraph, which is a
CWGraph, types of those fields are inherited as written in the Prefix of the receiver typ€WGraph . Edge.

superclass and they now refeége andNode in CWGraph.
This example also clarifies the need to disallow cross-group

2 An operator similar to" is often introduced as a special form of qualifi-
cation . out [14, 9] and, in Tribe [9],. out can appear anywhere in a path
type. We allow" to apply only toThis or type variables (introduced later)
since in our setting—where nested classes are properties of classes, rath
than objects as in Tribe—symbolin the middle of a type expression will
simply cancel a preceding qualification.

3.2 Exactness for Type Safety

It is very well known that scalable extensibility suffers from
the covariance problem: in the standard framework of “in-
heritance is subtyping” of mainstream object-oriented lan-
Juages, it is not safe to use typeis (and some other rela-
tive path types) in certain places such as a method argument

type.



In our graph example, although cla88Graph inherits
Graph and classCWGraph.Node implicitly inherits from
Graph.Node, assuming naivelWGraph to be a subtype
of Graph or similarly CWGraph.Node to be a subtype of
Graph.Node will break type safety as the following code
reveals:

Graph.Node nl
Graph.Node n2

new Graph.Node(..);
new Graph.Node(..);

Graph.Edge e = new CWGraph.Edge(..);
e.connect(nl,n2); // Unsafe call

Graph g = new CWGraph(..);
Graph.Edge e2 = g.startNode.es[0];
e2.connect(nl,n2); // Also unsafe

before the invocation would be prohibited because
@(Graph.Edge) is not a supertype of(CWGraph.Edge).
(Expressionaew will be given exact types since the class is
known.)

3.3 Exact and Inexact Qualifications and Subtyping

In the above sectiorg was treated as an operator for abso-
lute path types. However, in our setting, we have found that
it is more natural to consider thatis rather a new kind of
qualification in addition to *”, in order to control the degree

of exactness in a more fine-grained manner! So, for class
AST .Expr, say, variant path types now feature four kinds
of types: afully exacttype @AST@Expr (which was written

@(AST.Expr) above),partially inexacttypes . AST@Expr

Since the code fragment above is trying to connect two @Nd @AST.Expr, and finally . AST.Expr (which was writ-

Graph.Nodes with aCWGraph . Edge, the call toconnect ()
causes the attempt to access fietd or on a node of type
Graph.Node, which doesiot have it! Actually, a similar sit-
uation occurs only by allowing subtyping betwe@fGraph
andGraph as the last three lines show.

ten AST.Expr) with the usual meaning. We call “ihex-

act qualificationand “@” exact qualificationHere,@ at the
head can be considered an exact qualification over the top
level, or a package. An inexact qualification over the top
level can be omitted for syntactic analogy with Java, writing

To solve this problem, some language mechanism is re-€-9-AST.Expr instead of. AST. Expr. (In the formal calcu-

quired to ensure that the classesph1, andn2 are mem-

lus introduced in the next section, on the other hand, even

bers of the same group. The solution adopted in JX relies onthe top level” will be made explicit as the symboand, for
what they call dependent classes and immutable variables—eXa@mple AST . Expr will be formally written /. AST . Expr.)

see Section 5 for a detailed discussion. We instead rely on

The intuition behind a type lik@A.B is “the common

a simpler solution of exact types [5, 3, 4], briefly reviewed Supertype of all the members that exterklinside class

below.

A” (@A@B included). So, typ@AST.Expr iS a common Su-

An exact type denotes instances of a single class, exclud-Pertype of GAST@Expr, @AST@Literal, and @AST@Plus.
ing any of its subclasses: thus exact types also plays a role>imilarly, AGB is read as “the common supertype of mem-
of run-time types of objects. We might use the tentative no- Per B in the groupA or its subclasses"@4eB included).
tatione(A) to mean an exact type corresponding to the class S0, AST@Expr is a common supertype @ASTCExpr and

designated by the absolute path tykefor example, ex-

@ASTeval@Expr but not@ASTOLiteral. Figure 3 shows

act typee (Graph.Node) consists only of instances of class the subtyping hierarchy for abstract syntax nodes. The name

Graph.Node. On the other hand, a tyg-aph . Node, which
is said to beénexact includes instances of clagsaph . Node
and its subclasses, explicit or impliéitA method taking a
relative path type such asnnect () cannot be invoked on

inexactGraph.Edge, as we do not know whether an actual

instance belongs to the groGpaph or CWGraph. Thus, in-

vocation of a method taking a relative path type is allowed

“variant path types” comes from the two kinds of qualifi-
cations, which introduce different variance with respect to
the simple class name after qualification: syme@dacts as
invariant—T@D is a subtype of @E only whenD = E—and.
acts as covariant®D is a subtype oft.E whenD extends
E (inside the class df).

Now, dots in relative path types are also considered inex-

only when the receiver type is exact; the argument type ob- act qualification: for instancehis.B would be “the com-

tained by replacin@his (or = --- “This) will also be con-
sidered exact. In this sendis (possibly with™) is always
exact.

mon supertype of all the members that exteBdisside the
current class”, andThis.B “the common supertype of all
the members that extenBinside the enclosing class”. Thus,

example above: invocation afonnect () on inexact type
Graph.Edge is prohibited. If the type o& were declared to
be@(Graph.Edge) so thatconnect () can be invoked, the
assignment

@(Graph.Edge) e = new CWGraph.Edge(..);

3Note that the same notatioG+aph . Node” is used sometimes to denote
a singleclassnamedNode nested inGraph and sometimes to denote an
inexacttype

denote the set of all nodes of the current version of abstract
syntax tree. NOWAST with type annotations can be written
as follows:

class AST {

class Expr {..}
class Literal extends Expr {..}
class Plus extends Expr {

“This.Expr opl, op2;

String toString(){

return this.opl.toString()
+ "+" + this.op2.toString();



AST .Expr
7 A ~
@AST.Expr ASTQExpr @ASTeval .Expr
T AN 7 ~ 7T A%
= @AST@Expfﬁ e — @ASTevalGExpr .
Q@AST@Literal Q@AST@Plus O@ASTeval@Literal Q@ASTeval@Plus

Figure 3. The rich subtyping hierarchy for the expression example. Dotted arrows represent subtyping while solid arrows

represent inheritance, whichrist subtyping.

void replaceOpl("This.Expr e) {
this.opl = e; return;

}
}

Type "“This.Expr is used to denote the two operands of
a Plus expression. An instance &fAST@Plus can con-
tain any@AST . Expr, that is, instances of typ@AST@Plus,

or @AST@Literal, as operands, whereas an instance of
@ASTeval@Plus can contain anwASTeval.Expr. There-
fore, typesThis, "This, ~~This, and so on, are exact types.

3.4 Inexact Qualification and Access Restriction

Since an inexact type is a common supertype of many ex-

act types, it is clear from the substitutability principle that it

To clarify the differences betweetlThis.C and This,
we describe an example efual () for checking (syntac-
tic) equality of abstract syntax trees. It also demonstrates
usefullness of partially inexact types.

A natural design choice would be to add this method to
classAST.Expr with signatureboolean equal(This e),
and implement it, for example, in claBsus as follows:

class AST {

class Plus extends Expr{
“This.Expr opl, op2;
boolean equal(This e){
return this.opl.equal(e.opl) &&
this.op2.equal(e.op2);
}

}

should provide a more restricted access to its methods and }

fields than any of those exact types, and in particular, its ex-
act version. For example, it is easy to see titataph@Edge
providesconnect (), which takes only@Graph@Nodes (not
@CWGraph@Node), whereagraph . Edge does not.

Actually, even a partially inexact type can allow access to
methods taking relative path types. For exampéanect ()
can be safely invoked o8Graph .Edge Since the argument
type "This.Node Of connect () only requires arguments to
belong to the same graph—it does not requiisees to be
exact (due to inexact qualification). The rule of thumb is that
a method taking a relative path type can be invoked when
the type replacing - - - “This is exact: in this case;This
in “This.Node is replaced with exac®Graph, a prefix of
@Graph. Edge.4

40One might want to use This@Edge and “This@Node rather than
“This.Edge and "This.Node in the graph example in Figure 2. The
choice would not matter in this particular code because nested classes
andEdge do not have a binary method (sucheafal () taking an argu-
ment of typeThis). If Node hadequal (), then invoking it ons or d inside
connect () have to be prohibited because the typesadr 4 is (partially)
inexact. To invokeequal (), their types would have to beThis@Node,
which is fully exact. See the discussion below, too.

Unfortunately, this implementation does not typecheck:
sinceequal () takes a relative path typehis, which re-
quires the receiver type to be fully exact, it cannot be in-
voked onthis.op1l of type “This.Expr. In fact, it should
not typecheck—it can happen that the (run-time) type of re-
ceiverthis.opl and argumeng.opl are not the same. It
is also weird thatequal () takesThis, since it will only
amount to allowing comparison of two ASTs whose root
nodes are of the same kind. Thus, a correct version would
take~This.Expr instead ofThis to enable comparison be-
tween trees with arbitrary kinds of roots. However, simply
changingThis to "This.Expr would not work—e . op1 is
disallowed this time.

To make it work, we have to simulate multi-dispatching
based on both receiver and argument types (a similar style
of programming for Scala is shown by Zenger and Oder-
sky [34]). A solution to this problem with variant path types
is shown in Figure 4. Each class is equipped with auxiliary
methodseqLit () andeqPlus(), specialized to different
kinds of AST nodes. In clasBxpr these methods provide
a default behavior to returfialse. Actual code of com-



class AST {
class Expr{

// default implementations
boolean equal("This.Expr e){ return false;}
boolean eqLit("This.Lit e){ return false; }
boolean eqPlus("This.Plus e){ return false; }
}
class Lit
int i;

extends Expr {

boolean equal(“This.Expr b) {
return b.eqLit(this);
}.

boolean eqLit("This.Lit e) {
return e.i == this.i;

}
class Plus extends Expr {
“This.Expr opl, op2;

boolean equal("This.Expr b) {
return b.eqPlus(this);
};
boolean eqPlus("This.Plus e) {
return this.opl.equal(e.opl) &&
this.op2.equal(e.op2);

Figure 4. Implementation of the methoghual ().

parison is coded in specialized versiohst . eqLit () and

Plus.eqPlus (), where the argument has the same type as
the class in which they are defined. If the argument and the

class are different kinds, the answer should b&se, inher-
ited fromExpr. Finally, and more interestingly, isqual ()
in Lit andPlus, the exact kind of the root of one of the

nodes (namelyhis) is revealed, so comparison is delegated
to specialized versions by swapping the argument and the

receiver. Note thathis of typeThis is passed to a method
taking "This.Lit or “This.Plus; in general, it is safe to
allow subtyping betweethis and~This.C in nested class
D that extend<. This implementation correctly typechecks

and works as expected. Moreover, it is easy to add another.

kind of expressions (other tharit andPlus) by extending
AST.

3.5 Parametric Methods for Group-Polymorphic
Methods

Java 5.0 to our language, but with new featuresexdct
type variableswith qualification. More concretely, method
connectAll () is written as follows:
<exact G extends Graph>
static void connectAll(G@Edgel[] es,
G@Node nl, G@Node n2) {
for (int i: es) {
es[i].connect(n1,n2);
}
}

MethodconnectAll() is defined as parametric in an exact
type variableG—which represents the group used for each
invocation—with upper-boundraph; and the arguments
are of typeG@Edge [1, G@Node andG@Node, respectively. It
can be invoked as follows:

@Graph@Edge[] ges = ---;

@Graph@Node gnl = -, gn2 = .-
Q@CWGraph@Edge[] ces = ---;
@CWGraph@Node cnl = -, cn2 = .-

<@Graph>connectAll(ges, gnl, gn2); // OK
<@CWGraph>connectAll(ces, cnl, cn2); // OK
<@Graph>connectAll(ces, gnl, gn2);

// compile-time error
<Graph>connectAll(ces, gnl, gn2);

// compile-time error

In the first invocation of the example code, instantiation
of G with @Graph is specified, hence edges and nodes of
family Graph can be passed, and similarly in the second
invocation for CWGraph. The third invocation is not well
typed, asces has typeeCWGraph@Edge [1, which does not
belong to the groum@Graph. (In other words, it is not a
subtype ofeGraph@Edge [].) Finally, the last one is not well
typed, either, since an inexact tygeaph is passed to an
exact type variable. Notice that the introduction of exact type
variables is crucialconnect () is allowed to be invoked in
the method body exactly for the reason thé& an exact type
and, if the fourth invocation were allowed, it would lead to
unsoundness.

Finally, as developed in our previous work [29], a type
inference mechanism can also be designed by extending that
in Java 5.0, so that the instantiation of type variables can be
automatically inferred—it is left for future work.

4. Formalizing Variant Path Types
In this section, we formalize the ideas described in the

One of the central ideas in family polymorphism [12] is previous section as a small core calculus called based
that it should be possible to develop functionalities that can on Featherweight Java [17]. What we model here includes
work uniformly over different families. Recasting it to our nested classes with hierarchical composition, variant path
framework, it means that we should be able to write methods types, and parametric methods only with exact type vari-
accepting as formal arguments instances of members of theables, as well as the usual features of FJ, that is, fields, ob-
same group, where different invocations may be concernedject instantiation, and recursion lshis. In "FJ, a nested
about different groups. class can extend eith@bject, which is an empty class,
As an example, we consider the methathnectAl1 () or another class in the same group, though some other lan-
that takes as input an array of edges and two nodespf  guages [20, 25] allow a more liberal style of inheritance. We
group (of graphs) and connects each edge to the two nodesdrop typecasts since one of our points is to show scalable ex-
We achieve it by adding parametric methods in the style of tensibility is possible without resorting to typecasts, which



are used to get around restrictions imposed by a naive typemembers. We includg (read “top-level”) without any qual-

system. We assume every type variable to be exact for sim-

plicity and hence drop thexact keyword; non-exact type
variables would be easy to add.

4.1 Syntax

ification also mostly for technical convenience and, as seen
in rules for well-formed types and typing,by itself cannot
appear in any program texts.

A class declaration consists of its name, the simple name
of its superclass, field declarations, methods, and nested

The abstract syntax of types, class declarations, method decclasses. The symbalis read ‘extends.” A method decla-

larations, and expressions is given in below. Heris, a nat-
ural number (O or positive integers); the metavariablasd
D range over (simple) class namé&sandY range over (ex-
act) type variabless, T, U, andV range over typest andg
range over field names;ranges over method names; and
ranges over variables.

A == /]AeC run-time types
E == /|X"|EeC exact types
T == /|X"|TeC|T.C types
L == classC<aC{Tf; LM} classes
M = <X<T>T m(T X){return e;} methods
e == x|e.f|e.<E>m(e) |new A(e) expressions

Following the custom of FJ, we put an over-line
for a possibly empty sequence. Furthermore, we ab-
breviate pairs of sequences in a similar way, writ-
ing “T £;” for “Ty f1;...; T, f.;", where n is the
length of T and £, and “this.f=f;” as shorthand for
“this.fy=fy;...;this.f,=f,;” and so on. Sequences

ration can be parameterized by exact type variabl&ince

the language is functional, the body of a method is a single
return statement. An expression is either a variable, field
access, method invocation, or object creation. We assume
that the set of (type) variables includes the special variable
this (This, resp.), which cannot be used as the name of a
(type, resp.) parameter of a method.

A class tableCT is a finite mapping from run-time
typesaA to (top-level or nested) class declarations and is as-
sumed to satisfy the following sanity conditions to identify
a class table with a set of top-level classes:GI(A@C) =
class C --- for everyAeC € dom(CT); (2) if CT(AeC)
has a nested class declaratioof nameD, thenCT(A@C@D) =
L; and (3)A@0bject ¢ dom(CT) for anyA € dom(CT). A
program is a paifCT, e) of a class table and an expression.
To lighten the notation in what follows, we always assume a
fixedclass tableCT.

4.2 Hierarchical Composition and Lookup Functions
As discussed in Section 2, a complete definition of a nested

of field declarations, parameter names, method definitions, cjass is obtained by propagating composition of enclos-
nested class definitions are assumed to contain no duplicatgng classes in a top-down manner. We define a function
names. So, we sometimes view a sequence as a mapping: fog|assesa) to list up nested classes insil@fter hierarchical

exampleL(C) denotes a clags of nameC and similarly for
M. We write the empty sequence @denote the length of a
sequence usin- | and concatenation of sequences using a
comma. Unlike the previous section, we make the top level
explicit as/ in the formal syntax but we often abbreviate
/eCtoecand/.CtoC.

Run-time types, which represent classes from which ob-

composition oft. It requires the following auxiliary operator
L, <Ly to compose a superclaks with a subclass.:

class C <« D{T f; L; M}
<class C < D{U g; Lo My}
=class C <D {T £; U g; (Li<Ly) (My<M)}

jects are instantiated, are also called absolute path typesHere,L;<L, denotes the set union of classes framand

whereas types starting wik¥, which correspondsto- - - °X
(with ~ n times) in the previous section, are called relative
path typesX’ is abbreviated tX by omitting the super-
script. Here, we extend the prefixing operation frolis to

all type variables. Also note that for notational convenience
we use absolute path types such@®D, instead of the
common notatiorc.D used in the last section, farew ex-

L, where classes of the same name are recursively composed
by <. Similarly, M; <M, denotes the set union of methods
from M; andM; where methods i, have priorities over the
method of the same nameNR, sincel; are overriding def-
initions. Their straightforward definitions are omitted here
for brevity. In the definition of.; <L,, theextends clauses
have to match in order to preserve inheritance structure of

pressions and names of classes. A qualification of the formnested classes.

@C is called exact whereag is called inexact. In particular,
a type without any inexact qualification is called an exact
type, ranged over by as shown above.

Asin FJ,0bject is a special class name, whose definition
does not appear in the class table. MoreovefRj, qual-
ifications @bject and .Object are allowed everywhere
even thougleAeObject is not defined in the class table. Al-
lowing such qualifications makes the definitions of lookup
functions simple®A@Object is simply assumed to have no

Actually, we define a more general functiolasseéa, i)
instead of classe$A), which is considerectlasseéA, n)
wheren is the length ofA (that is, the number of sim-
ple class names ia). The auxiliary argument, which is
a natural number, controls how deep hierarchical compo-
sition is performed to list up nested classes: for example,
classegecen, 0) lists up only the nested classes that appears
in CT(eceD) without taking inheritance into account at all;
classegeceD, 1) will compose the top-level clagswith its



superclasses and returns nested classes appearing exactly position is taken into account: for example, clagsin the

D. In most cases, we use the specialized verslagse$h);
the significance of the auxiliary argument will be clarified in
typing of classes.

The definition ofclasseé, i) appears at the top of Fig-
ure 5. The first rule says thateObject has no nested
classes and the second tlds the top-level. The third rule,

classes below

class C1 {
class D1 extends D2 {}
}

class C2 extends C1 {
class D2 extends D1 {}

which deals with full composition, means that nested classes

in A@C are obtained by composing nested classes in
classes$A, ¢) with those in its superclag®D. Note that. are
also the result of composition till the depth of the enclosing
classA. The fourth rule, on the other hand, means that, when
i is less than the length dfecC, nested classes @D are
ignored.

For example, consider the followiri§J classes:

class AST extends Object {
class Expr extends Object {
T m() { return e_1; }

}
class Lit extends Expr {

class Plus extends Expr {
T m() { return e_3; }
}

}

class ASTE extends AST {
class Expr extends Object {
}

class Lit extends Expr {
T m() { return e_5; }
}

class Plus extends Expr {
T m() { return e_6; }

}

Then,classe$§/@ASTE, 1) returns nested classEspr, Lit,
Plus obtained by composing ones insid8TE and its su-
perclass\sT, i.e.,

class Expr extends Object {
T m() { return e_1; }

class Lit extends Expr {
T m() { return e_5; }
}

class Plus extends Expr {
T m() { return e_6; }

Here, methodh in class@AST@P1lus has disappeared as it
is overridden by one in class\STE@P1us, which implicitly
extendsvAST@Plus.

At this point, we can check that there are no cycles in the
inheritance relation at all levels. First, cycles at the top level
can be easily detected,; if there is no cycle, thkasseseC)
is defined for anpC € dom(CT). Second, the absence of cy-
cles inclassegeC) can be checked for eachensuring well-
definedness aflasse§eceD) for anyD € dom(classe$aC)).

We can repeat this procedure until the maximum level of
nesting is reached.

One may wonder if cycles can be detected earlier when
a class table is given or later as part of typechecking. First
of all, cycles can be detected only when hierarchical com-

contains a cycle of nested clasgesandD2 but it cannot

be detected unlesst andC2 are composed. Of coursel

is already an ill-formed class sin@2, specified as the su-
perclass ofb1, is missing. However, cycles should be de-
tected before typechecking—the process in which we find
C1 is ill formed—because typechecking uses lookup func-
tions, which works only when there are no cycles. Thus, cy-
cles should be detected now. In what follows, we assume
there are no cycles in the given class table.

Thanks toclasseéa, i), it is now easy to define functions
to look up fields and methods from a given class name. The
definitions of field/method lookup functions are also in Fig-
ure 5. Functiorfieldg A, 7), which is similar toclasse$a, i),
enumerates all field names df(and its superclasses) with
their types. Similarlymtypém, A, ¢) returns the signature of
methodn in A.

Now, it is fairly easy to read off how class bodies are lin-
earized, i.e., in what order members are looked up: for exam-
ple, methods of an instance @ASTE@Lit will be searched
in GASTE@Lit, GAST@Lit, @ASTEQExpr, and@AST@Expr in
this order.

4.3 Type System

The main judgments of the type system consist of one for
type equivalence\ - S = T, one for matchingA + E; <#

Es, one for subtypingA + S < T, one for type well-
formednessA F T ok, and one for typing\;T" - e : T.
Here,A, calledbound environments a finite mapping writ-
tenX<:T from type variableX to typesT and records decla-
rations of type variables with their respective upper bounds.
Similarly, T", calledtype environmentis a finite mapping
written X: T from variablesz to T and records declarations
of method parameters with their respective types. As seen
later, A usually containghis<: T, in whichT represents the
class where the judgment is made.

Following the custom of FJ [17], we abbreviate a se-
guence of judgments in the obvious wayi S; < Ty, ...,
AFS, < T,t0AF S < T(similarly for type equivalence
and matching)A + T; ok, ...,A + T, okto A I T ok; and
ATker:Ty,...,A;T ke, :T,t0A; T F&:T.

4.3.1 Auxiliary Definitions

We first define a few auxiliary operations used in typing
rules. T denotes a type obtained by dropping the last



classeéA@Object,i) = o

i > |AQC|

class C <D {---L---} €classe§A, 1)

(L are all top-level classes)
classe$/,i) =L

classega@D, i) =L’

classe§h@C,i) = L'<L

i < |AeC|

class C <D {--

-L---} € classe$a, i)

classesA@C,i) =L

fieldgA, )

fieldgA@Object,i) = e

class C « D {T *;

.-+ } € classe$a, i)

fieldgAeD,i) =T g

fieldgAQC, i) =

mtypem, A, 7)

UgTf¢f

i < |AeC| class C <« D {---M } € classef, ) <X<U>Sp m(S A teM
mtypém, AQC, i) = <X<U>S—S,
n > |AQC]| class C <D {---M } € classed, i) m¢gM mtypém, A@D, i) = <X<U>S—Sg

mtypém, AQC, i) = <X<U>S—S,

Figure 5. "FJ: Lookup Functions

qualifications fronT; it is defined by:

Object™ = O0Object

0 =T

(Xn)m _ Xn+m

(Tec)» = Tt (n>0)

(t.c» = 71! (T.C # Object,n > 0)

Note that(-)™ is an operation on types where#s is just a
syntactic entity.

By using the prefixing operation, (simultaneous) type
substitution[T/X] of types for type variables is defined as
follows:

[T/X)/ =/

T/Rx = T

Ty = v (fy¢X)
[T/X](sec) = ([T/X]s)eC
[T/X|(s.c) = ([T/X]s).C

Note thatX” is replaced with the corresponding prefixbf
[T/X]e is defined straightforwardly.

An exact type substitutioT/@X], which requires an exact
type whenX” is replaced, is similarly defined below:

[T/eX]/ =/

[T/0X]X;™ = T," (if T is exacy
[T/@X|Y" = " (if Y ¢ X)
[T/eX](seC) = ([T/eX]s)eC

[T/eX](S.C) = ([T/eX]s).C

Notice that the argumerit may contain inexact qualifica-
tions: for example[eC.D; /@X]X~1@D, = @C@D, (Whereas
[C.D;/@X]X"~1@Ds is undefined).

exactT) (inexactT), resp.) denotes a type in which all
inexact (exact, resp.) qualificationsTirare replaced by exact
(inexact, resp.) ones. They are defined by:

exact/) = inexact/) = /

exac{x™) = inexactx") = X"
exacfTeC) = exacfT.C) = exac{T)eC
inexactTeC) = inexacf{T.C) = inexactT).C

4.3.2 Type Equivalence

The judgmentA - S = T can be read “typé& is equivalent
to T underA.” The rules are shown in Figure 6. The first
three rules say that it is indeed an equivalence relation, and



the last two that it is a congruence. The key rule is the fourth
rule, which says that if the upperbound of a type variable is
exact, then the two types are in fact equivalent. The fifth rule
means that ikK” is equivalent to an exact tyfocC, then its
enclosing clasx™*! is to E and henc&™ andx"*'ec are
equivalent: for example,

X < @Graph@Node I X = X'@Node
can be derived.

4.3.3 Matching

The subtyping relation will be defined by using the inher-
itance relation, which is formalized as matching here. The
judgmentA - E; <# E, can be read “exact typgg matches
Eo” or simply “E, extendsE,.” The rules are shown in Fig-
ure 6. The matching relation is a partial order including type
equivalence and0bject as the top element, as seen in the
first three rules. The fourth rule means thatf is assumed

to be a subtype dof, then it must extenéxactT) whatever

it is instantiated with. The fifth rule is similar to the fifth rule
for type equivalence: for example, the matching judgment

This <: Graph.Node |- This <# This'@Node

can be derived by this rule. The last rule deals withends
clauses.

4.3.4 Subtyping

The judgment form for subtypings - S <: T can be read
“S is subtype ofT under A.” Subtyping rules are shown
in Figure 6. As usual, subtyping is reflexive and transitive
with Object as the top type and a type variable (with some

prefixing) is a subtype of (the corresponding prefix of) its T
declared upper bound. The sixth rule intuitively means that
exactness can be forgotten. The third last rule might look

counterintuitive since exact qualification works covariantly.
Note that, however, ifT is not exact, the resulting type
T@C is not exact, either. For exampleASTeval@Plus is a
subtype ofAST@P1lus, which includesPlus from bothAST
andASTeval. The last rule roughly means that inexact types
are related if one inherits the other—it is parallel to the last
rule of matching.

4.3.5 Type Well-formedness

The judgment form for well formed types is - T ok, read

as ‘T is well formed underA.” The type well-formedness
rules are also in Figure 6. A type is well formed when the
class that the type points to kexists. Even when the class

of a given name is not in the domain of the class table, it may

implicitly exist, due to nested inheritance, hence the function
classess used in the last two rules. Note thgi0Object or
A.0Object is always well formed ift is well formed.

4.3.6 Typing

Typing for expressions. The typing judgment forni" +
e : T is read “expressior is given typeT underl.” The

typing rules are shown in Figure 7; readers who are familiar
with languages with matching [2], in particular LOOJ [4],
will notice some similarities.

The key rules ard-FIELD for field access and-INVK
for method invocation. The rul&-FIELD means that the type
of field accesg, . f; is obtained by looking up field declara-
tions from the class that matches the receiver type. Note that,
if £;'s type is declared to be relative, th&his® will be re-
placed with the corresponding prefix of the receiver type: for
example, iffield§@CWGraph@Node) = This'@Edge edg
andl’ = x : @CWGraph@Node, y : This'@Node, then

This<:CWGraph.Node;I' - x.edg : @CWGraph@Edge
This<:CWGraph.Node;I' I y.edg : This!'@Edge.

In this way, accessing a field of relative path type gives a
relative path type only when the receiver is also given a
relative path type.

In T-INVK, the first line means that the type of the re-
ceiverT, matches (i.e., inherits) a clasghat has method
with the signatureX<U>T—Sg. The second and third lines
roughly mean that the actual type arguments must be sub-
types of the corresponding upperbouridand the types of
the actual value arguments must be subtypes of the corre-
sponding formal; the substitution is applied sifgenay in-
cludex;, ...,X;_; andT may includeX. As discussed in the
last section, binary methods can be invoked only when the
receiver type is exact and, in general, prefifads must be
exact. For example, assume

mtypé@Graph@Edge, connect)
= (This'@Node, This'@Node)— void .

hen

;X : @Graph@Edge, y : @Graph@Node
F x.connect(y,y) : void

should be derived but not

;X : Graph.Edge, y : @Graph@Node
F x.connect(y,y) : void.

In order to express this condition, we use exact type substi-
tution [T/@X] defined before. In this example,

[Graph.Edge/@This|This'@Node

is not well defined, making the second judgment above not
derivable. Note that, even if the receiver typg contains
inexact qualification|T,/@This| may succeed as in

[@Graph.Edge/@This'@Node|This'@Node = @Graph@Node.

So,
;X : @Graph.Edge, y : @Graph@Node
F x.connect(y,y) : void

is derivable.

5This requirement is essentially the samegactness preservatiga6].



ALT=T AFS=T AFS=T AFT=TU
o AFT=S AFS=U
X<Te A T" is exact X<Te A T" = s@C
AFXn=T" AF X" =x"ec
AFS=T AFS=T
A F SeC = TeC AFS.C=T.C
A E; <#E,
AFE; =Ey AFE] <#Eg A Eg <#E3
S —— A |- E <# @0bject
AFE, <# E, AF E, <# Es Jjee
<Te A X<Ue A exacfu”) = E@C
A+ X" <# exac{T") A X" <# X"tlec
AFE| <#Ey AFE<#A class C < D {---} eclassefp)
A+ E,0C <# E,@C A - EQC <# EQD
AFS=T AFS<T AFT<U AL T< Obiect
AFs<T AFs<U P opJec
X<:Te A X<:Te A T" =8.C
AFX<T AFX < X1 C
AFS< T AFS<T

AFTEC<: T.C

A F exac(T) <# A

A F S@C <: TeC

AFS.C<T.C

class C < D {---} € classefh)

AFT.C<T.D

A F @0bject ok

class C <« D {.--} € classe§/)
A+ @C ok

A+ Object ok

X<:Te A A+ T" ok
A F X™ ok

class C <« D {---} € classe§/)
A F Ccok

AFTok Al exactT) <#A (class C « D {---} € classeA) or C = Object)
A+ TeC ok
AFTok Al exac(T)<#A (class C <« D {---} € classeéA) or C = Object)

AFT.Cok

Figure 6. "FJ: Rules for type equivalence, matching, subtyping, and type well-formedness

Typing for methods. The judgment for well-formed meth-
ods is of the form~ MokinA, read “methodM is ok in
A" The rule T-METHOD checks whether the method body
is well typed, provided thathis is of typeThis and that

signatures of overriding methods must be identical (modulo
renaming of type parameters) with the overridden, but, un-
like FJ, this condition will be checked bl CLASS.

formal type and value parameters are given declared upperTyping for classes. The judgment for classes is of the form

bounds and declared types, respectivetyi.s is bounded by

F Lokina, read “classL is ok in A.” The rule T-CLASS

inexactA), wherea is the class name in which the method is means that a class is well formed if (1) its superclass, field
declared, since the method, which may be inherited to sub-types, nested classes, and methods are all well formed; and

classes of,, has to work for any subclass &f Like FJ, the

(2) methods are correctly overriding. The second line means



A;THx:T(x) (T-VAR)

A;T'Hep:Tg  AbFexactTy) <#A  fieldA) =T £
A,F H eo.fi : [To/ThiS}Ti

(T-FIELD)

A;TFeg:To A F exacfTy) <# A mtypém, A) = <X<U>T—Sg
AFEok AFEc< [E/X][To/@This|U
A;THe:S  AFS< [E/X][To/@This]T
A;T = eg.<E>m(@) : [E/X, To/This]|S

(T-INVK)

Abagok  fieldgAo) ATFs:§  AFS< ([A/This|T)

=T f
A;T'Fnew Ag(8) : Ap

(T-NEw)

Vi € 1..\ﬁ|.(This<: inexac(A), X1<:Up,.. ., X 1<U; 1 F U, Ok)
A = This<:inexacth),X<:U
ATy, T ok A;this : This,x: Tk e: Sy AFSy< T
F <X<U>Tg m(T %){ return e; }okinA

(T-METHOD)

This<:Cy.---.Cp_1 FToOK FLokinec;e---eC, FMokinec;e---eC,
F class D<D’{} okin@cC;@---@C,
for anyD such thatlass D<D'{ --- } € classe$eC;@---@C,,) andD ¢ dom(L),
foranym, i € {1,...,|AC|},
if mtypém, @C;@---@C,,,7 — 1) = <Y<U>S—$, and
class C,<C;/{..} € classe$ec,@---@C,_1,7 — 1) and
mtypém, @C;1@ - - - @C’;@ - - - @C,,, i) = <Y<iU'>S'—8’,
thentU’, sy, 8" =T, Sy, S
Fclass C, <« C, {Tf; L M }okin@C;@---@C,,_;

(T-CLASS)

Figure 7. "FJ: Typing Rules

that a nested clagsimplicitly inherited insideC,, is equiv- It means that the signature of a method defined exactly in
alent to an explicit class with the empty body and it must @C;@C,@Cs is the same as the one inherited frot’'@C,@C;
be well-formed, too. This condition ensures the signatures (or @C;’’@C,@C3, and so on). So, it amounts to checking

of methods inherited from all superclasse®0f - - - @C,,@D consistency of the signatures of the methods in the class
are identical.
The last big condition ensures correct method overriding, @C,@C20C3

which is more involved to check than it may first appear, ) ) ) . ) )
because one class may inherit definitions from multiple su- 29@inst those defined (if any) in the lowest class in the chain

perclasses. For concreteness, consider a QBIE,0C; to of classes

what thi ndition means. Whes 1, i
see what this condition means , it says @C’10C5@C3 <# @C'/{@CoQC3 <# - - -

(where@C; <# @C;’ <# @C;”’). Wheni = 2, the condition

if mtypém, @C,@C20C3,0) =  <Y<dU>S—S implies the consistency of the signatures of the methods in
and class C;<C;'{..} € 7C|735§e$/70) and the classes that appear in the previous step
mtypém, @C;'@C20C3,1) = <Y<U'>S'—Sy’, then

ﬁ/, Sol,gl = ﬁ, So, S. @C,QC,0C3 <# @Cll@c2©C3 <# @C”l@CQQCg <# ..



against those in the plane of classes THEOREM 1 (Subject Reduction)lf §;0 e : Tande —
e/, then(; ¢ - ¢’ : T/, for someT’ such that) - T’ <: T.

“ - THEOREM 2 (Progress)If ;0 - e : A ande is not a value,

v v thene — €/, for somee’.
@Cl@cug@Cg <# @Cll@C//2©C3 <# .-

ki # THEOREM 3 (Type Soundness)f ;) - e : Tande —
0C,0C,0C; <# @C'10C/5@Cs5 <# --- e’ with ¢’ being a normal form, thed' is a valuev such that

0;:0 F v : A, for somea such that) - A <: T.
(whereecC, <# @Cy’ <# @Cy’’). Note that, in this step, meth-

ods inherited from different directions, that &;’,0C,@C5 5. Related Work and Discussion

) ) )
and @C,C’»eC; are checked agams'; each othe.r, even if Nested Inheritance. The present work has emerged as an
@C,@C,@C3 does not have a methad Finally, wheni; = 3,

the merged plane, obtained by combining the chain and theenhancement of language constructs for lightweight family

. . ) . olymorphism [29], with arbitrary levels of nesting, explicit
pla_ne above, is checke’d against the three d”.“e”S'O” SpaCeﬁ\heritance between nested classes in the same group, and
which coversaC,@C,0C3’s all superclasses, which have not

been covered in the previous steps generalized relative path types with inexact qualification.
Finally, a program(CT, ¢) is well formed if all (top-level) The resulting language design is very close to Nystrom et

. . ) al.'s JX language [25], though without exploiting dependent
classes irCT are well formed and); ) I- e : T for somer. types(/classes).

4.4 Operational Semantics JX supports an extension mechanism called nested inher-
itance that allows an inheritance hierarchy to be nested in
another class and such a hierarchy to be inherited and ex-
tended by extending the enclosing class, just as our proposal.
Indeed, itis very similar how class definitions are composed.
Moreover, JX allows a class to extend another class outside
the group.

Key ideas in their type system are dependent classes and
prefix types. Dependent classes are type expressions of the
form p.class, which mean’s run-time class (herey is
a sequence of final field accesses on a final variable). Us-
ing dependent classes, a methaghal () would take an
argument of typethis.class, which guarantees that the
run-time classes of the receiver and the argument agree.
The notion called prefix types is usually used with depen-
dent classes to express an enclosing class of a dependent

The operational semantics is given by the reduction relation
of the forme — &/, read “expressior reduces tee’ in
one step.” We require another lookup functimbodym, 4),
of which we omitted the obvious definition, for the method
body with formal (type) parameters, writtedX> (%) e, of
given method and class names.

The reduction rules are given below. We widgx, e/y]eo
for the expression obtained frogg by replacingz; with d;,
..., X, With d,,, andy with e. There are two reduction rules,
one for field access and one for method invocation, which
are straightforward, thanks to lookup functions. The reduc-
tion rules may be applied at any point in an expression, so
we also need the obvious congruence rules@— e’ then
e.f — €. f, and the like), omitted here.

fieldgA) = T T class. For exampl&raph [n.class] means.class's in-
— (R-FIELD) nermost enclosing class, which is a subclassxefph. By
new A(8).f; — e; combining the fact that inheritandgconsidered subtyping,
_ they are useful when two arguments have to share the same
mbodym, A) = <X>(X)eg (R-INVK) enclosing class as itonnect_all() as in Section 3. For
new A(8).<E>m(d) — example, here is its variamtke_loop () written in JX.

[d/i new A(e) /this][E/X7 A/This]eo void make_loop(final Graph.Node n,
Graph[n.class] .Edge e) {
We write—* for the reflexive and transitive closure-ef-. } n.src = n.dst = e;
4.5 Type Soundness JX’s static type system guarantees that the actual argu-
The type system is sound with respect to the operational se-ment’s run-time types share the same enclosing class, which
mantics, as expected. Type soundness is proved in the stanmust be a subclass @fraph. Since inheritance is subtyp-
dard manner via subject reduction and progress [33, 17]. Foring, CWGaph.Node is a subtype ofGraph.Node and so
brevity, we only sketch the proofs in Appendix; full proofs make_loop() can be invoked withCWGraph.Node and
appear in an extended version of the paper, available atCWGraph.Edge. Since types now refer to expressions, the
http://www.sato.kuis.kyoto-u.ac.jp/ igarashi/ interaction with side-effects must be taken into account; JX
papers/. poses the restriction thaktlass can be preceded only by
The set of values, mentioned in Theorem 2, are defined a sequence of zero or more accesses of final fields to final
by: v ::= new A(¥), wherev can be empty. variables (includinghis) to avoid the meaning of the same



dependent class expression to change at different progranMatching. A series of work [2, 7, 6, 4] by Bruce and his
points. That's whyn is (and must be) qualified withinal. colleagues has been addressing statically safe type systems
On the other hand, our language design is completely or- for languages with the notion ®flyType(corresponding to
thogonal to assignments, which are therefore not consideredrhis in this paper). As we have also discussed, even if one
in "FJ calculus—we expect they can be easily and safely class extends another, the object type from the former is
added with the usual typing rule. not always a subtype of that from the latter due to binary

Instead of dependent classes, we use type variables andnethods—methods whose argument types incMgiéype
This to achieve the separation of types and expressions forinstead of subtyping, they introduce the matching relation
ease of typechecking. In particular, we observe that value on object types, which reflects the class hierarchy and plays
arguments of JX also play the role of type arguments. It an important role in typechecking binary methods. In the
will be more apparent by comparing with the definition of language calledcOOM [6], the notion ofhash typesof

make_loop() in our language: the form#T is introduced#T behaves as a common super-
<exact X extends Graph.Node> type® of all types that matciT but binary methods cannot
void make_loop(X n, "X@Edge e) {---} be invoked on it. Our inexact qualification can be consid-

ered a generalization of hash types in the context of nested
classes. It may be worth noting that in some other languages
of theirs [5, 3, 4], hash types are “default” (requiring no spe-
<exact X extends Graph> cial symbols such a#) and objects types on which binary
void make_loop(X@Node n, X@Edge e) {---} methods can be invoked are called exact types and written
@T.
We believe that separating type variables gives more intu- Also, they have introduced match-bounded polymorphic
itive method signatures, especially when parametric types methods [7] to describe generic methods that work on differ-
are involved; for example, itonnect_all(), which takes  gnt tynes that match the same interface. Polymorphic meth-
arrays, is to be written in JX, the method definition seems to 45 in this paper can be viewed as match-bounded polymor-
be something like: phic methods in disguise, since if an exact typis a sub-
void connect_all(final Graph g, type of T, thenE matchesexac{T). Our choice is mainly for
522122215‘3?2 H ol £-3 the sake of familiarity and uniformity with usual subtype-
bounded polymorphic methods.
or Later, the notion oMyTypeis extended from self-recursive
void connect_all(final Graph.Edge e, object types to mutually recursive object types, resulting in
grglljﬁs[z _[]d:zé] Node[] ns) {---} the notion ofMyGroup(5, 8, 3]. Here, mutually recursive
classes are put in a group, which is extensible just as classes,
which requires avalue parameteg or e, which isnot re- andMyGroup which changes its meaning along group ex-
quired by the method body. tension, is used to express mutual references among classes.
One consequence of this design of JX seems that, as op4n this paper, groups and classes are unified into a single
posed to the common understanding, subtyping du#s  mechanism of classes, which can be arbitrarily nested. Ac-
quite imply substitutability, which we think is not very intu-  cordingly, My Typeand MyGroupare unified into a relative
itive: if an expression in a program is replaced with another, path typeThis™.
which is of a subtype of the original, the program can be-  Concord [20] is another language that also has the notion
come ill-typed. For example, suppose claswhich has the  of groups andlyGroup A main difference from the present
subclas®, has methogqual () that takes an argument of  work is that Concord does not support nesting of groups but
typethis.class. Then,c.equal(c) would be well typed  allows a class in a group to extend an absolute type, a class
under the assumption thathas typec. SinceD is a subtype  outside the enclosing group. It would be interesting future

of Cin JX, one might expect thatof typeD would be substi-  work to extend our language to allow a class to extend non-
tutable forc and sod. equal(c) would be also well typed  siblings.

but, in fact, it is not. In our type system, subtyping implies o ]
substitutability thanks to the distinction between exact and Virtual Classes. Historically, virtual classes [21] (more

Notice thatX plays the role ofa.class in the JX code.
Following how connect_all() is written is Section 3, it
can also be written

inexact qualificationst . equal (c) is allowed only where pre_cisely, virtual patterns) in Beta [22] have been very influ-
is given an exact typecC and it can be replaced only by an- ential to much work on the design of languages that support
other expression of the same exact type. scalable extensibility by using nesting structure of classes.

More recently, Nystrom, Qi, and Myers [26] have ex- The basic idea of virtual classes is to allow classes to be
tended JX to support the mechanism called nested intersec&ttributes of objects just as methods, by putting nested class
tion, which is similar to symmetric mixin composition in 6 Subtyping is not explicitly mentioned in their paper but there are typing

Scala [_28' 27]. |_t would be interesting future work to add s to convert from one (exact) type to its hash version and from a hash
nested intersection fé-J. type to another hash type which is matched by the former.




definitions in another class and those nested classes to bexpressions by inexact qualifications. Since there is only a
inherited and further extended in a subclass. Although the single kind of qualification for those path dependent types,
original proposal was not statically type-safe, virtual classes it does not seem very easy to express such a type.
are useful to describe not only generic data structures but More recently, Clarke et al. have proposed another virtual
also mutually recursive classes such as nodes and edges daflass calculus called Tribe [9], in which nested classes are
graphs and their extensions. members of an object of their enclosing class, too. Tribe
Ernst, who coined the term “family polymorphism,” im-  generalizes types for existing languages of virtual classes
proved Beta’s static analysis in the development of the lan- by allowing both final field accesst and class acces<,
guagegbeta to ensure the safety of the use of virtual classes which can appear in any order. For example, an expression
as extensible mutually recursive classes [12] and also higher-this.f (wheref is a final field) is also a singleton type,
order hierarchies [13], which refer to a mechanism that al- which denotes the value athis.f; this.C meanssome
lows extensible class hierarchies just as in the example ofobject of the class nested inthis; C. f refers to the object
AST in this paper. in field £ of some object ot (or one of its subclasses); and
Nested classes igbeta are designed to be members (or C.D refers tasomeobject of the clasb nested in some object
attributes) of an object of their enclosing class as in Beta. So, of C (or one of its subclasses).
in order to instantiate a nested class, an enclosing class has Tribe types provide fine control over subtyping in a way
to be instantiated first and then a constructor of the nestedsimilar to, but different from ours. While their qualifica-
class is invoked on the enclosing instance (that is, the in- tion . C roughly corresponds to our inexact qualification, the
stance of the enclosing class) as in inner classes of Java [16]qualification. £ can be considered “very exact” qualification
Unlike Java, however, objects from the same nested classin the sense that it always denotes a single object, rather than
with different enclosing instances are distinguished by the objects of a single class as our exact qualification denotes.
static analysis, making it possible to create many copies of We believe that these languages, in which nested classes
the same group and prevent objects from different copies are treated as members of objects, should benefit from our
from being mixed. For example, one can implement hash exact qualification, which provides an intermediate degree
tables by a class that has a virtual class implementing ele-of exactness between very exact qualification by final field
ments; then, elements from different instances of hash tablesaccesses and ordinary inexact qualifications. For example,
will not be mixed. Scala [27, 28] and CaesarJ [23] adopt a exact types are useful to express standard binary methods
similar mechanism of virtual classes. From the type system such as equality, which—as far as we understand—does not
point of view, such a mechanism can be considered like de-seem very straightforward to express with Tribe types only.
pendent types [1]. In fact, a type is a path of (immutable)
field accesses followed by a class name in the virtual class
calculus [14], which modelgbeta-style virtual classes de-
scribed above.
On the_ one hand,_these_ IangL_Jages are more powerful6_ Concluding Remarks
than ours in the following points. First, as mentioned above,
groups are finer grained and their number is unbounded since/Ve have proposed variant path types to support safe scal-
they are expressed by objects. Second, they can better deable extensibility. Relative path types, a natural extension of
with the situation where the identity of a group is abstracted MyTypeby Bruce et al. in the context of nested classes, en-
out. For example, consider hash tables that are put into adble to describe inter-relationship among classes in the same
data structure such as a list. Then, information on which hashgroup, preserved by extension of the enclosing class. Also,
tables are held by the list is lost in general. Nevertheless, it €xact and inexact qualifications give flexible abstractions for
is still possible to extract an element from a hash table and various kinds of set of instances with a rich subtyping hier-
put it back to the same hash table without exactly knowing archy. The type system has been formalized as an extension
a type of an element. In some sense, the type systems oPf Featherweight Java, and proved to be sound.
these |anguages are equipped with some kind of existential Main future work of this research concerns evaluating the
types. On the other hand, in our language, once exact typeapplicability to a full-blown language such as Java. For ex-
information is lost, there is no way of recovering it. For ample, itis interesting to investigate type inference for para-
example, it is not possible to invokeeplaceOp1() on metric methods, which we have already done to some degree
inexactAST . P1us. We expect this limitation can be lifted by  in previous work [29]. Moreover, it would be useful to study
introducing a mechanism similar to the unpacking operation alternative syntactic sugar for variant path types, to support
in the context of existential types [24] or by a mechanism common programming patterns as in [25]. Implementation
similar to wildcard capture [32]. issues are also left for future work but we believe that the
On the other hand, our typing mechanism seems to havetechniques described in Nystrom et al. [25] can be applied to

the advantage that it is easy to express, say, all sorts ofour proposal, as the semantics of inheritance of our language
is similar (in fact, simpler).
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dictable Environments (Viroli). By Lemma5U £; € fieldgA) andU = T,. Thus,0; 0 I- e, :
S; and( I~ s, <: T, finishing the case.
A. Proof Sketches CaseR-INVK: e =e,.<E>m(d)

0+ Aok );0t=e:S 0 S < [A/This|T
OFA<#A U £; cfieldda’) T = [A/This|U

We sketch the proofs of Theorems 1 and 2. (Theorem 3 is e, = new A(®)
their easy consequence.) The structure of the proof of sub- mbodym, A) = <X>(X) eq
ject reduction is similar to those for Featherweight Java and e’ = [d/x, e, /this][E/X, A/This]eg

Featherweight GJ [17]. So, we first prove various substi-
tution lemmas, which are all proved by induction on the BY T-INVK andT-New, we have
derivations, including the following four:

0+ Aok 0;:0 F new A(® A
LEMMA 1 (Type Substitution Preserves Subtypint). OFA<#n mtypém, A') = <XU>T—8o
X<U,AF S < Tand( + Uok andp + A < U, then 0-Eok 0 +E<: [E/X][A/@This|U
[A/X]A F [A/X]S <: [A/X]T. P;0r-e:8s 0 F S < [E/X][A/@This]T

T = [E/X,A/This]|Sy .
LEMMA 2 (Type Substitution Preserves Type Well-formedness).
If X<:U,A F Tok and( + A, Uok andf) - A < U, then By Lemma 6 mtypdA) = <X<U>T—S,. Then, by Lemma 7,

[A/X]A F [A/X]T ok. there exisB andU, such that

LEMMA 3 (Type Substitution Preserves Typingj). O A<#B

X<U,A;T e : Tandp - Uok andd - A < U, This<:inexact{B),X<:U;X:S,this:This b eq : Uy
then there exists’ such that/A/X]A; [A/X]T - [A/X]e : T/ This<:inexac{B),X<:U F Uy < Sp .

and[A/X]A F T/ <: [A/X]T.

_ We can prove that - A <# B implies() F A <: inexactB).
e:ToandA;I' - d:SandA F S < T, then there exists
To’ such thatA; T I [d/X]e : Ty’ and A; T F Ty < To. ;% : [E/X][A/This|S, this : A+ [E/X][A/This]eq : Uy’

F Uy <: [E/X][A/This|Uj .
In the proofs of the last two lemmas about typing, we also 0o [E/X]{A/This]Uo

use lemmas stating that type substitution is covariant, i.e., if We also have

A k81 < S, thenA + [81/X]T < [S5/X]T, and that exact _

type substitution is contravariant, i.e., N - S; <: S, and 0+ [E/X][A/This]U <: [E/X][A/This]So
[S2/@X]T is well defined, them F [S3/@X]T <: [S;/@X]T.

. o
Then, we prove properties of lookup functions: a field or by Lemma 1. Finally, by Lemma 4, there exisis’ such that

meth_od of some class is also present in any of its subclasses 0:0 - e : Uy 0F U, < Uy .

and, if a method type lookup succeeds, then a method body

lookup also succeeds and the body is well typed. Finally, by S-TRANS, () - Uy’ <: T, finishing the case.
LEMMA5.1f 0 - A <# A’ andT £ € fieldga’), then ~ CASERC-INVK-RECV: e =eo.<E>m(e>

T £ € fieldga). €0 — o

e/ =ey .<E>m(E)
LEMMA 6. If ) - A <# A’ and mtyp€d’) = <X<1U>S—S, By T-INVK, we have
then mtypés) = <X<U>S—Sy.

o 0;0Feq:T
LEMMA 7. If mtypdm,A) = <XAU>T—To, then there exist 0+ exa%(TOo) <# A mtypém, Ag) = <X<U>T—$S,
X, €0, B andTO such that mboc{yn, A) =<X>X)eg andA + 0+ E ok DFE< [E/ﬂ [To/@ThiS]ﬁ
A <# B and This<:inexactB),X<:U; this : This,%:T + 0:0+-5:8 0+ S < [E/X][To/CThis|T
e : Sg andThis<: inexac‘(B),X«ﬁ F Sg < Tp. T=— [E/T [T()/ThiS}So



By the induction hypothesis, there exigtg such that
D0 eo :To!  OFTo < Tp.

We havel) - exactTy’) <# Ap. Since[Tq/@This]U and

[To/@This]T are well defined, by contravariance of exact

type substitution and Lemma 1,

0+ [E/X][To/@This]U <: [E/X|[To’/@This]U
() - [E/X][To/@This|T <: [E/X][To’/@This|T .

By T-INVK,
0;0 F e¢’ .<E>m(®) : [E/X][To'/This|Sy .
Finally, by covariance of type substitution, we have
0+ [E/X][To’/This]So <: [E/X][To/This|So
finishing the case. O

A.2 Proof of Theorem 2

By induction one. We show only main cases.

Case: e=¢q.f;

If e is not a value, by the induction hypothesig,— €’
for somee’y; then, useRC-HELD.

On the other hand, i&, is a value, then, byf-FIELD, it
must be of the formew Ay (¥) andT £; € fieldgA,’) for
somed,’ suchthaf) - Ag <# Ay’. By Lemma 5 and-NEw,
flelquo) =TfeT £;. Then,eo g, — vy
Case: e =¢y.<E>m(e)

If e; is not a value, by the induction hypothesis,— e';
for somee’;; then, useRC-INVK-RECV (if 7 = 0) or
RC-INVK-ARG (otherwise).

On the other hand, i, is a value, then byT-INVK,
it must be of the formnew Ao (¥) and mtypém, 4;') =
<X<U>S—8, for someAy’ such that; ) - Ay <# Ay'. By
Lemma 6,mtypdm, Ay) = <X<U>S—S, and, by Lemma 7,
mbodym, Ag) = <X>(X) e’ where|x| = [¢|. Thus, we have

e — [€/%, new Ay (¥)/this][E/X, Ap/This]e’
finishing the case. O
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