
Variant Path Types for Scalable Extensibility

Atsushi Igarashi

Kyoto University, Japan

igarashi@kuis.kyoto-u.ac.jp

Mirko Viroli

Alma Mater Studiorum – Università di Bologna,
Italy

mirko.viroli@unibo.it

Abstract
Much recent work in the design of object-oriented program-
ming languages has been focusing on identifying suitable
features to support so-calledscalable extensibility, where the
usual extension mechanism by inheritance works in differ-
ent scales of software components—that is, classes, groups
of classes, groups of groups and so on. Its typing issues has
usually been addressed by means of dependent type systems,
where nested types are seen as properties of objects. In this
work, we seek instead for a different solution, which can be
more easily applied to Java-like languages, in which nested
types are considered properties of classes.

We introduce the mechanism ofvariant path types, which
provide a flexible means to express intra-group relationship
(among classes) that has to be preserved through extension.
In particular, improving and extending existing works on
groups and exact types, we feature the new notions ofexact
andinexact qualifications, providing rich abstractions to ex-
press various kinds of set of objects, with a flexible subtyp-
ing scheme. We formalize a safe type system for variant path
types on top of Featherweight Java. Our development results
in a complete solution for scalable extensibility, similarly to
previous attempts based on dependent type systems.

Categories and Subject DescriptorsD.3.1 [Programming
Languages]: Formal Definitions and Theory; D.3.2 [Pro-
gramming Languages]: Language Classifications—Object-
oriented languages; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—Classes and objects; Poly-
morphism; F.3.3 [Logics and Meaning of Programs]: Stud-
ies of Program Constructs—Object-oriented constructs;
Type structure

General Terms Design, Languages, Theory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’07, October 21–25, 2007, Montréal, Qúebec, Canada.
Copyright c© 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00

Keywords Scalable extensibility, subtyping, variance, vari-
ant path types

1. Introduction
Background Much recent work in the design of object-
oriented programming languages has been focusing on iden-
tifying suitable features to support extensibility not just for
individual classes, but also for groups of classes, groups of
groups and so on. This research direction is meant to make
object-oriented languages meet the requirements ofscal-
ablecomponent-based applications: since a reusable piece of
code (namely, a component) can be implemented as a group
of cooperating classes, it would be useful to apply the tra-
ditional mechanism of inheritance to groups of classes. Re-
searches on family polymorphism [12], higher-order struc-
tures [13], nested inheritance [25], and grouping mecha-
nisms [3, 20, 30], all share this common goal, which we shall
refer to asscalable extensibility, the term coined in the work
by Nystrom et al. [25]. In particular, for an object-oriented
language supporting scalable extensibility, a number of fea-
tures must be provided, namely:(i) a mechanism for nest-
ing classes at an arbitrary level,(ii) an inheritance construct
seamlessly working for both single classes and groups of
classes,(iii) a flexible subtyping relation for nested class-
types, and(iv) a group-polymorphism mechanism.

It is very well known that scalable extensibility suffers
from the covariance problem: in the standard framework of
“inheritance is subtyping” of object-oriented languages, the
mutual inter-relationships of classes in the same group can-
not be safely preserved by group extension. Languages sup-
porting scalable extensibility usually solve this problem by a
rather expressive dependent type (or class) system, as in JX
[25], Scala [28], orgbeta [13] (notable exceptions include
Bruce’s work [3] and Concord [20]). Although there are sev-
eral studies on simple core calculi for languages with depen-
dent types—such as for Scala andgbeta [27, 10, 14]—such
languages are typically more complex than the standard Java
setting and more difficult to manage. In particular, the fact
that nested types are accessed through a restricted set of ex-
pressions raises subtle interactions with somewhat orthogo-
nal aspects such as immutability of fields and variables—
see Section 5 for a more detailed discussion. It is there-

fore interesting to study whether scalable extensibility can
be achieved in a language without dependent types, for pos-
sibly easier application to mainstream Java-like languages,
by starting from existing work on self-references (MyType),
grouping mechanisms, and exact types [5, 3, 20, 29].

Our Contributions In [29], we started approaching this
issue by seeking a minimal set of features for supporting
features related to family polymorphism [12] in the context
of scalable extensibility at only one level of nesting. This
set includes an inheritance mechanism for group of classes
decoupled from subtyping, a notion of relative path types
to express mutual dependency preserved by inheritance, and
family polymorphic methods through type variables over
groups—thereby, dependent types are avoided.

In this paper, we advance this approach by supporting ar-
bitrary levels of group hierarchies and by a new typing con-
struct which we namevariant path types1, which achieve
flexibility and expressiveness in both subtyping and acces-
sibility of the hierarchy. Based on our previous work [29],
this construct first extends the concept ofrelative path types
to work in a deeply nested structure. Then, generalizing the
notion of MyTypeand MyGroup in [2, 3], such types can
express self reference and mutual reference among classes
in a group, which have to be preserved by group extension.
In addition, such types feature two kinds of qualifications—
the notation to access a nested classD (as a type) inside
the class of a typeT—which can be used in combination
at any level of nesting:exact (T@D) and inexactqualifica-
tions (T.D). While exact qualification supports safe poly-
morphism at the group level (or binary methods in a broad
sense) by restricting subtyping, inexact qualification recov-
ers subtyping by preventing unsafe invocations of (binary)
methods. Thereby, they provide rich abstractions to express
various kinds of set of objects with flexible subtyping. The
name “variant” comes from the facts that:(i) the two kinds
of qualifications can be seen as operators that, given a path
typeT, take a (nested) class nameC and yield typesT@C and
T.C respectively; and(ii) such operators have variance prop-
erties concerning subtyping/subclassing similarly to variant
parametric types [18] (a.k.a. wildcards [32] in Java 5.0 [15]).
More specifically, exact qualifications act as invariant:T@D is
a subtype ofT@E only whenD = E; and inexact qualifications
act as covariant:T.D is a subtype ofT.E whenD extendsE
(inside the class of typeT).

Our technical contributions can be summarized as fol-
lows:

• the introduction of the notion of variant path types for
safe scalable extensibility; and

• formalization of a core languageˆFJ extending Feather-
weight Java [17] (FJ) with a sound type system of variant
path types.

1 This name was derived from the metaphor of a nesting hierarchy of classes
as a directory structure in a file system.

Full potential of the expressiveness of variant path types
and applicability to mainstream languages like Java are yet
to be fully explored. Nevertheless, variant path types are
interesting for they support safe extensions of groups in a
fairly simple setting, and can then be considered as a basis
for a lightweight form of scalable extensibility.

This paper is an extended version of [19].

Rest of This Paper Section 2 describes the basic frame-
work of classes with arbitrary level of nesting and exten-
sion; Section 3 introduces the informal syntax and semantics
of variant path types, mainly by means of examples. Then,
Section 4 develops the formal core calculusˆFJ. Finally, Sec-
tion 5 discusses related works, and Section 6 provides con-
cluding remarks.

2. Class Nesting and Extension
In this section, we briefly review how the notion of groups
and their extension provide scalable extensibility, by consid-
ering a simplified setting without static types.

2.1 Grouping Classes by Nesting

As in previous approaches [12, 13, 28, 25], we see a class
as both a mechanism to generate objects and one to group
classes. Considering the “graph” example [12], which is
described by a class definition like:

class Graph{
class Node{

field edges;
}
class Edge{

field src, dst;
method connect(node1, node2) {

src=node1; dst=node2;
}

}
..
method createGraph(..){..}

}

Here, we define agroup of classes: classesNode andEdge
are calledmemberclasses of thegroup classGraph. (In
order to concentrate on the semantics of groups and their
inheritance, in this section we will use keywordsfield and
method, instead of types, for field/method declarations.) To
denote a nested class, we rely on the familiar notation of
C1.C2. · · · .Cn, which can be used e.g. to create instances
out of membersEdge andNode as in the following code:

var e = new Graph.Edge(..);
var n = new Graph.Node(..);

(Again, we use the keywordvar for variable declarations.)
A new instance of memberEdge (Node, resp.) inside class
Graph is assigned to variablee (n, resp.).

A key idea of scalable extensibility is to extend the usual
class extension mechanism to allow a class to inherit not
only fields and methods but also member classes, which can
be further extended. For example, below is the definition of

the new group classCWGraph (a class for graphs of colored
nodes and weighted edges):

class CWGraph extends Graph {
class Node {
field color;

}
class Edge {
field weight;
method connect(node1, node2) {

weight = · · · ;
super.connect(node1, node2);

}
}

}

CWGraph inherits methodcreateGraph() and member
classesNode andEdge; furthermore, those member classes
are extended simultaneously with new fields and meth-
ods such ascolor, weight, and an overriding method
connect(). Hence, an instance ofCWGraph.Edge has three
fields:

var e = new CWGraph.Edge(..);
· · · e.weight · · · e.src · · · e.dst · · ·

This extension mechanism is meant to work at any
depth in the structure of nesting. IfGraph.Edge itself de-
fines member classesA andB, thenCWGraph.Edge.A and
CWGraph.Edge.B automatically inherit from the original
versions ofA andB insideGraph.Edge.

In standard single-inheritance languages such as Java and
Smalltalk, the “complete” definition of a subclass is obtained
by composing all of its superclasses by taking overriding
into account. Here, the complete definition of a class is
obtained byrecursivelycomposing enclosing classes from
the top level down to the leaf of the nesting hierarchy [11].
For example, the complete definition ofCWGraph is obtained
by composingObject, Graph andCWGraph in this order; it
composesNode andEdge in Graph with those inCWGraph,
resulting in the expected group of classes.

2.2 Extension inside Group

As discussed elsewhere [13, 25], it is reasonable to expect
members of a class to extend another class. In particular,
it would be useful to allow a member class to extend from
another in the same group to express the so-called expression
example [25, 31], as in Figure 1.

The group classAST (which stands for abstract syntax
trees) has classesLiteral andPlus for abstract syntax tree
nodes that extend another memberExpr of the same class.
Each member class is equipped with methodtoString()
to return a string representation of an abstract syntax tree.
In an extensionASTeval of AST, each member class is
extended witheval() for evaluation. As in the previous
example,ASTeval.Plus inherits fieldsop1 andop2 from
AST.Plus. This schema seems to naturally lead to a mul-
tiple inheritance scenario:ASTeval.Plus actually inherits
from ASTeval.Expr andAST.Plus, and both of these in-
herit from AST.Expr—thus leading to a typical diamond
structure. Notice that, while inheriting fromASTeval.Expr

class AST{
field root;
class Expr extends Object{

method toString(){ return ""; }
}
class Literal extends Expr {

field val;
method toString(){ return val; }

}
class Plus extends Expr {

field op1, op2;
method toString(){
return this.op1.toString()+

"+"+this.op2.toString();
}
method replaceOp1(e) { this.op1 = e; }

}
}
class ASTeval extends AST {
class Expr extends Object{

method eval(){ return 0; }
}
class Literal extends Expr{

method eval(){ return val; }
}
class Plus extends Expr{

method eval(){
return this.op1.eval() + this.op2.eval();

}
}

}

Figure 1. Simple Expressions

is explicit through theextends clause, inheriting from
AST.Plus is implicit, as it is due to the enclosing group
extension.

As argued also in Nystrom et al. [25], however, we can
avoid problems that typically happen in ordinary multiple-
inheritance languages by hierarchical, recursive composition
described above. To obtain a complete definition ofPlus
in ASTeval, for example, the top-levelASTeval is first
composed withAST, resulting in member classes each of
which is composed with the member class of the same name
in AST. Then, the complete definition ofPlus is finally
obtained by composingExpr and Plus in the composed
ASTeval. In this way, bodies of superclasses can be given
a linear order.

Note that in general, deeper nesting structures might lead
a class to inherit from more than two classes, but the above
discussion naturally extends to such cases, as formalized in
Section 4.

3. Variant Path Types
Built on top of this language fragment with class nesting
and hierarchical composition, we introduce variant path
types that allow a number of interesting relationships among
classes in a group to be expressed.

3.1 Absolute vs. Relative Path Types

The ability to automatically inherit member classes (in gen-
eral a whole structure of nesting) is not sufficient per se to

provide a true scalable extensibility mechanism in a stati-
cally typed setting. If some relationship exists among mem-
bers inside a group—e.g., inGraph we have that instances
of memberEdge should hold a reference to an instance of
memberNode—then we want it to be preserved through ex-
tension. That is, the same relation must automatically hold
in classCWGraph as well. More concretely, we may require
instances ofGraph.Edge to hold references to instances
of Graph.Node, and instances ofCWGraph.Edge to hold
references to instances ofCWGraph.Node, as also argued
in Ernst [12]. In other words, cross-group references such
as an instance ofCWGraph.Node being a source node of
Graph.Edgemust be disallowed. However, a naive type sys-
tem as in Java fails to express such an invariant: if we declare
src and dst to have typeGraph.Node, then those fields
would be inherited with the same type, resulting in cross-
group reference.

To express such relationship, we introduce a new kind
of types calledrelative path types[29], which refer to other
classes in a “relative” way from the class where that type
appears (as in relative path expressions in the UNIX file
system). Examples of relative path types areThis, This.A,
This.A.B, ^This, ^^This, ^This.A. Type This means
“the current class”—it is found in other languages [25, 4]
with a different name such asMyType [2]. Analogously,
type This.A means “memberA inside the current class”,
and This.A.B “member B inside memberA inside cur-
rent class”. Typê This means “the group of the current
class” (or “the enclosing class of the current class”), type
^^This “the group of the group of the current class”, and
so on. Finally,^This.A is “memberA inside the group
of the current class”, which is a type used by a class
to denote another member of its group. A general form
^ · · · ^This.C1.C2. · · · .Cn of relative path types is hence
understood as first going upk times in the nesting structure
(k is the number of “̂”), and then going down through path
C1.C2.. . ..Cn.2

In the previous graph example, the intra-group relation-
ship betweenEdge and Node is expressed by using type
^This.Node, which meansGraph.Node in the class of
Graph.Edge andCWGraph.Node in the class ofCWGraph.Edge,
and^This.Edge. Figure 2 shows a complete graph example
written in our language. Here, nodes hold a reference to an
array of edges of typêThis.Edge and edges hold two ref-
erences to source and destination nodes of type^This.Node
to express they are from the same kind of graph. In the class
CWGraph, types of those fields are inherited as written in the
superclass and they now refer toEdge andNode in CWGraph.
This example also clarifies the need to disallow cross-group

2 An operator similar tô is often introduced as a special form of qualifi-
cation.out [14, 9] and, in Tribe [9],.out can appear anywhere in a path
type. We allow^ to apply only toThis or type variables (introduced later)
since in our setting—where nested classes are properties of classes, rather
than objects as in Tribe—symbol^ in the middle of a type expression will
simply cancel a preceding qualification.

class Graph {
class Node {

^This.Edge[] es=new ^This.Edge[10];
int i=0;
void add(^This.Edge e) { es[i++] = e; }

}
class Edge {

^This.Node src, dst;
void connect(^This.Node s, ^This.Node d) {
src = s; dst = d;
s.add(this); d.add(this);

} }
..
This.Node startNode;
boolean containsNode(This.Node n){..}
boolean containsEdge(This.Edge n){..}

}
class CWGraph extends Graph {
class Node {

Color color;
}
class Edge {

int weight;
void connect(^This.Node s, ^This.Node d) {
weight = colorToWeight(s.color, d.color);
super.connect(s, d);

} }
}

Figure 2. Graph andCWGraph Classes

references: methodconnect() invoked throughCWGraph
must take two instances ofCWGraph.Node, otherwise ac-
cessing fieldcolor on them would fail.

As seen in previous section, relative path types are cou-
pled with types of the kindC1. · · · .Cn—which we callab-
solute path types, since they denote a certain class indepen-
dently of the location where such a type is used.

A natural way to exploit the class structure seen above
through absolute types is as follows:

Graph g = new Graph(· · ·);
· · ·
Graph.Node n = g.startNode;

CWGraph.Edge e;
CWGraph.Node n1,n2;
· · ·
e.connect(n1, n2);

Notice that the type ofstartNode is declared to be
This.Node and accessed through the absolute path type
Graph yields typeGraph.Node by substituting the receiver
type Graph for This. Similarly, the argument types of
e.connect() becomesCWGraph.Node by replacinĝ This
in the declared typêThis.Node with CWGraph, which is a
prefix of the receiver typeCWGraph.Edge.

3.2 Exactness for Type Safety

It is very well known that scalable extensibility suffers from
the covariance problem: in the standard framework of “in-
heritance is subtyping” of mainstream object-oriented lan-
guages, it is not safe to use typeThis (and some other rela-
tive path types) in certain places such as a method argument
type.

In our graph example, although classCWGraph inherits
Graph and classCWGraph.Node implicitly inherits from
Graph.Node, assuming naivelyCWGraph to be a subtype
of Graph or similarly CWGraph.Node to be a subtype of
Graph.Node will break type safety as the following code
reveals:

Graph.Node n1 = new Graph.Node(..);
Graph.Node n2 = new Graph.Node(..);

Graph.Edge e = new CWGraph.Edge(..);
e.connect(n1,n2); // Unsafe call

Graph g = new CWGraph(..);
Graph.Edge e2 = g.startNode.es[0];
e2.connect(n1,n2); // Also unsafe

Since the code fragment above is trying to connect two
Graph.Nodes with aCWGraph.Edge, the call toconnect()
causes the attempt to access fieldcolor on a node of type
Graph.Node, which doesnothave it! Actually, a similar sit-
uation occurs only by allowing subtyping betweenCWGraph
andGraph as the last three lines show.

To solve this problem, some language mechanism is re-
quired to ensure that the classes ofe, n1, andn2 are mem-
bers of the same group. The solution adopted in JX relies on
what they call dependent classes and immutable variables—
see Section 5 for a detailed discussion. We instead rely on
a simpler solution of exact types [5, 3, 4], briefly reviewed
below.

An exact type denotes instances of a single class, exclud-
ing any of its subclasses: thus exact types also plays a role
of run-time types of objects. We might use the tentative no-
tation@(A) to mean an exact type corresponding to the class
designated by the absolute path typeA: for example, ex-
act type@(Graph.Node) consists only of instances of class
Graph.Node. On the other hand, a typeGraph.Node, which
is said to beinexact, includes instances of classGraph.Node
and its subclasses, explicit or implicit.3 A method taking a
relative path type such asconnect() cannot be invoked on
inexactGraph.Edge, as we do not know whether an actual
instance belongs to the groupGraph or CWGraph. Thus, in-
vocation of a method taking a relative path type is allowed
only when the receiver type is exact; the argument type ob-
tained by replacingThis (or ^ · · · ^This) will also be con-
sidered exact. In this sense,This (possibly with^) is always
exact.

By using exact types, the type system can reject the
example above: invocation ofconnect() on inexact type
Graph.Edge is prohibited. If the type ofe were declared to
be@(Graph.Edge) so thatconnect() can be invoked, the
assignment

@(Graph.Edge) e = new CWGraph.Edge(..);

3 Note that the same notation “Graph.Node” is used sometimes to denote
a singleclassnamedNode nested inGraph and sometimes to denote an
inexacttype.

before the invocation would be prohibited because
@(Graph.Edge) is not a supertype of@(CWGraph.Edge).
(Expressionsnew will be given exact types since the class is
known.)

3.3 Exact and Inexact Qualifications and Subtyping

In the above section,@ was treated as an operator for abso-
lute path types. However, in our setting, we have found that
it is more natural to consider that@ is rather a new kind of
qualification in addition to “.”, in order to control the degree
of exactness in a more fine-grained manner! So, for class
AST.Expr, say, variant path types now feature four kinds
of types: afully exacttype@AST@Expr (which was written
@(AST.Expr) above),partially inexact types.AST@Expr
and@AST.Expr, and finally.AST.Expr (which was writ-
ten AST.Expr) with the usual meaning. We call “.”inex-
act qualificationand “@” exact qualification. Here,@ at the
head can be considered an exact qualification over the top
level, or a package. An inexact qualification over the top
level can be omitted for syntactic analogy with Java, writing
e.g.AST.Expr instead of.AST.Expr. (In the formal calcu-
lus introduced in the next section, on the other hand, even
“the top level” will be made explicit as the symbol/ and, for
example,AST.Expr will be formally written/.AST.Expr.)

The intuition behind a type like@A.B is “the common
supertype of all the members that extendsB inside class
A” (@A@B included). So, type@AST.Expr is a common su-
pertype of@AST@Expr, @AST@Literal, and @AST@Plus.
Similarly, A@B is read as “the common supertype of mem-
ber B in the groupA or its subclasses” (@A@B included).
So, AST@Expr is a common supertype of@AST@Expr and
@ASTeval@Expr but not @AST@Literal. Figure 3 shows
the subtyping hierarchy for abstract syntax nodes. The name
“variant path types” comes from the two kinds of qualifi-
cations, which introduce different variance with respect to
the simple class name after qualification: symbol@ acts as
invariant—T@D is a subtype ofT@E only whenD = E—and.
acts as covariant—T.D is a subtype ofT.E whenD extends
E (inside the class ofT).

Now, dots in relative path types are also considered inex-
act qualification: for instanceThis.B would be “the com-
mon supertype of all the members that extendsB inside the
current class”, and̂This.B “the common supertype of all
the members that extendsB inside the enclosing class”. Thus,
type^This.Expr used inside some member ofAST would
denote the set of all nodes of the current version of abstract
syntax tree. Now,AST with type annotations can be written
as follows:

class AST {
class Expr {..}
class Literal extends Expr {..}
class Plus extends Expr {

^This.Expr op1, op2;
String toString(){
return this.op1.toString()

+ "+" + this.op2.toString();
}

AST.Expr

@AST.Expr

44

AST@Expr

OO

@ASTeval.Expr

kk

@AST@Expr

OO 44

@ASTeval@Expr

OOkk

oo

@AST@Literal

==

44iiiiiii
@AST@Plus

__

iiSSSSSS
@ASTeval@Literal

::

33ggggggggg
ii @ASTeval@Plus

cc

kkVVVVVVVV

jj

Figure 3. The rich subtyping hierarchy for the expression example. Dotted arrows represent subtyping while solid arrows
represent inheritance, which isnot subtyping.

void replaceOp1(^This.Expr e) {
this.op1 = e; return;

}
}

}

Type ^This.Expr is used to denote the two operands of
a Plus expression. An instance of@AST@Plus can con-
tain any@AST.Expr, that is, instances of type@AST@Plus,
or @AST@Literal, as operands, whereas an instance of
@ASTeval@Plus can contain any@ASTeval.Expr. There-
fore, typesThis, ^This, ^^This, and so on, are exact types.

3.4 Inexact Qualification and Access Restriction

Since an inexact type is a common supertype of many ex-
act types, it is clear from the substitutability principle that it
should provide a more restricted access to its methods and
fields than any of those exact types, and in particular, its ex-
act version. For example, it is easy to see that@Graph@Edge
providesconnect(), which takes only@Graph@Nodes (not
@CWGraph@Node), whereasGraph.Edge does not.

Actually, even a partially inexact type can allow access to
methods taking relative path types. For example,connect()
can be safely invoked on@Graph.Edge since the argument
type^This.Node of connect() only requires arguments to
belong to the same graph—it does not requireNodes to be
exact (due to inexact qualification). The rule of thumb is that
a method taking a relative path type can be invoked when
the type replacinĝ · · · ^This is exact: in this case,̂This
in ^This.Node is replaced with exact@Graph, a prefix of
@Graph.Edge.4

4 One might want to usê This@Edge and ^This@Node rather than
^This.Edge and ^This.Node in the graph example in Figure 2. The
choice would not matter in this particular code because nested classesNode

andEdge do not have a binary method (such asequal() taking an argu-
ment of typeThis). If Node hadequal(), then invoking it ons or d inside
connect() have to be prohibited because the type ofs or d is (partially)
inexact. To invokeequal(), their types would have to bêThis@Node,
which is fully exact. See the discussion below, too.

To clarify the differences between̂This.C and This,
we describe an example ofequal() for checking (syntac-
tic) equality of abstract syntax trees. It also demonstrates
usefullness of partially inexact types.

A natural design choice would be to add this method to
classAST.Expr with signatureboolean equal(This e),
and implement it, for example, in classPlus as follows:

class AST {
· · ·
class Plus extends Expr{

^This.Expr op1, op2;
· · ·
boolean equal(This e){
return this.op1.equal(e.op1) &&

this.op2.equal(e.op2);
}

}
}

Unfortunately, this implementation does not typecheck:
sinceequal() takes a relative path typeThis, which re-
quires the receiver type to be fully exact, it cannot be in-
voked onthis.op1 of type^This.Expr. In fact, it should
not typecheck—it can happen that the (run-time) type of re-
ceiverthis.op1 and argumente.op1 are not the same. It
is also weird thatequal() takesThis, since it will only
amount to allowing comparison of two ASTs whose root
nodes are of the same kind. Thus, a correct version would
take^This.Expr instead ofThis to enable comparison be-
tween trees with arbitrary kinds of roots. However, simply
changingThis to ^This.Expr would not work—e.op1 is
disallowed this time.

To make it work, we have to simulate multi-dispatching
based on both receiver and argument types (a similar style
of programming for Scala is shown by Zenger and Oder-
sky [34]). A solution to this problem with variant path types
is shown in Figure 4. Each class is equipped with auxiliary
methodseqLit() and eqPlus(), specialized to different
kinds of AST nodes. In classExpr these methods provide
a default behavior to returnfalse. Actual code of com-

class AST {
class Expr{

· · ·
// default implementations
boolean equal(^This.Expr e){ return false;}
boolean eqLit(^This.Lit e){ return false; }
boolean eqPlus(^This.Plus e){ return false; }

}
class Lit extends Expr {
int i;
· · ·
boolean equal(^This.Expr b) {

return b.eqLit(this);
};
boolean eqLit(^This.Lit e) {

return e.i == this.i;
}

}
class Plus extends Expr {
^This.Expr op1, op2;
· · ·
boolean equal(^This.Expr b) {

return b.eqPlus(this);
};
boolean eqPlus(^This.Plus e) {

return this.op1.equal(e.op1) &&
this.op2.equal(e.op2);

}
}

}

Figure 4. Implementation of the methodequal().

parison is coded in specialized versions,Lit.eqLit() and
Plus.eqPlus(), where the argument has the same type as
the class in which they are defined. If the argument and the
class are different kinds, the answer should befalse, inher-
ited fromExpr. Finally, and more interestingly, inequal()
in Lit andPlus, the exact kind of the root of one of the
nodes (namelythis) is revealed, so comparison is delegated
to specialized versions by swapping the argument and the
receiver. Note thatthis of typeThis is passed to a method
taking^This.Lit or ^This.Plus; in general, it is safe to
allow subtyping betweenThis and^This.C in nested class
D that extendsC. This implementation correctly typechecks
and works as expected. Moreover, it is easy to add another
kind of expressions (other thanLit andPlus) by extending
AST.

3.5 Parametric Methods for Group-Polymorphic
Methods

One of the central ideas in family polymorphism [12] is
that it should be possible to develop functionalities that can
work uniformly over different families. Recasting it to our
framework, it means that we should be able to write methods
accepting as formal arguments instances of members of the
same group, where different invocations may be concerned
about different groups.

As an example, we consider the methodconnectAll()
that takes as input an array of edges and two nodes ofany
group (of graphs) and connects each edge to the two nodes.
We achieve it by adding parametric methods in the style of

Java 5.0 to our language, but with new features ofexact
type variableswith qualification. More concretely, method
connectAll() is written as follows:

<exact G extends Graph>
static void connectAll(G@Edge[] es,

G@Node n1, G@Node n2) {
for (int i: es) {
es[i].connect(n1,n2);

}
}

MethodconnectAll() is defined as parametric in an exact
type variableG—which represents the group used for each
invocation—with upper-boundGraph; and the arguments
are of typeG@Edge[], G@Node andG@Node, respectively. It
can be invoked as follows:

@Graph@Edge[] ges = · · · ;
@Graph@Node gn1 = · · · , gn2 = · · · ;
@CWGraph@Edge[] ces = · · · ;
@CWGraph@Node cn1 = · · · , cn2 = · · · ;

<@Graph>connectAll(ges, gn1, gn2); // OK
<@CWGraph>connectAll(ces, cn1, cn2); // OK
<@Graph>connectAll(ces, gn1, gn2);

// compile-time error
<Graph>connectAll(ces, gn1, gn2);

// compile-time error

In the first invocation of the example code, instantiation
of G with @Graph is specified, hence edges and nodes of
family Graph can be passed, and similarly in the second
invocation forCWGraph. The third invocation is not well
typed, asces has type@CWGraph@Edge[], which does not
belong to the group@Graph. (In other words, it is not a
subtype of@Graph@Edge[].) Finally, the last one is not well
typed, either, since an inexact typeGraph is passed to an
exact type variable. Notice that the introduction of exact type
variables is crucial:connect() is allowed to be invoked in
the method body exactly for the reason thatG is an exact type
and, if the fourth invocation were allowed, it would lead to
unsoundness.

Finally, as developed in our previous work [29], a type
inference mechanism can also be designed by extending that
in Java 5.0, so that the instantiation of type variables can be
automatically inferred—it is left for future work.

4. Formalizing Variant Path Types
In this section, we formalize the ideas described in the
previous section as a small core calculus calledˆFJ based
on Featherweight Java [17]. What we model here includes
nested classes with hierarchical composition, variant path
types, and parametric methods only with exact type vari-
ables, as well as the usual features of FJ, that is, fields, ob-
ject instantiation, and recursion bythis. In ˆFJ, a nested
class can extend eitherObject, which is an empty class,
or another class in the same group, though some other lan-
guages [20, 25] allow a more liberal style of inheritance. We
drop typecasts since one of our points is to show scalable ex-
tensibility is possible without resorting to typecasts, which

are used to get around restrictions imposed by a naive type
system. We assume every type variable to be exact for sim-
plicity and hence drop theexact keyword; non-exact type
variables would be easy to add.

4.1 Syntax

The abstract syntax of types, class declarations, method dec-
larations, and expressions is given in below. Here,n is a nat-
ural number (0 or positive integers); the metavariablesC and
D range over (simple) class names;X andY range over (ex-
act) type variables;S, T, U, andV range over types;f andg
range over field names;m ranges over method names; andx
ranges over variables.

A ::= / | A@C run-time types
E ::= / | Xn | E@C exact types
T ::= / | Xn | T@C | T.C types
L ::= class C / C { T f; L M } classes
M ::= <X/T>T m(T x){return e;} methods
e ::= x | e.f | e.<E>m(e) | new A(e) expressions

Following the custom of FJ, we put an over-line
for a possibly empty sequence. Furthermore, we ab-
breviate pairs of sequences in a similar way, writ-
ing “T f;” for “ T1 f1;. . .; Tn fn;”, where n is the
length of T and f, and “this.f=f;” as shorthand for
“this.f1=f1;. . .;this.fn=fn;” and so on. Sequences
of field declarations, parameter names, method definitions,
nested class definitions are assumed to contain no duplicate
names. So, we sometimes view a sequence as a mapping: for
example,L(C) denotes a classLi of nameC and similarly for
M. We write the empty sequence as•, denote the length of a
sequence using| · | and concatenation of sequences using a
comma. Unlike the previous section, we make the top level
explicit as/ in the formal syntax but we often abbreviate
/@C to @C and/.C to C.

Run-time types, which represent classes from which ob-
jects are instantiated, are also called absolute path types,
whereas types starting withXn, which corresponds tô · · · ^X
(with ^ n times) in the previous section, are called relative
path types.X0 is abbreviated toX by omitting the super-
script. Here, we extend the prefixing operation fromThis to
all type variables. Also note that for notational convenience
we use absolute path types such as@C@D, instead of the
common notationC.D used in the last section, fornew ex-
pressions and names of classes. A qualification of the form
@C is called exact whereas.C is called inexact. In particular,
a type without any inexact qualification is called an exact
type, ranged over byE as shown above.

As in FJ,Object is a special class name, whose definition
does not appear in the class table. Moreover, inˆFJ, qual-
ifications @Object and .Object are allowed everywhere
even though@A@Object is not defined in the class table. Al-
lowing such qualifications makes the definitions of lookup
functions simple:@A@Object is simply assumed to have no

members. We include/ (read “top-level”) without any qual-
ification also mostly for technical convenience and, as seen
in rules for well-formed types and typing,/ by itself cannot
appear in any program texts.

A class declaration consists of its name, the simple name
of its superclass, field declarations, methods, and nested
classes. The symbol/ is read “extends.” A method decla-
ration can be parameterized by exact type variablesX. Since
the language is functional, the body of a method is a single
return statement. An expression is either a variable, field
access, method invocation, or object creation. We assume
that the set of (type) variables includes the special variable
this (This, resp.), which cannot be used as the name of a
(type, resp.) parameter of a method.

A class tableCT is a finite mapping from run-time
typesA to (top-level or nested) class declarations and is as-
sumed to satisfy the following sanity conditions to identify
a class table with a set of top-level classes: (1)CT(A@C) =
class C · · · for everyA@C ∈ dom(CT); (2) if CT(A@C)
has a nested class declarationL of nameD, thenCT(A@C@D) =
L; and (3)A@Object 6∈ dom(CT) for anyA ∈ dom(CT). A
program is a pair(CT, e) of a class table and an expression.
To lighten the notation in what follows, we always assume a
fixedclass tableCT.

4.2 Hierarchical Composition and Lookup Functions

As discussed in Section 2, a complete definition of a nested
class is obtained by propagating composition of enclos-
ing classes in a top-down manner. We define a function
classes(A) to list up nested classes insideA after hierarchical
composition ofA. It requires the following auxiliary operator
L1⇐L2 to compose a superclassL1 with a subclassL2:

class C / D{T f; L1 M1}
⇐class C / D{U g; L2 M2}

= class C / D {T f; U g; (L1⇐L2) (M1⇐M2)}

Here,L1⇐L2 denotes the set union of classes fromL1 and
L2 where classes of the same name are recursively composed
by ⇐. Similarly, M1⇐M2 denotes the set union of methods
from M1 andM2 where methods inM2 have priorities over the
method of the same name inM1, sinceM2 are overriding def-
initions. Their straightforward definitions are omitted here
for brevity. In the definition ofL1⇐L2, theextends clauses
have to match in order to preserve inheritance structure of
nested classes.

Actually, we define a more general functionclasses(A, i)
instead of classes(A), which is consideredclasses(A, n)
where n is the length ofA (that is, the number of sim-
ple class names inA). The auxiliary argumenti, which is
a natural number, controls how deep hierarchical compo-
sition is performed to list up nested classes: for example,
classes(@C@D, 0) lists up only the nested classes that appears
in CT(@C@D) without taking inheritance into account at all;
classes(@C@D, 1) will compose the top-level classC with its

superclasses and returns nested classes appearing exactly in
D. In most cases, we use the specialized versionclasses(A);
the significance of the auxiliary argument will be clarified in
typing of classes.

The definition ofclasses(A, i) appears at the top of Fig-
ure 5. The first rule says thatA@Object has no nested
classes and the second that/ is the top-level. The third rule,
which deals with full composition, means that nested classes
in A@C are obtained by composing nested classes inC in
classes(A, i) with those in its superclassA@D. Note thatL are
also the result of composition till the depth of the enclosing
classA. The fourth rule, on the other hand, means that, when
i is less than the length ofA@C, nested classes inA@D are
ignored.

For example, consider the followingˆFJ classes:
class AST extends Object {

class Expr extends Object {
T m() { return e_1; }

}
class Lit extends Expr {
}
class Plus extends Expr {
T m() { return e_3; }

}
}
class ASTE extends AST {

class Expr extends Object {
}
class Lit extends Expr {
T m() { return e_5; }

}
class Plus extends Expr {
T m() { return e_6; }

}
}

Then,classes(/@ASTE, 1) returns nested classesExpr, Lit,
Plus obtained by composing ones insideASTE and its su-
perclassAST, i.e.,

class Expr extends Object {
T m() { return e_1; }

}
class Lit extends Expr {

T m() { return e_5; }
}
class Plus extends Expr {

T m() { return e_6; }
}

Here, methodm in class@AST@Plus has disappeared as it
is overridden by one in class@ASTE@Plus, which implicitly
extends@AST@Plus.

At this point, we can check that there are no cycles in the
inheritance relation at all levels. First, cycles at the top level
can be easily detected; if there is no cycle, thenclasses(@C)
is defined for any@C ∈ dom(CT). Second, the absence of cy-
cles inclasses(@C) can be checked for eachC, ensuring well-
definedness ofclasses(@C@D) for anyD ∈ dom(classes(@C)).
We can repeat this procedure until the maximum level of
nesting is reached.

One may wonder if cycles can be detected earlier when
a class table is given or later as part of typechecking. First
of all, cycles can be detected only when hierarchical com-

position is taken into account: for example, classC2 in the
classes below

class C1 {
class D1 extends D2 {}

}
class C2 extends C1 {
class D2 extends D1 {}

}

contains a cycle of nested classesD1 andD2 but it cannot
be detected unlessC1 andC2 are composed. Of course,C1
is already an ill-formed class sinceD2, specified as the su-
perclass ofD1, is missing. However, cycles should be de-
tected before typechecking—the process in which we find
C1 is ill formed—because typechecking uses lookup func-
tions, which works only when there are no cycles. Thus, cy-
cles should be detected now. In what follows, we assume
there are no cycles in the given class table.

Thanks toclasses(A, i), it is now easy to define functions
to look up fields and methods from a given class name. The
definitions of field/method lookup functions are also in Fig-
ure 5. Functionfields(A, i), which is similar toclasses(A, i),
enumerates all field names ofA (and its superclasses) with
their types. Similarly,mtype(m, A, i) returns the signature of
methodm in A.

Now, it is fairly easy to read off how class bodies are lin-
earized, i.e., in what order members are looked up: for exam-
ple, methods of an instance of@ASTE@Lit will be searched
in @ASTE@Lit, @AST@Lit, @ASTE@Expr, and@AST@Expr in
this order.

4.3 Type System

The main judgments of the type system consist of one for
type equivalence∆ ` S ≡ T, one for matching∆ ` E1 <#
E2, one for subtyping∆ ` S <: T, one for type well-
formedness∆ ` T ok, and one for typing∆;Γ ` e : T.
Here,∆, calledbound environment, is a finite mapping writ-
tenX<:T from type variablesX to typesT and records decla-
rations of type variables with their respective upper bounds.
Similarly, Γ, called type environment, is a finite mapping
written x:T from variablesx to T and records declarations
of method parameters with their respective types. As seen
later,∆ usually containsThis<:T, in whichT represents the
class where the judgment is made.

Following the custom of FJ [17], we abbreviate a se-
quence of judgments in the obvious way:∆ ` S1 <: T1, . . . ,
∆ ` Sn <: Tn to ∆ ` S <: T (similarly for type equivalence
and matching);∆ ` T1 ok, . . . ,∆ ` Tn ok to∆ ` T ok; and
∆; Γ ` e1:T1, . . . ,∆;Γ ` en:Tn to ∆;Γ ` e:T.

4.3.1 Auxiliary Definitions

We first define a few auxiliary operations used in typing
rules. Tn denotes a type obtained by dropping the lastn

classes(A, i)

classes(A@Object, i) = • (L are all top-level classes)
classes(/, i) = L

i ≥ |A@C| class C / D { · · · L · · · } ∈ classes(A, i) classes(A@D, i) = L′

classes(A@C, i) = L′⇐L

i < |A@C| class C / D { · · · L · · · } ∈ classes(A, i)
classes(A@C, i) = L

fields(A, i)

fields(A@Object, i) = •

class C / D {T f; · · · } ∈ classes(A, i) fields(A@D, i) = U g

fields(A@C, i) = U g, T f

mtype(m, A, i)

i < |A@C| class C / D { · · · M } ∈ classes(A, i) <X/U>S0 m(S x){ · · · } ∈ M

mtype(m, A@C, i) = <X/U>S→S0

n ≥ |A@C| class C / D { · · · M } ∈ classes(A, i) m 6∈ M mtype(m, A@D, i) = <X/U>S→S0

mtype(m, A@C, i) = <X/U>S→S0

Figure 5. ˆFJ: Lookup Functions

qualifications fromT; it is defined by:

Objectn = Object
T0 = T
(Xn)m = Xn+m

(T@C)n = Tn−1 (n > 0)
(T.C)n = Tn−1 (T.C 6= Object, n > 0)

Note that(·)n is an operation on types whereasXn is just a
syntactic entity.

By using the prefixing operation, (simultaneous) type
substitution[T/X] of types for type variables is defined as
follows:

[T/X]/ = /
[T/X]Xn

i = Tn
i

[T/X]Yn = Yn (if Y 6∈ X)
[T/X](S@C) = ([T/X]S)@C
[T/X](S.C) = ([T/X]S).C

Note thatXn is replaced with the corresponding prefix ofT.
[T/X]e is defined straightforwardly.

An exact type substitution[T/@X], which requires an exact
type whenXn is replaced, is similarly defined below:

[T/@X]/ = /
[T/@X]Xi

n = Ti
n (if Tn is exact)

[T/@X]Yn = Yn (if Y 6∈ X)
[T/@X](S@C) = ([T/@X]S)@C
[T/@X](S.C) = ([T/@X]S).C

Notice that the argumentT may contain inexact qualifica-
tions: for example,[@C.D1/@X]X^1@D2 = @C@D2 (whereas
[C.D1/@X]X^1@D2 is undefined).

exact(T) (inexact(T), resp.) denotes a type in which all
inexact (exact, resp.) qualifications inT are replaced by exact
(inexact, resp.) ones. They are defined by:

exact(/) = inexact(/) = /
exact(Xn) = inexact(Xn) = Xn

exact(T@C) = exact(T.C) = exact(T)@C
inexact(T@C) = inexact(T.C) = inexact(T).C

4.3.2 Type Equivalence

The judgment∆ ` S ≡ T can be read “typeS is equivalent
to T under∆.” The rules are shown in Figure 6. The first
three rules say that it is indeed an equivalence relation, and

the last two that it is a congruence. The key rule is the fourth
rule, which says that if the upperbound of a type variable is
exact, then the two types are in fact equivalent. The fifth rule
means that ifXn is equivalent to an exact typeE@C, then its
enclosing classXn+1 is to E and henceXn andXn+1@C are
equivalent: for example,

X <: @Graph@Node ` X ≡ X1@Node

can be derived.

4.3.3 Matching

The subtyping relation will be defined by using the inher-
itance relation, which is formalized as matching here. The
judgment∆ ` E1 <# E2 can be read “exact typeE1 matches
E2” or simply “E1 extendsE2.” The rules are shown in Fig-
ure 6. The matching relation is a partial order including type
equivalence and@Object as the top element, as seen in the
first three rules. The fourth rule means that, ifX is assumed
to be a subtype ofT, then it must extendexact(T) whatever
it is instantiated with. The fifth rule is similar to the fifth rule
for type equivalence: for example, the matching judgment

This <: Graph.Node ` This <# This1@Node

can be derived by this rule. The last rule deals withextends
clauses.

4.3.4 Subtyping

The judgment form for subtyping∆ ` S <: T can be read
“S is subtype ofT under∆.” Subtyping rules are shown
in Figure 6. As usual, subtyping is reflexive and transitive
with Object as the top type and a type variable (with some
prefixing) is a subtype of (the corresponding prefix of) its
declared upper bound. The sixth rule intuitively means that
exactness can be forgotten. The third last rule might look
counterintuitive since exact qualification works covariantly.
Note that, however, ifT is not exact, the resulting type
T@C is not exact, either. For example,@ASTeval@Plus is a
subtype ofAST@Plus, which includesPlus from bothAST
andASTeval. The last rule roughly means that inexact types
are related if one inherits the other—it is parallel to the last
rule of matching.

4.3.5 Type Well-formedness

The judgment form for well formed types is∆ ` T ok, read
as “T is well formed under∆.” The type well-formedness
rules are also in Figure 6. A type is well formed when the
class that the type points to inA exists. Even when the class
of a given name is not in the domain of the class table, it may
implicitly exist, due to nested inheritance, hence the function
classesis used in the last two rules. Note thatA@Object or
A.Object is always well formed ifA is well formed.

4.3.6 Typing

Typing for expressions. The typing judgment formΓ `
e : T is read “expressione is given typeT underΓ.” The

typing rules are shown in Figure 7; readers who are familiar
with languages with matching [2], in particular LOOJ [4],
will notice some similarities.

The key rules areT-FIELD for field access andT-INVK

for method invocation. The ruleT-FIELD means that the type
of field accesse0.fi is obtained by looking up field declara-
tions from the class that matches the receiver type. Note that,
if fi’s type is declared to be relative, thenThisi will be re-
placed with the corresponding prefix of the receiver type: for
example, iffields(@CWGraph@Node) = This1@Edge edg
andΓ = x : @CWGraph@Node, y : This1@Node, then

This<:CWGraph.Node; Γ ` x.edg : @CWGraph@Edge
This<:CWGraph.Node; Γ ` y.edg : This1@Edge.

In this way, accessing a field of relative path type gives a
relative path type only when the receiver is also given a
relative path type.

In T-INVK , the first line means that the type of the re-
ceiverT0 matches (i.e., inherits) a classA that has methodm
with the signature<X/U>T→S0. The second and third lines
roughly mean that the actual type arguments must be sub-
types of the corresponding upperboundsU and the types of
the actual value arguments must be subtypes of the corre-
sponding formal; the substitution is applied sinceUi may in-
cludeXi, . . . ,Xi−1 andT may includeX. As discussed in the
last section, binary methods can be invoked only when the
receiver type is exact and, in general, prefixedThis must be
exact5. For example, assume

mtype(@Graph@Edge, connect)
= (This1@Node, This1@Node)→ void .

Then

·; x : @Graph@Edge, y : @Graph@Node
` x.connect(y,y) : void

should be derived but not

·; x : Graph.Edge, y : @Graph@Node
` x.connect(y,y) : void .

In order to express this condition, we use exact type substi-
tution [T/@X] defined before. In this example,

[Graph.Edge/@This]This1@Node

is not well defined, making the second judgment above not
derivable. Note that, even if the receiver typeT0 contains
inexact qualification,[T0/@This] may succeed as in

[@Graph.Edge/@This1@Node]This1@Node = @Graph@Node.

So,
·; x : @Graph.Edge, y : @Graph@Node

` x.connect(y,y) : void

is derivable.

5 This requirement is essentially the same asexactness preservation[26].

∆ ` S ≡ T

∆ ` T ≡ T
∆ ` S ≡ T

∆ ` T ≡ S

∆ ` S ≡ T ∆ ` T ≡ U

∆ ` S ≡ U

X<:T ∈ ∆ Tn is exact
∆ ` Xn ≡ Tn

X<:T ∈ ∆ Tn = S@C

∆ ` Xn ≡ Xn+1@C

∆ ` S ≡ T

∆ ` S@C ≡ T@C

∆ ` S ≡ T

∆ ` S.C ≡ T.C

∆ ` E1 <# E2

∆ ` E1 ≡ E2

∆ ` E1 <# E2

∆ ` E1 <# E2 ∆ ` E2 <# E3

∆ ` E1 <# E3
∆ ` E <# @Object

X<:T ∈ ∆
∆ ` Xn <# exact(Tn)

X<:U ∈ ∆ exact(Un) = E@C

∆ ` Xn <# Xn+1@C

∆ ` E1 <# E2

∆ ` E1@C <# E2@C

∆ ` E <# A class C / D { · · · } ∈ classes(A)
∆ ` E@C <# E@D

∆ ` S <: T

∆ ` S ≡ T

∆ ` S <: T

∆ ` S <: T ∆ ` T <: U

∆ ` S <: U
∆ ` T <: Object

X<:T ∈ ∆
∆ ` Xn <: Tn

X<:T ∈ ∆ Tn = S.C

∆ ` Xn <: Xn+1.C

∆ ` T@C <: T.C
∆ ` S <: T

∆ ` S@C <: T@C

∆ ` S <: T

∆ ` S.C <: T.C

∆ ` exact(T) <# A class C / D { · · · } ∈ classes(A)
∆ ` T.C <: T.D

∆ ` T ok

∆ ` @Object ok ∆ ` Object ok
X<:T ∈ ∆ ∆ ` Tn ok

∆ ` Xn ok

class C / D { · · · } ∈ classes(/)
∆ ` @C ok

class C / D { · · · } ∈ classes(/)
∆ ` C ok

∆ ` T ok ∆ ` exact(T) <# A (class C / D { · · · } ∈ classes(A) or C = Object)
∆ ` T@C ok

∆ ` T ok ∆ ` exact(T) <# A (class C / D { · · · } ∈ classes(A) or C = Object)
∆ ` T.C ok

Figure 6. ˆFJ: Rules for type equivalence, matching, subtyping, and type well-formedness

Typing for methods. The judgment for well-formed meth-
ods is of the form` M ok in A, read “methodM is ok in
A.” The rule T-METHOD checks whether the method body
is well typed, provided thatthis is of typeThis and that
formal type and value parameters are given declared upper
bounds and declared types, respectively.This is bounded by
inexact(A), whereA is the class name in which the method is
declared, since the method, which may be inherited to sub-
classes ofA, has to work for any subclass ofA. Like FJ, the

signatures of overriding methods must be identical (modulo
renaming of type parameters) with the overridden, but, un-
like FJ, this condition will be checked byT-CLASS.

Typing for classes. The judgment for classes is of the form
` L ok in A, read “classL is ok in A.” The rule T-CLASS

means that a class is well formed if (1) its superclass, field
types, nested classes, and methods are all well formed; and
(2) methods are correctly overriding. The second line means

∆;Γ ` e : T

∆;Γ ` x : Γ(x) (T-VAR)

∆;Γ ` e0 : T0 ∆ ` exact(T0) <# A fields(A) = T f

∆;Γ ` e0.fi : [T0/This]Ti

(T-FIELD)

∆;Γ ` e0 : T0 ∆ ` exact(T0) <# A mtype(m, A) = <X/U>T→S0

∆ ` E ok ∆ ` E <: [E/X][T0/@This]U
∆; Γ ` e : S ∆ ` S <: [E/X][T0/@This]T

∆;Γ ` e0.<E>m(e) : [E/X, T0/This]S0

(T-INVK)

∆ ` A0 ok fields(A0) = T f ∆;Γ ` e : S ∆ ` S <: ([A0/This]T)
∆; Γ ` new A0(e) : A0

(T-NEW)

` M ok in A

∀i ∈ 1..|U|.(This<:inexact(A), X1<:U1, . . . , Xi−1<:Ui−1 ` Ui ok)
∆ = This<:inexact(A), X<:U

∆ ` T0, T ok ∆; this : This, x : T ` e : S0 ∆ ` S0 <: T0

` <X/U>T0 m(T x){ return e; } ok in A
(T-METHOD)

` L ok in A

This<:C1. · · · .Cn−1 ` T ok ` L ok in @C1@ · · · @Cn ` M ok in @C1@ · · · @Cn

` class D/D′{} ok in @C1@ · · · @Cn

for anyD such thatclass D/D′{ · · · } ∈ classes(@C1@ · · · @Cn) andD 6∈ dom(L),

for anym, i ∈ {1, . . . , |A@C|},
if mtype(m, @C1@ · · · @Cn, i − 1) = <Y/U>S→S0 and
class Ci/Ci

′{..} ∈ classes(@C1@ · · · @Ci−1, i − 1) and
mtype(m, @C1@ · · · @C′i@ · · · @Cn, i) = <Y/U′>S′→S0

′,
thenU′, S0

′, S′ = U, S0, S

` class Cn / Cn
′ { T f; L M } ok in @C1@ · · · @Cn−1

(T-CLASS)

Figure 7. ˆFJ: Typing Rules

that a nested classD implicitly inherited insideCn is equiv-
alent to an explicit class with the empty body and it must
be well-formed, too. This condition ensures the signatures
of methods inherited from all superclasses of@C1 · · · @Cn@D
are identical.

The last big condition ensures correct method overriding,
which is more involved to check than it may first appear,
because one class may inherit definitions from multiple su-
perclasses. For concreteness, consider a class@C1@C2@C3 to
see what this condition means. Wheni = 1, it says

if mtype(m, @C1@C2@C3, 0) = <Y/U>S→S0

and class C1/C1
′{..} ∈ classes(/, 0) and

mtype(m, @C1
′@C2@C3, 1) = <Y/U′>S′→S0

′, then
U′, S0

′, S′ = U, S0, S.

It means that the signature of a method defined exactly in
@C1@C2@C3 is the same as the one inherited from@C1

′@C2@C3

(or @C1
′′@C2@C3, and so on). So, it amounts to checking

consistency of the signatures of the methods in the class

@C1@C2@C3

against those defined (if any) in the lowest class in the chain
of classes

@C′1@C2@C3 <# @C′′1@C2@C3 <# · · ·

(where@C1 <# @C1
′ <# @C1

′′). Wheni = 2, the condition
implies the consistency of the signatures of the methods in
the classes that appear in the previous step

@C1@C2@C3 <# @C′1@C2@C3 <# @C′′1@C2@C3 <# · · ·

against those in the plane of classes

...
...

<
#

<
#

@C1@C′′2@C3 <# @C′1@C′′2@C3 <# · · ·

<
#

<
#

@C1@C′2@C3 <# @C′1@C′2@C3 <# · · ·

(where@C2 <# @C2
′ <# @C2

′′). Note that, in this step, meth-
ods inherited from different directions, that is,@C′1@C2@C3

and @C1@C′2@C3 are checked against each other, even if
@C1@C2@C3 does not have a methodm. Finally, wheni = 3,
the merged plane, obtained by combining the chain and the
plane above, is checked against the three dimension space,
which covers@C1@C2@C3’s all superclasses, which have not
been covered in the previous steps.

Finally, a program(CT, e) is well formed if all (top-level)
classes inCT are well formed and∅; ∅ ` e : T for someT.

4.4 Operational Semantics

The operational semantics is given by the reduction relation
of the forme −→ e′, read “expressione reduces toe′ in
one step.” We require another lookup functionmbody(m, A),
of which we omitted the obvious definition, for the method
body with formal (type) parameters, written<X>(x)e, of
given method and class names.

The reduction rules are given below. We write[d/x, e/y]e0

for the expression obtained frome0 by replacingx1 with d1,
. . . ,xn with dn, andy with e. There are two reduction rules,
one for field access and one for method invocation, which
are straightforward, thanks to lookup functions. The reduc-
tion rules may be applied at any point in an expression, so
we also need the obvious congruence rules(ife −→ e′ then
e.f −→ e′.f, and the like), omitted here.

fields(A) = T f

new A(e).fi −→ ei

(R-FIELD)

mbody(m, A) = <X>(x)e0

new A(e).<E>m(d) −→
[d/x, new A(e)/this][E/X, A/This]e0

(R-INVK)

We write−→∗ for the reflexive and transitive closure of−→.

4.5 Type Soundness

The type system is sound with respect to the operational se-
mantics, as expected. Type soundness is proved in the stan-
dard manner via subject reduction and progress [33, 17]. For
brevity, we only sketch the proofs in Appendix; full proofs
appear in an extended version of the paper, available at
http://www.sato.kuis.kyoto-u.ac.jp/~igarashi/
papers/.

The set of values, mentioned in Theorem 2, are defined
by: v ::= new A(v), wherev can be empty.

THEOREM 1 (Subject Reduction).If ∅; ∅ ` e : T ande −→
e′, then∅; ∅ ` e′ : T′, for someT′ such that∅ ` T′ <: T.

THEOREM 2 (Progress).If ∅; ∅ ` e : A ande is not a value,
thene −→ e′, for somee′.

THEOREM 3 (Type Soundness).If ∅; ∅ ` e : T ande −→
e′ with e′ being a normal form, thene′ is a valuev such that
∅; ∅ ` v : A, for someA such that∅ ` A <: T.

5. Related Work and Discussion
Nested Inheritance. The present work has emerged as an
enhancement of language constructs for lightweight family
polymorphism [29], with arbitrary levels of nesting, explicit
inheritance between nested classes in the same group, and
generalized relative path types with inexact qualification.
The resulting language design is very close to Nystrom et
al.’s JX language [25], though without exploiting dependent
types(/classes).

JX supports an extension mechanism called nested inher-
itance that allows an inheritance hierarchy to be nested in
another class and such a hierarchy to be inherited and ex-
tended by extending the enclosing class, just as our proposal.
Indeed, it is very similar how class definitions are composed.
Moreover, JX allows a class to extend another class outside
the group.

Key ideas in their type system are dependent classes and
prefix types. Dependent classes are type expressions of the
form p.class, which meansp’s run-time class (here,p is
a sequence of final field accesses on a final variable). Us-
ing dependent classes, a methodequal() would take an
argument of typethis.class, which guarantees that the
run-time classes of the receiver and the argument agree.
The notion called prefix types is usually used with depen-
dent classes to express an enclosing class of a dependent
class. For example,Graph[n.class] meansn.class’s in-
nermost enclosing class, which is a subclass ofGraph. By
combining the fact that inheritanceis considered subtyping,
they are useful when two arguments have to share the same
enclosing class as inconnect all() as in Section 3. For
example, here is its variantmake loop() written in JX.

void make_loop(final Graph.Node n,
Graph[n.class].Edge e) {

n.src = n.dst = e;
}

JX’s static type system guarantees that the actual argu-
ment’s run-time types share the same enclosing class, which
must be a subclass ofGraph. Since inheritance is subtyp-
ing, CWGaph.Node is a subtype ofGraph.Node and so
make loop() can be invoked withCWGraph.Node and
CWGraph.Edge. Since types now refer to expressions, the
interaction with side-effects must be taken into account; JX
poses the restriction that.class can be preceded only by
a sequence of zero or more accesses of final fields to final
variables (includingthis) to avoid the meaning of the same

dependent class expression to change at different program
points. That’s whyn is (and must be) qualified withfinal.
On the other hand, our language design is completely or-
thogonal to assignments, which are therefore not considered
in ˆFJ calculus—we expect they can be easily and safely
added with the usual typing rule.

Instead of dependent classes, we use type variables and
This to achieve the separation of types and expressions for
ease of typechecking. In particular, we observe that value
arguments of JX also play the role of type arguments. It
will be more apparent by comparing with the definition of
make loop() in our language:

<exact X extends Graph.Node>
void make_loop(X n, ^X@Edge e) { · · · }

Notice thatX plays the role ofn.class in the JX code.
Following how connect all() is written is Section 3, it
can also be written

<exact X extends Graph>
void make_loop(X@Node n, X@Edge e) { · · · }

We believe that separating type variables gives more intu-
itive method signatures, especially when parametric types
are involved; for example, ifconnect all(), which takes
arrays, is to be written in JX, the method definition seems to
be something like:

void connect_all(final Graph g,
g.class.Edge[] es,
g.class.Node[] ns) { · · · }

or

void connect_all(final Graph.Edge e,
e.class[] es,
Graph[e.class].Node[] ns) { · · · }

which requires avalue parameterg or e, which is not re-
quired by the method body.

One consequence of this design of JX seems that, as op-
posed to the common understanding, subtyping doesnot
quite imply substitutability, which we think is not very intu-
itive: if an expression in a program is replaced with another,
which is of a subtype of the original, the program can be-
come ill-typed. For example, suppose classC, which has the
subclassD, has methodequal() that takes an argument of
typethis.class. Then,c.equal(c) would be well typed
under the assumption thatc has typeC. SinceD is a subtype
of C in JX, one might expect thatd of typeD would be substi-
tutable forc and sod.equal(c) would be also well typed
but, in fact, it is not. In our type system, subtyping implies
substitutability thanks to the distinction between exact and
inexact qualifications:c.equal(c) is allowed only whenc
is given an exact type@C and it can be replaced only by an-
other expression of the same exact type.

More recently, Nystrom, Qi, and Myers [26] have ex-
tended JX to support the mechanism called nested intersec-
tion, which is similar to symmetric mixin composition in
Scala [28, 27]. It would be interesting future work to add
nested intersection tôFJ.

Matching. A series of work [2, 7, 6, 4] by Bruce and his
colleagues has been addressing statically safe type systems
for languages with the notion ofMyType(corresponding to
This in this paper). As we have also discussed, even if one
class extends another, the object type from the former is
not always a subtype of that from the latter due to binary
methods—methods whose argument types includeMyType.
Instead of subtyping, they introduce the matching relation
on object types, which reflects the class hierarchy and plays
an important role in typechecking binary methods. In the
language calledLOOM [6], the notion ofhash typesof
the form#T is introduced;#T behaves as a common super-
type6 of all types that matchT but binary methods cannot
be invoked on it. Our inexact qualification can be consid-
ered a generalization of hash types in the context of nested
classes. It may be worth noting that in some other languages
of theirs [5, 3, 4], hash types are “default” (requiring no spe-
cial symbols such as#) and objects types on which binary
methods can be invoked are called exact types and written
@T.

Also, they have introduced match-bounded polymorphic
methods [7] to describe generic methods that work on differ-
ent types that match the same interface. Polymorphic meth-
ods in this paper can be viewed as match-bounded polymor-
phic methods in disguise, since if an exact typeE is a sub-
type ofT, thenE matchesexact(T). Our choice is mainly for
the sake of familiarity and uniformity with usual subtype-
bounded polymorphic methods.

Later, the notion ofMyTypeis extended from self-recursive
object types to mutually recursive object types, resulting in
the notion ofMyGroup [5, 8, 3]. Here, mutually recursive
classes are put in a group, which is extensible just as classes,
andMyGroup, which changes its meaning along group ex-
tension, is used to express mutual references among classes.
In this paper, groups and classes are unified into a single
mechanism of classes, which can be arbitrarily nested. Ac-
cordingly,MyTypeandMyGroupare unified into a relative
path typeThisn.

Concord [20] is another language that also has the notion
of groups andMyGroup. A main difference from the present
work is that Concord does not support nesting of groups but
allows a class in a group to extend an absolute type, a class
outside the enclosing group. It would be interesting future
work to extend our language to allow a class to extend non-
siblings.

Virtual Classes. Historically, virtual classes [21] (more
precisely, virtual patterns) in Beta [22] have been very influ-
ential to much work on the design of languages that support
scalable extensibility by using nesting structure of classes.
The basic idea of virtual classes is to allow classes to be
attributes of objects just as methods, by putting nested class

6 Subtyping is not explicitly mentioned in their paper but there are typing
rules to convert from one (exact) type to its hash version and from a hash
type to another hash type which is matched by the former.

definitions in another class and those nested classes to be
inherited and further extended in a subclass. Although the
original proposal was not statically type-safe, virtual classes
are useful to describe not only generic data structures but
also mutually recursive classes such as nodes and edges of
graphs and their extensions.

Ernst, who coined the term “family polymorphism,” im-
proved Beta’s static analysis in the development of the lan-
guagegbeta to ensure the safety of the use of virtual classes
as extensible mutually recursive classes [12] and also higher-
order hierarchies [13], which refer to a mechanism that al-
lows extensible class hierarchies just as in the example of
AST in this paper.

Nested classes ingbeta are designed to be members (or
attributes) of an object of their enclosing class as in Beta. So,
in order to instantiate a nested class, an enclosing class has
to be instantiated first and then a constructor of the nested
class is invoked on the enclosing instance (that is, the in-
stance of the enclosing class) as in inner classes of Java [16].
Unlike Java, however, objects from the same nested class
with different enclosing instances are distinguished by the
static analysis, making it possible to create many copies of
the same group and prevent objects from different copies
from being mixed. For example, one can implement hash
tables by a class that has a virtual class implementing ele-
ments; then, elements from different instances of hash tables
will not be mixed. Scala [27, 28] and CaesarJ [23] adopt a
similar mechanism of virtual classes. From the type system
point of view, such a mechanism can be considered like de-
pendent types [1]. In fact, a type is a path of (immutable)
field accesses followed by a class name in the virtual class
calculus [14], which modelsgbeta-style virtual classes de-
scribed above.

On the one hand, these languages are more powerful
than ours in the following points. First, as mentioned above,
groups are finer grained and their number is unbounded since
they are expressed by objects. Second, they can better deal
with the situation where the identity of a group is abstracted
out. For example, consider hash tables that are put into a
data structure such as a list. Then, information on which hash
tables are held by the list is lost in general. Nevertheless, it
is still possible to extract an element from a hash table and
put it back to the same hash table without exactly knowing
a type of an element. In some sense, the type systems of
these languages are equipped with some kind of existential
types. On the other hand, in our language, once exact type
information is lost, there is no way of recovering it. For
example, it is not possible to invokereplaceOp1() on
inexactAST.Plus. We expect this limitation can be lifted by
introducing a mechanism similar to the unpacking operation
in the context of existential types [24] or by a mechanism
similar to wildcard capture [32].

On the other hand, our typing mechanism seems to have
the advantage that it is easy to express, say, all sorts of

expressions by inexact qualifications. Since there is only a
single kind of qualification for those path dependent types,
it does not seem very easy to express such a type.

More recently, Clarke et al. have proposed another virtual
class calculus called Tribe [9], in which nested classes are
members of an object of their enclosing class, too. Tribe
generalizes types for existing languages of virtual classes
by allowing both final field access.f and class access.C,
which can appear in any order. For example, an expression
this.f (wheref is a final field) is also a singleton type,
which denotes the value ofthis.f; this.C meanssome
object of the classC nested inthis; C.f refers to the object
in field f of some object ofC (or one of its subclasses); and
C.D refers tosomeobject of the classD nested in some object
of C (or one of its subclasses).

Tribe types provide fine control over subtyping in a way
similar to, but different from ours. While their qualifica-
tion .C roughly corresponds to our inexact qualification, the
qualification.f can be considered “very exact” qualification
in the sense that it always denotes a single object, rather than
objects of a single class as our exact qualification denotes.

We believe that these languages, in which nested classes
are treated as members of objects, should benefit from our
exact qualification, which provides an intermediate degree
of exactness between very exact qualification by final field
accesses and ordinary inexact qualifications. For example,
exact types are useful to express standard binary methods
such as equality, which—as far as we understand—does not
seem very straightforward to express with Tribe types only.

6. Concluding Remarks
We have proposed variant path types to support safe scal-
able extensibility. Relative path types, a natural extension of
MyTypeby Bruce et al. in the context of nested classes, en-
able to describe inter-relationship among classes in the same
group, preserved by extension of the enclosing class. Also,
exact and inexact qualifications give flexible abstractions for
various kinds of set of instances with a rich subtyping hier-
archy. The type system has been formalized as an extension
of Featherweight Java, and proved to be sound.

Main future work of this research concerns evaluating the
applicability to a full-blown language such as Java. For ex-
ample, it is interesting to investigate type inference for para-
metric methods, which we have already done to some degree
in previous work [29]. Moreover, it would be useful to study
alternative syntactic sugar for variant path types, to support
common programming patterns as in [25]. Implementation
issues are also left for future work but we believe that the
techniques described in Nystrom et al. [25] can be applied to
our proposal, as the semantics of inheritance of our language
is similar (in fact, simpler).

Acknowledgments
We thank Vincent Siles for finding bugs in proofs and help-
ing us prove a fixed lemma and anonymous reviewers for
useful comments. The first author would like to thank mem-
bers of the Kumiki project for fruitful discussions on this
subject. This work was supported in part by Grant-in-Aid
for Scientific Research No. 18200001 and Graint-in-Aid for
Young Scientists (B) No. 18700026 from MEXT of Japan
(Igarashi), and from the Italian PRIN 2006 Project “EOS
DUE—Extensible Object Systems: Dynamic and Unpre-
dictable Environments” (Viroli).

A. Proof Sketches
We sketch the proofs of Theorems 1 and 2. (Theorem 3 is
their easy consequence.) The structure of the proof of sub-
ject reduction is similar to those for Featherweight Java and
Featherweight GJ [17]. So, we first prove various substi-
tution lemmas, which are all proved by induction on the
derivations, including the following four:

LEMMA 1 (Type Substitution Preserves Subtyping).If
X<:U, ∆ ` S <: T and ∅ ` U ok and∅ ` A <: U, then
[A/X]∆ ` [A/X]S <: [A/X]T.

LEMMA 2 (Type Substitution Preserves Type Well-formedness).
If X<:U, ∆ ` T ok and∅ ` A, U ok and∅ ` A <: U, then
[A/X]∆ ` [A/X]T ok.

LEMMA 3 (Type Substitution Preserves Typing).If
X<:U, ∆;Γ ` e : T and ∅ ` U ok and ∅ ` A <: U,
then there existsT′ such that[A/X]∆; [A/X]Γ ` [A/X]e : T′

and[A/X]∆ ` T′ <: [A/X]T.

LEMMA 4 (Substitution Preserves Typing).If ∆;Γ, x:T `
e : T0 and∆;Γ ` d : S and∆ ` S <: T, then there exists
T0

′ such that∆;Γ ` [d/x]e : T0
′ and∆;Γ ` T0

′ <: T0.

In the proofs of the last two lemmas about typing, we also
use lemmas stating that type substitution is covariant, i.e., if
∆ ` S1 <: S2, then∆ ` [S1/X]T <: [S2/X]T, and that exact
type substitution is contravariant, i.e., If∆ ` S1 <: S2 and
[S2/@X]T is well defined, then∆ ` [S2/@X]T <: [S1/@X]T.

Then, we prove properties of lookup functions: a field or
method of some class is also present in any of its subclasses
and, if a method type lookup succeeds, then a method body
lookup also succeeds and the body is well typed.

LEMMA 5. If ∅ ` A <# A′ and T f ∈ fields(A′), then
T f ∈ fields(A).

LEMMA 6. If ∅ ` A <# A′ and mtype(A′) = <X/U>S→S0,
then mtype(A) = <X/U>S→S0.

LEMMA 7. If mtype(m, A) = <X/U>T→T0, then there exist
x, e0, B andT0 such that mbody(m, A) = <X>(x)e0 and∆ `
A <# B and This<:inexact(B), X<:U; this : This, x:T `
e0 : S0 andThis<:inexact(B), X<:U ` S0 <: T0.

A.1 Proof of Theorem 1

By induction on the derivation ofe −→ e′ with case analysis
on the last rule used. We show only main cases.

CaseR-FIELD: e = new A(e).fi fields(A) = T f
e′ = ei

By T-FIELD, andT-NEW, we have

∅ ` A ok ∅; ∅ ` e : S ∅ ` S <: [A/This]T
∅ ` A <# A′ U fi ∈ fields(A′) T = [A/This]U

By Lemma 5,U fi ∈ fields(A) andU = Ti. Thus,∅; ∅ ` ei :
Si and∅ ` Si <: T, finishing the case.

CaseR-INVK : e = er.<E>m(d)
er = new A(e)
mbody(m, A) = <X>(x)e0

e′ = [d/x, er/this][E/X, A/This]e0

By T-INVK andT-NEW, we have

∅ ` A ok ∅; ∅ ` new A(e) : A
∅ ` A <# A′ mtype(m, A′) = <X/U>T→S0

∅ ` E ok ∅ ` E <: [E/X][A/@This]U
∅; ∅ ` e : S ∅ ` S <: [E/X][A/@This]T
T = [E/X, A/This]S0 .

By Lemma 6,mtype(A) = <X/U>T→S0. Then, by Lemma 7,
there existB andU0 such that

∅ ` A <# B
This<:inexact(B), X<:U; x:S, this:This ` e0 : U0

This<:inexact(B), X<:U ` U0 <: S0 .

We can prove that∅ ` A <# B implies∅ ` A <: inexact(B).
Then, by Lemma 3, there existsU0

′ such that

∅; x : [E/X][A/This]S, this : A ` [E/X][A/This]e0 : U0
′

∅ ` U0
′ <: [E/X][A/This]U0 .

We also have

∅ ` [E/X][A/This]U0 <: [E/X][A/This]S0

by Lemma 1. Finally, by Lemma 4, there existsU0
′′ such that

∅; ∅ ` e′ : U0
′′ ∅ ` U0

′′ <: U0
′ .

Finally, byS-TRANS, ∅ ` U0
′′ <: T, finishing the case.

CaseRC-INVK -RECV: e = e0.<E>m(e>
e0 −→ e0

′

e′ = e0
′.<E>m(e)

By T-INVK , we have

∅; ∅ ` e0 : T0

∅ ` exact(T0) <# A0 mtype(m, A0) = <X/U>T→S0

∅ ` E ok ∅ ` E <: [E/X][T0/@This]U
∅; ∅ ` e : S ∅ ` S <: [E/X][T0/@This]T
T = [E/X][T0/This]S0

By the induction hypothesis, there existsT0
′ such that

∅; ∅ ` e0
′ : T0

′ ∅ ` T0
′ <: T0 .

We have∅ ` exact(T0
′) <# A0. Since [T0/@This]U and

[T0/@This]T are well defined, by contravariance of exact
type substitution and Lemma 1,

∅ ` [E/X][T0/@This]U <: [E/X][T0
′/@This]U

∅ ` [E/X][T0/@This]T <: [E/X][T0
′/@This]T .

By T-INVK ,

∅; ∅ ` e0
′.<E>m(e) : [E/X][T0

′/This]S0 .

Finally, by covariance of type substitution, we have

∅ ` [E/X][T0
′/This]S0 <: [E/X][T0/This]S0

finishing the case. ¤

A.2 Proof of Theorem 2

By induction one. We show only main cases.

Case: e = e0.fi

If e0 is not a value, by the induction hypothesis,e0 −→ e′0
for somee′0; then, useRC-FIELD.

On the other hand, ife0 is a value, then, byT-FIELD, it
must be of the formnew A0(v) andT fi ∈ fields(A0

′) for
someA0

′ such that∅ ` A0 <# A0
′. By Lemma 5 andT-NEW,

fields(A0) = T f ∈ T fi. Then,e0.fi −→ vi.

Case: e = e0.<E>m(e)

If ei is not a value, by the induction hypothesis,ei −→ e′i
for somee′i; then, useRC-INVK -RECV (if i = 0) or
RC-INVK -ARG (otherwise).

On the other hand, ife0 is a value, then byT-INVK ,
it must be of the formnew A0(v) and mtype(m, A0

′) =
<X/U>S→S0 for someA0

′ such that∅; ∅ ` A0 <# A0
′. By

Lemma 6,mtype(m, A0) = <X/U>S→S0 and, by Lemma 7,
mbody(m, A0) = <X>(x)e′ where|x| = |e|. Thus, we have

e −→ [e/x, new A0(v)/this][E/X, A0/This]e′

finishing the case. ¤

References
[1] David Aspinall and Martin Hofmann. Dependent types. In

Benjamin C. Pierce, editor,Advanced Topics in Types and
Programming Languages, chapter 2, pages 45–86. The MIT
Press, 2005.

[2] Kim B. Bruce. A paradigmatic object-oriented programming
language: Design, static typing and semantics.Journal
of Functional Programming, 4(2):127–206, April 1994.
Preliminary version in POPL 1993, under the title “Safe type
checking in a statically typed object-oriented programming
language”.

[3] Kim B. Bruce. Some challenging typing issues in object-
oriented languages. InProceedings of Workshop on Object-
Oriented Development (WOOD’03), volume 82 ofElectronic
Notes in Theoretical Computer Science, 2003.

[4] Kim B. Bruce and J. Nathan Foster. LOOJ: Weaving LOOM
into Java. InProceedings of European Conference on Object-
Oriented Programming (ECOOP2004), volume 3086 of
Lecture Notes on Computer Science, Oslo, Norway, June
2004. Springer Verlag.

[5] Kim B. Bruce, Martin Odersky, and Philip Wadler. A
statically safe alternative to virtual types. InProceedings of
12th European Conference on Object-Oriented Programming
(ECOOP’98), volume 1445 ofLecture Notes on Computer
Science, pages 523–549, Brussels, Belgium, July 1998.
Springer Verlag.

[6] Kim B. Bruce, Leaf Petersen, and Adrian Fiech. Subtyping
is not a good “match” for object-oriented languages. InPro-
ceedings of 11th European Conference on Object-Oriented
Programming (ECOOP’97), volume 1241 ofLecture Notes
on Computer Science, pages 104–127, Jyväskyl̈a, Finland,
June 1997. Springer Verlag.

[7] Kim B. Bruce, Angela Schuett, and Robert van Gent. Poly-
TOIL: A type-safe polymorphic object-oriented language. In
W. Olthoff, editor,Proceedings of 9th European Conference
on Object-Oriented Programming (ECOOP’95), volume 952
of Lecture Notes on Computer Science, pages 27–51, Aarhus,
Denmark, August 1995. Springer Verlag.

[8] Kim B. Bruce and Joseph C. Vanderwaart. Semantics-driven
language design: Statically type-safe virtual types in object-
oriented languages. InProceedings of 15th Conference on
the Mathematical Foundations of Programming Semantics
(MFPS XV), volume 20 ofElectronic Notes in Theoretical
Computer Science, New Orleans, LA, April 1999. Elsevier.
Available throughhttp://www.elsevier.nl/locate/
entcs/volume20.html.

[9] Dave Clarke, Sophia Drossopoulou, James Noble, and
Tobias Wrigstad. Tribe: A simple virtual class calculus. In
Proceedings of International Conference on Aspect-Oriented
Software Design (AOSD’07), pages 121–134, Vancouver, BC,
March 2007.

[10] Vincent Cremet, François Garillot, Sergueı̈ Lenglet, and
Martin Odersky. A core calculus for Scala type checking.
In Proceedings of International Symposium on Mathematical
Foundations of Computer Science, Springer LNCS, pages
1–23, September 2006.

[11] Erik Ernst. Propagating class and method combination. In
Proceedings of European Conference on Object-Oriented
Programming (ECOOP’99), volume 1628 ofLecture Notes
on Computer Science, pages 67–91, Lisboa, Portugal, June
1999. Springer Verlag.

[12] Erik Ernst. Family polymorphism. InProceedings of
European Conference on Object-Oriented Programming
(ECOOP2001), volume 2072 ofLecture Notes on Computer
Science, pages 303–326, Budapest, Hungary, June 2001.
Springer Verlag.

[13] Erik Ernst. Higher-order hierarchies. InProceedings of

European Conference on Object-Oriented Programming
(ECOOP2003), volume 2743 ofLecture Notes on Computer
Science, pages 303–328, Darmstadt, Germany, July 2003.
Springer Verlag.

[14] Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual
class calculus. InProceedings of ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL2006), pages 270–282, Charleston, SC, January 2006.

[15] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The
Java Language Specification. Addison-Wesley, third edition,
June 2005.

[16] Atsushi Igarashi and Benjamin C. Pierce. On inner classes.
Information and Computation, 177(1):56–89, August 2002.
A special issue with papers from the 7th International
Workshop on Foundations of Object-Oriented Languages
(FOOL7). An earlier version appeared inProceedings of the
14th European Conference on Object-Oriented Programming
(ECOOP2000), Springer LNCS 1850, pages 129–153, June,
2000.

[17] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler.
Featherweight Java: A minimal core calculus for Java
and GJ. ACM Transactions on Programming Languages
and Systems, 23(3):396–450, May 2001. A preliminary
summary appeared inProceedings of the ACM Conference
on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’99), ACM SIGPLAN Notices,
volume 34, number 10, pages 132–146, October 1999.

[18] Atsushi Igarashi and Mirko Viroli. Variant parametric types:
A flexible subtyping scheme for generics.ACM Transactions
on Programming Languages and Systems, 28(5):795–847,
2006.

[19] Atsushi Igarashi and Mirko Viroli. Variant path types
for scalable extensibility. InInformal Proceedings of the
International Workshop on Foundations and Development
of Object-Oriented Languages (FOOL/WOOD 2007), Nice,
France, January 2007. Available athttp://foolwood07.
cs.uchicago.edu/accepted.html.

[20] Paul Jolly, Sophia Drossopoulou, Christopher Anderson, and
Klaus Ostermann. Simple dependent types: Concord. In
Proceedings of 6th ECOOP Workshop on Formal Techniques
for Java-like Programs (FTfJP2004), June 2004.

[21] Ole Lehrmann Madsen and Birger Møller-Pedersen. Vir-
tual classes: A powerful mechanism in object-oriented pro-
gramming. InProceedings of ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA’89), pages 397–406, October 1989.

[22] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen
Nygaard. Object-Oriented Programming in the BETA
Programming Language. Addison Wesley, 1993.

[23] Mira Mezini and Klaus Ostermann. Conquering aspects
with Caesar. InProceedings of International Conference on
Aspect-Oriented Software Design (AOSD’03), pages 90–99.
ACM, 2003.

[24] John C. Mitchell and Gordon D. Plotkin. Abstract types
have existential types.ACM Transactions on Programming

Languages and Systems, 10(3):470–502, 1988. Preliminary
version appeared inProc. of the 12th ACM POPL,1985.

[25] Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers.
Scalable extensibility via nested inheritance. InProceedings
of ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’04), pages
99–115, Vancouver, BC, October 2004.

[26] Nathaniel Nystrom, Xin Qi, and Andrew C. Myers. J&:
Nested intersection for scalable software composition. In
Proceedings of ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOP-
SLA’06), pages 21–36, Portland, OR, October 2006.

[27] Martin Odersky, Vincent Cremet, Christine Röckl, and
Matthias Zenger. A nominal theory of objects with dependent
types. In Luca Cardelli, editor,Proceedings of European
Conference on Object-Oriented Programming (ECOOP’03),
volume 2743 ofLecture Notes on Computer Science, pages
201–224, Darmstadt, Germany, July 2003. Springer Verlag.

[28] Martin Odersky and Matthias Zenger. Scalable component
abstraction. InProceedings of ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA’05), pages 41–57, San Diego, CA, October
2005.

[29] Chieri Saito, Atsushi Igarashi, and Mirko Viroli. Lightweight
family polymorphism.Journal of Functional Programming,
2007. To appear. A preliminary summary appeared in
Proceedings of the 3rd Asian Symposium on Programming
Languages and Systems (APLAS2005), Springer LNCS vol.
3780, pages 161–177, November, 2005.

[30] Yannis Smaragdakis and Don S. Batory. Implementing
layered designs with mixin layers. InProceedings of 12th
European Conference on Object-Oriented Programming
(ECOOP’98), volume 1445 ofLecture Notes on Computer
Science, pages 550–570, Brussels, Belgium, July 1998.
Springer Verlag.

[31] Mads Torgersen. The expression problem revisited: Four new
solutions using generics. InProceedings of European Con-
ference on Object-Oriented Programming (ECOOP2004),
volume 3086 ofLecture Notes on Computer Science, pages
123–146, Oslo, Norway, June 2004.

[32] Mads Torgersen, Erik Ernst, Christian Plesner Hansen, Peter
von der Ah́e, Gilad Bracha, and Neal Gafter. Adding
wildcards to the Java programming language.Journal of
Object Technology, 3(11), December 2004. Special issue:
OOPS track at SAC 2004, pp. 97–116.

[33] Andrew K. Wright and Matthias Felleisen. A syntactic
approach to type soundness.Information and Computation,
115(1):38–94, November 1994.

[34] Matthias Zenger and Martin Odersky. Independently exten-
sible solutions to the expression problem. Technical Report
IC/2004/33,École Polytechnique F́ed́erale de Lausanne, Lau-
sanne, Switzerland, March 2004.

