
A Recipe for Raw Types

Atsushi Igarashi
University of Tokyo

igarashi@graco.c.u-tokyo.ac.jp

Benjamin C. Pierce
University of Pennsylvania

bcpierce@cis.upenn.edu

Philip Wadler
Avaya Labs

wadler@avaya.com

Abstract

The design of GJ (Bracha, Odersky, Stoutamire and Wadler), an extension of Java with parametric
polymorphism, was significantly affected by the issue of compatibility between legacy Java code and new
GJ code. In particular, the introduction of raw types made it easier to interface polymorphic code with
monomorphic code. In GJ, for example, a polymorphic class List<X>, parameterized by the element
type X, provides not only parameterized types such as List<Object> or List<String> but also the raw
type List; then, a Java class using List can be compiled without adding element types to where List is
used. Raw types, therefore, can reduce (or defer, at least) programmers’ burden of modifying their old
Java code to match with new polymorphic code.

From the type-theoretic point of view, raw types are close to existential types in the sense that clients
using a raw type C expect some implementation of a polymorphic class of the same name C. Unlike
ordinary existential types, however, raw types allow several unsafe operations such as coercion from the
raw type List, whose element type is abstract, to List<T> for any concrete type T. In this paper, basing
on Featherweight GJ, proposed by the authors as a tiny core language of GJ, we formalize a type system
and direct reduction semantics of raw types. The bottom type, which is subtype of any type, plays a
key role in our type-preserving reduction semantics. In the course of the work, we have found a flaw in
the typing rules from the GJ specification; type soundness is proved with respect to a repaired version
of the type system.

1 Introduction

In the past few years, a number of extensions of Java with parametric polymorphism have been proposed
by various groups [1, 13, 14, 3, 7, 17] with various design and implementation schemes. Among them, the
design of GJ [3], proposed by Bracha, Odersky, Stoutamire, and Wadler, is significantly affected by issues
concerning compatibility with the current Java language environment. In particular, the language is backward

compatible with Java in the sense that every Java program is also a GJ program, and forward compatible in
the sense that GJ programs are compiled to Java Virtual Machine Language so that they can run on the
Java environment.

Among the features of GJ, raw types are designed to help program evolution, the process by which
monomorphic programs are upgraded to polymorphic ones. For example, suppose we have the following two
Java classes, Pair and Client:

class Pair {

Object fst; Object snd;

Pair(Object fst, Object snd){ this.fst=fst; this.snd=snd; }

void setfst(Object newfst){ fst=newfst; }

}

class Client {

Object getfst(Pair p){ return p.fst; }

void setfst(Pair p, Object x){ p.setfst(x); }

}

Then, we happen to decide to replace the old language (Java) with a new language (GJ) and rewrite the
monomorphic Pair class to a polymorphic version below:
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class Pair<X,Y> {

X fst; Y snd;

Pair(X fst, Y snd){ this.fst=fst; this.snd=snd; }

Pair<X,Y> setfst(X newfst){ fst=newfst; }

}

The class Pair takes two type parameters X and Y; by instantiating them with arbitrary (reference) types, we
can use the above definition as a class for pairs of specific element types: pairs of strings (Pair<String,String>),
pairs of integers (Pair<Integer,Integer>), and so on. Under an ordinary type system, however, the two
classes Client and Pair<X,Y> together would not be well typed any more because the class Client does
not use the class Pair<X,Y> as is expected—for example, clearly, type arguments are missing everywhere
Pair is mentioned in Client. Thus, one would have to rewrite all the classes that use Pair, making it hard
to evolve old code gradually.

In GJ, every parameterized class C<X1,. . . ,Xn> provides the raw type C, supertype of any parameterized
type from the class such as C<Object,. . . > or C<String,. . . >. The field and method types of a raw type
are obtained by erasure of the original definition: all type arguments are dropped and type variables are
promoted to Object. For example, the fields fst and snd of the raw type Pair are given type Object and
the method setfst of Pair is given type Object→Pair. (Notice that these types are the same as ones from
the old monomorphic Pair class.) Hence, the class Client will remain well typed even when used together
with the new polymorphic Pair class.

Furthermore, in order to make it even easier for legacy Java code to coexist with polymorphic code, GJ
permits several unsafe operations such as coercion from a raw type to a parameterized type. For example,
not only can an expression of Pair<String,String> be passed to where Pair is expected, but also an
expression of Pair can be passed to where Pair<Integer,Integer> is expected. The latter coercion is
clearly unsafe because an expression of Pair is not necessarily a pair of integers. The GJ compiler accepts
such unsafe operations, signaling unchecked warnings. In this sense, GJ does not guarantee static type safety
of programs under evolution; dynamic safety is, however, still guaranteed because unchecked programs are
compiled to well-typed bytecode and so only reasons of failure will be due to downcasts that the GJ compiler
inserted. Such relaxation seems preferable (or even required) for smooth evolution: in fact, a lot of practical
examples, including the one above, are classified unchecked. Since they are not statically safe, unchecked
programs are not supposed for permanent use and are expected to evolve eventually into a typesafe (warning-
free) programs by augmenting raw types with appropriate type arguments. The introduction of raw types,
nevertheless, makes it possible to reduce or, at least, significantly defer the burden of modifying old Java
code so that it matches with the evolved polymorphic code.

The specification document of GJ [2] explains what raw types are and when unchecked warnings should
be signaled along with its compilation scheme. This specification and the companion paper [3] give clear
basic intuitions about the behavior of raw types, but it falls short of a fully formal account. It is written in
English prose and the description is largely given in terms of compilation into Java. It would be desirable to
supplement the prose with a formal description and to replace the description in terms of compilation with
a direct specification of the semantics. Formal direct description would also help to apply the idea of raw
types to other generic extensions of Java or even to other programming languages.

The goal of this work is to provide a formal description of raw types. As a first step, this paper focuses
on formal accounts on a direct semantics of a language with raw types and a type system of raw types. (We
also aim to discuss their role in program evolution, but, for the moment, leave its formal treatment for future
work). Our main contributions here are summarized as follows:

• Formalization of a type system for a core of GJ with raw types. The type system accepts unsafe
operations on raw types but signals unchecked warnings against them; thus, correct classification of
safe and unsafe operations is critical for the type system.

From the type-theoretic point of view, raw types are close to existential types [12] in the sense that
clients using a raw type C expect some implementation of a polymorphic class of the same name C.
This informal connection turns out to be helpful to obtain intuitions why certain operations should be
unsafe.

• Formal operational semantics. We give for the first time a direct reduction semantics of raw types.
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The semantics is direct in the sense that it does not depend on translation into lower-level languages
such as Java; type argument passing is expressed in the reduction relation just as in System F [8, 16].

One technical challenge was in developing rules for method invocation on raw types. The type system
assumes that raw types does not involve polymorphic methods; so every method invocation e.m(e)

where e is of raw type, say C, is well typed without type arguments. At run-time, however, e can reduce
to an object new C<T>(d) of parameterized type, which might contain polymorphic methods; then,
some appropriate types for polymorphic methods have to be ‘made up’ and passed as type arguments.
For this purpose, we introduce the bottom type, which is subtype of every type, into the language; the
bottom type is passed for such missing type arguments.

• Proof of type soundness. We prove that programs without unchecked warnings (called checked pro-
grams) are indeed typesafe. In the course of a proof, we have discovered one serious flaw in the typing
rules given in the original specification; a repaired version of the type system is proved to be sound.

The basis of our work is a core calculus called Featherweight GJ, or FGJ [10]. This calculus was originally
developed as an extension of Featherweight Java (or FJ) [10], which was designed to investigate consequences
of complex class-based extensions such as polymorphic classes and inner classes [9]. FJ and FGJ were designed
to omit as many features of Java and GJ as possible (even assignment), while maintaining the essential flavor
of the language and its type system. As a result, the complex FGJ definition fits comfortably on a few pages,
and its basic properties can be proved with no more difficulty than, say, those of the polymorphic lambda-
calculus with subtyping (such as System F≤ [5]). This simplicity makes it feasible to give formal accounts
on raw types.

The rest of the paper is organized as follows. First, Section 2 reviews our basic calculus Featherweight
GJ; the following section extends Featherweight GJ with raw types and develops Raw FGJ; we also show a
theorem of type soundness. After discussing related work in Section 4, Section 5 gives concluding remarks
with directions to future work. For brevity, proofs of theorems are omitted; they will appear in a forthcoming
technical report [11].

2 Featherweight GJ

We begin by reviewing the basic definitions of Featherweight GJ (FGJ, for short) [10]. FGJ is a tiny fragment
of GJ, including only top-level class definitions, object instantiation, field access, method invocation, and
typecasts.

2.1 Syntax

The abstract syntax of FGJ types, class declarations, constructor declarations, method declarations, and
expressions is given at the top left of Figure 1. The metavariables A, B, C, D, and E range over class names;
S, T, U, and V range over types; X, Y, and Z range type variables; N, P, and Q range over non-variable types; L
ranges over class declarations; K ranges over constructor declarations; and M ranges over method declarations;
f and g range over field names; m ranges over method names; x ranges over variables; and e and d range
over expressions. We write f as shorthand for a possibly empty sequence f1,. . . ,fn (and similarly for C, x,
e, etc.) and write M as shorthand for M1. . . Mn (with no commas). We write the empty sequence as • and
denote concatenation of sequences using a comma. The length of a sequence x (or X) is written #(x) (or #(X),
respectively). We abbreviate operations on pairs of sequences in the obvious way, writing “C f” as shorthand
for “C1 f1,. . . ,Cn fn” and “C f;” as shorthand for “C1 f1;. . . Cn fn;” and “this.f=f;” as shorthand for
“this.f1=f1;. . . this.fn=fn;” and “<X ⊳ N>” as shorthand for “<X1 ⊳ N1, . . . , Xn ⊳ Nn>. Sequences of field
declarations, parameter names, type variables, and method declarations are assumed to contain no duplicate
names. As in GJ, the empty brackets <> are omitted.

A class declaration consists of its name (class C), type parameters (X) with their bounds (N), fields
(T f), one constructor (K), and methods (M); moreover, every class must explicitly declare its supertype
N with ⊳ (abbreviation of extends) even if it is Object. The bound of a type variable may not be a
type variable, but may be a type expression involving type variables, and may be recursive (or even, if
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Syntax:

T(S, U, V) (types)
::= X type variables
| N non-variable types

N(P, Q)

::= C<T>

L (class declarations)

::= class C<X ⊳ N> ⊳ N {T f; K M}

K (constructors)
::= C(T f){ super(f); this.f=f; }

M (methods)

::= <X ⊳ N>T m (T x){ return e; }

e (expressions)
::= x variables, this
| e.f field access

| e.m<T>(e) method invocation
| new N(e) object instantiation
| (N)e typecast

Bound of type:

bound∆(X) = ∆(X)
bound∆(N) = N

Subclassing:

C E C
C E D D E E

C E E

CT (C) = class C<X ⊳ N> ⊳ D<T> {...}

C E D

Field lookup:

fields(Object) = •

CT (C) = class C<X ⊳ N> ⊳ N {S f; K M}
fields([T/X]N) = U g

fields(C<T>) = U g, [T/X]S f

Method type lookup:

CT (C) = class C<X ⊳ N> ⊳ N {S f; K M}
<Y ⊳ P> U m (U x) {return e;} ∈ M

mtype(m, C<T>) = [T/X](<Y ⊳ P>U→U)

CT (C) = class C<X ⊳ N> ⊳ N {S f; K M} m 6∈ M

mtype(m, C<T>) = mtype(m, [T/X]N)

Method body lookup:

CT (C) = class C<X ⊳ N> ⊳ N {S f; K M}
<Y ⊳ P> U m (U x) {return e0;} ∈ M

mbody(m<V>, C<T>) = (x, [T/X, V/Y]e0)

CT (C) = class C<X ⊳ N> ⊳ N {S f; K M} m 6∈ M

mbody(m<V>, C<T>) = mbody(m<V>, [T/X]N)

Valid downcast:

dcast(S, T) dcast(T, U)

dcast(S, U)

CT (C) = class C<X ⊳ N> ⊳ N {...} X = FV (N)

dcast(C<T>, [T/X]N)

(FV (N) denotes the type variable in N.)

Figure 1: FGJ: Syntax and Auxiliary Definitions
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there are several bounds, mutually recursive); in this sense, FGJ supports an extended form of F-bounded
polymorphism [4]. Each argument of a constructor corresponds to an initial (and also final) value of each
fields of the class. As in Java and GJ, fields inherited from superclasses are initialized by super(f); and
newly declared fields by this.f=f;, although, as we will see, those statements do not have significance
during execution of programs—this syntax is adopted just to keep FGJ as close as GJ (and Java). A body
of a method just returns an expression, which is either a variable, field access, method invocation, object
instantiation, or typecast. Unlike GJ, which infers type arguments for polymorphic methods, FGJ requires
explicit type arguments T for method invocation e.m<T>(e). We treat this in method bodies as a variable,
and so require no special syntax. As we will see later, the typing rules prohibit this from appearing as a
method parameter name.

A class table CT is a mapping from class names C to class declarations L; a program is a pair (CT , e) of
a class table and an expression. Object is treated specially in every FGJ program: the definition of Object
class never appears in the class table and the auxiliary functions that look up field and method declarations
in the class table are equipped with special cases for Object that return the empty sequence of fields and
the empty set of methods. (As we will see later, method lookup for Object is just undefined.) To lighten
the notation in what follows, we always assume a fixed class table CT .

The given class table is assumed to satisfy some sanity conditions: (1) CT (C) = class C... for every
C ∈ dom(CT ); (2) Object /∈ dom(CT ); (3) for every class name C (except Object) appearing anywhere in
CT , we have C ∈ dom(CT ); and (4) there are no cycles in the reflexive and transitive closure of the relation
between class names induced by ⊳ clauses in CT . (The formal definition of that relation E appears in
Figure 1.) By the condition (1), we can identify a class table with a sequence of class declarations in the
obvious way.

For the typing and reduction rules, we need a few auxiliary definitions, given also in Figure 1. A type
environment ∆ is a finite mapping from type variables to nonvariable types, written X<:N, that takes each
type variable to its bound. We write bound∆(T) for the upper bound of T in ∆. The fields of a nonvariable
type N, written fields(N), are a sequence of corresponding types and field names, T f. The type of the method
invocation m at nonvariable type N, written mtype(m, N), is a type of the form <X ⊳ N>U→U0, where X are type
parameters, U are argument types, and U0 is the result type. In this form, the variables X are bound in N,
U, and U0 and we regard α-convertible ones as equivalent; application of type substitution [T/X] is defined in
the customary manner. The body of the method invocation m at nonvariable type N with type parameters V,
written mbody(m<V>, N), is a pair, written (x,e), of a sequence of parameters x and an expression e. (Note
that the functions mtype(m, N) and mbody(m<V>, N) are both partial functions: since Object is assumed to
have no methods in FGJ, both mtype(m, Object) and mbody(m<V>, Object) are undefined.) We write m 6∈ M

to mean the method definition of the name m is not included in M.

2.2 Type System

The type system of FGJ consists of three forms of judgments: one for subtyping ∆ ⊢ S <: T, one for type
well-formedness ∆ ⊢ T ok, and one for typing ∆; Γ ⊢ e ∈ T, where Γ is an environment, a finite mapping
from variables to types, written x:T. Figure 2 shows the rules to derive these judgments. We abbreviate a
sequence of judgments, writing Γ ⊢ S <: T as shorthand for Γ ⊢ S1 <: T1, . . . , Γ ⊢ Sn <: Tn and Γ ⊢ T ok as
shorthand for Γ ⊢ T1 ok, . . . , Γ ⊢ Tn ok and ∆;Γ ⊢ e ∈ T as shorthand for ∆; Γ ⊢ e1 ∈ T1, . . . , ∆; Γ ⊢ en ∈ Tn.

Subtyping is the reflexive and transitive closure of the relation induced by ⊳ clauses. Type parameters
are invariant with regard to subtyping (for the usual reasons: type parameters can be used both positively
and negatively), so ∆ ⊢ T <: U does not imply ∆ ⊢ C<T> <: C<U>.

If the declaration of a class C begins with class C<X ⊳ N>, then a type like C<T> is well formed only if
substituting T for X respects the bounds N, that is if ∆ ⊢ T <: [T/X]N. We write ∆ ⊢ T ok if type T is well-
formed in context ∆. Note that we perform a simultaneous substitution, so any variable in X may appear in
N, permitting recursion and mutual recursion between variables and bounds. A type environment ∆ is well
formed if ∆ ⊢ ∆(X) ok for all X in dom(∆).

The typing rules are syntax directed, with one rule for each form of expression, save that there are three
rules for casts. The typing rules for constructor/method invocation check that each actual parameter is
given subtype of the corresponding formal. There are three rules for type casts: in an upcast the subject
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Subtyping:

∆ ⊢ T <: T
∆ ⊢ S <: T ∆ ⊢ T <: U

∆ ⊢ S <: U

∆ ⊢ X <: ∆(X)
CT (C) = class C<X ⊳ N> ⊳ N{ . . .}

∆ ⊢ C<T> <: [T/X]N

Well-formed types:

∆ ⊢ Object ok
X ∈ dom(∆)

∆ ⊢ X ok

CT (C) = class C<X ⊳ N> ⊳ N {...}
∆ ⊢ T ok ∆ ⊢ T <: [T/X]N

∆ ⊢ C<T> ok

Expression typing:

∆;Γ ⊢ x ∈ Γ(x)

∆; Γ ⊢ e0 ∈ T0 fields(bound∆(T0)) = T f

∆;Γ ⊢ e0.fi ∈ Ti

∆;Γ ⊢ e0 ∈ T0

mtype(m, bound∆(T0)) = <Y ⊳ P>U→U
∆ ⊢ V ok ∆ ⊢ V <: [V/Y]P

∆;Γ ⊢ e ∈ S ∆ ⊢ S <: [V/Y]U

∆;Γ ⊢ e0.m<V>(e) ∈ [V/Y]U

∆ ⊢ N ok fields(N) = T f
∆;Γ ⊢ e ∈ S ∆ ⊢ S <: T

∆;Γ ⊢ new N(e) ∈ N

∆;Γ ⊢ e0 ∈ T0 ∆ ⊢ T0 <: N

∆; Γ ⊢ (N)e0 ∈ N

∆;Γ ⊢ e0 ∈ T0 ∆ ⊢ N ok
∆ ⊢ N <: bound∆(T0) dcast(N, bound∆(T0))

∆; Γ ⊢ (N)e0 ∈ N

∆;Γ ⊢ e0 ∈ T0 bound∆(T0) = D<U> N = C<T>
∆ ⊢ N ok C 6E D D 6E C stupid warning

∆;Γ ⊢ (N)e0 ∈ N

Method typing:

mtype(m, N) = <Z ⊳ Q>U→U0 implies

P,T = [Y/Z](Q,U) and Y<:P ⊢ T0 <: [Y/Z]U0

override(m, N, <Y ⊳ P>T→T0)

∆ = X<:N, Y<:P ∆ ⊢ T, T, P ok
∆;x : T, this : C<X> ⊢ e0 ∈ S ∆ ⊢ S <: T

CT (C) = class C<X ⊳ N> ⊳ N {...}
override(m, N, <Y ⊳ P>T→T)

<Y ⊳ P> T m (T x) {return e0;} OK IN C<X ⊳ N>

Class typing:

X<:N ⊢ N, N, T ok

fields(N) = U g M OK IN C<X ⊳ N>
K = C(U g, T f){super(g); this.f = f;}

class C<X ⊳ N> ⊳ N {T f; K M} OK

Computation:

fields(N) = T f

new N(e).fi −→ ei

mbody(m<V>,N) = (x, e0)

new N(e).m<V>(d) −→ [d/x, new N(e)/this]e0

∅ ⊢ N <: P

(P)(new N(e)) −→ new N(e)

Figure 2: FGJ: Subtyping, Type Well-Formedness, Typing and Reduction Rules
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is subtype of the target, in a downcast the target is (strict) subtype of the subject, and in a stupid cast
the target is unrelated to the subject. The side condition dcast(S, T) in the rule for downcasts ensures that
the result of the cast will be the same at run time, no matter whether we use the high-level (type-passing)
reduction rules defined later in this section or the erasure semantics (implemented by the current compiler
and defined in our previous paper [10].) Since type arguments are removed in the erasure semantics, a
downcast (C<T>)e is allowed only if all type arguments T ‘contribute’ to decide ∆ ⊢ C<T> <: bound∆(T)
where T is the type of e—the condition is expressed by X = FV(N) in the definition of dcast(S, T). For
example, (Pair<A,B>)e where e is given type Object should not be accepted as type arguments A and B are
lost in the erasure semantics. Stupid casts are ones that certainly fail when evaluated; they are required to
formulate type soundness through a subject reduction theorem for a small-step semantics: a downcast may
reduce eventually to a stupid cast. Unlike GJ compiler, which rejects an expression containing stupid casts
as ill-typed, FGJ indicate the special nature of stupid casts by including the hypothesis stupid warning in
the typing rule for stupid casts. See [10] for detailed discussions on the rules for typecasts.

The typing judgment for method declarations has the form M OK IN C<X ⊳ N>, read “method declaration M

is ok if it occurs in class C<X ⊳ N>.” It uses the expression typing judgment on the body of the method, where
the free variables are the parameters of the method with their declared types, plus the special variable this

with type C<X>. (Thus, a method with a parameter of name this is disallowed as the type environment
is ill formed.) In case of overriding, if a method with the same name is declared in a superclass, then
the two methods must have the same argument types and the same type variables with the same bounds
(modulo α-conversion); the result type of the overriding method may be a subtype of the result type of
the overridden—the predicate override checks the condition. Note that, unlike Java, FGJ (and GJ) allow
covariant overriding [10, 3]. The typing judgment for class declarations has the form L OK, read “class
declaration L is ok.” It checks that the constructor applies super to the fields of the superclass and initializes
the fields declared in this class, and that each method declaration in the class is ok.

2.3 Reduction Semantics

The reduction relation is of the form e −→ e′, read “expression e reduces to expression e′ in one step.” We
write −→∗ for the reflexive and transitive closure of −→. The reduction rules are given at the bottom right
of Figure 2. There are three reduction rules, one for field access, one for method invocation, and one for
typecast. Field access new N(e).fi looks up and obtains field names f of N with fields(N); then it reduces to
the constructor argument ei of the corresponding position. Method invocation new N(e).m(d) first looks up
mbody(m, N) and obtains a pair of a sequence of formal arguments x and the method body; then, it reduces to
the method body in which x are replaced with the actual arguments d and this with the receiver new N(e).
We write [d/x, e/y]e0 to stand for replacing x1 by d1, . . . , xn by dn, and y by e in the expression e0. Typecast
(P)new N(e) removes (P) if the type N of the object is subtype of the target P of the cast. If not, then no
rule applies and the computation is stuck, denoting a run-time error. As we already mentioned above, the
type system is designed to make the direct semantics and the erasure semantics that the current compiler
uses coincide, though the direct semantics shown here can potentially express type-dependent operations
such as downcasts that need run-time type argument information.

The reduction rules may be applied at any point in an expression, so we also need the obvious congruence
rules (if e −→ e′ then e.f −→ e′.f, and the like), which are omitted for brevity.

For example, under the class table including the following class definitions

class A extends Object { A(){ super(); } }

class B extends A { B(){ super(); } }

class Pair<X extends Object, Y extends Object> extends Object {

X fst; Y snd;

Pair(X fst, Y snd) { super(); this.fst=fst; this.snd=snd; }

Pair<X,Y> setfst(X newfst) { return new Pair<X,Y>(newfst, this.snd); }

}

the expression new Pair<A,B>(new A(), new B()).setfst(new B()).snd evaluates to new B() via the
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following reduction steps (where the next subexpression to be reduced is underlined at each step):

new Pair<A,B>(new A(), new B()).setfst(new B()).snd

−→

[

A/X, B/Y, new B()/newfst,
new Pair<A,B>(new A(), new B())/this

]

new Pair<X,Y>(newfst, this.snd)

= new Pair<A,B>(new B(), new Pair<A,B>(new A(), new B()).snd).snd

−→ new Pair<A,B>(new B(), new B()).snd

−→ new B()

2.4 Properties

FGJ is type sound, shown by the standard technique [18] using subject reduction and progress properties [10].

2.4.1 Theorem [FGJ subject reduction]: If ∆; Γ ⊢ e ∈ T and e −→ e′, then ∆; Γ ⊢ e′ ∈ T′, for some T′

such that ∆ ⊢ T′ <: T.

2.4.2 Theorem [FGJ progress]: Suppose e is a well-typed expression.

(1) If e includes new N0(e).f as a subexpression, then fields(N0) = T f and f ∈ f.

(2) If e includes new N0(e).m<V>(d) as a subexpression, then mbody(m<V>, N0) = (x, e0) and #(x) = #(d).

2.4.3 Theorem [FGJ type soundness]: If ∅; Γ ⊢ e ∈ T and e −→∗ e′ with e′ being a normal form, then
e′ is either (1) a value v (given by the syntax v ::= new N(v)) with ∅; Γ ⊢ v ∈ S and ∅ ⊢ S <: T or (2) an
expression containing (P)new N(e) where ∅ ⊢ N 6<: P.

3 Raw FGJ

Now, we develop the language Raw FGJ, by extending FGJ with raw types. We begin with a simple example
to see how raw types behave and what are technical subtleties in Raw FGJ.

3.1 Raw Types and Unsafe Operations

Consider the class Pair<X,Y> from the last section and the following class Client, rewritten in Raw FGJ,
from the introduction.

class Pair<X extends Object, Y extends Object> extends Object {

X fst; Y snd;

Pair(X fst, Y snd) { super(); this.fst=fst; this.snd=snd; }

Pair<X,Y> setfst(X newfst) { return new Pair<X,Y>(newfst, this.snd); }

}

class Client extends Object {

Client() { super(); }

Object getfst(Pair p){ return p.fst; }

Pair setfst(Pair p, Object x){ return p.setfst(x); }

}

Raw types provide erased field and method types: the fields fst and snd are given type Object, which is
the bound of X and Y, and the constructor takes a pair of Objects. The method setfst (from Pair) is given
type Object→Pair, in which type parameters are removed from the result type Pair<X,Y>. Concerning
subtyping, any parameterized type Pair<S,T> is subtype of the raw type Pair.

The following operations are permitted but considered unsafe (in both GJ and Raw FGJ) and GJ com-
pilers are supposed to signal unchecked warnings against them:

• Coercion from a raw type C to a parameterized type C<T>. For example, passing an expression of raw
type Pair to a method expecting an argument of Pair<String,String> is permitted but signals an
unchecked warning.
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• Method/constructor call on a raw type, if erasure changes the argument types. (The result type of
the method may be changed.) For example, the invocation of setfst on Pair is unchecked because
the argument type is changed by erasure from X to Object. Similarly, new Pair(e1,e2) (without type
arguments) is unchecked.

(In GJ, an assignment to a field is unchecked if erasure changes the field type; this rule is not directly modeled
here because FGJ omits assignments. A ‘setter’ method like setfst, however, results in a similar restriction:
a field type appears as an argument type, being unchecked by the second rule above.) Thus, in fact, the
two classes Pair<X,Y> and Client together are unchecked because of the invocation of setfst in Client.
When a raw type is specified as the superclass, access to members defined in superclasses is also considered
access to a raw type. For example, in the following declaration, invocation of setfst is unchecked.

class Foo extends Pair {

Foo(Object fst, Object snd){ super(fst, snd); }

Object id (Object x){ return this.setfst(x).fst; }

}

In the specification document, however, there is only a few examples that show how unchecked programs
might fail and no clear intuitive explanation why they are potentially dangerous.

3.2 Correspondence between Raw Types and Existential Types

From the type-theoretic point of view, raw types resemble (bounded) existential types [12, 6] (with certain
unsafe operations permitted) in the sense that clients using a raw type C expect some implementation of a
polymorphic class of the same name C. By this analogy, for example, the raw type Pair would be considered
the existential type ∃X<:Object,Y<:Object.Pair<X,Y>.

Then, the basic typing rules of raw types can be explained as follows: every access to a raw type would
involve implicit existential unpacking and, if the type of the whole expression involves an existential type
variable, then it is promoted to a supertype without the variable. For example, p.fst would be given type X,
then promoted to Object; similarly p.setfst(x) would be given type Pair<X,Y>, promoted to the raw type
Pair. Actually, coercion from a parameterized type to a raw type would be considered existential packing.
For example, passing an expression e of type Pair<A,B> to where Pair is expected roughly corresponds to

pack [X=A,Y=B;e] as ∃X<:Object,Y<:Object.Pair<X,Y>.

Thus, the raw method invocation p.setfst(x) would be considered a combination of unpacking and method
invocation, followed by packing of the result from the invocation.

Unsafe operations listed above are also explained in terms of this analogy. First, coercion from raw types
to parameterized types is clearly unsafe: one cannot safely instantiate existential type variables by concrete
types. Second, since the typing rules of Raw FGJ (and GJ) approximate the method argument types, by
erasure, to their supertypes, raw method invocation is safe only if the erased argument types are equal to the
original. For example, consider the existential type ∃X<:Object,Y<:Object.Pair<X,Y> again; the method
setfst would be given type X→Pair<X,Y> but, since we do not know the identity of X, we can neither
approximate X by Object nor use the method in a type-safe manner. In fact, with the following subclass
IdPair of Pair

class Id extends Object {

Id() { super(); }

Id id() { return this; }

}

class IdPair extends Pair<Id,Id> {

IdPair(Id fst, Id snd) { super(fst, snd); }

IdPair setfst(Id newfst) { return new IdPair(newfst.id(), this.snd); }

}

the expression

new Client().setfst(new IdPair(new Id(), new Id()), new Object())
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fails at the method invocation newfst.id().
A similar argument applies to raw constructor invocation: for example, with the following class:

class D<X extends Object> extends Object {

Pair<Id,Id> g;

D(Pair<Id,Id> g) { super(); this.g = g; }

Id loophole() { return this.g.fst.id; }

}

the expression

new D(new Pair<Object,Id>(new Object(), new Id())).loophole()

fails at the method invocation this.g.fst.id, too. Notice that the argument type of the raw constructor
D is changed from Pair<Id,Id> to Pair by erasure, thus accepting an object of Pair<Object,Id> as the
argument. Actually, the GJ specification overlooks the necessity of this check at raw constructor calls and
the current compiler (version 0.6m) does not signal an unchecked warning against any raw constructor
invocation.1

3.3 Raw Method/Constructor Invocation and the Bottom Type

As in FGJ, we will formalize an operational semantics of Raw FGJ as type-passing reduction: actual type
arguments for a polymorphic method are substituted for the type variables. In Raw FGJ, however, there
is one subtlety arising from subtyping between parameterized and raw types. For example, consider the
following class List implementing a polymorphic method to obtain a null list for an arbitrary element type:

class List<X extends Object> extends Object {

...

<Y extends Object> List<Y> makenull() { return new Null<Y>(); }

}

class Null<X extends Object> extends List<X> { ... }

Since the type system erases even type parameters of methods, method invocation e.makenull(), where e

is of raw type List, is well typed without type arguments. (It is also checked invocation; note that erasure
does not change the argument types, which are empty.) At run-time, however, e may eventually reduce to an
object new List<T>(d) of parameterized type; then, it is required to ‘make up’ appropriate type arguments
for the type parameter Y of makenull.

We introduce the bottom type *, which is subtype of any type, for missing type arguments; method invo-
cation lacking actual type arguments reduces to the method body where all the type variables of the method
are replaced with the bottom type. For example, new List<T>(d).makenull() reduces to new Null<*>().
Passing the bottom type works for the following reasons:

• The bottom type is always lower than the bound of a type variable. Then, the method body remains
well typed under the assumption that each formal parameter is given type in which the bottom type
is substituted for type variables.

• The types of actual arguments remain compatible with the current method argument types, obtained
by substituting the bottom type for type parameters. Since the receiver object was initially given raw
type, the method argument types were the erasures of the declared types. However, when the method
invocation is checked, the declared formal parameters’ types does not involve type parameters; thus
the erasures and the current method argument types should coincide. Then, actual arguments can
be safely replaced with formal parameters. Notice that, if type variables appear in types of formal
parameters, the types of actual arguments may or may not be compatible after substituting the bottom
type.

1The dummy type parameter X is required when readers try this example with the GJ compiler: the GJ compiler would

identify the type expression D with the parameterized type D<> when the class D is declared without type parameters. Declaring

D with type parameters makes sure that D is raw.
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T(S, U, V) (types)
::= X type variables
| N non-variable types

| * bottom type

N(P, Q)

::= C<T> cooked types

| C raw types

L (class declarations)

::= class C<X ⊳ N> ⊳ N {T f; K M}

K (constructors)

::= C(T f){ super(f); this.f=f; }

M (methods)

::= <X ⊳ N> T m(T x){ return e; }

e (expressions)
::= x variables, this
| e.f field access

| e.m<T>(e) cooked method invocation

| e.m(e) raw method invocation

| new N(e) object instantiation
| (N)e typecasts

Figure 3: Raw FGJ: Syntax

• The context of raw method invocation does not put an assumption about type arguments passed to
the method: the result type is always erased to raw—for example, e.makenull() is given type List.
Hence, returning an expression of parameterized type (for example, Null<*>, which is subtype of List)
poses no problem.

Similarly to method invocation, instantiation of raw type, say new Pair(e1,e2), could be considered con-
structor invocation missing type arguments for X and Y. According to this view, unlike the GJ specification,
we give a raw constructor invocation new Pair(e1,e2) type Pair<*,*>, rather than Pair, as if a pair of the
bottom types were actually passed to the constructor. For a similar reason, when a raw type, say C, is ex-
tended by the subclass D<X>, any parameterized type D<T> from the subclass is subtype of C<*,. . . ,*> rather
than C. This refined type information on raw constructor invocation is required to prove type soundness
through subject reduction. Roughly speaking, if we gave raw constructor invocation a raw type, a reduction
step involving method invocation would not preserve (checked) well-typedness. For example, a method in
a class C<X extends N> is typed under the assumption that this is given type C<X> with X<:N. Then, for
invocation of the method to be type-preserving, this must be replaced with an expression of parameterized
type; in other words, if the receiver object were given type C, its type would be unsafe subtype of C<X>, the
type of this. Note that, when a raw constructor call is checked, substituting the bottom type will not affect
the constructor argument types.

3.4 Formal Definition of Raw FGJ

Now, we proceed to the formal definition of Raw FGJ. The full definition of Raw FGJ is given in Figures 3,
4, 5, 6, and 7, where additional rules and changes from FGJ rules are shaded. We mainly focus on the key
rules relevant to raw types in what follows.

Syntax and Auxiliary Definitions

We use the same notational conventions as in FGJ. A non-variable type N is now either cooked, which has
type parameters, or raw; the bottom type * is included in the set of types. We often use * for a sequence of
the bottom types *,. . . ,* (without subscripts). Concerning expressions, method invocation e.m(e) on raw
types is introduced. We enforce to the class table another sanity condition, as well as the ones for FGJ, that
the bottom type never appears in CT ; the bottom type * can appear only in the expression to be executed
(the second element of a program (CT , e)). Unlike GJ, Raw FGJ distinguishes a cooked type C<> with zero
type arguments and the corresponding raw type C. We, however, still abbreviate a class definition beginning
with class C<> ⊳N ... to class C ⊳ N ... and a method definition <>T m(T x) ... to T m(T x) ... for
conciseness. (GJ is in favor of the cooked type C<> rather than the raw type C when you omit <>.)
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We require the definition of erasure |T|∆ of type T under ∆, defined as the least raw supertype. Note
that both bound∆(*) and |*|∆ are undefined.

head(C<T>) = head(C) = C

|T|∆ = head(bound∆(T))

The definition of fields(N) requires the additional rule below for raw types; fields(C) returns the erased
types of the fields.

CT (C) = class C<X ⊳ N> ⊳N {S f; K M} fields(N) = U g

fields(C) = |U|X<:N g, |S|X<:N f

3.4.1 Example: Under a class table including class Pair and IdPair,

fields(Pair) = |X|X<:Object, Y<:Object fst, |Y|X<:Object, Y<:Object snd

= Object fst, Object snd

Notice that types S of the fields inherited from subclasses are erased under the type environment X<:N

from the current class. Hence, the field types of a supertype may or may not be a prefix of ones from a
subtype. For example, fields(IdPair) = Id fst, Id snd 6= Object fst, Object snd = fields(Pair).

In addition to mtype and mbody, we define (partial) functions mtyperaw and mbodyraw to look up method
definitions for raw method invocation e.m(e). Their definitions are similar to mtype and mbody except that,
as in the rule below, when the definition of the method is found, mtyperaw checks whether the erasure
changes the argument types U (i.e., whether they are all raw) and yields the erased argument and result
types:

CT (C) = class C<X ⊳ N> ⊳N {S f; K M} <Y ⊳ P> U0 m(U x){ return e; } ∈ M

∆′ = X<:N, Y<:P unchecked warning if |U|∆′ 6= U

mtyperaw(m, C) = |U|∆′→|U0|∆′

The function mbodyraw(m, C<T>) can take a cooked type as the second argument because, as we discussed
above, the receiver of raw method invocation may eventually be an instance of cooked type. The first rule
below returns the method body where * is substituted for the type parameters that lacks the corresponding
actual. The second rule calls the first with an appropriate number of the bottom types, replacing all the
type variables with *.

CT (C) = class C<X ⊳ N> ⊳N {S f; K M}

<Y ⊳ P> U m(U x){ return e0; } ∈ M

mbodyraw(m, C<T>) = (x, [T/X, */Y]e0)

CT (C) = class C<X ⊳ N> ⊳N {S f; K M}

#(X) = #(*)

mbodyraw(m, C) = mbodyraw(m, C<*>)

3.4.2 Example: Under a class table including class Pair and List,

mtyperaw(setfst, Pair) = |X|X<:Object, Y<:Object→|Pair<X,Y>|X<:Object, Y<:Object

= Object→Pair (with unchecked warning)

mbodyraw(makenull, List<T>) = (•, new Null<*>())

Besides, we introduce the new auxiliary definition cargtype to look up the argument types of a constructor;
the definition is almost the same as fields except that it signals unchecked warning if erasure changes the
types, as in the rule below.

CT (C) = class C<X ⊳ N> ⊳ N {S f; K M} cargtype(N) = U g unchecked warning if |U, S|X<:N 6= U, S

cargtype(C) = |U|X<:N g, |S|X<:N f
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Bound and erasure of type:

bound∆(X) = ∆(X)
bound∆(N) = N

head(C<T>) = head(C) = C

|T|∆ = head(bound∆(T))

Subclassing:

C E C
C E D D E E

C E E

CT (C) = class C<X ⊳ N> ⊳ N {...}

C E head(N)

Field lookup:

fields(Object) = •

CT (C) = class C<X ⊳ N> ⊳ N {S f; K M}
fields([T/X]N) = U g

fields(C<T>) = U g, [T/X]S f

CT (C) = class C<X ⊳ N> ⊳ N {S f; K M}
fields(N) = U g

fields(C) = |U|X<:N g, |S|X<:N f

Constructor type lookup:

cargtype(Object) = •

CT (C) = class C<X ⊳ N> ⊳ N {S f; K M}
cargtype([T/X]N) = U g

cargtype(C<T>) = U g, [T/X]S f

CT (C) = class C<X ⊳ N> ⊳ N {S f; K M}
cargtype(N) = U g

unchecked warning if |U, S|X<:N 6= U, S

cargtype(C) = |U|X<:N g, |S|X<:N f

Method type lookup:

CT (C) = class C<X ⊳ N> ⊳ N {S f; K M}
<Y ⊳ P> U m(U x){ return e; } ∈ M

mtype(m, C<T>) = [T/X](<Y ⊳ P>U→U)

CT (C) = class C<X ⊳ N> ⊳ N {S f; K M} m 6∈ M

mtype(m,C<T>) = mtype(m, [T/X]N)

CT (C) = class C<X ⊳ N> ⊳ N {S f; K M}
<Y ⊳ P> U0 m(U x){ return e; } ∈ M

∆′ = X<:N, Y<:P unchecked warning if |U|∆′ 6= U

mtyperaw(m, C) = |U|∆′→|U0|∆′

CT (C) = class C<X ⊳ N> ⊳D<T> {S f; K M}
m 6∈ M mtype(m, D<T>) = <Y ⊳ P>U→U0

∆′ = X<:N, Y<:P unchecked warning if |U|∆′ 6= U

mtyperaw(m, C) = |U|∆′→|U0|∆′

CT (C) = class C<X ⊳ N> ⊳ D {S f; K M} m 6∈ M

mtyperaw(m, C) = mtyperaw(m, D)

Method body lookup:

CT (C) = class C<X ⊳ N> ⊳ N {S f; K M}
<Y ⊳ P> U m(U x){ return e0; } ∈ M

mbody(m<V>, C<T>) = (x, [T/X, V/Y]e0)

CT (C) = class C<X ⊳ N> ⊳ N {S f; K M} m 6∈ M

mbody(m<V>, C<T>) = mbody(m<V>, [T/X]N)

CT (C) = class C<X ⊳ N> ⊳ N {S f; K M}
<Y ⊳ P> U m(U x){ return e0; } ∈ M

mbodyraw(m, C<T>) = (x, [T/X, */Y]e0)

CT (C) = class C<X ⊳ N> ⊳ N {S f; K M} m 6∈ M

mbodyraw(m, C<T>) = mbodyraw(m, [T/X]N)

CT (C) = class C<X ⊳ N> ⊳ N {S f; K M}
#(X) = #(*)

mbodyraw(m, C) = mbodyraw(m, C<*>)

Valid downcast:

dcast(S, T) dcast(T, U)

dcast(S, U)

CT (C) = class C<X ⊳ N> ⊳ N {...} X = FV (N)

dcast(C<T>, [T/X]N)

CT (C) = class C<X ⊳ N> ⊳D<T> {...}

dcast(C, D)

Figure 4: Raw FGJ: Auxiliary Definitions
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Subtyping:

∆ ⊢ T <: T (S-Refl)

∆ ⊢ S <: T ∆ ⊢ T <: U

∆ ⊢ S <: U
(S-Trans)

∆ ⊢ X <: ∆(X) (S-Var)

CT (C) = class C<X ⊳ N> ⊳D<S> { . . .}

∆ ⊢ C<T> <: [T/X]D<S>
(S-Class)

∆ ⊢ * <: T (S-Bot)

C E D

∆ ⊢ C <: D
(S-Raw)

∆ ⊢ C<T> <: C (S-Cooked/Raw)

CT (C) = class C<X ⊳ N> ⊳ D { . . .}
CT (D) = class D<Y ⊳ P> ⊳ N { . . .}

#(Y) = #(*)

∆ ⊢ C<T> <: D<*>
(S-RawSuper)

Unsafe Subtyping:

∆ ⊢ S <: T

∆ ⊢ S <:? T
(SU-Safe)

∆ ⊢ C <: D unchecked warning

∆ ⊢ C <:? D<T>
(SU-Unsafe)

Well-formed types:

∆ ⊢ Object ok (WF-Object)

X ∈ dom(∆)

∆ ⊢ X ok
(WF-Var)

CT (C) = class C<X ⊳ N> ⊳ N {...}
∆ ⊢ T ok ∆ ⊢ T <: [T/X]N

∆ ⊢ C<T> ok
(WF-Class)

∆ ⊢ * ok (WF-Bot)

CT (C) = class C<X ⊳ N> ⊳ N {...}

∆ ⊢ C ok
(WF-Raw)

Figure 5: Raw FGJ: Subtyping and Type Well-fomedness Rules

Subtyping, Well-Formed Types, and Typing

There are three additional subtyping rules for the bottom type and raw types: the bottom type is subtype of
any type (S-Bot); a raw type C is subtype of D if D is the name of a superclass of C (S-Raw); and a cooked
type C<T> is subtype of the corresponding raw type C (S-Cooked/Raw). Moreover, we need to add a rule
for subtyping derived from subclassing:

CT (C) = class C<X ⊳ N> ⊳ D{ . . . } CT (D) = class D<Y ⊳ P> ⊳ N{ . . . } #(Y) = #(*)

∆ ⊢ C<T> <: D<*>
(S-RawSuper)

As we already discussed, when the superclass is raw D, parameterized types from the subclass are subtype
of D<*> rather than D.

The judgment of unsafe subtyping is written ∆ ⊢ S <:? T; it is used in comparing the types of formal
arguments (of a constructor or method) with those of actual arguments. Unsafe subtyping includes safe
subtyping (SU-Safe) and allows C to be unsafe subtype of the cooked type D<T> (with unchecked warning)
if a raw type C is safe subtype of another raw type D (SU-Unsafe).

The definition of type well-formedness is extended in a fairly straightforward manner: the bottom type
is always well formed (WF-Bot) and a raw type is well formed if it is in the domain of CT (WF-Raw).

The typing rules are also mostly straightforward. When arguments are passed to a method/constructor,
their types can be unsafe subtype of the types expected. So, the rules for method invocation are as follows:

∆; Γ ⊢ e0 ∈ T0 mtype(m, bound∆(T0)) = <Y ⊳ P>U→U

∆ ⊢ V ok ∆ ⊢ V <: [V/Y]P ∆;Γ ⊢ e ∈ S ∆ ⊢ S <:? [V/Y]U

∆;Γ ⊢ e0.m<V>(e) ∈ [V/Y]U
(T-Invk)
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∆; Γ ⊢ e0 ∈ T0 mtyperaw(m, |T0|∆) = C→C ∆;Γ ⊢ e ∈ S ∆ ⊢ S <:? C

∆;Γ ⊢ e0.m(e) ∈ C
(T-InvkR)

The rules T-New and T-NewR for constructor invocation has to check, using cargtype, whether the con-
structor argument types are changed by erasure; similarly for invocation of super() in the rule T-Class. As
we discussed above, the rule T-NewR gives raw constructor invocation cooked type where all type variables
are instantiated by *.

∆ ⊢ C<U> ok cargtype(C<U>) = T f ∆;Γ ⊢ e ∈ S ∆ ⊢ S <:? T

∆;Γ ⊢ new C<U>(e) ∈ C<U>
(T-New)

∆ ⊢ C<*> ok cargtype(C) = T f ∆;Γ ⊢ e ∈ S ∆ ⊢ S <:? T

∆;Γ ⊢ new C(e) ∈ C<*>
(T-NewR)

In addition to the rules above, we require three rules relevant to the bottom type; we show two of them
T-Bot-Field and T-Bot-Invk as representatives.

∆; Γ ⊢ e0 ∈ * stupid warning

∆;Γ ⊢ e0.fi ∈ *
(T-Bot-Field)

∆; Γ ⊢ e0 ∈ * ∆ ⊢ V ok ∆; Γ ⊢ e ∈ S stupid warning

∆;Γ ⊢ e0.m<V>(e) ∈ *
(T-Bot-Invk)

We allow any field access and any method invocation on an expression of the bottom type; the whole
expression is also given the bottom type. Roughly speaking, the bottom type corresponds to the empty set;
an expression of the bottom type never reduces to an object instantiation new N(e). Any operation on the
element of the empty set is vacuously allowed and the result also belongs to the empty set. Similar rules can
be found in an extension of System F≤with the bottom type [15]. As stupid casts, we signal stupid warning
here as the GJ compiler actually rejects expressions of the bottom type: these rules are nevertheless needed
to show type soundness through subject reduction.

Reduction Rules

Thanks to the auxiliary definitions, the computation rule for raw method invocation is very simple. (For
congruence, we require two more rules, omitted from the figure.)

mbodyraw(m, N) = (x, e)

new N(e).m(d) −→ [d/x, new N(e)/this]e
(R-InvkR)

3.5 Properties of Raw FGJ

Raw FGJ programs without unchecked warning enjoy the subject reduction and progress properties, which
together guarantee type soundness.

3.5.1 Theorem [Raw FGJ subject reduction]: If ∆; Γ ⊢ e ∈ T without unchecked warning and e −→
e′, then ∆; Γ ⊢ e′ ∈ T′ without unchecked warning , for some T′ such that ∆ ⊢ T′ <: T.

3.5.2 Theorem [Raw FGJ progress]: Suppose e is a well-typed expression without unchecked warning .

(1) If e includes new N0(e).f as a subexpression, then fields(N0) = T f and f ∈ f.

(2) If e includes new N0(e).m<V>(d) as a subexpression, then mbody(m<V>, N0) = (x, e0) and #(x) = #(d).

(3) If e includes new N0(e).m(d) as a subexpression, then mbodyraw(m, N0) = (x, e0) and #(x) = #(d).

3.5.3 Theorem [Raw FGJ type soundness]: If ∅; Γ ⊢ e ∈ T without unchecked warning and e −→∗ e′

with e′ being a normal form, then e′ is either (1) a value v with ∅; Γ ⊢ v ∈ S and ∅ ⊢ S <: T or (2) an
expression containing (P)new N(e) where ∅ ⊢ N 6<: P.
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Expression typing:

∆;Γ ⊢ x ∈ Γ(x) (T-Var)

∆; Γ ⊢ e0 ∈ T0

fields(bound∆(T0)) = T f

∆;Γ ⊢ e0.fi ∈ Ti

(T-Field)

∆; Γ ⊢ e0 ∈ T0

mtype(m, bound∆(T0)) = <Y ⊳ P>U→U
∆ ⊢ V ok ∆ ⊢ V <: [V/Y]P

∆;Γ ⊢ e ∈ S ∆ ⊢ S <:? [V/Y]U

∆;Γ ⊢ e0.m<V>(e) ∈ [V/Y]U
(T-Invk)

∆; Γ ⊢ e0 ∈ T0

mtyperaw(m, |T0|∆) = C→C
∆;Γ ⊢ e ∈ S ∆ ⊢ S <:? C

∆;Γ ⊢ e0.m(e) ∈ C
(T-InvkR)

∆ ⊢ C<U> ok cargtype(C<U>) = T f

∆;Γ ⊢ e ∈ S ∆ ⊢ S <:? T

∆;Γ ⊢ new C<U>(e) ∈ C<U>
(T-New)

∆ ⊢ C<*> ok cargtype(C) = T f
∆;Γ ⊢ e ∈ S ∆ ⊢ S <:? T

∆;Γ ⊢ new C(e) ∈ C<*>
(T-NewR)

∆; Γ ⊢ e0 ∈ T0 ∆ ⊢ T0 <: N

∆;Γ ⊢ (N)e0 ∈ N
(T-UCast)

∆; Γ ⊢ e0 ∈ T0 ∆ ⊢ N ok
∆ ⊢ N <: bound∆(T0) dcast(N, bound∆(T0))

∆; Γ ⊢ (N)e0 ∈ N
(T-DCast)

∆; Γ ⊢ e0 ∈ T0 bound∆(T0) = D<U>
N = C<T> ∆ ⊢ N ok C 6E D D 6E C

stupid warning

∆;Γ ⊢ (N)e0 ∈ N
(T-SCast)

∆; Γ ⊢ e0 ∈ * stupid warning

∆;Γ ⊢ e0.fi ∈ *
(T-Bot-Field)

∆; Γ ⊢ e0 ∈ * ∆ ⊢ V ok

∆; Γ ⊢ e ∈ S stupid warning

∆;Γ ⊢ e0.m<V>(e) ∈ *
(T-Bot-Invk)

∆; Γ ⊢ e0 ∈ * ∆;Γ ⊢ e ∈ S
stupid warning

∆;Γ ⊢ e0.m(e) ∈ *
(T-Bot-InvkR)

Method typing:

mtype(m, N) = <Z ⊳ Q>U→U0 implies

P,T = [Y/Z](Q,U) and ∆ ⊢ T0 <: [Y/Z]U0

override(m, N, <Y ⊳ P>T→T0)

mtyperaw(m, C) = D→D0 implies

D = C and ∆ ⊢ C0 <: D0

override(m, C, C→C0)

∆ = X<:N, Y<:P ∆ ⊢ T, T, P ok
∆;x : T, this : C<X> ⊢ e0 ∈ S ∆ ⊢ S <: T

CT (C) = class C<X ⊳ N> ⊳ N {...}
override(m, N, <Y ⊳ P>T→T)

<Y ⊳ P> T m(T x){ return e0; } OK IN C<X ⊳ N>
(T-Method)

Class typing:

X<:N ⊢ N, T, N ok

cargtype(N) = U g M OK IN C<X ⊳ N>

K = C(U g, T f){ super(g); this.f=f; }

class C<X ⊳ N> ⊳ N {T f; K M} OK
(T-Class)

Figure 6: Raw FGJ: Typing Rules

fields(N) = T f

new N(e).fi −→ ei

(R-Field)

mbody(m<V>, N) = (x,e0)

new N(e).m<V>(d)
−→ [d/x, new N(e)/this]e0

(R-Invk)

mbodyraw(m,N) = (x, e)

new N(e).m(d)
−→ [d/x, new N(e)/this]e

(R-InvkR)

∅ ⊢ N <: P

(P)(new N(e)) −→ new N(e)
(R-Cast)

Figure 7: Raw FGJ: Reduction Rules
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4 Related Work

Pizza [14], another extension of Java with parameterized classes and the predecessor of GJ, makes some
use of class names without type arguments and, in fact, existential types are used in the type system (only
internally). They seem to be motivated to complement the restriction on typecasts due to lack of run-time
type argument information. In Pizza (also in GJ, FGJ and Raw FGJ), downcasts are restricted so that the
result will be the same whether programs are executed with or without run-time type arguments. Thus, for
example, downcast from Object to Pair<String,String> is prohibited because, at run-time, the element
type information is lost under the erased execution. In Pizza, one can write (Pair)e even though the
notation Pair itself does not make sense as a type; it checks whether e is subtype of Pair<X,Y> for some

X and Y and, thus, the whole expression is given the existential type ∃X,Y.Pair<X,Y>. In GJ, the same
notation is treated as a raw type, which can appear everywhere a type is expected; of course, downcast to
a raw type is allowed. In fact, this kind of use of raw types is deemed very important as well as the use for
program evolution.

Other extensions of Java with polymorphic classes and methods [1, 13, 7, 17] did not provide functionality
like raw types. According to the direct semantics of raw types shown here, it may be possible to augment them
with raw types. In particular, our direct semantics would be directly applicable to extensions implementing
type-passing semantics at either the source level [17] or the virtual machine level [13].

5 Discussions

We have formalized a novel feature, raw types, of GJ on top of a small core calculus Featherweight GJ. From
the type-theoretic point of view, raw types are close to existential types except several unsafe operations
such as coercion from a raw type to a cooked type are allowed. We have developed a type system and direct
reduction semantics of raw types. One difficulty arose from the fact that type arguments for polymorphic
method invocation may be missing from the expression. We have solved that problem by introducing the
bottom type, which is used for any missing type argument. The typing rules are proved to be sound with
respect to the operational semantics. In the course of the work, we have discovered a serious flaw in the
type system given in the original specification. We are now developing a more formal connection between
raw types and existential types, by showing encoding Raw FGJ to FGJ with existential types; such encoding
may be useful to analyze the border between checked and unchecked programs less conservatively. To some
extent, the encoding has turned out to be fairly straightforward.

Although it proves a sensible step towards understanding raw types, this work is rather preliminary; as
well as checked programs, we also need to develop formal accounts of unchecked programs to investigate
how raw types help program evolution. For example, it would be easily shown that an unchecked program
is compiled to a well-typed FJ program (FGJ program that does not use any polymorphic features), like a
similar result shown for FGJ [10]; thus, even though unchecked programs are not guaranteed to be statically

safe, only failures will be due to stuck downcasts (in the FJ-level execution) Another important property
expected is the evolution theorem, which can be stated roughly as follows: if a monomorphic class is replaced
with an “appropriate” polymorphic version, the whole program that uses the evolved class can remain well
typed (possibly with unchecked warnings). With a language with a property like that, it is easier to evolve
programs: when one class is evolved to a polymorphic version, one need not modify other classes depending
on the evolved class at the same time.
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