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Abstract

This paper studies hybrid contract verification for an imperative
higher-order language based on a so-called manifest contract sys-
tem. In manifest contract systems, contracts are part of static types
and contract verification is hybrid in the sense that some contracts
are statically verified, typically by subtyping, but others are dynam-
ically by casts. It is, however, not trivial to extend existing manifest
contract systems, which have been designed mostly for pure func-
tional languages, to imperative features, mainly because of the lack
of flow-sensitivity, which should be taken into account in verifying
imperative programs statically.

We develop an imperative higher-order manifest contract sys-
tem A, for flow-sensitive hybrid contract verification. We intro-
duce a computational variant of Nanevski et al’s Hoare types,
which are flow-sensitive types to represent pre- and postconditions
of impure computation. Our Hoare types are computational in the
sense that pre- and postconditions are given by Booleans in the
same language as programs so that they are dynamically verifiable.
M also supports refinement types as in existing manifest contract
systems to describe flow-insensitive, state-independent contracts of
pure computation. While it is desirable that any—possibly state-
manipulating—predicate can be used in contracts, abuse of state-
ful operations will break the system. To control stateful operations
in contracts, we introduce a region-based effect system, which al-
lows contracts in refinement types and computational Hoare types
to manipulate states, as long as they are observationally pure and
read-only, respectively. We show that dynamic contract checking
in our calculus is consistent with static typing in the sense that the
final result obtained without dynamic contract violations satisfies
contracts in its static type. It in particular means that the state after
stateful computations satisfies their postconditions.

As in some of prior manifest contract systems, static contract
verification in this work is “post facto,” that is, we first define our
manifest contract system so that all contracts are checked at run
time, formalize conditions when dynamic checks can be removed
safely, and show that programs with and without such removable
checks are contextually equivalent. We also apply the idea of post
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facto verification to region-based local reasoning, inspired by the
frame rule of Separation Logic.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Programming by contracts;
D.3.1 [Programming Languages]: Formal Definitions and Theory;
E3.1 [Specifying and Verifying and Reasoning about Programs]):
[Assertions]

General Terms Languages, Design, Theory, Verification

Keywords contracts, refinement types, computational effects, dy-
namic verification, assertion

1. Introduction
1.1 Hybrid Contract Verification for Imperative Languages

Since “Design by Contracts” by Meyer [33], software contracts
have been a broadly used, prominent tool to describe program
specifications and construct robust software. The fact that con-
tracts are executable—that is, they are written in the same lan-
guage as programs—distinguishes them from other specification
languages and makes it possible to verify programs either dy-
namically or statically. While dynamic verification is the original
purpose of contracts and much work along this has been stud-
ied [9, 13, 14, 16, 17, 25, 33, 54, 58, 65], static verification with
contracts is also drawing attention—for example, there is recent
work to integrate contracts with dependent types [5, 46, 62, 63] and
symbolic execution [40, 59, 72]. Dynamic and static approaches to
contract verification have complementary pros and cons: dynamic
verification is easy to use but it makes program execution ineffi-
cient and may miss critical errors; and static verification can check
programs exhaustively and do not affect run-time behavior of pro-
grams but it often imposes heavy burden on programmers and re-
stricts programming features which can be used in programs and/or
contracts.

To take advantages of both static and dynamic verification,
hybrid contract verification has been studied [3, 18, 19, 23, 30,
42, 71]. In hybrid verification, the two verification mechanisms
are integrated so that as many contracts as possible are verified
statically and others are dynamically. Hybrid verification helps
reasonable, certified software development. One possible scenario
to utilize it is to verify critical parts of a program statically by rich
contracts and check that program points to enter the critical parts
satisfies the contracts at run time.

Although hybrid verification has a potential to realize rapid
development of reliable software, it has been so far studied mostly
for pure languages. However, practical software is usually written
in an imperative language and so it is necessary to equip hybrid
verification with imperative features for applying it to practical
software development. In fact, there is little work on hybrid contract
verification with states [19, 42], but it is insufficient for verifying




type tbl
val mem : tbl -> string -> bool
val add t:tbl ->

s:{s:stringlnot (mem t s)} ->
{u:unit|mem t s}
val fresh_str t:tbl ->
{s:string|not (mem t s)}

let t : tbl = (*x make a table *)
let s : {s:stringlnot (mem t s)} = fresh_str t

add t s; add t s

Figure 1. A problematic program breaking value inversion and the
invariant on string tables.

stateful programs because of the lack of support for state-dependent
contracts, which are important in verifying, say, abstract mutable
data structures such as hash tables.

The goal of this work is to advance hybrid contract verification
so that stateful programs with state-dependent contracts can be ver-
ified. In this paper, we design hybrid verification based on manifest
contract systems [3, 18, 22, 30, 48, 49], which are a theoretical
model to integrate static and dynamic contract verification. Mani-
fest contract systems are adequate for studying hybrid contract ver-
ification in that they do not depend on specific static verification
technologies and so we can adopt any desirable static approaches in
implementing them as languages. In what follows, after describing
manifest contract systems briefly, we show challenges in extend-
ing manifest contract systems with imperative features and how we
address them.

1.2 Manifest Contracts for Imperative Languages

Manifest contract systems are a theoretical model of intermedi-
ate languages for hybrid contract verification. In them, contracts
are embedded into static types, in particular, refinement types of
the form {z:T | e}, which means values v (of type T') sat-
isfying the Boolean expression e, i.e., [v/z] e reduces to true.
Contract e, also called a refinement, can use any code fragments;
for example, a refinement type of positive integers can be repre-
sented by {z:int | z > 0} and that of prime numbers can be by
{z:int | prime? z} if Boolean program function prime?, which
returns whether the argument is a prime number, is given. Contract
verification in existing manifest contract systems is formalized as
a kind of type conversion: static verification is reduced to subtyp-
ing checking of refinement types and dynamic verification is per-
formed by casts (T1 < Tb)*, which converts inhabitants of source
type T% to target type 77 at run time and, if the conversion fails,
an uncatchable exception will be raised. To connect static and dy-
namic verification, manifest contract systems are equipped with a
key property called value inversion, which states that a value of
{z:T | e} must satisfy contract e.

Existing manifest contract systems have been studied mostly
for pure languages and it is not trivial to extend them to impera-
tive features, mainly because of the lack of flow-sensitivity, which
has to be taken into account in verifying stateful programs with
state-dependent contracts statically. Although naive introduction of
states to pure manifest contract systems makes it possible to embed
state-dependent contracts into refinement types, it is unreasonable
because refinement types are flow-insensitive, in the sense that their
inhabitants are supposed to satisfy their contracts everywhere, but
state-dependent contracts can be invalidated by assignment opera-
tions; as a result, value inversion would be broken. To clarify what
would happen in the naive extension, let us consider string tables,
which are implemented by mutable references to string lists whose

elements are pairwise distinct. Figure 1 shows an ML-like program
where state-dependent contracts for functions of string tables are
embedded into refinement types. The program provides three func-
tions: mem, which returns whether a given table contains a given
string, add, which adds a given new string to a given table, and
fresh_str, which returns some string not contained in a given ta-
ble. To preserve the invariant on string tables, a contract for add
requires a given string not to be a member of a given string table.
The return type of fresh_str refers to a given table and means
that it produces a fresh string for the table. Notice that add and
fresh_str are given dependent function types—in a dependent
function type x:T1->T2, return type T2 can refer to the argument
of type T1 as x. Given table t and string s produced by fresh_str
with t, flow-insensitivity of refinement types allows us to refer to
s as strings satisfying not (mem t s) everywhere. Since the type
of s coincides with the argument to add t, we can pass s to add
t in both calls on the last line. After the first call to add, table t
should include string s, while the type of s still claims that t does
not include s—uvalue inversion is broken! Furthermore, violation
of value inversion would cause manifest contract systems to accept
erroneous programs as Figure 1, where the second call to add will
break the invariant on string tables.

A lesson from the discussion above is that, though state-
dependent contracts are necessary for specifying the behavior of
stateful programs, they may be invalidated during program execu-
tion. Although indeed there is extensive work which studies con-
tracts for stateful programs [13, 14, 19, 24, 55], their work is not
very satisfactory because they (1) focus on how to enforce contracts
for references but not on dealing with state-dependent contracts, or
(2) restrict contracts excessively. For example, Flanagan, Freund,
and Tomb [19] have addressed the problem by allowing only pure
expressions as refinements, but contracts for operations on muta-
ble data structures such as add and fresh_str could not be given
because they are usually state-dependent.

1.3 Our Work

In this paper, we develop an imperative higher-order manifest
contract system Al with a flow-sensitive type system for state-
dependent contracts. In addition to refinement types to describe
state-independent contracts, we introduce computational Hoare
types, a variant of Hoare types in Nanevski et al.’s Hoare Type
Theory (HTT) [37, 38], to describe state-dependent contracts. For
example, contracts for add and fresh_str are expressed by com-
putational Hoare types since they are state-dependent, while con-
tracts for positive numbers and prime numbers are expressed by
refinement types since they are state-independent. Our Hoare types
are computational in the sense that, unlike HTT, predicates are con-
tracts, that is, executable computations so that they are dynamically
verifiable. (In this paper, computational Hoare types are simply
called Hoare types if it is clear from the context that the compu-
tational version is meant.) The type system is flow-sensitive—that
is, it tracks what state-dependent contracts hold and what may
have been invalidated after imperative operations—with the help
of Hoare types. Flow-sensitivity of the type system prevents the
problem in Section 1.2 by finding out that the contract “not (mem
t s)” may be invalidated by the assignment to table t in the first
call to add.

We define A by following Belo et al. [3], who have proposed
a general approach to defining manifest contract calculi with “post
facto” static verification. Their approach sets subtyping apart from
the type system of a calculus so that all contract checks are made
explicit as casts; static verification amounts to detecting and elim-
inating necessarily successful casts by examining their source and
target types before executing programs. Such an approach allows us
to separate issues in designing a mechanism for dynamic checking



and methods for static verification, making metatheory of the cal-
culus significantly less complicated (if not simple). We will show
that dynamic contract checking in Al is consistent with static typ-
ing by establishing two properties (as well as usual progress and
preservation [44, 67]): one is value inversion mentioned above and
the other is that the final state after stateful computations satisfies
their postconditions. Then, we study, as a basis for static verifi-
cation, sufficient conditions for dynamic check of state-dependent
contracts to be eliminated without changing the semantics of a pro-
gram.
What follows describes our contributions in more detail.

Hoare types with state-dependent contracts Hoare types are
a kind of dependent types inspired by Hoare triples in Hoare
logic [26]. A Hoare triple { P} ¢ {@} means that stateful compu-
tation ¢ demands that precondition P hold and, after computing c,
guarantees that postcondition @ holds. Similarly, Hoare types, writ-
ten as {A1}z:T{A2} in this work, denote stateful computations
which assume precondition A, before their execution, return values
of T, and ensure postcondition A, after their execution; variable z
represents the return values of the computations in Az. A and Az
are possibly state-dependent contracts and program states have to
satisfy these contracts before and after executing computations of
this Hoare type. From a denotational point of view, computations of
the Hoare type can be interpreted as functions over states such that
they take states satisfying A; and return states satisfying A, with
some value z of 7. Using Hoare types, for example, the contract
for add can be presented as:

t:tbl — s:string — {not (memt s)}z:unit{mem¢ s},

which describes that add accepts a string table ¢ and a string s
and insists that s is not a member of ¢ in the state in calling add;
when these all preconditions are met, add computes something to
result in the state where ¢ contains s. Following HTT, A classifies
programs into pure and impure fragments in the monadic style [35,
36, 64], and contracts for pure computations are represented by
refinement types as in prior manifest calculi and ones for impure
computations are by Hoare types.

Dynamic checking All contracts in A are checked at run time

by using either of two mechanisms: casts (called also dynamic type
conversion), a customary means in manifest contracts to check re-
finements in pure fragments, and assertions, a new means to check
pre- and postconditions of stateful computations—in both mecha-
nisms, if a dynamic check fails, an uncatchable exception (called
blame [16]) will be raised to notify contract violation. We extend
the cast-based mechanism to reference types and Hoare types—
casts for these types produce wrappers which check properties
about states when they evaluate in impure fragments. For refer-
ence types, we use the idea of views and guards in the earlier
work [13, 19, 24, 55]. A also provides an assertion-based check-
ing mechanism to check pre- and postconditions at run time. When
computation ¢ needs some preconditions to be satisfied, we can
check them at run time before executing c; if they hold, the remain-
ing computation proceeds; otherwise, an uncatchable exception is
raised. On the contrary, when c is required to ensure postcondi-
tions, we can also check them at run time with the execution result
of c; if they hold, the whole computation returns the result of c;
otherwise, an uncatchable exception is raised.

Type-and-effect system We design a type system of A to not
only ensure that values of refinement types satisfy their refine-
ments, which is a key property in manifest contracts [21, 48, 49],
but also identify how long state-dependent contracts that have been
checked remain true. We hope that contracts are as expressive as
possible, but computations with assignments to references in pro-
grams should not be accepted as contracts because, intuitively, con-

tracts are specifications and so should not affect the program be-
havior and, technically, type soundness needs that run-time con-
tract checking be recalculatable, at least immediately after ending
the check, but such assignments would make it impossible. To con-
trol stateful operations in contracts, we introduce a region-based ef-
fect system [8, 31, 60], which allows contracts in refinement types
and Hoare types to manipulate references as long as they are ob-
servationally pure and read-only, respectively—that is, refinements
can manipulate only references allocated in regions local to them-
selves and pre- and postconditions can dereference any memory
cell in addition to arbitrary manipulation of locally allocated refer-
ences. The effect system ensures that those local references never
escape to programs. In this paper, we simply call observationally
pure and observationally read-only contracts pure and read-only,
respectively.

Static verification of state-dependent contracts The effect sys-
tem is also useful for static verification of state-dependent con-
tracts. Following Belo et al. [3], this work studies “post facto”
static verification, that is, we define Al so that all contracts are
checked at run time, formalize what dynamic checks can be elimi-
nated safely, and show that programs with and without such checks
are contextually equivalent. Intuitively, dynamic checks of con-
tracts can be eliminated when their satisfaction is derived from
other, already established contracts. For example, computations en-
suring postcondition that table ¢ contains some string also guar-
antee another postcondition that the size of table ¢ is larger than
0 without additional assertions if it is proven that the former im-
plies the latter—although what it says would seem trivial, showing
soundness of static verification in manifest contracts is usually not
easy [3, 30, 49].

We also apply post facto verification to region-based local rea-
soning, which is inspired by the frame rule in Separation Logic [41,
45] and means that satisfaction of preconditions which do not refer
to references mutated by a computation is preserved even after exe-
cuting the computation. The local reasoning would enable modular
verification because we can verify subcomponents of a program
without having to know the entire contract of the program. For
example, thanks to this local reasoning, Al can accept program
“let s = fresh_str t; let b = mem t "foo"; add t s”
without inserting run-time checks even if the postcondition of mem
does not state explicitly that s is not contained in t still.

Although, unlike the original work of manifest contracts [3, 18,
30], this work does not study static verification of refinements due
to the difficulty from higher-order types, we expect that our work
would be a foundation for such verification.

Organization The rest of this paper is organized as follows: we
describe an overview of )\'r'éf in Section 2; Sections 3, 4, and 5
offer the program syntax, the type system, and the operational
semantics of A\, respectively, and Section 6 shows type soundness
after extending the type system with run-time typing rules. After
showing static verification in Section 7, we discuss related work in
Section 8 and conclude in Section 9.

We omit the proofs of our technical development from this
paper; interested readers can refer to the full version at: http://
www.fos.kuis.kyoto-u.ac. jp/~t-sekiym/papers/refh/
refh_full.pdf

2. Overview of AL,

This section gives an overview of A, focusing on four key ideas:
first, classification of programs to pure and impure fragments in the
monadic style; second, computational Hoare types; third, a region-
based effect system; and finally, an assertion-based mechanism to
check pre- and postconditions of Hoare types at run time.



2.1 Terms and Computations in Monadic Style

Following HTT, the program syntax of our calculus consists of two
syntax classes: terms, which are considered as “almost” pure pro-
gram fragments and can be typed at refinement types, and compu-
tations, which are considered as impure program fragments and can
be typed at Hoare types. Terms do not manipulate states but include
cast applications, so they raise exceptions if some cast fails; this is
the reason why terms are “almost” pure. To classify programs into
terms and computations, we adopt the monadic style [35, 36, 64],
which is a well-known syntactic discipline to distinguish between
program fragments with and without computational effects.

In fact, we would meet difficulties without any mechanism
to distinguish pure and impure computation. One issue is how
to deal with dependent types. Let us consider function applica-
tion e; ez where e; and e are typed at dependent function type
x: Ty — T3 and type 1. We expect the result type of e; ez to be
return type 15, but 7% is dependent on the argument variable x of
Ti. Thus, a standard typing rule [53] gives e1 ez type [ez/z ] Ta
with substitution of ez for z. However, this approach is unsound if
term ez involves stateful effects. This problem has been addressed
by using existential quantifier to hide information of substituted
terms [15, 29]; however, this remedy cannot be directly applied
to our calculus—hidden information cannot be recovered, unlike
Knowles and Flanagan [29], due to effects in terms, and, even
worse, it is very difficult (possibly impossible) to check specifica-
tions with existential quantifier at run time in an algorithmic way.

The monadic style solves this problem. Since arguments to
functions must be pure, we can adopt the standard substitution-
based rule. It is also convenient in formalizing typing rules, thanks
to the fact that intermediate results during computation are all
named. Another advantage is that it is easy to analyze when state-
dependent contracts may be invalidated since the monadic style
sequentializes effects, in particular, assignment, which is the only
effect that can invalidate them.

Terms Terms e are mostly from the lambda calculus and man-
ifest contracts. The most distinguishing construct from manifest
contracts is casts (11 < TQ)Z, which check that, when applied
to values of source type 75, they can behave as target type 74.
For example, since 3 is positive, the cast application ({z:int |
z > 0} < int)’ 3 succeeds and returns 3 whereas, since 0 is not
positive, ({z:int | z > 0} <« int)* 0 gives rise to an uncatchable
exception }¢ with label ¢ to notify contract violation (the label ¢ is
used to identify the program point with the cast). Terms also con-
tain do-expressions, a usual construct in monadic languages. do-
expressions, written as do ¢ (where ¢ is a computation discussed
below), are suspended computations and are introduced to deal with
computations in the context of terms. Using do-expressions, for ex-
ample, we can write higher-order stateful functions (that is, func-
tions taking and/or returning stateful computations) and implement
recursive functions via Landin’s knot. do-expressions will be exe-
cuted when they are connected with the top-level computation.

Computations Computations, denoted by ¢, are constructed as
usual by two constructs: return and bind. The return construct
return e returns the evaluation result of term e as a computation
result. The bind construct z < e;; ¢ evaluates term e; to do-
expression do ¢;, and then computes ¢; and ¢z sequentially. The
computation cp can refer to the result of ¢; as x. Moreover, since
our interest is in stateful programs, computations can deal with
operations on mutable references. Such operations are written as

!
z < ref eg; 2 z <= lei;co T < e1 = €15 C2

which represent memory allocation, dereference, and assignment,
respectively. After doing the corresponding action, they compute

c2 by binding x to the result of the action. The assignment action
returns the unit value.

Example Let us consider a function that takes a reference that
points to an integer value, increments the contents, and then returns
the old value of the reference. Such a function can be written as:

f & Az:Ref int.do y<lz;_<zx=y+ 1;returny
Here, Ref int is the type of integer references and “_” means an
unused variable. We can call f by passing a reference to an integer:

x<=refl;y <« fa;z < lz;returny + 2

This computation returns integer 3 because the contents of z are
updated to 2 and f returns the old value 1.

2.2 Hoare Types

Hoare types have pre- and postconditions of stateful computations.
In our work, these conditions are sequences A of Boolean compu-
tations. Intuitively, condition A means the conjunction of all con-
tracts in A; since the empty sequence means the contract which
always hold, we write T for it. Formalizing pre- and postcondi-
tions as sequences of computations simplifies the metatheory of our
calculus—e.g., it allows strengthening preconditions and weaken-
ing postconditions in a natural way. Computations of Hoare type
{A1}z:T{A2} demand A1, produces values v of type T (if any),
and ensures [v/z ] As.

Hoare types are flow-sensitive in the sense that, if computation
c2 will be executed immediately after computation c;, the precon-
dition of the Hoare type of c2 has to syntactically coincide with
the postcondition of the Hoare type of c;. If they do not, run-time
checks by assertion to confirm that the precondition of ¢z holds are
necessary immediately before executing cz. Fortunately, as will be
discussed in Section 7, if the precondition of c¢3 is implied from the
postcondition of ¢;, we can eliminate such run-time checks “post
facto.”

Example Let us consider a contract that a computation requires
reference z to point to an integer list each of which is a prime
number, add new prime numbers to z, and returns the length of
the result list. Using Hoare types, the contract is given as follows:

{y < !z;return (for_allprime? y)}

z:int

< lz;return (for_allprime? y) & (lengthy = 2
) p ) gthy

where for_all prime? y returns whether each element in integer
list y is a prime number and length returns the length of the argu-
ment list. The pre- and postcondition are allowed to read an integer
list from reference z since contracts of Hoare types can be state-
dependent, unlike refinement types. Similarly, mem, fresh_ str,
and add in Figure 1 can be given:

mem : tbl — string — {T }z:bool{ T}

fresh_str: t:itbl — {T }s:string{y < mem ¢ s; returnnot y}

add : t:itbl — s:string — {y < mem ¢ s; returnnot y}
z:unit

{y < memt s;returny}

Thanks to flow-sensitivity of Hoare types, while a program
which adds a string produced by fresh_str to a string table once
can be accepted:

At:tbl.do s <— fresh_str¢;_ < addt s;return ()

(because the postcondition of fresh_str ¢t ensures the precondi-
tion of add ¢ s), the erroneous program in Figure 1, where a string
produced by fresh_str is added to a string table twice, is rejected:

At:tbl.do s < fresh_strit;_ <« addts;_- < addts;return()



because the pre- and postcondition of add ¢ s do not coincide. We
can execute the erroneous program by inserting a run-time check
which confirms that s is not contained in ¢ immediately before the
second call to add, but the run-time check will fail.

2.3 Region-Based Effect System

As mentioned in Section 1.3, we have to restrict refinements to pure
computations and pre- and postconditions to read-only computa-
tions. One naive approach to it is to restrict refinements to terms
and pre- and postconditions to computations involving with only
return and dereference constructs (binds may introduce assign-
ments as do-expressions). However, it limits the expressive power
of contracts excessively. For example, it would disallow contracts
to use imperative libraries—e.g., hash tables and regular expression
matching [32]—and interface functions for abstracted mutable data
structures.

Our solution to relaxing the restriction while retaining the ex-
pressive power of contracts is to introduce an effect system with lo-
cally scoped regions [31, 60]. The effect system accepts pure com-
putations, which manipulate only locally allocated references, in
refinement types and read-only computations, which do not apply
assignment to references allocated in programs, in pre- and post-
conditions of Hoare types.

To observe whether contracts are independent of references in a
program, our effect system tracks which program point references
are allocated at, using a region, which intuitively identifies a pro-
gram point, in a standard manner [8, 31, 60]. Regions, denoted by
r, are introduced by let-region vr. ¢ [8, 60], which computes ¢ un-
der the local region r. If ¢ manipulates only references allocated in
r, it appears to be pure for the context surrounding the let-region.
Similarly, if it does not write data to references allocated in other
regions, it appears to be read-only. Which regions references are
allocated at is embedded into reference types, as usual in the work
on region calculi with states [8, 31]. Reference types Ref,. T' denote
references which point to contents of 7" and are allocated at r.

To ensure that refinements are pure and pre- and postconditions
are read-only, we track what operations contracts apply to refer-
ences as effects and check that forbidden effects are not involved.
As is standard in monadic languages [36, 64, 66], we embed ef-
fect information into types for computations, that is, Hoare types.
In M, Hoare types actually take the form {A; }a: T{Ag} %),
where v: and 7, are sets of regions whose references are readable
and writable in computations of the Hoare type, respectively. Re-
finements have to be typed at {T }z:bool{ T}*? where: v, =
v« = (0 means that the refinements have to be pure; A3 = T
that the refinements cannot suppose any precondition, since val-
ues of the refinement type must be copyable to any contexts; and
Ay = T that it is not needed to guarantee any postcondition. Pre-
and postconditions have to be typed at {A; }z:bool{T}=? for
some A; and 7, where: v, = () means that the conditions have to
be read-only—in other words, they are allowed to read data from
references in regions 7; and the conditions can assume some A;
established before checking them.

Moreover, to enhance reusability of program components, we
introduce region abstractions [31, 60], which are abstracted over
region variables, so they can be used in any contracts. Region
polymorphic types Vr. T are types for region abstractions.

Example The effect system allows many efficient algorithms and
data structures with mutable references to be reused in contracts
as well as programs. For example, using the let-region construct,
an efficient implementation of regular expression matching, which
often rests on mutable references, would be given the following
type because it would rest on only locally allocated references:

string — string — {T}x:bool{T}w’@)’

where the first and second arguments mean regular expressions and
target strings, respectively. The Hoare type means that the regular
expression matching is pure, so contracts can use it.

Moreover, the effect system enables contracts to mention “hid-
den states” of an abstracted data structure via interface functions
for it. For example, it accepts the types given to functions mem,
fresh_str, and add for abstracted string tables in Section 2.2, us-
ing some r:

mem : tbl — string — {"I'}z:bool{T}qT}’@>
fresh_str: t:tbl —
{T}s:string{y < memt s; returnnot ¢ }{{"H®
add : t:tbl — s:string — {y < mem¢ s; returnnot y}
T:unit
{y + memt s;return y}<{"'}*{"'}>

where read and write effects in both mem and fresh_str are {r}
and (), respectively, because they would dereference a string table
pointer at  but would not update it, and both of the read and write
effects in add are {r} because it would add a string to a string table
after dereference. Under the naive syntactic restriction, these types
of fresh_str and add would be rejected because the contracts for
them use bind constructs.

2.4 Run-time Checking of Pre- and Postconditions

To check pre- and postconditions of Hoare types, we provide a
new computation construct, assertions. Assertion assert (cl)é; C2
first checks contract ¢; and then: if the contract checking suc-
ceeds, i.e., ¢; returns true, the remaining computation cz will be
executed; otherwise, if it fails, an uncatchable exception ¢ will
be raised. Perhaps assertions might appear to be able to check
only preconditions, but they can also be used to check postcon-
ditions. For example, we can write a computation that first ex-
ecutes c¢; and then check postcondition cz, using assertions, as
& < do c1;assert (¢c2)*; return z. For short, we write this com-

putation as c¢;; A\z.assert (c2).

Example Let us consider whether a computation c satisfies the
first contract in Section 2.2, that is, when reference x points to a
prime number list, after computing it, the contents of z are still a
prime number list and the computation returns the length of the list
referred to by x. Using assertions, it is checked as follows:

assert (y < !z;return (for_all prime? y))“;
¢
Az.assert (y < lz;
return (for_allprime? y) & (lengthy = 2))*

Note that the contracts checked by these assertions match the pre-
and postcondition of the Hoare type given in Section 2.2. When this
computation is executed, first of all the precondition is checked; if
the reference x does not refer to a prime number list, exception 141
is raised; otherwise, the computation c is performed. If ¢ terminates
and returns a value, then, as a postcondition, whether reference =
still points to a prime number list and whether the integer result
of c is the length of the prime number list are checked. If the
checking succeeds, the result of ¢ is returned as the result of the
whole computation; otherwise, }¢2 is raised.

As a more interesting example, we consider an implementation
of add, the Hoare type of which is given in Section 2.3. String
tables are mutable references to string lists whose elements are
pairwise distinct and we suppose that a concrete representation
type of tbl is Ref.{l:string list | uniq !} where function uniq
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Figure 2. Program syntax in \;.

returns whether each element of a given list is unique in it. Then,
the implementation of add can be given as follows:

At:tbl. As:string. do
<=t
let I’ = ({I':string list | uniq !’} < string list)‘t (s :: 1);
_=t=1
return ();
A_assert (y < mem ¢ s; return y)*2

Here, let x = e1; c2 is an abbreviation of z < doreturn eg; ca.
This function accepts a string table ¢ and a string s and returns
a do-expression that adds s to ¢. The do-expression first derefer-
ences ¢ and obtains a list [ whose elements are distinct from each
other. Then, it checks with a cast that the new string s is fresh
for [, and updates the string table with the new list if the check
succeeds. Finally, the postcondition is checked by the assertion, in
which y < mem ¢ s; return y states that ¢ contains s. This function
involves two run-time checks: the cast ({I’:string list | uniq!'} <
string list)“* and the assertion assert (y < mem ¢ s; return y)*2. It
is obvious that the latter check always succeeds while whether the
former succeeds rests on whether string s is not contained in table
t before calling add: if s is not in ¢, the check succeeds; otherwise,
it fails. Since s is passed by clients of add, we require them to pass
strings which do not occur in .! As a result, the Hoare type of add
is given as in Section 2.3.

Contrary to the fact that add ensures the postcondition by asser-
tions, its client does the precondition. For example, a function that
extends a given string table with the string "foo" is written as:

At:tbl. doassert (y < memt "foo"; returnnot y)*;
_<—addt"foo"; return ()

where the precondition of add is checked before calling it.

Fortunately, we do not need the precondition check if it is
ensured by the preceding computation. For example, the example
in Section 2.2 shows that we can omit checking the precondition of
add immediately after calling fresh_str since it is ensured by the
postcondition of fresh_str.

3. Syntax

We show the program syntax of A in Figure 2. The syntax uses
various metavariables: B ranges over base types, A lists of pre- and
postconditions of computations, T types, k constants, e terms, d

! The cast is still left in well-typed programs because static verification of
contracts are “post facto” [3].

commands, ¢ computations. We use z, y, z, etc. as term variables,
r and s as region variables, y as sets of region variables, and p as
pairs of region sets. We write g1 U g2 for the element-wise union of
o1 and 92, {(Vr, Yu) W vy for (v W 7y, v W 7), where W is the union
operation defined only when the given two region sets are disjoint,
and vy, r fory W {r}.

Types offer base types, dependent function types, and refine-
ment types from usual manifest calculi, in addition to reference
types and Hoare types, which are already described in Section 2.2
in detail. We do not fix base types but assume bool and unit at least
for contracts and assignment. Function types z:T — T’, refine-
ment types {z: T | ¢}, and Hoare types { A1 }z: T{ A2 }® bind vari-
able z in T, ¢, and As, respectively. Region polymorphic types
Vr.T bind region r in 7.

Terms are usual lambda terms with constants, casts, pointer
equality tests, do-expressions, region abstractions and applications.
Constants include, at least, Boolean values true and false and the
unit value (). A pointer equality test expression e; == ea returns
whether two pointers e; and ez are equal. Ar.e, where 7 is bound in
e, abstracts regions and e{r} applies region abstraction e to region
T.

Computations consist of return, bind, operations on references,
let-region, and assertion. Region 7 in ref . e specifies where a mem-
ory cell storing e is allocated. z < ei;¢ and x < di;c bind
variable z in ¢; vr. ¢ binds 7 in c.

Finally, we introduce usual notations. We write [e’/z ] e for
capture avoiding substitution of e’ for z in e. a-equivalent terms
are identified and a term without free term variables is said to be
closed. These notions are applied to other syntactic categories such
as computations and types. We use function frv (¢), which returns
the set of free region variables in computation c. As shorthand, we
write: 77 — T5 for z: Ty — T when z does not occur free in
To; and letz = ey in eg for (Az:T.e2) e; where T is an adequate

type.

4. Type System

This section introduces a type system for programs in A. The
goal of the type system is to guarantee that well-typed programs
can’t go wrong except for contract violations, i.e., they evaluate
to values, raise exceptions by cast or assertion failure, or diverge.
The type system is not strong enough to exclude possible contract
violations; however, it does guarantee that result values and result
stores of well-typed programs satisfy the contracts on their types.

The type system has five judgments defined mutually recur-
sively by rules in Figure 3: typing context well-formedness v F
I', type well-formedness v;I' F 7', assertion well-formedness
~v;T' F¢ A (where  stands for effects which may occur in compu-
tations of A), term typing judgment v;I" - e : T, and computa-
tion typing judgment y; I' - ¢ : {A1}x: T{A2}°. Typing contexts
I", sequences of term and region variable declarations, are defined
in a standard manner:

Fa=0|T,z:T |1, r

Region variables declared in I' are introduced by region abstrac-
tion, whereas those in «y are by let-region. The two kinds of region
variables are distinguished to reflect the fact that v-bound variables
are never replaced by substitution. We assume that term and re-
gion variables declared in typing contexts are distinct and write
regions (I') for the set of region variables declared in T

Inference rules for typing context and type well-formedness
judgments are standard [3, 21, 48, 49] or straightforward except
(WF_REFINE) and (WF_HOARE). The rule (WF_REFINE) means
that refinements must be pure ({{}, #)) and cannot assume but do not
have to ensure anything. The rule (WF_HOARE) states that the pre-
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Figure 3. Type system for A\

and postcondition of a Hoare type with effect ¢ should be no more
effectful than p.

Assertion well-formedness is derived by two rules. In the rule
(WF_EXTENDASSERT), which is applied to append another con-
dition ¢ to a sequence A, the second premise means that: the ap-
pended condition ¢ can assume that the preceding conditions A
hold, has to be read-only, and does not have to ensure anything.

Typing rules for terms are syntax-directed and almost standard.
The rules (T_CONST) and (T_OP) use metafunction ¢y, which re-
turns the type of each constant and each operator. The rule (T_APP)
substitutes an argument term e for variable z bound in return type
T>. This substitution causes no problems because terms in our cal-
culus are almost pure—i.e., they return values or raise exceptions—
and it is known that some computational effects, such as raise of
uncatchable exceptions and nontermination, do not cause problems

in manifest contracts [3, 49]. The rule (T_-CAST) requires the source
and target types of a well-typed cast to be well formed and compat-
ible [22, 30]. Intuitively, a type 7% is compatible with another type
T> when they are identified after dropping all contracts and region
information. Formally, compatibility || is the congruence satisfy-
ing {w:T | ¢} || T,Ref. T || Refs T, and {A11}2: T{A12}9" |
{A21}x: T{A22}92. The rule (T-EQ) allows terms typed at com-
patible reference types to be compared because the same pointer
can be cast to different (reference) types; note that Ty || T iff
Ref, Ty || RefsT> for any r and s. The compatibility check in
(T_CAST) and (T_EQ) reports casts that always fail and equality
tests that always return false without evaluating.

Computation typing rules are more interesting. The typing rule
(CT_RETURN) gives return e the Hoare type {[ e/z ] A}z: T{A}?
where T is the type of e and g is effects which may occur in A. If



[e/z] A is satisfied, return e results in a store satisfying A be-
cause = in A denotes the value of e and return e does not manip-
ulate stores. The rule (CT_BIND) for x < e1; c2 requires e; to
evaluate to do ¢; (if terminates) and allows the remaining compu-
tation c2 to refer to, by z, the result of computing the suspended
computation c;. Since x <— ei; c2 involves effects of ¢; and co,
the effect of the result type is the union g1 U g2 of effects of e;
and cp. Satisfaction of the precondition of ¢z has to be promised
by the postcondition in the type of e; because cz will be com-
puted immediately after executing ci. Moreover, (CT_BIND) de-
mands that the result type {A1}z: To{A2}°17?2 be well formed
under the typing context I' without y since y is a variable locally
bound by bind—other typing rules need similar conditions. The
typing rules (CT_NEW), (CT_DEREF), and (CT_ASSIGN) are ap-
plied to a computation with memory allocation, dereference, and
assignment, respectively. In these rules, the corresponding effect
is added to the result Hoare type. The first two rules are not sur-
prising. The rule (CT_ASSIGN) says that the remaining computa-
tion c3 cannot assume anything (hence the empty condition) be-
cause the assignment could invalidate the precondition A;—for
example, the condition z < le;returnz = 0 does not hold af-
ter executing e := 2. In general, we do not know which condi-
tions still hold and which conditions do not, so we suppose the
worst-case scenario, that is, that all conditions are invalidated. In
fact, we can do better because if references manipulated by assign-
ment are allocated at 7, conditions which do not involve effects
including r will not be invalidated—we discuss this recovery of
preconditions of the remaining computation in Section 7. Finally,
the result of an assignment is the unit value, so the typing con-
text in the third premise of (CT_ASSIGN) includes y:unit. The rule
(CT_LETREGION) is applied to let-region vr. ¢ and requires the
body ¢ to be well typed under the region set including region r.
The well-formedness of the result Hoare type under the region set
without 7 ensures that access to r is not observed by the context.
An assertion assert (cl)e; ¢z is typed by (CT_ASSERT), which al-
lows the remaining computation c2 to assume that the condition c;
holds since its satisfaction is ensured at run time; well typedness
of ¢ is ensured by the preceding typing derivation. The last rule
(CT_WEAK) allows strengthening preconditions, weakening post-
conditions, and permuting them. The partial order A; C As over
conditions means that, for any c in A1, there exist some A and A’
such that A, = A, ¢, A’. Although (CT_WEAK) manipulates con-
ditions syntactically, static verification in Section 7 enables more
flexible manipulation. For example, using function size which re-
turns the size of a table, the technique in that section allows compu-
tations of {T }¢:tbl{y < memt "foo";return y}° to be regarded
as ones of {T}t:tbl{y <« sizet;returny > 0}2 (if it can be
proven that the former postcondition implies the latter), which can-
not be derived from (CT_-WEAK). Finally, we make a remark about
effect weakening—well typed computations can be given a Hoare
type with more effects. Although there is no rule for effect weak-
ening, it is admissible:

Lemma 1 (Effect Weakening). If (ve,v) C (v',%’') and
Y’ C yUregions (T') and v; T F ¢ = {Ar}a: T{Az}=),
thenv;T b ¢ : {Ar}a: T{Ax}0x ),

5. Semantics

In this section, we define small-step call-by-value operational se-
mantics for ;. The semantics mainly consists of two relations,
reduction relation ~» for terms and computation relation — for
computations. In what follows, we begin with describing intuition
about run-time checking introduced in this work—casts for refer-
ence types and Hoare types, and contract checks with local regions

and local stores. Then, we formalize the semantics after extending
the program syntax with run-time terms and computations.

5.1 Run-time Checking for References and do-Expressions

In this section, we outline how casts for reference types and
Hoare types work. Casts for other types are similar to the previ-
ous work [3, 18, 30, 48, 49].

Casts between reference types with the same region generate
reference guards Ty <= T, : v, which are a key construct in the
earlier work on dynamic checking with references [13, 19, 24, 55]:

(Ref, Ty < Ref, T2) v ~» T1 < To: v  R_REF
Otherwise, if the regions are different, the cast fails:
(Ref, Ty <= Ref, T2)“v ~» ¢ (where 7 # s) R_REFFAIL

Reference guards are “proxies” to monitor dereference and assign-
ment operations at run time so that they behave as the target refer-
ence type. When reference guard Ty <* T5 : v is dereferenced,
the run-time system checks that the contents of v can work as 77 :

= (T < Toiv)ic— y<lojlets = (T < To) y; c.

When it is assigned a value v’ of T, it is checked that v" can be
assigned to v:

z<= (T <t T : v) :='u';c—>x<:v:=<T2<:T1>év/;c.

Casts between Hoare types are similar to casts between func-
tion types [16, 18] in the sense that computations are functions over
states. Since a cast is a term-level construct, the result of cast appli-
cation ({A11}z:T1{A12}?" < {A1}z:T2{A22}? >e v (where
v’s type is { A21 }o: To{ A22}9?) is a do-expression, which triggers
execution of v with additional checks: it is ensured that the do-
expression does not hide the effects of v; the precondition A2 of
v is checked before its execution; the result of v is cast back to T4
from T%; and, finally, the postcondition A2 is checked. Formally,
the cast application reduces as follows:

{An}z: Ti{A2}? < {AQI}I:TQ{A22}QQ>Z v ~
doassert (Az1)’y < viletz = (T) < To)' y;
assert(Am)é;return:v (where g2 C p1) R_HOARE

where ¥ is a fresh variable and notation assert (A); ¢ means, for
A = ci,..., cp, assert (c1)%; ...;assert (¢, )*; c. If g1 is not more
effectful than o2, the cast fails:

<{A11}$:T1{A12}91 = {A21}:17:T2{A22}92>ZU > 'ﬂf
(where o2 € 01) R_HOAREFAIL

5.2 Contract Checking with Local Stores

Effects for references at locally introduced regions in contracts
must not be observed by programs, which is important especially
for showing correctness of static verification in Section 7. Unfor-
tunately, this request makes it difficult to apply the small-step op-
erational semantics of the previous work on a region calculus [8],
where reduction of let-regions changes program stores, to our work
because it is unclear how to distinguish changes to program stores
by programs and those by contracts.

Our approach to the request is to introduce local stores to inter-
mediate states of contract checking and design a semantics where
memory allocation and assignment operations with respect to lo-
cally introduced regions in contracts are applied to the local stores.
Thanks to local stores, during contract checking, program stores do
not change and, as a result, effects involved by contracts are not
observed.

Formally, we introduce an expression of the form vvy.(u |
¢) (called checking state), where -, p, and ¢ are a set of local
regions, a local store, and a computation, respectively, to express



Stores, Values, Terms, Computations, and Checking States
a,b ::= memory addresses u o= {aiQr — v}
v = k| Am:T.e| (Ti < T2)" |doc | Ar.e|
a@r | Ty < Ty : v
wla@r | Ty < T v
M| ({z:T | e} e )| {z:T | ¢}, p,v)*
| ] (assert (c1),p2)fes p o= vyp] c)

)
I

o
Il

Figure 4. Run-time syntax in \FL;.

a program state during contract checking. Starting with checking a
contract c, the run-time system generates an initial checking state
v0.(D | c), where there are no locally introduced regions and no
locally allocated references, and then starts computing c. During
the check, newly introduced regions are added to the local regions,
new memory cells are allocated to the local store, and dereference
and assignment for memory cells at the local regions are applied to
the local store. If ¢ results in return true, the check succeeds; if ¢
results in return false, it fails.

5.3 Definition
5.3.1 Run-time Syntax

We show the run-time syntax in Figure 4. We use a and b to denote
memory addresses. The definition of values v is not surprising
except that a memory address is paired with a region to indicate
where region a cell is allocated. Stores, ranged over by p, are finite
mappings from pairs of a memory address and a region to closed
values. We write 11 W po for the concatenation of p1 and pe with
disjoint domains. Checking states vy.{u | ¢), denoted by p, bind v
in p and c.

The forms of run-time terms are straightforward except for the
last two constructs, which represent intermediate states of refine-
ment checking. A waiting check {( {z:T | ¢}, e )%, introduced by
Sekiyama et al. [48] to prove a critical property of a manifest con-
tract calculus with Belo et al.’s approach [3, 21], waits for evalu-
ation of e before starting a check that the value of e satisfies the
contract c. An active check ({z:T | c},p,v)" is verifying that
the value v satisfies the refinement c; p is an intermediate state of
a check which has been started by running [v/z ] c. If the inter-
mediate computation of p results in return true, the active check
evaluates to v; otherwise, if it results in return false, (¢ will be
raised.

Run-time computations have two additional constructs: excep-
tions ¢ and intermediate states (assert (c1), p2)%; cs during the
check of assertion ¢ : if the check succeeds, the remaining compu-
tation cs will be executed, and if it fails, f}¢ will be raised.

5.3.2 Reduction

Reduction ~, defined over closed run-time terms, is given by using
rules shown at the top of Figure 5. The first three rules are standard
in lambda calculi with call-by-value semantics, or straightforward.
[—] in (R_OP) assigns a function over base type values to an
operation op. Reduction of pointer equality tests uses ungrd to peel
off all reference guards:

ungrd (a@r) = a@r ungrd (T1 <* Ts : v) = ungrd (v)

The next several rules are cast reduction rules, some of which
are similar to the ones in the previous work [48, 49]. The rule
(R_RFUN) generates a region abstraction that wraps the target
value, like cast reduction for type abstractions [3, 49]. The rule
(R_FUN) produces a “function proxy” [6, 22], which applies the
contravariant cast on argument types to an argument, passes its re-

sult to the original function, and applies the covariant cast on return
types to the value returned by the original function. To avoid cap-
ture of variable z bound in the source return type, it is renamed with
a fresh variable y. By (R_.FORGET) and (R_.PRECHECK), a cast
application for refinement types first forgets all refinements in the
source type and then reduces to a waiting check which verifies that
the target value satisfies the outermost contract after checks of in-
ner contracts. The side condition in (R_.PRECHECK) makes the se-
mantics deterministic. After checks of inner contracts, (R_CHECK)
produces an active check to verify the outermost contract. The rule
(R_CHECKING) reduces the active check by evaluating the contract
checking state under the empty store—we see how checking states
reduce later—and (R_.BLAME) lifts up exceptions that happen dur-
ing the check. If an active check succeeds, it returns the target value
((R_OK)); otherwise, it raises }¢ (R_FAIL).

5.3.3 Computation

Computation —, defined over pairs u | ¢ of a store and a closed
run-time computation, is given by the rules in Figure 5 with several
auxiliary rules to execute commands.

The rules (C_RED) and (C_COMPUT) are applied to reduce sub-
terms and subcomputations of a computation, using computation
contexts on terms, ranged over by C*:

E = []‘op(vl,“'avn7E7617'-~767L)|E62"U1E‘
E=e|w=F|E{r} | {({#:T] i}, B )"

D = ref,E|lE|E=e|wn=F

C® == retunE |z + E;co |z < Djca

The definition above means that subterms reduce from left to right.

Exceptions raised by subterms and subcomputations are lifted
up by (C_RBLAME) and (C_CBLAME), respectively. The rule
(C_CBLAME) also lifts up exceptions raised by contracts, using
computation contexts on exceptions.

C* == z<do[];c | (assert(c1), vy.{u | [1))% es

The rule (C_RETURN) performs, when term e; of bind z < e1; c2
reduces to a do-expression (by (C_RED)) and it returns a value
v (by (C_COMPUT)), the remaining computation [v/z ] co. Let-
regions are lifted up to checking states by (C_REGION) in order
to propagate newly created regions. For example, checking state
vy | ..vr.c’...), where the let-region is ready to be evalu-
ated, goes on to vy.{uu | vr....c’...) by (C_REGION). The rule
(C_COMMAND), applied to execute commands, rests on the com-
mand relation ~—, which transforms a command to a computation
with an adequate action by rules shown in the middle of Figure 5.
The first three command rules are standard except for the use of re-
gions. The last two rules are used for dereference from and assign-
ment to reference guards, as described in Section 5.1; here, variable
2 can be arbitrarily chosen since commands are closed.

Other computation rules are applied to check contracts with
assertion. The rule (C_ASSERT) produces an intermediate checking
state, which proceeds with the program store by (C_CHECKING)
and: if the checking succeeds, the remaining computation cz starts
(C_OK); otherwise, if it fails, {}¢ is raised (C_FAIL).

Finally, computation of checking state v+y.(u1 | c¢1) under
global store p proceeds by two rules. (P_COMPUT) computes ci
under the concatenation of the program store and the local store.
The result store 1 & 2 means that the global store p remains the
same and, although dereference from  is possible, memory alloca-
tion and assignment cannot take place on u. The rule (P_REGION)
adds regions bubbled up by (C_REGION) to the local regions. To
see how these computation rules interact, let us consider contract
checking. When a check of contract ¢ happens by (R_.CHECK) or
(C_ASSERT), the check starts with v0.(} | c). During the check,
when a let-region evaluates, it is lifted up by (C_REGION) and



Reduction Rules

op(ki, ..., kn) ~~ [op](ki, ..., k) R_OP
vy == vy ~> true (where ungrd (vi) = ungrd (v2)) R_EQ

(B« B)'v ~ v R_BASE

(Az:T.e)v ~ [v/z]e R_BETA

(Ar.e){s} ~ [s/r]e R_RBETA

v == vy ~ false (where ungrd (vi) # ungrd (v2)) R.NEQ

(Vr.T1 <= Vr.Ta) v ~ Ar (T < T2)* (v{r}) R_RFUN

<I2T11 — Tio <= x:To7 — T22>£ (e )\a::Tu.Iety = <T21 = T11>Z.’L‘in (<T12 <~ [y/av] T22>Z (U y))

<T1 = {:L“:TQ | CQ}>ZU ~ <T1 = T2>Z’U R_FORGET

({z:T | ¢}, vy.(u | returntrue), v)¢ ~» v R_OK

({a:T | e}l p,v) ~ ({2:T | c},p',0)" (where @[ p — p')

(Ref, Ty <= Ref, To) v ~» Ty < Ty : v RREF (Ref, T1 < Refs T2) v ~ € (where r # s)

<{A11}CEZT1{A12}91 = {Agl}xng{A22}92>e v~

(where y is fresh) R_FUN

{&:Ti | a} = To) v~ ({@:T1 | a1}, (T1 <= To) v)
(where Ty # {y:T | ¢} forany y, T,and ¢) R_PRECHECK

({7 | cho)’ ~ ({@:T | e}, .00 | [v/z]c),v)’ R.CHECK

({z:T | ¢}, vy.{u | returnfalse), v)® ~» £ R_FAIL

Ho:T | c}yvy{u | ), v)* ~ ¢ R_BLAME

R_CHECKING

R_REFFAIL

doassert (A21)%y < v;letz = (T1 < To)* y;assert (A12)%; return = (where g2 C o1 and y is fresh) R_HOARE

<{A11}.’L‘ZT1{A12}91 = {A21}$ZTQ{A22}Q2>Z v o~ ﬂﬂ

’m | di — po | 62‘ Command Rules

w| refrv — pw{a@r — v} | return a@r C_NEW
u|la@r — p | return u(a@r)

(where g2 € 01)

R_HOAREFAIL

pW{a@r — v'} | a@Qr =v — puWw{a@Qr — v} |return() C_ASSIGN
C.DEREF | Ty < To:v) ~ p|x < lv;return ((T1 < T2)*z) C_GDEREF

pl| (T < To:m)=un — plz<uv=({(Te< T1) v);return() C_GASSIGN

’,ul | i — p2 | e ‘ Computation Rules

€1 ~ €2

W] Colea] — ul Colea]

C_RED
w|C°[M] — u| ¢ C-RBLAME
wl C* ] — p| N C_CBLAME

d c
H | 17> K2 | ! C_COMMAND

paler — p2 e

|z doreturnwvi;co — | [vi/z] 2
wl|z <+ (dovr.ci);ca —> p|vr.(z < doci;cz) (wherer ¢ frv(c2)) C_REGION

C_CompPUT

pi |z <doci;eo — p2 |z < docy; e

C_RETURN

>
" ‘ i i C_CHECKING

|z <= diyeo — po |z docy; e

| (assert (c1), p1)%; c2 — | (assert (c1), p2)*; c2

w | assert (c1)% ca — p| (assert (c1),v0.(0 | ¢1))*; co C_ASSERT | (assert (¢1),vy.(u | returntrue))’; ca — p| ca C_.OK

| (assert (c1), vy. (i | return false)); co — | 114

u|p1 <= p2| Checking State Computation Rules

pepn e — pWps|c

P_CompuT
plvy | e) = vy(pz | c2)

C_FAIL

wl vy |vr.c) = v(y,r).(u' | ¢} P_REGION

Figure 5. Operational semantics.

the region variable bound by it is added to the local region set in
the checking state by (P_REGION). If the intermediate computation
tries to create a reference or assign values to a reference, an ade-
quate action is applied to the local store, not the global store, by
(P_ComPUT). The intermediate computation can read data from
references in either the global store or the local store because it
evaluates in their concatenated store (P_COMPUT).

Top-level programs are executed in the form of checking
states. We call computations ¢ such that {r};0 + ¢
{TYa: T{ A} HAY) programs. A program ¢ with designated
region r, which stands for the global store, is executed by starting
computation from vf.(§ | vr.c) and program execution is per-
formed by evaluation of checking states p1 | p1 <™ p2, which
means that there are pi, ..., p;, such that u | p1 < pi,p| p1 —
Dby ey it | P <> po. Thus, the program evaluation that the pro-
gram c results in v is denoted by @ | v0.(0 | vr.c) <= vy.(u |
return v), where p is the result global store.

6. Type Soundness

Following Belo et al. [3], which avoided semantic type soundness
proofs, we show type soundness of A via standard syntactic
approaches (namely, progress and preservation [67]). In particular,
we show that (1) a well-typed program returns a value, raises an
exception, or diverges and (2) the result value and the result store
of a well-typed program satisfy contracts on their types.

6.1 Run-Time Type System

To prove type soundness, we extend the type system in Section 4 to
deal with run-time terms and computations. As usual, we introduce
store typing contexts, ranged over by 3, to record the type of the
value that each reference points to. They are defined as follows:

Yu=0]%,a@r:T

We assume that references declared in store typing contexts are
distinct and write 3, &2’ for the concatenation of 3 and X'.
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Figure 6. Run-time typing rules.

As shown in Figure 6, the run-time type system consists of
extensions of judgments in Section 4 with store typing contexts—
in addition, the computation typing judgment p;¥;v; ' - ¢
{A1}z: T{A2}° refers to p denoting current stores—and two new
judgments for checking states u;3;v F p T“’/, which means
that the computation of p may refer to memory cells at 4" and
returns a value of 7' (if any) under the store p together with the
local store of p, and for stores v F p : E”l, which means that all
memory cells in store y are allocated at v' and their contents are
assigned types by X. The computation and checking state typing
judgments need a current store p for simulating contract checks
in the type system; see (CT_-CHECK) below for details. In what
follows, we write 4 = A when, forany ¢ € A, p | v0.(0 |
c) =" vy’ (i | returntrue).

Figure 6 shows selected rules for well-formedness and typ-
ing judgments. The rules for typing context well-formedness, type
well-formedness, and assertion well-formedness are similar to the
rules in Figure 3 except for the use of store typing contexts. Since
contracts are specifications, refinements and pre- and postcondi-
tions should not depend on a current store, so they must be well
typed under the empty store.

There are several additional typing rules for run-time terms.
In these typing rules, typing contexts in their premises are empty
since run-time terms are closed; however, the conclusions allow
nonempty typing contexts because run-time terms can be put under
binders by substitution in (T_APP). The first five typing rules are
syntax-directed. The rule (T_GUARD) requires the contents types
of a reference guard to be compatible since the reference guard
uses casts between these types when dereference and assignment

are applied. Exceptions can be typed at any well-formed type by
(T-BLAME)—it is important for showing preservation. The rule
(T_ACHECK) requires p in an active check to return Boolean values
(if any) in the fourth premise and to be an intermediate state during
the check of ¢ in the last premise. The rule (T_EXACT) allows
values of T satisfying a contract ¢ to be typed at the refinement
type {z:T | c}. By the rule (T_FORGET), which corresponds
with (R_.FORGET), we can peel off the outermost contract of a
refinement type. The final rule (T_CONV) is introduced by Belo
et al. [3] to show subject reduction in manifest contracts with
dependent function types. To see its motivation, let us consider
well typed term application v; ez. From (T_APP), the type of v; ez
would be [ ex/z] T for some x and T. If e> reduces to term e,
the type of the application changes to [ 3/ ] T2, which is different
from [ez/z] T2 in general. Thus, subject reduction would not
hold if there are no ways to connect [ ex/z] T with [e3/z] T. In
fact, the rule (T_CONV) does connect these two types by allowing
terms to be retyped at different, but equivalent types. The type
equivalence, denoted by =, is given as follows:

Definition 1 (Type Equivalence). 71 = 7> iff there exist some
T, z, E, e1, and ez such that Tn = [Elei]/z]| T, To =
[Ele2]/z] T, and ex ~ ea. Type equivalence = is the symmetric
and transitive closure of =.

Computation typing rules are also added. The rule
(CT_CBIND), which looks similar to (CT-BIND), accepts
bind constructs z < do c1; c2 where ¢; and ¢ are typed under the
current store p and the empty store, respectively; the differences
of stores in ¢; and c2 stems from the fact that ¢; will be executed
under p but c2 may or may not (since ¢; can mutate the store).



Similarly, remaining computations in other rules are also required
to be typed under the empty store. The rule (CT_-CHECK), applied
to assertion checks, requires the checking state p to be well typed
under the current store p in the third premise and be an actual
intermediate state of checking c; in the last premise. The final rule
(CT_CoNvV) is needed because do-expressions can be typed at
equivalent types by (T_CONV).

Store well-formedness is derived by (WF_STORE), which de-
mands that all memory cells in well-formed stores be allocated at
given regions +' and their contents have types given by store typing
contexts; |/ is the same store typing context as 3 except that its
domain is restricted to addresses with regions in ~'.

Finally, using a local store typing context X', the rule (PT)
gives type T to checking state vy'.(u’ | ¢’) if and only if the
followings hold. First, the local store p’ maps only references at
the local regions ' and each value in it has the type assigned by
>’. Second, the domains of x' and ¥’ coincide. Third, using the
local information p’, ¥’, and 4/, computation ¢’ produces values
of T (if any) with read-only references at regions ~" as well as
unrestricted references at local regions +’. Finally, the precondition
of ¢’ holds under the concatenation of the program store and the
local store.

6.2 Type Soundness

We show type soundness, which says that, given a well typed
program ¢ of {T}z: T{Ax} 4D ' = v.(D | vr. ¢) results
in a value, raises an exception, or diverges and, moreover, if p
terminates at value v with store p, v satisfies refinements in 7'
and p = [v/x] Az holds. Although the proof of type soundness
follows progress and preservation as in the previous work [48], this
paper states just their simplified versions; the full statements are
shown in the supplementary material. We assume that ty (op) and
[op] agree in a certain sense; also see the supplementary material
for details.

Lemma 2 (Value Inversion). If 5;v;0 F v : {@:T | c}, then
0E[v/z]ec

Lemma 3 (Progress). If );S;y b p : T° then: (1)0 | p < p’
forsome p'; (2) p = vv'.(u | returnv’) for some ~', ', and v';
or(3)p = vy {u' | 1) for some~', i, and ¥’

Lemma 4 (Preservation). If(; ;v + p : T and 0 |p <= p/,

then 0; S~y + p’ + TP,

Lemma 5 (Postcondition Satisfaction). If (1) u;3;v;0 F ¢
{A}e:T{A}Y, 2)y b o+ 27, 3) p = AL and (4)
O vyl | c) =" vy (u' | returnv’), then ' |= [v'/z] As.

Theorem 1 (Type Soundness). Suppose that 0;0;{r};0 + ¢ :
{TYa:T{A} Y Ler p = v0.(D | vr. c). Then, one of the
followings hold: (1)0 | p —* v~y.(u | return v) for some ~, p, and
v; (2)0 | p =" vy | f1€) for some ~y, p, and ¢; or (3) there is an
infinite sequence of computation ® | p — p1,0 | pr < pa,---.
Moreover, if (1) holds, then: (a) if T = {z:To | co}, then
0 =lv/z]co; and (b) p = [v/z] As.

Proof. By Progress and Preservation. The properties (a) and (b) are
shown by Lemmas 2 and 5.

7. Static Contract Verification

This work studies “post facto” static verification of state-dependent
contracts—more precisely, we identify assertions such that pro-
grams with and without them are contextually equivalent [3]. This
paper focuses on two verification techniques: elimination of as-
sertions for pre- and postconditions and region-based local rea-
soning. Note that, although we are interested in, this paper is not

concerned about specific verification algorithms; instead, we study
what state-dependent contracts static checking can verify as in the
earlier work on manifest contracts [3, 18, 30]. Static verification of
state-independent contracts in terms of elimination of casts is left
for future work, although we expect it is not very different from pre-
vious work. We do not present the formal definition of contextual
equivalence here; interested readers are referred to the supplemen-
tary material.

7.1 Elimination of Pre- and Postcondition Assertions

An assertion is redundant and can be eliminated if the assertion is
implied by the contracts established by a preceding computation.
For example, consider string table ¢ and string s that satisfy y <
mem ¢ s; return y. Then, asserting x <— size ¢;returnz > 0 (size
is a function to return the size of a given table) should be redundant.
In fact, we could prove that y < memt s;returny “implies”
x < sizet;returnx > O0—whenever the former returns true,
the latter returns true—if we know the concrete implementation
type of string tables. To formalize this notion of implication, we
consider closing substitutions, which give interpretations to free
variables, and possible stores under which contracts evaluate. In
what follows, o denotes mappings from term variables to values
and from region variables to region variables and write o () for
the image of v under o.

Definition 2 (Closing Substitution and Possible Store). We write
S;y; T b, 0) %) when there exist some ¥ and ~' such
that: (1) ¥ C ¥;(2) v C ~;(3)foranyr € ~ r ¢
dom (0); (4) forany r € T, o(r) € +'; (5) forany z:T € T,
Y0 b oo(z) : o(T); and (6) 7 F p : X700 e
write $; ;T F o for $;4; T F (0, o) (0

What is meant by “contract A’ is implied from A” is that, for
any interpretation of free variables and store such that A results in
true, so does A’. We write A, A’ for the concatenation of A and
A

Definition 3 (Contract Implication). Suppose that v;T' ¢ A, A'.
Then, A’ is implied from A if, for any pu and o such that §; ;T

(u,0)? and p = o(A), p = o(A”) holds.

Lemma 6 (Precondition Assertion Elimination). Suppose that
v F ¢ {A1, c1}x:T{A2}°. If 1 is implied from A,

assert (¢1)%; ¢ and c are contextually equivalent.

Since postcondition checks are a derived form using assertions,
we can show elimination of postcondition assertions as a corollary.

Corollary 1 (Postcondition Assertion Elimination). Suppose that
v T F e {Ai}a:T{A2}°. Forany co, if v;Tyx: T F2 Aa,co
and cq is implied from Aa, then c;)\xlassert(CQ)é and c are
contextually equivalent.

As an application of these elimination lemmas, let us consider
a program which, given a string table ¢, adds a fresh string to ¢,
produces the average length of strings in ¢, and ensures that the
average is not negative. Such a program can be given as follows:

At:tbl. s <+ fresh_strt;_ < addts;
assert (z < size t;returnz > 0)“1;
a < average_length ¢;

return a; Aa.assert (a > O)Z2

where average_length calculates the average length of strings in
an argument table. The type of the program is:

t:tbl — {T }a:float{return a > 0}<{T}’®>,



where r is a region at which argument tables are allocated, and the
type of average_length is:

t:tbl — {z « sizet;returnz >0}
a:float
{y < exists (As:string.lengths > a) t;
z  exists (As:string.a > length s) ¢;
return y & z}{7H0)

(exists returns whether a given table has a string satisfying a
given predicate), where it requires a given table to have at least one
element and guarantees that the average is equal to or less than the
length of the longest string and is equal to or more than the length
of the shortest one. The program has two run-time checks: one is
for checking the precondition of average_length and the other
is for ensuring the postcondition of the program. If the concrete
implementation of functions used in the program is known, we
could prove that the precondition of average_length is implied
from the postcondition of add (that is, y <— mem ¢ s; return y) and
the postcondition of the program is from that of average_length
(because the length of any string is equal to or more than 0). Thus,
using Lemma 6 and Corollary 1, we can show that the program
above is contextually equivalent to:

At:tbl. s < fresh_strt;_ <« addts;
a < average_length ¢;
return a

which have no run-time checks!
These elimination techniques also enable us to strengthen pre-
conditions and weaken postconditions semantically.

Corollary 2 (Semantic Weakening). Suppose that v;I' F ¢
{A1}z: T{A2}°. For any A} and A3, if vT' 2 Al and
~viT,2:T 2 Al and Ay is implied from A’ and A% is implied
from As, then assert (A1); ¢; Az.assert (45)2 and c are con-
textually equivalent at { A} }z: T{A5}°.

7.2 Region-Based Local Reasoning

Local reasoning allows applying verification methods to subcom-
ponents of a program locally, so it is important to for verification
to scale up to large programs. We achieve region-based local rea-
soning in the form similar to Separation logic [41, 45], where the
so-called frame rule plays an important role: given a computation
requiring precondition P, which specifies a heap before the compu-
tation, and guaranteeing postcondition (), which specifies the heap
after the computation, the rule allows the computation to require a
condition R separated from P and () and guarantee the same con-
dition. It is represented in the form of Hoare triples as follows:

{r}c{Q}
{P*R}c{Q* R}

where Px R is the separating conjunction of P and R and states that
P and R specify disjoint heaps. In our context, computation c can
preserve any condition A if A never mentions references mutated
by c. The effect system in Section 4 is useful to verity whether A
mentions such references because it can analyze what references
computations manipulate with the help of regions. To formalize
the local reasoning, we first introduce the notion of “disjointness”
of regions—region sets 1 and <2 are disjoint if the results of
application of any region substitutions are disjoint.

Definition 4 (Disjoint Regions). We write 3;v; ' = ~1 disjvy2
when, for any o such that 3X;v; T b o, o(v1) No(y2) = 0.
Lemma 7 (Local Reasoning). Suppose ~v;I" + ¢
{Al}z:T{Ag}ﬁf’V”. Forany Aand~," C 7., ify;T Fe"0) 4
and 0; ;T & ~,' disj ., then, for any fresh y, c; \y.assert (A)*
and c are contextually equivalent at { A1, A}z: T{ Ay, A}

The local reasoning enables us to recover contract information
lost by assignment.

Corollary 3. Suppose that (1) v;T' = e1 : Ref,.T'; (2) ;T +
er + T (3) w0 FOoO Arand (4) 0;v;T + A, disj{r}.
Then, x < e; = e;return ();)\:c.assert(A)é and T <= e =
ea; return () are contextually equivalent at { A} x: T{A} =D,

Although the local reasoning would be a useful technique, its
applicability rests on how many regions are judged to be disjoint.
Unfortunately, A does not have a very strong power for this
judgment—nonempty region sets are disjoint only if they contain
no region variables introduced by region abstraction, which is not
very satisfactory because region abstractions are a key feature to
promote program reuse and so would be often used. We could
address this issue by adding operations on region variables. For
example, consider an extension of Al; with an equality operator
r == s on regions, which behaves as follows:

r==T ~> true r=s ~ false (ifr # s)

Using this equality, we can state that region r is different from s
as a contract and then {r} and {s} are judged to be disjoint even
if either or both of them are abstracted regions because closing
substitutions must respect the contract.

8. Related Work

Hoare Type Theory Hoare Type Theory [37, 38] is a theoretical
framework to verify stateful programs with higher-order functions
statically, incorporating the core ideas of Hoare logic (and Separa-
tion logic) into a type system with dependent types. The key idea
of HTT is to introduce Hoare types, where pre- and postconditions
are written in classical multi-sorted first-order logic with predi-
cates to specify heaps. Computational Hoare types in this work
are a variant of HTT’s Hoare types and allow pre- and postcon-
ditions to be computational so that their dynamic checks are pos-
sible. On one hand, in addition to dynamic checking, executable
pre- and postconditions enable programmers to give natural speci-
fications using program functions they define, as the last example
in Section 2.3, which uses interface functions to mention internal
states of an abstract type. More generally, we can reuse any pro-
gram components—for example, even partial functions (their use
makes static verification difficult, though)—in specifications easily.
Although Nanevski et al. extended HTT to deal with internal states
of functions [39], they do not allow interface program functions
to mention internal states in specifications—in their work, stateful
predicate functions have to take heaps as an argument but program
functions do not usually. On the other hand, the expressive power of
specifications is restricted—for example, unlike HTT, it appears to
be difficult to work well with existential quantifier and specify the
relationship between stores before and after computation—though
expressive powers of computational and noncomputational Hoare
types are incomparable generally because the former accepts non-
terminating contracts whereas the latter does not. It is left as future
work to give a remedy for the defect of computational Hoare types.

Other work on static verification of stateful programs Other
than HTT, there is much research on static verification of state-
ful programs with dependent type systems. Dependent ML [69, 70]
and Applied Type System [68] are programming languages with
support for static verification of stateful programs. Specifications
in these languages are neither state-dependent nor computational.
Vekris et al. [63] study a refinement type system for static verifi-
cation of TypeScript [34] programs, which are functional, object-
oriented, and imperative. Their system supports imperative fea-
tures, such as variable assignment and objects with mutable fields,
from TypeScript and is able to specify not only refinements but



also class invariants. Although specifications in the system can re-
fer to variables and object fields, Vekris et al. deal with only state-
independent specifications by transforming code with variable as-
signment to a static single assignment form [1, 47] and restricting
fields accessible from specifications to immutable ones (field dec-
larations are annotated with immutability). Gordon et al. [20] pro-
posed rely—guarantee references, where a reference is augmented
with a guarantee relation, which describes possible actions through
the reference, and a rely relation, which describes possible actions
through aliases, and developed a framework with rely—guarantee
references to verify that an assignment to a reference does not in-
validate predicates with respect to aliases of the reference. Apply-
ing their approach to dynamic checking is interesting, but it would
need a run-time mechanism to monitor guarantee and rely rela-
tions. Swamy et al. [56, 57] developed Dijkstra monads, a variant
of Nanevski et al.’s Hoare types, to verify effectful programs au-
tomatically. We expect that their technique can be applied to our
work for automatic verification.

In objected-oriented languages, many techniques—e.g., owner-
ship types [10-12], variants of Separation logic [4, 43, 52], dy-
namic frames [27, 28], implicit dynamic frames [51], regional
logic [2], etc.—have been studied to address the frame problem [7],
which is a common theme in verification of programs with pointer
aliasing. We address the frame problem with Hoare types and a
region-based effect system, but the earlier work above would in-
spire us to refine our approach and, furthermore, to investigate bet-
ter approaches.

Contracts for references Flanagan, Freund, and Tomb [19] stud-
ied combination of static and dynamic approaches to checking con-
tracts of (im)mutable objects. Although their goal is similar to ours,
they allow only pure contracts which never depend on even locally
allocated references whereas we accept even state-dependent con-
tracts. That work also proposed reference guards, which have been
a usual approach to dynamic checking for references [13, 24, 55]
(there is also another method [50], though). Perhaps, one might
consider that state-dependent contracts could be embedded into ref-
erence guards, that is, properties with respect to references could be
represented by refining contents of reference types, as type tbl in
Figure 1. Unfortunately, this approach is not satisfactory because
it would not be possible to relate results of two or more stateful
computations (e.g., the contract of add would be disallowed) or to
abstract implementation types of mutable data structures as in the
last example of Section 2.3.

Tob and Pucella [61] integrated programs in two languages—
one has a conventional type system and the other has an affine
type system—by using stateful contracts with assignment. Their
system uses contracts to monitor that conventional programs use
affine values just once and does not use them as specifications of
program components. Disney, Flanagan, and McCarthy [14] pro-
posed a higher-order temporal contract system to monitor temporal
behavior of stateful programs by specifying orders in which func-
tions of modules should be called. Though they dealt with predi-
cate contracts with imperative features, the issue of state-dependent
contracts is not in their interests.

9. Conclusion

We address the issue of state-dependent contracts in hybrid con-
tract checking based on manifest contract systems by introducing
a region-based effect system with computational Hoare types. To
formalize our ideas, we define Af;, where refinements are checked
with casts and pre- and postconditions of Hoare types are checked
with assertions, and show its type soundness. We also study “post
facto” static verification, in particular, elimination of assertions
for pre- and postconditions and region-based local reasoning. This

work is a stepping stone for integrating static and dynamic verifi-
cation of state-dependent contracts and we have many directions
of future work. For example, it is interesting to investigate how we
can strengthen our contract language so that relationships between
heaps before and after computation can be expressed. Implementa-
tion of our calculus is also left for future work.
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