
Gradual Typing for Delimited Continuations

Yusuke Miyazaki Taro Sekiyama ∗ Atsushi Igarashi
Graduate School of Informatics, Kyoto University
{miyazaki, t-sekiym, igarashi}@fos.kuis.kyoto-u.ac.jp

1. Introduction
In this paper, we report our ongoing work on gradual typing
for a language with delimited-control operators, shift and re-
set [4], which are known to be very powerful constructs [3, 5].
We base our gradual type system on the simple type system
with so-called answer-type modification [1, 3]. We introduce
the type dynamic (written ⋆), define the type consistency
relation, modify the typing rules by using the type consis-
tency relation, and give translation to insert explicit casts.
The way we modify the typing rules is very similar to the
Gradualizer [2] but it turns out that the Gradualizer is not
directly applicable for generation of typing and cast insertion
rules. We also discuss the properties of the obtained gradu-
ally typed language according to Siek et al.’s criteria [9] for
gradually typed languages.

2. A Static Type System for shift/reset
Our gradually typed calculus λG

s/r is based on the simply
typed lambda calculus with shift and reset [3], which we call
λS

s/r and review here. The shift operator Sk. e captures the
current continuation up to the innermost surrounding reset
operator ⟨·⟩ as a function value, binds k to it, and executes
e. The reduction rule for shift can be given as follows:

⟨E[Sk. e]⟩ −→ ⟨let k = λx. ⟨E[x]⟩ in e⟩

(E is an evaluation context which does not contain a reset
operator.) To give a type system for shift/reset, it is impor-
tant to know an answer type—the return type of a current
continuation, or the type of the expression inside the inner-
most surrounding reset (e.g., E[Sk. e]), because it will be
the return type of the captured delimited continuation k.

Answer types can change during reduction. For example,
after reduction of shift, the reset operator now surrounds
e, which was the body of shift, and its type becomes a new
answer type, which may have nothing to do with the old one.
The type system is said to allow answer-type modification [1,
3] if it allows a new answer type to be different from the old
one and keeps track of how answer types change. As a result,
in λS

s/r, a type judgment takes the form Γ; α ⊢S e : τ ; β,
which means that a term e is typed at type τ under a
typing context Γ and it modifies its answer type α to β
when evaluated. Also, a function type is now annotated with
information on answer types and written σ/α → τ/β. It
represents a function from σ to τ , and the answer type is
modified from α to β when it is applied.

We show representative typing rules below. For details,
readers are referred to Asai and Kameyama [1], Danvy and
Filinski [3].

∗ Current affiliation: IBM Research - Tokyo

Γ; γ ⊢S e1 : τ1/α → τ2/β; δ Γ; β ⊢S e2 : τ1; γ
Γ; α ⊢S e1e2 : τ2; δ

(TApp)

Γ, k : τ/δ → α/δ; γ ⊢S e : γ; β
Γ; α ⊢S Sk :τ/δ → α/δ. e : τ ; β

(TShift)

3. Gradualizing λS
s/r

Figure 1 shows the syntax of λG
s/r, which is obtained by

adding the type dynamic ⋆ to λS
s/r. (B ranges over base

types.) Abstractions and reset have unusual type annota-
tions, which are explained later.

Our type consistency, which is a key notion in gradual
typing, for λG

s/r is very straightforward: it is given as the
least compatible relation including ⋆ ∼ τ . For example,
int/⋆ → ⋆/bool is consistent with int/int → ⋆/⋆.

Typing Rules. One natural question that arises in deriv-
ing a gradual version of typing rules is where type consis-
tency should be allowed for different occurrences of the same
metavariable for types. Our approach to this question is basi-
cally the same as the Gradualizer [2], which starts with typ-
ing rules viewed as a moded logic program (so that one can
build a straightforward type checking procedure by induc-
tion on the term structure) and insert consistency according
to input/output modes (and other notions). In our setting,
we set Γ, e and β in the type judgment form Γ; α ⊢S e : τ ; β
to be inputs and α and τ to be outputs.1 There may be
other possible mode specifications but it seems to us that,
without having β as an input, building a simple type check-
ing procedure would be difficult. Then, we analyze typing
rules as in the Gradualizer.

Due to space restriction, we only show the resulting
typing rules in Figure 1. The relation σ ▷ τ1/α → τ2/β in
GTApp is called matching [9]. It is the least reflexive relation
including ⋆ ▷ ⋆/⋆ → ⋆/⋆ and allows the function part of an
application to have the dynamic type. The premises τ1 ∼ τ ′

1
and β ∼ β′ are derived from the fact that these occurrences
are at output positions.2 GTShift is similar to GTApp but
we require σ to match τ/δ → α/δ with the same answer
type δ to make cast insertion type-preserving.

Perhaps surprisingly, the Gradualizer would not yield a
typing rule like GTShift. The Gradualizer replaces only
type constructors in output positions in premises with fresh
metavariables for types. It is found from this fact that the
1 Actually, this mode specification works if annotations on ab-
straction and reset to specify β are added. Hence the unusual
type annotations mentioned above.
2 Those who are familiar with the Gradualizer may notice that
conditions on β and β′ will be not β ∼ β′ but βJ = β ⊔ β′. Since
βJ does not occur elsewhere, this can be replaced with β ∼ β′

without changing the meaning of the rule.

Types σ, τ, α, β, γ, δ ::= B | τ/τ → τ/τ | ⋆

Terms e ::= x | c | λβx :τ. e | e1e2 | Sk :σ. e | ⟨e⟩τ

x : τ ∈ Γ
Γ; α ⊢G x : τ ; α

(GTVar) Γ; α ⊢G c : ty(c); α (GTConst)

Γ, x : τ1; α ⊢G e : τ2; β

Γ; γ ⊢G λβx :τ1. e : τ1/α → τ2/β; γ
(GTAbs)

Γ; γ ⊢G e1 : σ; δ Γ; β′ ⊢G e2 : τ ′
1; γ

σ ▷ τ1/α → τ2/β τ1 ∼ τ ′
1 β ∼ β′

Γ; α ⊢G e1e2 : τ2; δ
(GTApp)

Γ, k : σ; γ′ ⊢G e : γ; β
σ ▷ τ/δ → α/δ γ ∼ γ′

Γ; α ⊢G Sk :σ. e : τ ; β
(GTShift)

Γ; γ′ ⊢G e : γ; τ γ ∼ γ′

Γ; α ⊢G ⟨e⟩τ : τ ; α
(GTReset)

Figure 1. Syntax / Typing rules (Γ; α ⊢G e : τ ; β)

form of types of captured delimited continuations in the
typing rule which the Gradualizer derives from TShift is
restricted to be function types and cannot be metavariable
σ for types because: (1) typing contexts in premises of typing
rules are regarded as inputs, so the derived rule from TShift
has premises whose typing contexts take the same form as
TShift; and (2) the expression in the conclusion of the
derived rule is the same as TShift (modulo metavariable
renaming). We think that our typing rule is closer to a
dynamically typed language in the sense that shift-bound
variables can be used arbitrarily if they are given ⋆.

Translation to the Cast Calculus. The semantics of
λG

s/r is defined through translation into the intermediate
language λC

s/r, (a subset of) the blame calculus with shift and
reset proposed by Sekiyama et al. [7]. The target language
extends the syntax of λG

s/r with casts f : τ ⇒ℓ τ ′ which are
tagged with blame labels ℓ. Casts preserve answer types:

Γ; α ⊢CC f : τ ; β τ ∼ τ ′

Γ; α ⊢CC (f : τ ⇒ℓ τ ′) : τ ′; β
(CTCast)

Figure 2 shows some of the cast insertion rules from λG
s/r

to λC
s/r. In these rules, we assume blame labels are all fresh.

Basically, our rules insert casts where the type consistency
relation appears. For example, CApp has two casts, one to
adjust the actual argument type and the other to adjust one
of the answer types of the function. Actually, we could merge
the cast on f2 to the other cast by f1 : σ ⇒ℓ1 τ ′

1/α → τ2/β′.
We expect that our rule is practically better because two
blame labels can distinguish a failure by argument mismatch
and one by answer type mismatch. CShift is a little more
involved. A cast on the continuation variable k′ is needed
because the target language does not allow a continuation
variable bound by shift to have ⋆.

Interestingly, we could not apply the Gradualizer to de-
rive cast insertion rules. As far as we understand, it will put
a cast from σ to τ1/α → τ2/(β ⊔ β′) on f1. To make the
entire application well-typed, the left answer type β′ for f2
should be adjusted somehow to β ⊔ β′ but the Gradualizer
fails to do it, although such adjustment is in fact possible
by using shift and cast on the captured delimited continu-

Γ; γ ⊢CC e1 ⇝ f1 : σ; δ
Γ; β′ ⊢CC e2 ⇝ f2 : τ ′

1; γ
σ ▷ τ1/α → τ2/β τ1 ∼ τ ′

1 β ∼ β′

Γ; α ⊢CC e1e2 ⇝ (f1 : σ ⇒ℓ1 τ1/α → τ2/β′)
(f2 : τ ′

1 ⇒ℓ2 τ1) : τ2; δ

(CApp)

Γ, k : σ; γ′ ⊢CC e⇝ f : γ; β
σ ▷ τ/δ → α/δ γ ∼ γ′

Γ; α ⊢CC Sk :σ. e⇝ Sk′. (λk. (f : γ ⇒ℓ1 γ′))
(k′ : τ/δ → α/δ ⇒ℓ2 σ) : τ ; β

(CShift)

Γ; γ′ ⊢CC e⇝ f : γ; τ γ ∼ γ′

Γ; α ⊢CC ⟨e⟩τ ⇝ ⟨f : γ ⇒ℓ γ′⟩ : τ ; α
(CReset)

Figure 2. Cast insertion rules (Γ; α ⊢CC e⇝ f : τ ; β)

ation. Deriving translation rules for shift and reset will fail
for similar reasons.

4. Properties
We are investigating correctness criteria for gradual typ-
ing [9]. At the time of writing, we have proved that (1) the
typing relation is a conservative extension over that of λS

s/r;
(2) type preservation of cast insertion; (3) type soundness;
(4) blame-subtyping theorem; and (5) monotonicity w.r.t.
precision [2] (which is also stated as a part of the gradual
guarantee in Siek et al. [9]). It is mostly straightforward to
adapt the statements to our setting.

There is a subtlety in precision e1 ⊑ e2 (read “e1 is
more precise than e2”), which intuitively means that e2 is
obtained by replacing some occurrences of types in e1 with
⋆. However, the typing rule for shift requires the two answer
types in the type declaration to be the same, so replacement
of answer types should take place at once. For example,
Sk : bool/int → bool/int. e ⊑ Sk : bool/⋆ → bool/ ⋆ . e but
Sk :bool/int → bool/int. e ̸⊑ Sk :bool/int → bool/ ⋆ . e.

5. Related Work
Cimini and Siek [2] have proposed the Gradualizer, a method
to automatically derive a gradually typed variant with cast
insertion rules from a statically typed language, and demon-
strated that it can be applied to various (simple) type sys-
tems. As we have already discussed, we cannot fully use the
Gradualizer: although it can derive similar typing rules as
ours, it fails to generate cast insertion rules.

Sekiyama et al. [7] propose the blame calculus with shift
and reset, and prove its soundness and the blame theorem.
This blame calculus is used in our intermediate language
and its properties are used in our proofs.

6. Conclusion
We show a gradually typed language with delimited-control
operators shift and reset and answer-type modification. We
state that the language has some desirable properties as a
gradually typed language.

We are currently working on proving remaining proper-
ties discussed in Siek et al. [9]. It is not very nice that our
type system requires more annotations. Since the original
type system by Danvy and Filinski has the principal type
property [1], the next step would be to combine type infer-
ence and gradual typing [6, 8].

References
[1] K. Asai and Y. Kameyama. Polymorphic delimited continua-

tions. In Proc. of APLAS., pages 239–254, 2007.
[2] M. Cimini and J. G. Siek. The gradualizer: A methodology

and algorithm for generating gradual type systems. In Proc.
of ACM POPL, pages 443–455, 2016.

[3] O. Danvy and A. Filinski. A functional abstraction of
typed contexts. Technical Report 89/12, DIKU, University
of Copenhagen, 1989.

[4] O. Danvy and A. Filinski. Abstracting control. In LISP and
Functional Programming, pages 151–160, 1990.

[5] A. Filinski. Representing monads. In Proc. of ACM POPL,
pages 446–457, 1994.

[6] R. Garcia and M. Cimini. Principal type schemes for gradual
programs. In Proc. of ACM POPL, pages 303–315, 2015.

[7] T. Sekiyama, S. Ueda, and A. Igarashi. Shifting the blame -
A blame calculus with delimited control. In Proc. of APLAS,
pages 189–207, 2015.

[8] J. G. Siek and M. Vachharajani. Gradual typing with
unification-based inference. In Proc. of Dynamic Languages
Symposium (DLS), 2008.

[9] J. G. Siek, M. M. Vitousek, M. Cimini, and J. T. Boyland. Re-
fined criteria for gradual typing. In 1st Summit on Advances
in Programming Languages (SNAPL), pages 274–293, 2015.

