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Abstract
Bruce and Foster proposed the language LOOJ, an extension
of Java with the notion of MyType, which represents the
type of a self reference and changes its meaning along with
inheritance. MyType is useful to write extensible yet type-
safe classes for objects with recursive interfaces, that is, ones
with methods that take or return objects of the same type as
the receiver.

Although LOOJ has also generics, MyType has been in-
troduced as a feature rather orthogonal to generics. As a
result, LOOJ cannot express an interface that refers to the
same generic class recursively but with different type argu-
ments. This is a significant limitation because such an in-
terface naturally arises in practice, for example, in a generic
collection class with method map(), which converts a col-
lection to the same kind of collection of a different element
type. Altherr and Cremet and Moors, Piessens, and Oder-
sky gave solutions to this problem but they used a highly
sophisticated combination of advanced mechanisms such as
abstract type members, higher-order type constructors, and
F-bounded polymorphism.

In this paper, we give another solution by introducing self
type constructors, which integrate MyType and generics so
that MyType can take type arguments in a generic class. Self
type constructors are tailored to writing recursive interfaces
more concicely than previous solutions. We demonstrate the
expressive power of self type constructors by means of ex-
amples, formalize a core language with self type construc-
tors, and prove its type safety.

Categories and Subject Descriptors D.3.1 [Programming
Languages]: Formal Definitions and Theory; D.3.2 [Pro-
gramming Languages]: Language Classifications—Object-
oriented languages; D.3.3 [Programming Languages]: Lan-
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guage Constructs and Features—Classes and objects; Poly-
morphism; F.3.3 [Logics and Meaning of Programs]: Stud-
ies of Program Constructs—Object-oriented constructs;
Type structure

General Terms Design, Languages, Theory

Keywords binary methods, generics, MyType, type con-
structor polymorphism

1. Introduction
Background. It is well known that simple type systems
(such as that of Java without generics) are not sufficiently ex-
pressive to make use of the inheritance mechanism in a type
safe manner. One of the classical problems in this context is
how to express binary methods [6]—methods that are sup-
posed to take an object of the same type as the receiver, such
as equals()—in statically typed languages. Ideally, in a
class definition, the parameter type of a binary method has to
change covariantly as the class extends so that subclasses re-
fer to themselves. However, such covariant change of param-
eter types, if naively allowed, would break type safety and so
C++ and Java disallow it. As a result, the parameter type of
a binary method is fixed to a particular class name and this
problem is often “solved” by typecasting. The use of type-
casting, however, is not a real solution since they may fail at
run time, if used carelessly. A similar problem occurs when
two or more classes are involved: paradigmatic examples are
found in the implementation of node and edge classes for
graphs [15] and also in the expression problem [42].

Over the last years, there have been many proposals to
solve the problem above; a key idea common to them is to
provide such inheritance and typing mechanisms that can
properly preserve (mutual or self) “dependencies” among
the interfaces of related classes. According to how depen-
dencies are expressed in type systems, these proposals can
be classified into two: one with dependent types [15, 16, 30,
31, 12, 34] and one without [23, 37, 22, 7, 8, 9, 5] 1. This pa-
per focuses on the latter, which is admittedly less expressive
but simpler and usually expressive enough.

1 In spite of what the title of the paper [23] suggests, Concord is not really
equipped with dependent types in the traditional type-theoretic sense.



MyType and its Extensions. The approach, in which de-
pendent types are not used, is based on MyType [4], which
represents the type of a self reference. MyType refers to the
class where it appears and changes its meaning covariantly
when a member is inherited so as to refer to the class that
inherits it. So, MyType can be used to give appropriate sig-
natures to binary methods. Although MyType in earlier pro-
posals can express only self-recursion within a single class,
it has been extended to more general settings: mutually re-
cursive classes [37, 8, 9, 5], class hierarchies [23], and arbi-
trarily nested groups of classes [22].

LOOJ and its Limitation. Five years ago, Bruce and Fos-
ter proposed the language LOOJ, an extension of Java with
MyType [7]. Although LOOJ also includes generics [26, 3],
MyType has been introduced as a feature rather orthogonal
to generics. As a result, LOOJ cannot express an interface
that refers to the same generic class with different type ar-
guments. For example, consider a collection class and its
method map(), which takes a function from the element type
to another and returns a new collection whose elements are
obtained by applying the function to each element in the
receiver collection object. It is natural to expect that this
method returns the same kind of collection of a different el-
ement type but LOOJ types cannot express such an inter-
face. This is a significant limitation because such an inter-
face arises naturally in practice, namely, in generic collection
classes, which are typical applications of generic classes.

In short, the limitation of LOOJ is that, if a parameterized
class refers to itself recursively but with different type in-
stantiations, it is impossible to give such recursive references
types that are covariantly refined along with inheritance.

Our Contributions. In this paper, we propose self type
constructors, which integrate MyType and generics so that
MyType is a type constructor, which can take type arguments
just like ordinary generic class names2. We demonstrate
the expressive power of self type constructors by means of
examples. In particular, we show collections with methods
map() and flatMap(), which can be given the desired
signatures by using self type constructors.

To rigorously show that our proposal is safe, we formalize
a core language FGJstc of self type constructors by extending
FLJ [7], a core calculus of LOOJ, which in turn extends
Featherweight GJ [20], and prove its type soundness.

Actually the problem pointed out here is not new; it has
been tackled by other people [27, 1]. Their solutions required
a highly sophisticated combination of advanced typing fea-
tures including abstract type members [39, 19, 33], higher-
order type constructors [27, 1], and F-bounded polymor-
phism [11]. Compared with them, our proposal differs in that
(1) there is less boilerplate code to write recursive interfaces
because MyType automatically supports covariant change of

2 Actually, Bruce once pointed out this idea as a solution to extensible
parameterized visitors [5]. However, he did not investigate it any further
due to its expected complexity.

method signatures, (2) F-bounded polymorphism, which is
often a source of complication in the semantics and meta-
theory, is not needed, and (3) no second- or higher-order type
constructors are needed. Actually, in order to bring these ad-
vantages, we need the help (or, one might say, additional
complexity) of our recent proposal to make self types more
applicable [36]. Nevertheless, we believe our whole proposal
offers a simpler solution to writing extensible, recursive, and
generic interfaces than the previous work.

We summarize our contributions as follows:

• the proposal of self type constructors with a demonstra-
tion of their expressive power by means of examples;

• a formalization of the type system of self type construc-
tors; and

• a proof of type soundness.

For brevity, the proofs of the theorems and main lemmas are
only sketched.

The Rest of This Paper. Section 2 reviews the idea of My-
Type and the type system of LOOJ and then, discusses a
limitation of LOOJ with respect to generic classes with re-
cursive interfaces. Section 3 informally describes the idea
of self type constructors as a solution to the problem. Sec-
tion 4 formalizes self type constructors as FGJstc, which is
an extension of FLJ, a small model of LOOJ. Section 5 in-
vestigates the interaction between self type constructors and
other advanced typing features. Section 6 discusses related
work and Section 7 concludes. Hereafter, we use the key-
word This, as done in [22, 36], for MyType.

2. The Type System of LOOJ and Its
Limitation

In this section, we first review the type system of LOOJ [7]
and then describe its limitation caused by the fact that This
stands for the current class with its type parameters.

2.1 This and Exact Types
In LOOJ, the keyword This (more precisely, ThisClass)
represents the class in which it appears; moreover, when the
class is inherited, the meaning of This changes covariantly.
A typical use of This is in methods with recursive interfaces,
that is, methods that take or return the same type as the
receiver. Consider the following class definitions:

class C {

int field1;

boolean isEqual(This that){

return this.field1 == that.field1;

}

}

class D extends C {

int field2;

boolean isEqual(This that){

return super.isEqual(that)

&& this.field2 == that.field2;



}

}

Class C declares a binary method (i.e., a method that takes
the same type as the receiver [6]) isEqual() to compare the
receiver with another object of the same type. This refers to
class C in class C whereas it refers to class D in class D. So,
in the overriding definition of isEqual(), the field access
that.field2 in isEqual() in class D is legal.

When members are accessed on an object, the signatures
of the members are obtained by replacing This with the
(static) class name of the receiver object. For example, if
isEqual() is invoked on an expression of type C, the sig-
nature is C→boolean. On the other hand, if isEqual() is
invoked on type D, the signature is D→boolean.

One advantage of using This is that programmers can
avoid unnecessary uses of typecasts, which sidestep static
typechecking and may fail at run time if used carelessly. For
example, if we wrote isEqual() with the argument type
being C, the access to field2 would require a typecast (D)
for that, since D has to override the method with the same
signature (in Java) but C does not have field2.

Exact Types for Safe Binary Method Invocations. How-
ever, it is not safe to allow the invocation of binary methods
naively. Consider the following code:

C c1, c2;

...

c1.isEqual(c2); // unsafe

Although this invocation is well typed under the above-
mentioned interpretation of This and the usual typing rule
for method invocations, it can fail at run time—if c1 refers to
an object of class D and c2 refers to an object of class C, then
the overriding definition of isEqual() will be executed and
the field access that.field2 fails since c2 does not have
field2. The problem here is that the run-time signature of
isEqual() can be different from the compile-time one.

LOOJ introduces exact types [7, 22] in order to guarantee
the safe invocations of binary methods such as isEqual().
While an ordinary type C means an object of class C or its
subclasses, an exact type @C means the object of class C
exactly, excluding its proper subclasses. In other words, a
variable or field of type @C always refers to an instance of
class C.

With the help of exact types, the safe typing rule for
method invocations becomes: “the receivers of binary meth-
ods should have exact types.” Thanks to this rule, the run-
time and compile-time signatures of a binary method invo-
cation will be the same3. The following method invocations
illustrate type-checking under this rule:

@C c1; C c2, c3;

3 Obviously, this rule loses the benefit of dynamic dispatch—the method
body called is determined at run time. This problem will be overcome
by local exactization, which we proposed in the previous work [36]—See
Section 3.

interface Comparable {

int compareTo(@This that);

}

interface Iterator<T> {

@T next();

@T peek();

boolean hasNext();

}

Figure 1. Interfaces of Comparable and Iterator written
in LOOJ.

c1.isEqual(c3); // 1: legal

c2.isEqual(c3); // 2: illegal

The first invocation is legal (and in fact safe) since the
receiver is of @C, an exact type, and the argument type C is
a subtype of the parameter type C. The second invocation,
which is unsafe as we have seen, is rejected by the type
system since the receiver’s type is not exact. Hereafter, we
call types without @ inexact.

2.2 Limitation of LOOJ
Although LOOJ has also generics, This is rather orthogonal
to generics. When This appears in generic class C<X>, This
means C<X> including the type parameter X of the generic
class C. As a result, LOOJ cannot express an interface that
refers to the same generic class recursively but with different
type arguments. This is a significant limitation because such
an interface naturally arises in practice, for example, in a
generic collection class with method map(), which converts
a collection to the same kind of collection of a different
element type. We elaborate on this problem, which was also
pointed out by Altherr and Cremet [1] and Moors, Piessens,
and Odersky [27], below.

Figures 1 and 2 show our running example4 adapted
from [27]. Suppose that we are developing a class hierar-
chy of collections by the iterable-and-iterator idiom. The
top of the hierarchy is Iterable<T>, an abstract collec-
tion of the elements of type @T. (The element type needs
to be exact to allow binary method compareTo() to be in-
voked on the elements in a subclass SortedList<T>. Ob-
viously, this prohibits heterogeneous collections, even for
List. Its relaxation, which we do not incorporate in this pa-
per to simplify the discussion, will be sketched in Section 7.)
List<T> is a concrete class implementing Iterable<T>.
SortedList<T> is an extension of List<T> and the ele-
ments of its instance are expected to be sorted in an ascend-
ing order. Since sorting involves comparison between ele-
ments, the element type T in SortedList<T> is refined to
be a subtype of Comparable, which declares binary method
compareTo().

4 More precisely, LOOJ distinguishes MyType in classes and interfaces and
uses ThisClass for class types and ThisType for public interfaces. In this
paper, we use This for both. This is safe as long as the receiver of a binary
method invocation has an exact class type, as pointed out in [7].



abstract class Iterable<T> {

abstract Iterator<T> iterator();

abstract void add(@T t);

abstract @This append(@This that);

}

class List<T> extends Iterable<T> {

Iterator<T> iterator(){ ... }

void add(@T t){ ... }

@This create(){ ... } // discussed later

@This append(@This that){

@This newList=create();

for(@T t: this) newList.add(t);

for(@T t: that) newList.add(t);

return newList;

}

<U> ??? map(T->U f){ ... }

<U> ??? flatMap(T->??? f){ ... }

}

class SortedList<T extends Comparable>

extends List<T> {

...

@This append(@This that){

@This newList=create();

Iterator<T> iter=iterator();

Iterator<T> iter2=that.iterator();

while(iter.hasNext() && iter2.hasNext()){

if(iter.peek().compareTo(iter2.peek()) < 0)

newList.add(iter.next());

else newList.add(iter2.next());

}

while(iter.hasNext())

newList.add(iter.next());

while(iter2.hasNext())

newList.add(iter2.next());

return newList;

}

}

Figure 2. Collection classes written in LOOJ.

In this example, we omit the implementation of the data
structure in each concrete class. So, the bodies of add()
and iterator() are omitted. Method add() adds a new el-
ement to the data structure. Moreover, in SortedList<T>,
add() keeps the elements sorted. An invocation of iterator()
on List<T> returns a new iterator object that iterates over
the elements of the receiver; that on SortedList<T> returns
a new object that iterates over the elements in the ascending
order.

Iterable<T> declares binary method append() that
takes the same kind of collection as the receiver, appends
all the elements of the receiver and argument, and then re-
turns a new collection of the same kind. Both List<T> and
SortedList<T> implement append(). In List<T>, the el-
ements of that are simply connected to the tail of those of
this by iteration. In SortedList<T>, on the other hand,
append() is overridden so that the elements of this and

that are merge-sorted. The algorithm assumes that the el-
ements of that has been sorted. This assumption is correct
since that has type @This referring to SortedList<T>,
a sorted list. The implementation of the factory method
create() will be discussed later.

Now, consider that we try to write types for methods
map() and flatMap() in class List<T>. The requirement
is as follows: the method map() is a polymorphic method
that takes a type U and a function5 from type T to U, and
then returns a list whose element type is U. Moreover, we
naturally expect that the invocation of map() on a list returns
a list and that on a sorted list returns a sorted list. The method
flatMap(), which is also polymorphic and takes U as a type
argument, takes a function from T to lists of U and returns a
new list obtained by concatenating the results of applying
the function to each element of the receiver list. Similarly,
we expect that flatMap() returns the same kind of lists.

It is impossible, however, to express such a requirement
with LOOJ types. The problem is that This cannot be used
to express the requirement that the returned list is the same
kind of list as the receiver because This always refers to the
generic class instantiated with the declared type parameters:
for example, in List<T>, This always refers to List<T>
but cannot be used to refer to, say, List<U>.

Covariant refinement of return types introduced to Java
since 5.0 does not solve the problem, either. All we can do
at best is as follows:

class List<T> {

<U> List<U> map(T->U f){ ... }

}

class SortedList<T extends Comparable>

extends List<T> {

<U extends Comparable> SortedList<U> map(T->U f) {

...

}

}

The return types are correctly refined since SortedList<U>
is a subtype of List<U>. However, this code is not very
satisfactory. First, it is a programmer’s responsibility to re-
fine the return type every time he or she defines a subclass
of List<T>. Second, these signatures do not really satisfy
the requirement above since, for example, when map() is
invoked on a plain list, we are not sure whether a list or
its subclasses will be returned—in other words, the return
type is inexact. Note that it is impossible to give @List<U>
and @SortedList<U> as the return types of map() to
classes List<T> and SortedList<T>, respectively, since
@SortedList<U> is not a subtype of @List<U>.

5 In this paper, we assume the existence of first-class functions, which can
be seen in Scala [32], and use the notation S->T for the type for functions
from S to T. They can be simulated in Java by representing functions
by objects implementing a generic interface with method T apply(S x),
where S and T are type parameters, and function applications by invocation
of apply().



class List<T> extends Iterable<T> {

<U> @This<U> create(){ ... }

@This<T> append(@This<T> that) { ... }

<U> @This<U> map(T->U f){

@This<U> newList=this.<U>create();

for(@T t: this)

newList.add(f(t));

return newList;

}

<U> @This<U> flatMap(T->@This<U> f){

@This<U> newList=this.<U>create();

for(@T t: this)

newList = newList.append(f(t));

return newList;

}

}

Figure 3. The implementation of map() and flatMap() in
class List<T> written by using self type constructors in the
preliminary syntax.

In general, in LOOJ, if a generic class refers to itself re-
cursively but with different type instantiations, it is impossi-
ble to give such recursive references types that are automat-
ically refined along with extension.

3. Self Type Constructors
In this section, we introduce self type constructors to solve
the problem described in the previous section. Self type con-
structors are the integration of This and generics where
This can take type arguments in a generic class definition.
First, in Section 3.1, we begin with a simple use of self type
constructors and rewrite the classes shown in the previous
section. Second, we identify a subtlety that arises when the
upper bound of a type parameter is refined in a subclass (Sec-
tion 3.2). This leads us to distinguishing two kinds of type
parameters: ones that are “tied” to self type constructors and
whose upper bounds can be refined; and ones with oppo-
site properties. We also show the use of other related mech-
anisms, including constructor-polymorphic methods [1, 27]
(Section 3.3), exact statements [36] (Section 3.4), and non-
heritable methods [36] (Section 3.5), which are useful in this
context.

3.1 This as a Type Constructor
The idea of self type constructors is simple—it is just to
consider that This refers to a generic class name where it
appears, without type parameters, and that it can take type
arguments just like ordinary generic class names. Since self
types are now type constructors, namely, a type-level func-
tion that takes types to yield another type, we call This a
self type constructor. Figure 3 shows class List<T> rewrit-
ten with self type constructors. In this class definition, This
is used as a type constructor that takes one type. The return

type of map() can now be expressed as @This<U> and, sim-
ilarly, method flatMap() also has the signature that reflects
our intention. Note that the argument type of append()
is now @This<T> instead of @This because This always
needs to take one argument so as to be a proper type. The
factory method create() becomes a polymorphic method,
parameterized by an element type of the list to be created, so
that it can be called from map() and flatMap().

The following code illustrates invocations of map():

@List<Integer> intList=...;

@SortedList<Integer> intSList=...;

Integer->Float intToFloat=...;

@List<Float> floatList

=intList.<Float>map(intToFloat); // 1

@SortedList<Float> floatSList

=intSList.<Float>map(intToFloat); // 2

Each invocation returns a list of the same kind as the re-
ceiver, as expected, but the element type is converted from
Integer to Float. The return type is obtained by replacing
This with the constructor part (the simple class name, with-
out types surrounded by < and >) of the receiver type. For
example, the return type of the first invocation is obtained
by replacing This in @This<Float> by List.

3.2 Type Parameters with Refinable/Fixed-Bounds
Although the first idea is quite simple, the interaction of self
type constructors with the inheritance mechanism is subtler
than it may have appeared. We will see that type parameters
have to be distinguished into two kinds: one that allows
upper bounds to be refined and the other with fixed upper
bounds.

The following code reveals the problem:

class List<T> {

@This<String> strlist;

}

class NumList<T extends Number> extends List<T> {

}

The class List<T> above is well defined—@This<String>
is a well-formed type since the argument String is a sub-
type of Object, the (implicitly specified) upper bound of
T. However, if strlist were inherited to NumList<T>, its
type @This<String> would not be well formed any longer
because String is not a subtype of Number, which is a new
upper bound for T. In fact, the class SortedList suffers
from the same problem since the upper bound of T is refined
to Comparable. Similarly, it will be a problem to define a
subclass that fixes a type parameter of its superclass

class IntList extends List<Integer> {...}

since @This in IntList takes no type arguments and
@This<String> does not make sense, either.

In short, the problem is that, without any restriction, the
range of acceptable type arguments for (or, even the arity
of) self type constructors changes in a subclass and types



in inherited members may become meaningless. Although
such ill-formed types do no harm to type safety in the sense
that execution does not get stuck by no-such-field or no-
such-method errors (as long as the type system disallows the
instantiation of ill-formed types), we believe it is reasonable
to prohibit them from appearing. A similar problem has also
been pointed out in the context of Scala, by Moors, Piessens,
and Odersky [29], who developed a mechanism to prevent
ill-formed types from appearing.

In order to solve the problem, we distinguish two kinds
of type parameters of a generic class: parameters where
their upper bounds can be refined (simply called refinable
parameters) and ones with fixed bounds (simply called fixed
parameters). On the one hand, a refinable parameter (1)
allows its upper bound to be refined covariantly (or can be
fixed in a subclass as in IntList above), and (2) is included
in the meaning for This: for example, when parameter T
in class C<T> is refinable, This refers to C<T> instead of
C. In LOOJ, all type parameters are considered refinable
and inheritance obviously preserves well-formedness of type
expressions. On the other hand, a fixed parameter (1) cannot
be instantiated in an extends clause (as in IntList above),
(2) requires its upper bound to be the same as that of the
superclass, and (3) is not a part of the meaning of This.
So, in order to be a proper type, This has to take as many
type arguments as the number of fixed parameters. Since the
upper bound does not change along with inheritance, well-
formedness of types, especially the fact that the actual type
arguments for This are subtypes of the upper bounds of the
corresponding formal, are preserved.

To make the distinction clear in the syntax, we enclose
refinable parameters by < and > before fixed parameters,
which are enclosed by [ and ]. For example, we write

class C<T>[U]{

This[U] f;

<S> This[S] m();

}

Here, C has one fixed parameter U, so This takes one param-
eter, even though C has two type parameters in total. In this
class, the self type constructor This means that application
to type S yields This[S], which is a subtype of C<T>[S].
We generalize the notion of the constructor part of the class
to be a class name together with its refinable parameters. For
example, the constructor part of C is C<T>.

This distinction does not affect subtyping, which is point-
wise: if class C<T>[U] extends D<T>[U], for any types T1

and T2, C<T1>[T2] is a subtype of D<T1>[T2].
By using both kinds of type parameters, it is now possi-

ble to define SortedList, where the element type is a sub-
type of Comparable, as a subclass of List, without being
bothered by ill-formed types. Figure 4 shows the new def-
initions, where the method bodies remain unchanged from
the ones in Figure 3. In the new definition, class Iterable
has one refinable parameter Bound and one fixed parameter

abstract class Iterable<Bound>[T extends Bound]{

abstract Iterator<T> iterator();

abstract void add(@T t);

abstract @This[T] append(@This[T] that);

}

class List<Bound>[T extends Bound]

extends Iterable<Bound>[T]{

<U extends Bound> @This[U] create(){ ... }

@This[T] append(@This[T] that){ ... }

<U extends Bound> @This[U] map(T->U f){ ... }

<U extends Bound>

@This[U] flatMap(T->@This[U] f){ ... }

}

class SortedList<Bound extends Comparable>

[T extends Bound]

extends List<Bound>[T]{

@This[T] append(@This[T] that){ ... }

}

Figure 4. Collections with self type constructors, finally.

T, bounded by Bound. The point is that, although T’s upper
bound cannot be refined, it can actually be indirectly refined
by changing Bound’s upper bound. The extension of List
by SortedList is legal since the refinement of refinable pa-
rameter Bound is allowed and T has the same bound Bound
as its superclass does. Note that in class List<Bound>[T],
type @This[String] will not be well formed since String
is not a subtype of Bound.

Although it is not possible that the number of fixed pa-
rameters decreases in a subclass (because a subclass cannot
instantiate them), it is possible for a subclass to have more
fixed (and also refinable) parameters. (In fact, such augmen-
tation is even necessary because Object at the top of the
class hierarchy has no type parameters.) When a subclass is
given an additional fixed parameter, the signature of an in-
herited member changes. An easy example is as follows:

class List<Bound>[T extends Bound] extends Object {

@This[T] clone(){ .. } // if overrides

}

Here, Object is assumed to have method clone() that re-
turns @This to express the intention that it must returns an
object of the same type as the receiver. Now, clone() is in-
herited to List<Bound>[T], then the return type changes
to @This[T], not @This, which is not a proper type. So,
if List overrides clone(), the return type must be written
@This[T]. Although the return types look syntactically dif-
ferent, their meaning is the same, in that each represents the
type of this in its declaring class.

We summarize other restrictions on how two kinds of
type parameters can be used in class definitions by giving
the general form of the header of a class definition. Suppose
there is a class C

class C<X1 extends B1>[X2 extends B2] ...



and we are going to declare a subclass D with a new fixed
parameter. Then, ill-formed types can be avoided if a class
definition is of the form

class D<Y1 extends B′1>
[Y2 extends B′2, Y3 extends B′3]

extends C<T>[Y3] ...

obeying the following rules:

• upper bounds B′i contain only type variables Y1, . . . Yi−1

(for i = 1, 2, 3);
• B′3 is equal to a substitution instance of B2, in which X1

and X2 are replaced by T and Y3, respectively; and
• type T, which instantiates the refinable parameter X1 of C,

does not include Y3.

The first rule amounts to the absence of F-bounded poly-
morphism. Fixed parameter Y3 corresponds to X2 in the su-
perclass, so it must instantiate X2 and have the same bound
“modulo instantiation of X1” (as enforced by the second
rule). Y2 is the newly introduced fixed parameter; since it
cannot depend on the existing fixed parameter(s), its decla-
ration is put before them. In the formal calculus given in the
next section, the rules above are extended so that they can
deal with sequences of type parameter declarations.

3.3 Constructor-Polymorphic Methods
As studied in [8, 37, 22], it is convenient to allow method
declarations that work uniformly over different constructors.
The following example shows a method that takes two lists
of the same kind and returns a truth value if the two have
the same length and the elements at the same positions are
equal:

static

<T extends Comparable, L extends List<Comparable>>

boolean isEqualLists(@L[T] n1, @L[T] n2){

Iterator<T> iter=n2.iterator();

for(@T t: n1){

if(!iter.hasNext()) return false;

if(t.compareTo(iter.next()) != 0)

return false;

}

return !iter.hasNext();

}

The method above has two parameters. The first one T is
an ordinary type variable, which ranges over subtypes of
Comparable but the second one L is a type constructor vari-
able—this is clear from its upper bound List<Comparable>,
which requires one more argument to be a proper type. The
method can be invoked, as follows:

@SortedList<Comparable>[String] strList1, strList2;

...

<String,SortedList<Comparable>>

isEqualLists(strList1, strList2);

Here, the actual arguments for the method invocation is ex-
plicitly specified. Since String implements Comparable,
this method invocation is well typed. The development of
an algorithm to infer these type arguments is left for future
work.

Constructor-polymorphic methods introduce type param-
eters which range over type constructors. In the formal type
system presented in the next section, This will be also re-
garded as an (implicit) type constructor parameter, which is
bounded by the constructor part of the class where it appears.
In this paper, we allow such “higher-order” type parameter
only for methods, not for classes, to avoid a type construc-
tor parameterized by another type constructor. However, this
is not an essential restriction—see Section 5. Our main mo-
tivation for the restriction is rather to show interesting pro-
gramming is possible without higher-order type constructors
as used in other work [1, 27].

3.4 exact Statements for Invoking Binary Methods on
Inexact Types

The examples so far show invocations on only exact types.
Actually, with the help of exact statements (which were
called local exactization [36]), invocations of binary meth-
ods6 on inexact types are possible. Consider the following
example:

class ReversibleList<Bound>[T extends Bound]

extends List<Bound>[T] {

void reverse(){ ... }

}

static <L extends ReversibleList<Comparable>>

boolean isPalindrome(@L[String] strList){

String->@L[Char] stringToChars=

(String str) => { // first-class function

@L[Char] newList=strList.<Char>create();

for(Char c: str)

newList.add(c);

return newList;

}

// flatMap is a binary method!

@L[Char] charList=

strList.<Char>flatMap(stringToChars);

@L[Char] charList2=charList.clone().reverse();

return <Char,L>isEqualLists(cs, cs2);

}

The static method isPalindrome() judges if the given list
of strings represents a palindrome. For example, when it
takes the list of “borrow”, “or” and “rob” as an input, it
returns true. This method is constructor-polymorphic (just
as isEqualLists) to work for a reversible list or any sub-
classes (whose definitions are not given here). However, the
argument type has to be exact, since binary methods are in-

6 Here, the meaning of “binary methods” is slightly expanded so that they
now refer to methods taking another instantiation of This; so the argument
type is not necessarily the same as the type of this.



voked on the argument in the method body, and it is im-
possible to apply it directly to strList of inexact type
ReversibleList<Comparable>[String].

We use exact statements to make an inexact type tem-
porarily exact in a local scope. This typing feature is con-
sidered unpacking of existential types, when an inexact type
C is considered an existential type ∃X<:C.@X, where X can
be thought of a run-time class [36, 10]. It is also simi-
lar to wildcard capture [41]. Using an exact statement,
isPalindrome() can be applied to strList as

boolean b;

exact <X>(@X[String] x = strList) {

// X extends ReversibleList<Comparable>

b = <X>isPalindrome(x);

}

“<X>” after the keyword exact declares a constructor vari-
able to be used in the type declaration for x and the body
(inside the braces). At run time, x is bound to the value
of strList and X to the constructor part of the run-time
type of strList and the body is executed. At compile
time, the type constructor variable X is assumed to extend
ReversibleList<Comparable>, which comes from the
constructor part of the type of strList and the type of x
is an exact type @X[String], so isPalindrome() can be
called with x.

3.5 Nonheritable Methods for Implementing create()

There are several ways to implement create() in Figure 4.
The problem in defining create() is that one cannot return
an instance created from a concrete class such as List or
SortedList, since This is only a subtype of List<Bound>
or SortedList<Bound> but not vice versa. Here, we intro-
duce two alternatives.

One is to use the abstract factory pattern [17, 5]. First,
we prepare abstract class Factory as the common interface
for factories and a concrete factory ListFactory<Bound>
and then augment class List<Bound>[T] with a reference
to Factory<Bound,This>:

abstract class Factory<Bound,

C extends List<Bound>> {

<U extends Bound> @C[U] create();

}

class ListFactory<Bound>

extends Factory<Bound,List<Bound>> {

<U extends Bound> @List<Bound>[U] create() {

return new List<Bound>[U](this);

}

}

class List<Bound>[T extends Bound]

extends Iterable<Bound>[T] {

Factory<Bound,This> factory;

List(Factory<Bound,This> f) {

this.factory = f;

}

<U extends Bound> @This[U] create() {

return factory.<U>create();

}

}

A factory must be implemented for each collection class and
has to be supplied when a concrete collection is instantiated.
Note that class Factory is parameterized by C, which is a
type constructor variable. So, Factory is a higher-order type
constructor.

An alternative is to use nonheritable methods [36]. A
nonheritable method is one that is not inherited to sub-
classes, which must rewrite the same methods. In exchange
for this restriction, a nonheritable method allows This and
the constructor part of the declaring class to be compatible,
i.e., both types are subtypes of each other. This typing fea-
ture is, in a nutshell, the trick that allows object creations
written in factory classes to be put into factory methods, as
the following code shows:

class List<Bound>[T extends Bound]

extends Iterable<Bound>[T] {

nonheritable <U extends Bound> @This[U] create() {

return new List<Bound>[U]();

}

}

class SortedList<Bound>[T extends Bound]

extends List<Bound>[T] {

nonheritable <U extends Bound> @This[U] create() {

return new SortedList<Bound>[U]();

}

}

The modifier nonheritable is essential for each method
above. Without it, they would be ill-typed—for example,
List<Bound>[U] is not a subtype of @This<U> in class
List<Bound>[U]. Note that higher-order type constructors
do not appear in this code.

4. FGJstc: A Formal Core Calculus
In this section, we formalize the idea described in the previ-
ous section as a small core calculus called FGJstc based on
FLJ [7]. What we model here includes self type constructors,
constructor-polymorphic methods, and exact statements, as
well as the usual features of calculi of the FJ family, that is,
fields, methods, object creations and recursion by this. The
important restriction posed on FGJstc is that classes can be
parameterized only by proper types, but cannot by type con-
structors. So, type constructors in FGJstc are first-order—
type constructors takes only types, but does not take type
constructors. As the last section has shown, this first-order
restriction still allows self type constructors to express the
collection hierarchy if factory methods are implemented by
using nonheritable methods. The relaxation of this restric-
tion will be discussed in Section 5. Since F-bounded poly-
morphism is kicked out, FGJstc is not a pure extension of
FLJ. The calculus does not include nonheritable methods,



but they are easy to add, as formalized in [36]. We omit inter-
faces for simplicity. Typecasts are dropped since we aim at
safe and extensible programming without typecasting, a pos-
sibly unsafe operation. Section 4.1 defines the syntax; Sec-
tions 4.2 and 4.3 define the type system; Section 4.4 defines
the operational semantics. Finally, we show type soundness
in Section 4.5.

4.1 Syntax
The abstract syntax of types, class declarations, method dec-
larations, expressions, and values is given in Figure 5. The
metavariables C and D range over class names; V, W, X, Y,
and Z range over type constructor variables; f and g range
over field names; m range over method names; x and y range
over variables. The symbols / and ↑ are read extends and
return, respectively. Following the custom of FJ, we put
an over-line for a possibly empty sequence. Furthermore,
we abbreviate pairs of sequences in a similar way, writing
“T f;” for “T1 f1;. . . Tn fn;”, where n is the length of
T and f. Sequences of field declarations, parameter names,
and method definitions are assumed to contain no duplicate
names. We write the empty sequence as • and concatenation
of sequences using a comma. We write | · | for the length
of a sequence. As in FJ, every class has a single constructor
that takes initial values of all the fields and assigns them; we
omit constructor declarations for simplicity.

A type constructor K is either a type constructor variable
X or a nonvariable type constructor C<H>. The application
of type constructor K to a sequence of H yields K[H], which
can be also a type constructor since partial application of
type constructors is allowed in FGJstc. In what follows, we
call H an inexact type when H does not take any more argu-
ments, in other words H is a fully applied type constructor. A
type is either an inexact type or an exact type, which is ob-
tained by adding @ to an inexact type. Since this language is
expression-based, the body of a method is a single return
statement, rather than a compound statement as in the previ-
ous section. An expression is either a variable, a field access,
a method invocation, an object creation, or an exact expres-
sion, whose body is an expression. We assume that the set
of (type) variables includes the special variable this (This,
resp.), which cannot be used as the name of a (type, resp.)
parameter to a method.

We use a different syntax for exact expressions to sim-
plify the notation. An exact statement

exact <X>(@X[String] x = strList){ ... }

corresponds to exact1 strList as x, X in ... here. In
general, we write exacti e0 as x, X in e1, where the
variables x and X are bound in the body expression e1, and
the superscript i represents the arity of X.

A class table CT is a finite mapping from class names C to
class declarations L and is assumed to satisfy the following
sanity conditions: (1) CT(C) = class C ... for every C ∈
dom(CT); (2) Object 6∈ dom(CT); (3) for every class name

C (except Object) appearing anywhere in CT , we have
C ∈ dom(CT); and (4) there are no cycles in the inheritance
relation induced by CT . A program is a pair (CT , e) of a
class table and an expression. In what follows, we assume a
fixed class table CT to simplify the notation.

4.2 Lookup functions
We give functions to look up field or method declarations.
The function fields(C<G>[H]) returns a sequence T f of
field names of class type C<G>[H] with their types. The
function mtype(m, C<G>[H]) takes a method name and a
class type as input and returns the corresponding method
signature of the form <X/I>T→T0, in which X are bound
in T and T0. The functions are defined by the rules below,
which are essentially the same as those of FGJ.

fields(Object<>[]) = • (F-OBJECT)

class C<X/H>[Y/I]/N[Z]{T f; M}
fields([F/X, G/Y](N[Z])) = U g

fields(C<F>[G]) = U g, [F/X, G/Y]T f
(F-CLASS)

class C<X/H>[Y/I]/N[V]{T f; M}
<Z/J>U0 m(U x){ ↑ e0;} ∈ M

mtype(m, C<F>[G]) = [F/X, G/Y](<Z/J>U→U0)
(MT-CLASS)

class C<X/H>[Y/I]/N[Z]{T f; M} m 6∈ M
mtype([F/X, G/Y](N[Z])) = <W/J>U→U0

mtype(m, C<F>[G]) = <W/J>U→U0

(MT-SUPER)

We write [F/X, G/Y] for the capture-avoiding simultaneous
substitution of F1 for X1, . . . , of Fn for Xn, of G1 for Y1,
. . . , of Gm for Ym. Replacing X in X[I] by an application
K[H] yields K[H,I]. In general, we identify K[H][I] and
K[H,I]. The type substitutions in these rules look a little
more complicated since the two kinds of class parameters are
separated syntactically. Here, m 6∈ M means that the method
of name m does not exist in M.

4.3 Type System
The main judgments of the type system consist of ∆ ` S <:
T for subtyping, ∆ ` I :: k for type constructor well-
formedness (k is a kind, defined later), ∆ ` T ok for type
well-formedness, ∆1 ` ∆2 :: k for bound environment well-
formedness, and ∆;Γ ` e : T for expression typing. Here, ∆
is a bound environment, which is a finite mapping from type
(constructor) variables to type constructors, written X <: I;
Γ is a type environment, which is a finite mapping from
variables to types, written x : T. Following the custom of
FJ [20], we abbreviate the sequence of judgments in the
obvious way: ∆ ` S1 <: T1, . . . , ∆ ` Sn <: Tn to
∆ ` S <: T; ∆ ` I1 :: k1, . . . , ∆ ` In :: kn to
∆ ` I :: k; ∆ ` T1 ok, . . . , ∆ ` Tn ok to ∆ ` T ok, and
∆;Γ ` e1 : T1, . . . , ∆; Γ ` en : Tn to ∆; Γ ` e : T.



N, P ::= C<H> nonvariable type constructors
K ::= X | N type constructors

E, F, G, H, I, J ::= K[H] applications of type constructors
S, T, U ::= H | @H types

L ::= class C<X/I>[X/I]/N[X]{T f; M} class declarations
M ::= <X/I>T m(T x){ ↑ e;} method declarations

d, e ::= x | e.f | e.<I>m(e) | new N[I](e) | exacti e as x, X in e expressions
v ::= new N[I](v) values

Figure 5. FGJstc: Syntax.

4.3.1 Bounds of Types
The function bound∆(H), defined below, takes an inexact
type as input and returns a class type, which is the least
nonvariable upper bound of the input type.

bound∆1,X<:I,∆2(X[H]) = bound∆1(I[H])

bound∆(N[H]) = N[H]

If the input begins with a type constructor variable (the first
rule), the function will be recursively applied to the output,
in which, again, a variable can appear at the head.

4.3.2 Subtyping
The subtyping judgment ∆ ` S <: T, read as “S is a subtype
of T under ∆,” is defined below. This relation is the reflexive
and transitive closure of the extends relation with the rule
that an exact type is a subtype of its inexact version. The
notable rules are S-CLASS and S-APPLY. The former is
defined to give subtyping between type constructors—the
arguments for Z are not given in either side of the conclusion.
This partial application does not cause a free occurrence of
type variables in the right side of the conclusion since N
does not contain any of Z (as discussed in Section 3.2 and
will be formalized later in T-CLASS). S-APPLY says that
if type constructors are in a subtyping relation, so are their
applications to the same argument.

∆ ` T <: T (S-REFL)

∆ ` S <: T ∆ ` T <: U

∆ ` S <: U
(S-TRANS)

∆ ` X <: ∆(X) (S-VAR)

class C<X/H>[Y/I,Z/J]/N[Z]{T f; M}

∆ ` C<F>[G] <: [F/X, G/Y]N
(S-CLASS)

∆ ` G <: H

∆ ` G[I] <: H[I]
(S-APPLY)

∆ ` @I <: I (S-EXACT)

4.3.3 Well-formedness
The well-formedness judgments consist of two judgments:
one ∆ ` I :: k for type constructors and one ∆ ` T ok for
proper types. In the former, k is a kind of I. The kind of a
type constructor represents the arity of the type constructor
and the upper bound for each parameter. Thanks to kinds, it
is possible to check if applications of type constructors are
well-formed. The definition is:

k ::= * | X <: I.k kinds

Kind * is one for inexact types, which take no arguments.
Kind X <: I.* is one for type constructors that take a single
argument, which must be a subtype of I. We write kind
X <: I.*, as an abbreviation of X1 <: I1. . . . .Xn <: In.*,
for n-argument type constructors. Since type constructors
are first-order, the upper bounds that appear in a kind always
have kind *.

The well-formedness judgment ∆ ` I :: k for type con-
structors is read as “type constructor I has kind k under
∆.” The rules are defined below. Object<> has kind *. A
type constructor variable X has the same kind as its upper
bound. Similarly to S-CLASS, WK-CLASS is defined so that
the conclusion is a class type that is partially applied, drop-
ping the arguments for Z. The rule says that type constructor
C<F>[G], which takes as many arguments as the length of Z,
has a kind if arguments F and G have kind * and they conform
to the corresponding upper bounds. WK-APPLY is the rule
for application of a type constructor to a type constructor,
which must have kind * and be a subtype of the upper bound
I, written in the kind X<:I.k of the applied type constructor
G.

∆ ` Object<> :: * (WK-OBJECT)

∆ ` ∆(X) :: k

∆ ` X :: k
(WK-VAR)

class C<X/H>[Y/I,Z/J]/N[Z]{T f; M}
∆ ` (F, G) :: * ∆ ` (F, G) <: [F/X, G/Y](H, I)

∆ ` C<F>[G] :: Z <: [F/X, G/Y]J.*
(WK-CLASS)



∆ ` G :: X<:I.k ∆ ` H :: * ∆ ` H <: I

∆ ` G[H] :: [H/X]k
(WK-APPLY)

The well-formedness judgment ∆ ` T ok for types is read
as “type T is well formed under ∆.” The rules are defined
below. If type constructor I has kind *, that is, I is an inexact
type, both exact type @I[] and inexact type I[] are well-
formed types.

∆ ` I :: *
∆ ` @I[] ok

∆ ` I :: *
∆ ` I[] ok

The bound environment well-formedness judgment ∆1 `
∆2 :: k, read as “type environment ∆2 has kinds k with
respect to ∆1,” is defined as follows:

∆ ` • :: • ∆1 ` ∆2 :: k ∆1, ∆2 ` I :: k′

∆1 ` (∆2, X <: I) :: (k, k′)

Note that the rules are defined in such a way that F-bounded
polymorphism [11] is kicked out from FGJstc. The scope of
a type variable in a bound environment is the following type
variable declarations. So, a type variable cannot appear in its
upper bound.

4.3.4 Typing
Expression Typing. The typing judgment for expressions
of the form ∆;Γ ` e : T, read as “under bound environment
∆ and type environment Γ, expression e has type T,” defined
as follows:

∆;Γ ` x : Γ(x) (T-VAR)

∆;Γ ` e0 : @H0 fields(bound∆(H0)) = T f
H0 = I0[H] ∆ ` [I0/This]Ti ok

∆;Γ ` e0.fi : [I0/This]Ti

(T-FIELD)

∆;Γ ` e0 : @H0 mtype(m, bound∆(H0)) = <X/J>T→T0

H0 = I0[H] ∆ ` [I0/This]T0 ok
∆ ` G :: k ∆ ` G <: [G/X][I0/This]J

∆;Γ ` e : U ∆ ` U <: [G/X][I0/This]T
∆;Γ ` e0.<G>m(e) : [G/X][I0/This]T0

(T-INVK)

∆ ` N[I] ok fields(N[I]) = T f ∆;Γ ` e : U
for all i ≤ |T|.(∆ ` [N[G]/This]Ti ok and

∆ ` Ui <: [N[G]/This]Ti where I = G, H for some G, H)
∆; Γ ` new N[I](e) : @N[I]

(T-NEW)

∆;Γ ` e1 : I[H] |H| = i
∆, X <: I; Γ, x : @X[H] ` e0 : U0

∆, X<:I ` U0<:T0 ∆ ` T0 ok
∆;Γ ` exacti e1 as x, X in e0 : T0

(T-EXACT1)

∆; Γ ` e1 : @I[H] |H| = i
∆;Γ, x : @I[H] ` [I/X]e0 : U0 ∆ ` U0 ok

∆;Γ ` exacti e1 as x, X in e0 : U0

(T-EXACT2)

The key rules are T-FIELD for field access and T-INVK
for method invocation. Both rules restrict the receivers to
be exact. (So, to access members on inexact types, we first
make the types of the receivers exact.) The rule T-FIELD
means that the type of field access is obtained by looking up
field declarations from the bound of H0 and then substituting
I0 for This in the type Ti corresponding to fi. Note that
I0 is obtained by dropping some H from H0 so that the
type constructors This in the class where Ti is declared
and I0 have the same arity. The selection of I0 is correct if
substitution of I0 for This in Ti yields a well-formed type.

Assume that ∆; Γ ` x : @C[T] and ∆; Γ ` y : @D[U,S]
for some ∆ and Γ with the following class declarations:

class C[X]{ @This[X] f; }

class D[Y,X] extends C[X]{ @This[Y,X] g; }

Then, examples of typing field accesses are shown:

∆;Γ ` x : @C[T]
fields(bound∆(C[T])) = @This[T] f

∆;Γ ` [C/This]@This[T] ok
∆;Γ ` x.f : [C/This]@This[T](= @C[T])

∆; Γ ` y : @D[U,S]
fields(bound∆(D[U,S])) = @This[S] f, @This[U,S] g

∆; Γ ` [D[U]/This]@This[S] ok
∆; Γ ` y.f : [D[U]/This]@This[S](= @D[U,S])

In the first derivation C is substituted for This in the result
type while in the second D[U] is for This.

The rule T-INVK is similar to T-FIELD. First, the method
signature is retrieved from the receiver’s type by using
mtype. Then, I0 is selected so that I0 and This in the nearest
superclass where method m is declared have the same arity.
Finally, it is checked if the type arguments G have some kinds
and are subtypes of the corresponding formal J, and if the
types U of the arguments e are subtypes of those of the cor-
responding formal T. Since T and J may contain This and X,
type substitution is applied when the subtyping checks are
done.

The rule T-NEW says that the type of a new expression
is the exact type of the class being instantiated. Since differ-
ent fields can come from different classes, which have the
different numbers of fixed parameters, we have to choose a
different N[G] for each field. Under the assumption of the
environments and class declarations above, an example of
typing a new expression is shown:



∆ ` D[U,S] ok
fields(bound∆(D[U,S])) = @This[S] f, @This[U,S] g

∆;Γ ` [D[U]/This]@This[S](= @D[U,S]) ok
∆ ` @D[U,S]<:@D[U,S]

∆;Γ ` [D/This]@This[U,S](= @D[U,S]) ok
∆ ` @D[U,S]<:@D[U,S]

∆;Γ ` new D[U,S](y,y) : @D[U,S]

D[U] is substituted for This in the type of f while D is for
This in the type of g.

There are two rules for exact expressions, depending on
whether the type of e1 is inexact I[H] or exact @I[H]. If
inexact (T-EXACT1), the body expression is typed under ∆
extended by X<:I and Γ extended by x:@X[H]. The length
of H is determined by superscript i. Since the result type U0

may contain the type constructor variable X, the type of the
whole expression is obtained by taking a supertype T0 of
U0 so that T0 does not contain X. The rule T-EXACT2 is for
the other case. This rule, which will not be used in ordinary
programs, is required to show the subject reduction property
since an expression of inexact type eventually reduces to one
(typically a value) of an exact type at run time.

To avoid cumbersome exact in accessing members on
inexact types, we could give the following derived rules,
which can be obtained by the combination of T-FIELD/T-
INVK and T-EXACT1.

∆;Γ ` e0 : I0[H] fields(bound∆(I0[H])) = T f
∆, This<:I0 ` Ti<:T ∆ ` T ok

∆;Γ ` e0.fi : T
(T-FIELD’)

∆;Γ ` e0 : H0 mtype(m, bound∆(H0)) = <X/J>T→T0

T and J do not contain This ∆ ` G :: k
∆ ` G <: [G/X]J ∆;Γ ` e : U ∆ ` U <: [G/X]T
H0 = I0[H] ∆, This<:I0 ` T0<:T ∆ ` T ok

∆;Γ ` e0.<G>m(e) : [G/X]T
(T-INVK’)

The condition that T and J do not contain This means that
the method invoked is not binary—binary methods should
be invoked on receivers of exact types.

Closing of Types. In the rule T-EXACT1, T0 is not unique
for given X, I, U0 and ∆. We could give a set of rules
to determine a minimal X-free supertype of U0 as a basis
for implementing typecheckers. We introduce the judgment
closing of types [21], written S ⇓∆

X<:I T, meaning that “T is a
minimal supertype of S without X under ∆”. We also say that
“S closes to T under X<:I and ∆”. In T-EXACT1, U0 ⇓∆

X<:I T0

can be used for ∆, X<:I ` U0<:T0. Similarly, Ti ⇓∆
This<:I0

T
for ∆, This<:I0 ` Ti<:T in T-FIELD’ and T0 ⇓∆

This<:I0
T

for ∆, This<:I0 ` T0<:T in T-INVK’. The rules of closing
of types are as follows:

X 6∈ fv(T)
T ⇓∆

X<:I T

X ∈ fv(H)
H ⇓∆

X<:I T

@H ⇓∆
X<:I T

I[H] ⇓∆
X<:I T

X[H] ⇓∆
X<:I T

X 6= Y
Y ∈ fv(H)

∆(X)[H] ⇓∆
Y<:I T

X[H] ⇓∆
Y<:I T

X0 ∈ fv(F, G)
class C<X/H>[Y/I]/N[Z]{...}

[F/X, G/Y]N[Z] ⇓∆
X0<:I0

T

C<F>[G] ⇓∆
X0<:I0

T

Here, fv(T) returns the set of type variables that appear in
T. There are three rules in the upper row. The left rule says
that if type T does not contain the variable X, the result is the
same T. The center rule says that if an exact type contains
X, the result is what its inexact version closes to. The right
rule says that if X appears at the head of the type to close,
then the result is what I[H], the bound of X[H], closes to.
There are two rules in the lower row. The left rule says that
if the arguments for X contain Y, then the result is what
∆(X)[H], the bound of X[H], closes to. The right rule says
that if the arguments of a class type contain X0, the result
is what the supertype of the class type closes to. Note that
every well-formed type always closes to a certain type, at
worst to Object<>[], which is no informative type.

Method Typing. The typing judgment for method dec-
larations is written C<X/H>[Y/I] ` M ok. The rule T-
METHOD, defined below, is straightforward. The method
body e0 is typed under the bound environment derived
from the parameterization clauses in the class and method
declaration as well as This <: C<X>, and the type en-
vironment, in which this has type @This[Y]. The last
premise, using the predicate override, checks valid over-
riding of method signatures—override(m, C<X/H>[Y/I],
<Z/J>T→T0) means that class C<X/H>[Y/I] correctly over-
rides the method of name m in its superclass (if exists) and
the overriding signature is <Z/J>T→T0. The rule is also
below. Note that method signatures are α-convertible and
return types can be covariantly refined along with extension.

class C<X/H>[Y/I,Z/J]/N[Z]{T f; M}
[This[Y]/This](mtype(m, N[Z])) = <V/F>U→U0

implies G, T = [W/V](F, U) and W <: G ` T0 <: [W/V]U0

override(m, C<X/H>[Y/I,Z/J], <W/G>T→T0)
(OVERRIDE)

∆1 = X <: H, Y <: I, This <: C<X> ∆2 = Z <: J
∆1 ` ∆2 :: k ∆ = ∆1,∆2 ∆ ` T, T0 ok
Γ = x : T, this : @This[Y] ∆;Γ ` e0 : U0

∆ ` U0 <: T0 override(m, C<X/H>[Y/I], <Z/J>T→T0)
C<X/H>[Y/I] ` <Z/J>T0 m(T x){ ↑ e0;} ok

(T-METHOD)

Class Typing. The typing judgment for classes is written
` L ok. The rule is defined below. The type environment
derived from the parameterization clause is checked if each
upper bound has kind *. If it succeeds, it will be guaranteed



that the scope of a type variable is the following bindings.
So, the upper bounds H contain none of Y and Z, and I none
of Z, as expected. As mentioned before, N does not contain
any of Z. These conditions correspond to the general pattern
of class parameterization discussed at the end of Section 3.2.
The well-formedness of field types T is checked under the
bound environment with This <: C<X>. The last conditional
premise says that the upper bounds of type variables Z must
be the same as those of the superclass.

∆ = X <: H, Y <: I, Z <: J • ` ∆ :: *
X<:H, Y<:I ` N : Z<:J.* ∆, This <: C<X> ` T ok

C<X/H>[Y/I,Z/J] ` M ok
if D 6= Object where N = D<E> and
class D<W/F>[V/G]/ . . . { . . . },

then [E/W][Z/V]G = J

` class C<X/H>[Y/I,Z/J]/N[Z]{T f; M} ok
(T-CLASS)

A class table (CT) is ok, if all the class definitions in it
are ok.

4.4 Operational Semantics
The operational semantics is given by the reduction re-
lation of the form e−→e′, read “expression e reduces
to e′ in one step.” We require another lookup function
mbody(m, C<G>[H]), defined below, for a pair of natural
number and method body with formal (type) parameters,
written i, X.x.e, of given method and class names. X and
x are considered bound in e. The natural number i counts
the difference between the number of the fixed parameters
in the class that the method receiver belongs to and that in
the class where the method body comes from.

class C<X/H>[Y/I]/N[W]{T f; M}
<Z/J>U0 m(U x){ ↑ e0;} ∈ M

mbody(m, C<F>[G]) = 0, [F/X, G/Y](Z.x.e0)
(MB-CLASS)

class C<X/H>[Y/I,Z/J]/N[Z]{T f; M} m 6∈ M
mbody([E/X, F/Y, G/Z](N[Z])) = i, W.x.e0

mbody(m, C<E>[F,G]) = (i + |F|), W.x.e0

(MB-SUPER)

The reduction rules are given below. We write [d/x, e/y]e0

for the expression obtained from e0 by replacing x1 with d1,
..., xn with dn, and y with e. This simultaneous substitution
is capture-avoiding. The first three rules are one for field ac-
cess, one for method invocation, which are straightforward,
thanks to lookup functions, and one for exact expressions.
The only non-trivial point is that, in R-INVK, This is re-
placed by N[H], which is obtained by dropping I from the
receiver type. Since the length of H is the same as the number
of fixed parameters introduced between the receiver class

and the class where the method is defined, N[H] is a sub-
type of the constructor part of the class where the method is
defined.

fields(N[H]) = T f

new N[H](e).fi−→ei

(R-FIELD)

mbody(m, N[H,I]) = i, X.x.e0 |H| = i

new N[H,I](e).<G>m(d)−→
[d/x, new N[H,I](e)/this][G/X, N[H]/This]e0

(R-INVK)

|I| = i

exacti new N[H,I](e) as x, X in e0

−→[new N[H,I](e)/x][N[H]/X]e0

(R-EXACT)

The reduction rules may be applied at any point in an
expression, so we also need the congruence rules.

e0−→e0
′

e0.f−→e0
′.f

(RC-FIELD)

e0−→e0
′

e0.<H>m(e)−→e0
′.<H>m(e)

(RC-INVK-RECV)

ei−→ei
′

e0.<H>m(...,ei,...)−→e0.<H>m(...,ei
′,...)

(RC-INVK-ARG)

ei−→ei
′

new N[H](...,ei,...)−→new N[H](...,ei
′,...)

(RC-NEW)

e1−→e1
′

exacti e1 as x, X in e0

−→exacti e1
′ as x, X in e0

(RC-EXACT)

e0−→e0
′

exacti e1 as x, X in e0

−→exacti e1 as x, X in e0
′

(RC-EXACT-BODY)

We write −→∗ for the reflexive and transitive closure of
−→.

4.5 Type Soundness
The type system is sound with respect to the operational
semantics, as expected. Type soundness is proved in the
standard manner via subject reduction and progress [43, 20].
Here, we show only the results. See Appendix A for the
required lemmas and proof sketches of the theorems.

THEOREM 1 (Subject Reduction). If ∆;Γ ` e : T and
e−→e′, then ∆;Γ ` e′ : T′, for some T′ such that ∆ `
T′<:T.



Proof. By induction on the derivation of e−→e′ with case
analysis on the reduction rule used. ¤
THEOREM 2 (Progress). If ∅; ∅ ` e : T and e is not a value,
then e−→e′, for some e′.

Proof. By induction on the derivation of ∅; ∅ ` e : T with
case analysis on the last rule used. ¤
THEOREM 3 (Type Soundness). If ∅; ∅ ` e : T and e−→∗e′

with e′ a normal form, then e′ is a value v with ∅; ∅ ` v : T′

and ∆ ` T′<:T.

Proof. Immediate from Theorems 1 and 2. ¤

5. Interactions with Advanced Typing
Features

In this section, we discuss interactions between self type
constructors and other advanced typing features.

Higher-Order Type Constructors. Type constructor poly-
morphism, which has been implemented in Scala [27] and
formalized as FGJω [1], is a generalization of generics [3] so
that class and method declarations can be parameterized by
type constructors. So, it allows higher-order type construc-
tors since classes can be parameterized by type constructors,
as the following example shows:

class List<T> { ... }

class List2<T> extends List<T> { ... }

class C<L<X> extends List<X>> { .. L<String> f; .. }

Class C is parameterized by a type constructor variable L,
where L must be instantiated by a subtype of List, meaning
that for any X, L<X> is a subtype of List<X>. So, C is a
higher-order type constructor.

Not only can higher-order type constructors be used to
simulate self type constructors (which will be detailed in
Section 6), but also they have their own applications such
as generalized algebraic data types [1], polymorphic embed-
ding of DSLs [18], and modular visitor components [13].
So, it is worthwhile to extend self type constructors to be
higher-order in order to acquire the advantages of both.

Although we believe that such an extension is straightfor-
ward, we will need notations to specify kinds of type param-
eters, as in Scala and FGJω. For example, if a type parameter
X of C ranges over a type constructor that takes another first-
order type constructor, the class definition should be written
like:

class C<X<Y<Z>> extends ...> { .. }

FGJstc in Section 4 does not need such machinery since the
order of type constructors is restricted.

Definition-Site Variance. Definition-site variance [14],
whose theory is based on polarity [38] in F<:

ω , is a typing
feature that can relax invariance on parameters in a generic
class with respect to subtyping. For example, if we write
class List<+T> { }, List is covariant with respect to

T—List<S> <: List<U> holds if S <: U. In exchange for
flexible subtyping, certain restrictions are posed on where
the type parameter T can appear. For example, in List<+T>,
neither T nor List<T> can be used as parameter types of a
method.

Definition-site variance can also be easily adapted to self
type constructors so that variance can be specified for both
refinable and fixed parameters. Note that the variance an-
notations for fixed parameters are also effective on This.
For example, assume that class List[+T]{ ... }, then
This[S] <: This[U] holds if S <: U in the class, but at the
same time This[T] cannot appear in the parameter position
of method signatures. The class definition for Lists below
is a straightforward adaptation of one from Emir et al. [14]
so that it uses self type constructors:

abstract class List[+T]{

T head;

@This[T] tail;

<U> @This[U] create(U h, @This[U] t);

<U super T> @This[U] append(@This[U] that){

return this.<U>create(head,

(tail==null ? that : tail.<U>append(that)));

}

}

(Here, “<U super T>” means that type variable U has a
lower bound T.) This definition satisfies the restriction on
type parameters. So, in addition to the fact that append()
of its subclasses will return the same kind of lists as the
receiver, thanks to the use of @This, List is a covariant
type operator. The example of parser combinators [28] can
be similarly adapted.

Wildcard Types. Wildcard types [41], derived from variant
parametric types [21], are introduced to Java to relax invari-
ance on parameters in a generic class as well as definition-
site variance above. The difference is that variances annota-
tions appear at each use of generic classes. Wildcards can be
easily adapted to self type constructors and they are useful
to write common interfaces for different instantiations of a
generic class, for example7:

List<Comparable>[? extends Number] list1;

Above, wildcard ? extends Number means a certain type
that is a subtype of Number. So, list1 represents a list
of the elements of a certain subtype of Number. So, this is
a common interface of, for example, List<Comparable>
[Float], List<Comparable>[Integer], and so on.

The introduction of wildcards to FGJstc could give more
informative types for expressions. The following field access
typed by T-FIELD’ in FGJstc illustrates this:

class List[T] {}

class C{ List[This] f; }

C c;

c.f; // : Object<>[] in STC

7 We assume that Number implements Comparable, unlike in Java.



interface Comparable<T> {

int compareTo(T that);

}

interface Iterator<T> {

T next();

T peek();

boolean hasNext();

}

Figure 6. Interfaces Comparable<T> and Iterator<T>

The type of c.f is Object<>[], which is the only supertype
of List[This]. In the presence of wildcards, List[This]
could have a less trivial supertype List[? extends C],
which at least means that the result value is a List.

6. Related Work
Much recently, Altherr and Cremet [1] and Moors, Piessens,
and Odersky [27] have introduced type constructor polymor-
phism into class-based object-oriented programming lan-
guages. They are partly motivated by the same problem dis-
cussed in this paper. As is shown below, programming simi-
lar to the one presented in this paper is indeed possible with-
out self type constructors. However, in these solutions, writ-
ing recursive interfaces requires more boilerplate code due to
complicated use of advanced language mechanisms, includ-
ing abstract type members and F-bounded polymorphism
(aside from type constructor polymorphism) to encode self
type constructors manually. In this section, we compare our
solution with those in [27] and [1].

Comparison with Scala. We start with revisiting the def-
initions of Comparable and Iterator. In the absence
of This and exact types, interfaces Comparable<T> and
Iterator<T> have different signatures as Figure 6 shows:
interface Comparable takes one argument, which is usually
the class name that implements Comparable so that the re-
ceiver of compareTo() is compared with an object of the
same kind; the element type of Iterator<T> is not exact.

Figure 7 shows the solution in Scala8 that Moors, Piessens,
and Odersky gave at the last OOPSLA. They used a highly
sophisticated combination of abstract type members [34],
higher-order type constructors [27, 1], and F-bounded poly-
morphism [11]. As classes in Figure 4, Iterable has two
parameters: Bound and T. The difference is that Bound is a
type constructor parameter (<_> represents an unused type
parameter) so as to be instantiated with Comparable. So,
Iterable is higher-order. Another difference is that T is F-
bounded—T appears in the upper bound of itself. The key-
word type introduces abstract type member Self, which
is a type constructor of one argument. Self is used for
our This, as the signatures of the methods show. The co-
variant change is achieved by manually refining or fix the

8 We adapt Java’s notation for familiarity. For example, we use abstract
classes for traits.

abstract class Iterable<Bound<_>,

T extends Bound<T>>{

type Self<X extends Bound<X>>

extends Iterable<Bound,X>;

abstract Self<T> append(Self<T> that);

}

class List<Bound<_>, T extends Bound<T>>

extends Iterable<Bound, T>{

type Self<X extends Bound<X>>

extends List<Bound,X>;

Self<T> append(Self<T> that){ ... }

<U extends Bound<U>> Self<U> map(T->U f){ ... }

}

class SortedList<T extends Comparable<T>>

extends List<Comparable, T>{

type Self<X extends Comparable<X>>

= SortedList<X>;

<U extends Comparable<U>> Self<U> map(T->U f);

}

class NumericList<T extends Number>

extends List<<_>->Number,T>{

type Self<T extends Number> = NumericList<T>;

<U extends Number> Self<U> map(T->U f);

}

Figure 7. Collections in Scala

upper bound of Self in every subclass of Iterable: in
List, the upper bound of Self<X> is refined to List<X>;
in SortedList, Self<X> is fixed to SortedList<X>.

In NumericList, the upper bound of T is refined to
type Number. Since Bound in superclass List is a type
constructor, we have to adjust the arity of Number when it
is given to List by using an anonymous type constructor
<_>->Number9.

Scalina [29] is an object-oriented calculus that provides
the formal underpinning for the implementation of higher-
order type constructors in Scala. Like refinable/fixed param-
eters, this calculus distinguishes abstract type members into
two: members and un-members to prevent ill-formed type
from appearing. While members are similar to refinable pa-
rameters in that both are covariant, un-members are a lit-
tle different from fixed parameters—un-members are con-
travariant but fixed parameters are invariant. If fixed param-
eters were contravariant, type soundness of FGJstc would be
lost since superclass types can be ill formed.

Comparison with FGJω. Figure 8 shows the solution in
FGJω [1] by Altherr and Cremet. In this solution, Self is the
parameter of each generic class. This approach is based on
the simulation of covariant change, described in [40, 8, 35],
by using F-bounded polymorphism [11] and generics. So, as
a natural result, this solution has the same disadvantages as
the simulation in the following points:

9 In fact, Scala does not support anonymous type constructors, which can
be simulated by abstract type members. On the other hand, FGJω has them.



abstract class Iterable<Bound<_>, T extends Bound<T>,

Self<X extends Bound<X>> extends Iterable<Bound, X, Self>> {

abstract Self<T> append(Self<T> that);

}

class List<Bound<_>, T extends Bound<T>, Self<X extends Bound<X>> extends List<Bound, X, Self>>

extends Iterable<Bound, T, Self> {

<U extends Bound<U>> Self<U> map(T->U f) { ... }

}

class SortedList<Bound<X> extends Comparable<X>, T extends Bound<T>,

Self<X extends Bound<X>> extends SortedList<Bound, X, Self>>

extends List<Bound, T, Self> {

}

Figure 8. Collections in FGJω

1. type parameterization is much more complex,

2. fixed point classes are necessary for object creations, and

3. selftyping is not suitable for recursion.

We elaborate the second and third points below.
It is impossible to create objects from these generic

classes since there are no type constructors that conform to
the upper bounds. So, fixed point classes have to be declared
as the generators of objects, as follows:

class ListFix<Bound<_>, T extends Bound<T>>

extends List<Bound, T, ListFix> {}

class SortedListFix<Bound<_>, T extends Bound<T>>

extends SortedList<Bound, T, SortedListFix> {}

Note that these fixed point classes are not in subtyping rela-
tion because they are not in the inheritance relation. Wild-
cards [41], which FGJω does not have, can be used to ex-
press common interfaces of their instances. For example,
List<Comparable,Integer,?> is a common interface of
ListFix<Comparable,Integer> and SortedListFix<
Comparable,Integer>. In our proposal, inexact types play
the role of such common interfaces.

In class List, this has type List<Bound,T,Self>, but
not Self<T>. As a result, the following method cannot be
well typed:

class List<Bound<_>, T extends Bound<T>,

Self<X extends Bound<X>>

extends List<Bound,X,Self>>

extends Iterable<Bound,T,Self> {

void double(){

append(this); // ill-typed

}

}

The type List<Bound,T,Self> of argument this is not a
subtype of Self<T>, the parameter type. In general, this
cannot be passed to binary methods as the arguments in this
programming style. There are several solutions to this prob-
lem. In Scala, self types can be explicitly annotated [34]
by using requires clause. Another solution, invented in-
dependently by Saito and Igarashi [35] and Kamina and

Tamai [24], is to extend generics a little so that this can
have abstract types in a special case in exchange for a small
restriction on subclassing.

7. Conclusion
In this paper, we propose self type constructors, which inte-
grate This and generics so that This is a type constructor in
a generic class. Self type constructors can express open re-
cursion at the level of type constructors. So, a generic class
can be safely reused even if it has references to itself recur-
sively but with different type instantiations. We expect that
self type constructors can be applied not only to collections
but also to programming with comprehensions [2, 25] and
parser combinators [28]. We formalize self type constructors
as a small calculus FGJstc and prove that the type system is
sound with respect to operational semantics.

Main future work is to consider the integration of self
type constructors with grouping mechanisms and path types [8,
37, 22], which support extensible yet type-safe mutually re-
cursive classes since mutual recursion cannot be expressed
by self type constructors. Such an integration will validate
our decision to have thrown away F-bounded polymorphism,
which has been used to express mutual recursion. We con-
jecture that the present type system is decidable but showing
it is left for future work. Other future work includes the de-
velopment of a type inference algorithm for polymorphic
method invocations.

We believe that the limitation that List’s element type
had to be exact can be easily addressed by allowing exact
types (as well as inexact types) to be passed as type argu-
ments. Fig 9 sketches a solution. There, the element type
in the declarations of Iterator and List is inexact. Class
SortedList inherits List and the element type is instanti-
ated by exact type @T. So, the inherited method iterator()
returns an Iterator of the exact type. All in all, List is
a heterogeneous collection while SortedList is homoge-
neous, as desired. The formalization of this solution is left
for future work, too.



interface Iterator<T>{

T next();

...

}

class List<Bound>[T extends Bound]

extends Iterable<Bound>[T]{

Iterator<T> iterator(){...}

}

class SortedList<Bound extends Comparable>

[T extends Bound]

extends List<Bound>[@T]{

// ^^ exact-type instantiation

Iterator<@T> iterator(){

...

} // if overridden (not necessary)

}

Figure 9. Definitions of heterogeneous List and homoge-
neous SortedList.
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A. Proof Sketches of Theorems 1 and 2
We sketch the proofs of Theorems 1 and 2. (Theorem 3 is
their easy consequence.) The structure of the proof of sub-
ject reduction is similar to those for Featherweight Java and
Featherweight GJ [20]. So, we first prove various substi-
tution lemmas, which are all proved by induction on the
derivations, with other auxiliary lemmas.

LEMMA 1 (Weakening). Suppose • ` X <: I :: k and
∆ ` U ok.

1. If ∆ ` S <: T, then X <: I,∆ ` S <: T.
2. If ∆ ` S ok, then X <: I,∆ ` S ok.
3. If ∆;Γ ` e : T, then ∆; Γ, x : U ` e : T and X <:

I, ∆;Γ ` e : T.

Proof. Each is proved by straightforward induction on the
derivation of ∆ ` S <: T, ∆ ` S ok, and ∆;Γ ` e : T,
respectively. ¤
LEMMA 2. If ∆ ` I[H] :: k, then ∆ ` I :: k′ for some k′.

Proof. By induction on the derivation of ∆ ` I[H] :: k. ¤
LEMMA 3. If ∆ ` H0 <: I0, then H0 = K′[H,I] and I0 =
K[I] for some K′, K, H, and I.

Proof. By induction of the derivation of ∆ ` H0 <: I0. ¤
LEMMA 4 (Type Substitution Preserves Subtyping). If ∆1,
X <: I,∆2 ` S <: T and ∆1 ` H <: I with ∆1 ` H :: k, then
∆1, [H/X]∆2 ` [H/X]S <: [H/X]T.

Proof. By induction on the derivation of ∆1, X <: I, ∆2 `
S <: T. ¤
LEMMA 5. If ∆ ` S <: T and ∆ ` S :: k, then ∆ ` T :: k.

Proof. By induction on the derivation of ∆ ` S <: T. Note
that the last premise about the equality on upper bounds in
the rule T-CLASS is used in the case of S-CLASS. ¤
LEMMA 6. If ∆ ` I[H] :: *, then there exist some X and
J such that ∆ ` I :: X <: J.* and ∆ ` H <: [H/X]J and
∆ ` H :: *.

Proof. By induction on the derivation of ∆ ` I[H] :: *. ¤
LEMMA 7 (Type Substitution Preserves Well-Formedness).
If ∆1, X <: I, ∆2 ` T ok and ∆1 ` H <: I with ∆1 ` H :: k,
then ∆1, [H/X]∆2 ` [H/X]T ok.

Proof. By induction on the derivation of ∆1, X <: I, ∆2 `
T ok using Lemmas 5 and 6. ¤
LEMMA 8. If ∆ ` T ok and ∆; x:T ` e : T for some well-
formed bound environment ∆, then ∆ ` T ok.

Proof. By induction on the derivation of ∆; x:T ` e : T with
case analysis on the last rule used. ¤
LEMMA 9. If ∆ ` H <: I and fields(bound∆ (I)) = T f,
then fields(bound∆(H)) = S g and Si = Ti and gi = fi for
all i ≤ |f|.
Proof. By straightforward induction on the derivation of
∆ ` H <: I. ¤
LEMMA 10. If ∆ ` K′[G,H] <: K[H] and mtype(m, bound∆

(K[H])) = <X/I>T→T0, then mtype(m, bound∆(K′[G,H]))
= <Y/J>U→U0 and [This[G]/This][Y/X](I, T) = (J, U)
and ∆ ` U0 <: [This[G]/This][Y/X]T0.

Proof. By induction on the derivation of ∆ ` K′[G,H] <:
K[H]. ¤
LEMMA 11 (Type Substitution Preserves Typing). If ∆1, X
<: I,∆2; Γ ` e : T and ∆1 ` H :: k and ∆1 ` H <: I,
then ∆1, [H/X]∆2; [H/X]Γ ` [H/X]e : S for some S such that
∆1, [H/X]∆2 ` S <: [H/X]T.

Proof. By induction on the derivation of ∆1, X <: I, ∆2; Γ `
e : T. ¤
LEMMA 12 (Term Substitution Preserves Typing). If ∆; Γ,
x : T ` e0 : T0 and ∆;Γ ` d : S where ∆ ` S <: T,
then ∆; Γ ` [d/x]e : S0 for some S0 such that ∆ ` S0 <: T0.

Proof. By induction on the derivation of ∆;Γ, x : T ` e0 :
T0. Note that if ∆ ` S <: @H, then S = @H. ¤
LEMMA 13. If ∆ ` N[H,I] ok and mtype(m, N[H,I]) =
<X/J>U → U0 and mbody(m, N[H,I]) = |H|, X.x.e0, then



there exist P, I and S0 such that ∆ ` N[H] <: P and
∆ ` P[I] ok and ∆, This <: P, X <: J ` S0 <: U0 and
∆, This <: P, X <: J ` S0 ok and ∆, This <: P, X <: J; x :
U, this : @This[I] ` e0 : S0 and ∆ ` [N[H]/This]U0 ok.

Proof. By induction on the derivation of mbody(m, N[H,I])
= |H|, X.x.e0 using Lemma 11. ¤
LEMMA 14 (Narrowing). If ∆1, X<:I, ∆2 ` e:T and ∆1 `
I′<:I, then ∆1, X<:I′, ∆2 ` e:T′ for some T′ such that
∆1, X<:I′, ∆2 ` T′<:T.

Proof. By induction on the derivation of ∆1, X<:I, ∆2 `
e:T. ¤

A.1 Proof of Theorem 1
We show only main cases. Other cases, that is, RC-INVK-
ARG, RC-NEW and RC-EXACT-BODY, are easy.
Case R-FIELD: e = new N[I](e).fi

fields(N[I]) = T f e′ = ei

By T-FIELD, and T-NEW, we have

∆; Γ ` ei : Si G,H = I
∆ ` Si <: [N[G]/This]Ti ∆ ` [N[G]/This]Ti ok
T = [N[G]/This]Ti

Thus, ∆; Γ ` ei : Si finishes the case.
Case R-INVK: e = new N[H,I](e).<G>m(d)

mbody(m, N[H,I]) = i, X.x.e0

|H| = i
e′ = [d/x, new N[H,I](e)/this]

[G/X, N[G]/This]e0

By T-INVK and T-NEW, we have

∆ ` N[H,I] ok
∆; Γ ` new N[H,I](e) : @N[H,I]
mtype(m, N[H,I]) = <X/J>T→T0 ∆ ` G :: k
∆ ` G <: [G/X][N[H]/This]J ∆; Γ ` d : S
∆ ` S <: [G/X][N[H]/This]T
T = [G/X, N[H]/This]T0

∆ ` [N[H]/This]T0 ok

Then, by Lemma 13, there exist P, I and S0 such that

∆ ` N[H] <: P
∆, This <: P, X<:J; Γ, x:T, this : @This[I] ` e0 : S0

∆, This <: P, X<:J ` S0 <: T0.

Then, by Lemma 11 and the fact that none of X appears in I,
there exists S0

′ such that

∆; x : [G/X][N[H]/This]T, this : @N[H,I]
` [G/X][N[H]/This]e0 : S0

′

∆ ` S0
′ <: [G/X][N[H]/This]S0.

We also have

∆ ` [G/X][N[H]/This]S0 <: [G/X][N[H]/This]T0

by Lemma 4. Finally, by Lemma 12, there exists S0
′′ such

that

∆;Γ ` e′ : S0
′′ ∆ ` S0

′′ <: S0
′.

Finally, by S-TRANS, ∆ ` S0
′′ <: T, finishing the case.

Case R-EXACT: e = exacti new N[H,I](e)
as x, X in e0

|I| = i
e′ = [new N[H,I](e)/x][N[H]/X]e0

By T-EXACT and T-NEW, we have

∆ ` N[H,I] ok
∆;Γ ` new N[H,I](e) : @N[H,I]
∆, X <: N[H]; Γ, x : @X[I] ` e0 : U
∆, X<:N[H] ` U<:S ∆ ` S ok

By Lemmas 11 and 12, ∆;Γ ` e′ : U′ such that ∆ ` U′ <:
[N[H]/X]U. By Lemma 4 and the fact that [N[H]/X]S = S,
∆ ` [N[H]/X]U <: S. By S-TRANS, ∆ ` U′ <: S, finishing
the case.
Case RC-FIELD: e = e0.f e′ = e0

′.f e0−→e0
′

By the rule T-FIELD, we have

∆;Γ ` e0 : @H0 fields(bound∆(H0)) = T f
H0 = I0[H] ∆ ` [I0/This]Ti ok
T = [I0/This]Ti

By the induction hypothesis, ∆; Γ ` e0
′ : T0

′ for some T0
′

such that ∆ ` T0
′<:@H0. Since T0

′ = @H0, ∆;Γ ` e0
′.f :

[I0/This]Ti by T-FIELD. Letting T′ = [I0/This]Ti finishes
the case.
Case RC-INVK-RECV:
Similar to the case RC-FIELD.
Case RC-EXACT: e = exacti e0 as x, X in e1

e′ = exacti e0
′ as x, X in e1

e0−→e0
′

Case analysis on the typing rule used.
Subcase T-EXACT1: ∆;Γ ` e0 : I[H]

|H| = i
∆, X<:I; Γ, x : @X[H] ` e1 : U1

∆, X<:I ` U1<:T1

∆ ` T1 ok
T = T1

By the induction hypothesis, we have ∆;Γ ` e0
′ : S0 for

some S0 such that ∆ ` S0<:I[H]. Case analysis on S0.
Subsubcase: S0 = I′[H] ∆ ` I′<:I
By Lemma 14, ∆, X<:I′; Γ, x : @X[H] ` e1 : U1

′ for some
U1
′ such that ∆, X<:I′ ` U1

′<:U1. By Lemma 4, ∆, X<:I′ `
U1<:T1. By S-TRANS, ∆, X<:I′ ` U1

′<:T1. By T-EXACT1,
∆;Γ ` exacti e0

′ as x, X in e1 : T1. Letting T′ = T1

finishes the case.



Subsubcase: S0 = @I′[H] ∆ ` I′<:I
By Lemma 11 and the fact that X does not appear in
H and Γ, ∆;Γ, x : @I′[H] ` e1 : U1

′ for some U1
′

such that ∆ ` U1
′<:[I′/X]U1. By T-EXACT2, ∆; Γ `

exacti e0
′ as x, X in e1 : U1

′. By Lemma 4 and the
fact that [I′/X]T1 = T1, ∆ ` [I′/X]U1<:T1. By S-TRANS,
∆ ` U1

′<:T1. Letting T′ = U1
′ finishes the case.

Subcase T-EXACT2:
Easy.

A.2 Proof of Theorem 2
We show only main cases. Other cases are easy.
Case: e = e0.fi

If e0 is not a value, by the induction hypothesis, e0 −→ e0
′

for some e0
′; then, RC-FIELD shows e0.fi −→ e0

′.fi.
On the other hand, if e0 is a value new N0[I](v), then,

by T-FIELD, it must be the case that T fi ∈ fields(N0[I]).
Then, e0.fi −→ vi by R-FIELD.
Case: e = e0.<G>m(e)

If ei is not a value, by the induction hypothesis, ei −→ ei
′

for some ei
′; then, use RC-INVK-RECV or RC-INVK-ARG

to show e0.<G>m(e) −→ e0
′.<G>m(e) or e0.<G>m(..,ei,

..) −→ e0.<G>m(..,ei
′..), respectively.

On the other hand, if e0 is a value new N0[H](v), then
by T-INVK, it must be the case that mtype(m, N0[H]) =
<X/F>S→S0. By Lemma 13, mbody(m, N0[H]) = i, X.x.e′

where |x| = |e|. We let (I,J) = H where |I| = i. By R-
INVK, we have

e −→ [e/x, new N0[H](v)/this][G/X, N0[I]/This]e′

finishing the case.
Case: e = exacti e0 as x, X in e1

If e0 is not a value, by the induction hypothesis, e0 −→ e0
′

for some e0
′; then, RC-EXACT shows exacti e0 as

x, X in e1 −→ exacti e0
′ as x, X in e1.

On the other hand, if e0 is a value new N0[G,H](v)
where |H| = i, then by R-EXACT we have

e −→ [new N0[G,H](v)/x][N0[G]/X]e1

finishing the case.
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