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Abstract

Class-based languages, such as C++ and Java, form the mainstream of object-oriented program-

ming. The basic function of classes is to describe objects with similar behavior concisely. Recent

languages have added to the basic class mechanism a variety of advanced features, such as in-

ner classes, found in Beta and in Java 1.1, and type parameterization of classes, found in C++

as templates and in several extensions for Java, including GJ [Bracha, Odersky, Stoutamire, and

Wadler]. Inner classes enable a programming style similar to nested functions/procedures, while

type parameterization makes programming of polymorphic data structures, such as lists, more con-

venient. However, this power comes at a signi�cant cost in complexity, which makes it di�cult to

understand the behavior of programs.

The main goal of this work is to clarify the essence of the type systems and compilation schemes

of inner classes and GJ-style type parameterization. We approach this goal by building their formal

models based on a small core calculus, called Featherweight Java, for class-based object-oriented

languages, and by proving their properties, such as type soundness. Our contributions are as

follows.

1. Design and formalization of Featherweight Java. It is intended to be a smallest possible lan-

guage to capture the essential parts of type systems of class-based object-oriented languages,

so that proofs for the complex extensions are tractable.

2. Formalization of the core of inner classes and proof of its type safety. Featherweight Java is

extended with inner classes; the de�nition of its semantics illuminates complexity related to

interaction between inner classes and inheritance.

3. Formalization of the core of GJ and proof of its type safety. We extend Featherweight Java

with type parameterization and raw types, one of GJ's distinctive features. Raw types are

designed to maintain compatibility between polymorphic classes and their legacy clients that

still expect the old monomorphic version of those classes. The proof of type soundness of raw

types uncovers some underspeci�cations and 
aws in the current design of raw types.

4. Formalization and proof of correctness of the compilation schemes of inner classes and GJ. We

model the current compilers by giving translation from the extended languages into Feather-

weight Java, and prove that the translation preserves well-typedness and semantics.
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Chapter 1

Introduction

1.1 Class-Based Object-Oriented Programming

In the past few decades, object-oriented programming languages have been widely spread and

extensively used in various application areas. The central notion in object-oriented programming is

an object, which is, roughly speaking, a data structure consisting of some (encapsulated) information

and a set of operations on it. For example, we can think of a (two-dimensional) point object,

consisting of x- and y-coordinate information and a move operation to change the coordinates. A

large software is usually built by combining various small objects into a large object, thus making

reusability one of the main issues in object-oriented design and programming.

Most object-oriented programming languages proposed so far fall into one of the following three

families of languages: (1) prototype-based languages, such as Self [US91] and Obliq [Car95], where

programmers derive a new object from an existing object by adding or modifying functionalities

that the old one has; (2) class-based languages, such as C++ [Str97], Ei�el [Mey92], Java [GJS96],

and Smalltalk [GR83], where an object is instantiated from a class, serving as a template of objects;

(3) multi-method-based languages, such as CLOS [DG87] and Cecil [Cha97], where one operation

can be associated with more than one object, which is not the case in the �rst two families.

Among them, class-based languages has become most popular; main reasons seem that the

abstraction mechanism of classes provides programmers a simple and intuitive view of programming,

and that it is also convenient to write reusable and structured software components. Although

di�erent languages have di�erent features about classes, most class-based languages share several

basic notions, brie
y reviewed below.

Concise description of objects. As mentioned above, the most fundamental role of classes

is a template of objects: programmers write a class to describe objects of similar behavior and

instantiate as many objects as he or she uses, from one class. This is an example of a class

declaration for point objects, written in Java:

class Point {

int x; int y;

Point(int x', int y') { x = x'; y = y'; }

void move(int ox, int oy) { x = x + ox; y = y + oy; }

}

The class is given name Point, and, inside curly brackets, it has declarations of members, consisting

of two �elds, one constructor, and one method. Fields are considered the internal state of an

1



2 CHAPTER 1. INTRODUCTION

object; in this example, every point object has two integers of the names x and y. The third

line is a declaration of a constructor, which performs the initialization of the object state when

an object is instantiated from the class. The constructor above takes two integers x

0

and y

0

as

arguments and assign them to the �elds. In Java, a constructor is invoked with a new expression|

for example, new Pair(0,0) instantiates a point object that represents the origin. The fourth

line is a declaration of the method move; it takes two integers ox and oy and increments each

coordinate by the corresponding argument (and it returns nothing, as indicated by void). To

invoke the method, an expression of the form e

0

.move(1,2) is used in Java, where e

0

is expected

to evaluate to a point object. Most languages also provide a way to access the value of a �eld,

written e

0

.f (in Java) where f is the �eld name.

As such, the Point class gives us a concise description of what point objects are and how they

behave.

Remark. Actually, in Java (and most object-oriented languages), an access to a �eld de�ned

in the current class is an abbreviation of the standard �eld access expression e

0

.f; in Java, the

special keyword this is used for e

0

to represent the object of the current class. Thus, the class

de�nition above is, in fact, an abbreviation of the following:

class Point {

int x; int y;

Point(int x', int y') { this.x = x'; this.y = y'; }

void move(int ox, int oy) { this.x = this.x + ox; this.y = this.y + oy; }

}

Similarly for method invocations: an expression of the form m(...) is an abbreviation of this.m(...).

Inheritance for code reuse. Now suppose we want to use colored points, which has a �eld for

their color as well as ones for their coordinates. One might copy the Point class and modify it to

the CPoint class. However, it is no good to have two similar but distinct de�nitions; even worse,

such a program is hard to maintain since future changes should be made in both classes if the

programmer want to keep the behavior of both kinds of points consistent.

Class-based languages provide the mechanism of inheritance to reuse a class de�nition to de�ne

a new class. For example, the CPoint class is de�ned as follows:

class CPoint extends Point {

Color c;

CPoint(int x', int y', Color c') { x = x'; y = y'; c = c'; }

void move(int ox, int oy) { x = x + ox; y = y + oy; c = White; }

}

(where we assume the type Color and the constant White.) The class CPoint also has declarations

of a �eld, a constructor, and a method. Moreover, it speci�es its superclass Point after the

keyword extends. The class CPoint, called a subclass of Point, inherits the de�nitions of the

�elds and methods of Point; as a result, colored objects also have the �elds x and y. Not only

can programmers add new methods, they can also override an inherited method de�nition: in

the CPoint class, the method move is overridden with the new de�nition. Constructors are not

considered inherited since they are used for instantiation of an object of the class in which they are

declared. However, as in this example, it is often the case that initialization codes are similar; hence,

several languages (including Java) allows to access constructors (and methods) of the superclass

using the keyword super. The declaration above can be rewritten as follows:
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class CPoint extends Point {

Color c;

CPoint(int x', int y', Color c') { super(x',y'); c = c'; }

void move(int ox, int oy) { super.move(ox,oy); c = White; }

}

where super(x

0

,y

0

) invokes the constructor in Pair and super.move(ox,oy) invokes the method

move de�ned in Pair.

Using inheritance, programmer can not only save the e�ort to maintain two similar de�nitions

but also make changes in a superclass automatically propagate to all the subclasses.

Types and subtyping In popular statically-typed languages, such as C++, Ei�el, and Java,

each class declaration introduces a new type of the same name as the class|for example, objects

instantiated from the class Pair belong to the type Pair. Moreover, the subclass relation induces

a subtyping relation|for example, the type CPoint is said to be subtype of Point and, conversely,

the type Point is said to be supertype of CPoint. The notion of subtyping is used to guarantee

safe substitutivity: if A is subtype of B, then any expression of type A may be used without type

errors in any context that requires an expression of type B. For example, consider an expression

x.move(2,2) where the variable x is given type Point. We can replace x with not only a Point

object but also a CPoint object; in fact, in both cases, the method invocation can be executed

without any problems. Note that, however, it depends on the run-time type, Point or CPoint, of

the object which move method is invoked even if x is given type Point. This mechanism is called

dynamic dispatch (or dynamic binding), considered one of the important features of object-oriented

languages.

Java has the class Object and every class de�nition without an extends clause is considered to

extend the class Object implicitly. As a result, Object serves as the top type, which is supertype

of all types.

Although this subclass-subtyping correspondence re
ects the intuition that, for example, a color

point is a kind of point, the connection between inheritance and subtyping is not as strong as it

�rst appeared. For example, even if a rectangle object has the method move, it is not allowed to

substitute the object for x in the example above, unless its class is a subclass of Point, thus limiting


exibility. Moreover, in some languages that has the notion of the so-called MyType, the subclass

relation should not be considered the subtyping relation [CHC90]. Hence, several languages [Bru94,

BSvG95] separate subclass and subtyping relations. Nevertheless, for its simplicity, even a new

language like Java still adopts the subclass-subtype correspondence, discarding 
exibility.

1

Access control. Data encapsulation is an important aspect of object-oriented programming.

Most class-based languages let programmers control accessibility of �elds, constructors, and meth-

ods with annotations. Common annotations include private, which means that access to the member

is allowed only in the current class in which it is de�ned, protected, which means that access is al-

lowed only in the current class and its subclasses, and public, which means that the member may

be accessed everywhere. For example, programmers might write:

class Point {

private int x;

private int y;

public Point(int x', int y') { x = x'; y = y'; }

1

Java has introduced interfaces for a partial remedy for the lack of the 
exibility.
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public void move(int ox, int oy) { x = x + ox; y = y + oy; }

}

to protect x and y from direct access while the constructor and the method move are open to public.

Thus, an expression like new Point(0,0).x is not allowed (outside the de�nition of Point). By

using access control, programmers can hide the internal structure of objects and export only relevant

operations to outside.

1.2 Advanced Class Mechanisms

Recently, several advanced class mechanisms have been proposed to strengthen the abstraction

power of classes. We brie
y summarize some of them below:

� Parametric classes, found in C++ (known as templates), Ei�el, several extensions to Java [AFM97,

MBL97, OW97, BOSW98b, CS98], OCaml [RV98]. The basic idea of parametric classes is

closely based on parametric polymorphism, found in functional languages such as ML [MTHM97]

and Haskell [HJW

+

92]: type information in classes can be abstracted out as parameters so

that di�erent concrete types for the parameters can be speci�ed later. By using parametric

classes, generic data structure, such as lists and trees, can be described more concisely|that

is, a parametric class for lists is de�ned so that it takes a type parameter that represents the

type of elements; this de�nition is used for integer lists or string lists by applying it to the

integer or string type, respectively. Some proposals even allow each method to take its own

type parameters. Such polymorphic methods are useful to de�ne operations such as \map"

operation on lists.

� Virtual types, found in Beta [MMPN93, MMP89], and an extension to Java [Tho97]. This

mechanism allows types to be members of a class, as well as �elds and methods; moreover,

such type member de�nitions can be overridden in subclasses. Virtual types can also be used

to de�ne generic data structures [MMP89, Tho97].

� Nested classes (a.k.a. inner classes), found in Beta, C++, and Java. Programmers can declare

a class as a member of another class. Since the inner class has direct access to members of

its enclosing class, they are useful when an object needs to send another object a chunk of

code that can manipulate the �rst object's methods and/or instance variables.

� Mixins [BC90]. In most class-based languages, the subclass relation is hard-wired in the

class de�nition. On the other hand, mixin-based inheritance enables a more 
exible style of

inheritance by allowing the superclass information to be abstracted out as a parameter; thus,

it is easy to add (or sometimes override) the same set of functionality to di�erent classes.

These advanced mechanisms are useful and, in fact, some of them has become popular|for

example, the Standard Template Library [SL94] is a C++ library using templates, and the Java

Class Libraries [CL97] use inner classes extensively.

This additional power, however, comes at a signi�cant cost in complexity, which makes it di�cult

to understand the behavior of programs. For example, inner classes show subtle interaction with

inheritance. First, the language semantics is not straightforward since any form of inheritance is

allowed to inner classes: for example, it is not very clear what a top-level subclass of an inner class

should mean. Second, scoping rules become complicated: the use of a member name may be bound

to not only a declaration in enclosing classes (as in conventional languages with block structure)

but also a declaration in a superclass.
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1.3 Subject of the Thesis

This thesis is concerned with clari�cation of the essential mechanisms behind such advanced class

mechanisms. In particular, we pick up Java-style inner classes [Jav97] and GJ-style parametric

classes [BOSW98b].

One common problem lies in the way how their semantics is described. Their speci�cation

documents [Jav97, BOSW98a] provide answers to questions about their semantics, but they fall

short of a completely satisfying account. First, their styles are indirect: the semantics are de�ned as

translation into Java Virtual Machine Language (JVML) [LY99], which is intended to be a portable

low-level language for class-based object-oriented languages. This indirect style of semantics makes

it hard to reason about program behavior, since programs �rst have to be passed through a rather

heavy transformation. Second, the documents themselves are somewhat imprecise consisting only

of examples and English prose and sometimes include underspeci�cations as we will see later.

Hence, it is desirable to give a rigorous de�nitions of a direct style of semantics of inner classes and

parametric classes.

Aside from the problems of the o�cial speci�cations, it is worth investigating consistency be-

tween direct semantics and translation-based semantics. The target language JVML of compilation

is very close to Java, but neither inner classes nor parametric classes are supported. Thus, it is

interesting to clarify how top-level monomorphic classes can simulate inner classes and parametric

classes and to show that the current compilation scheme is correct with respect to a certain direct

semantics.

GJ is one of the leading proposals of extensions to Java with parametric classes, introducing

a few novel features including type inference for polymorphic method invocation. Among those

features, the mechanism of raw types, is especially of interest. They allow parametric classes to

be used without type parameters so that upgrading monomorphic library classes to a polymorphic

version does not spoil client programs that expect the old version. For example, even if a class List

is revised to a polymorphic class List<X> (where X is the type parameter for the element type),

the old client can still refer to the new class via the raw type List. As such, raw type are designed

to smooth program evolution, by which we mean upgrading of programs from a monomorphic class

to a polymorphic version. However, type safety argument of raw types is very subtle.

This thesis will address the issues above in a rigorous manner. In fact, they must be discussed

rigorously, since compiler writers or, sometimes, even application programmers want to know elab-

orate details of what they are dealing with.

1.4 Our Approach

Our approach to tackle the problems is (1) to introduce a small core language for class-based

object-oriented languages, and (2) to build formal models of inner classes and parametric classes

on top of that language.

Our core language, Featherweight Java (or FJ for short), is intended to be a smallest possible

language to capture the essential parts of class-based object-oriented languages. Although, its

syntax, semantics and type system closely follow Java's, it models only top-level class declarations,

inheritance, subtyping, method override, object instantiation, �eld access, method invocation, and

method recursion through this. It omits even some of the basic features such as access control

and assignments as well as Java's advanced features such as re
ection and threads. This extreme

simplicity not only make proofs of useful properties such as type soundness concise but also let

us focus on the essential issues of complex extensions and make proofs of properties of extensions
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tractable. Although some of the omitted features are expected to interact signi�cantly with inner

classes or GJ-style parametric classes, we have decided not to include them and chosen simplicity

for the �rst step of the work, and left the study of such features for future work. In particular,

access control is not discussed at all, even though its interaction with inner classes seems interesting.

In the literature of theoretical foundations of object-oriented languages [Wan89, Bru94, FM98,

BF98, AC96, PT94], classes are often encoded into more primitive object calculi without classes,

or even into languages without objects, such as System F

!

�

(the omega-order polymorphic lambda-

calculus with subtyping [Car90, CL91, PS94, Com94]), while FJ takes classes as a primitive. Our

approach has several advantages over them to investigate advanced class mechanisms.

1. We need not be bothered by the complexity of the encoding. Since even encoding of the

basic mechanisms of classes is complicated, encoding of advanced features can easily be too

complex to be handled. By taking classes as a primitive, we can concentrate on complexity

of extensions. Moreover, it is suitable for one of our purposes: clari�cation of the essence of

compilation, which can be modeled by translation from the extensions to FJ.

2. We need not be bothered by the fundamental di�erence of the type systems. Most work

on type systems for objects have separated object types from classes and adopted structural

subtyping, based on the shape of objects themselves, while FJ (and most popular languages)

uses name-based subtyping, based on the name of the class and the subclass relation. Since

the connection between these two styles of subtyping is not well-understood yet, we stick to

the name-based subtyping here. Above all, it seems challenging to express Java's typecasts,

which checks the dynamic type of an expression, in a language with structural subtyping.

Typecasts play an important role in the model of GJ.

In short, we design our base language so that it does not introduce extra complexity that is not

very essential to understand the subject of our study.

1.5 Our Contributions

The contributions of this thesis are summarized as follows:

� The design of Featherweight Java. As mentioned above, we design Featherweight Java as a

vehicle for our study of inner classes and GJ. We present its formal syntax, semantics and type

system and develop a proof of type soundness using a standard technique, subject reduction

and progress [WF94].

� Formal model of the core of Java-style inner classes. We extend FJ with inner classes and

de�ne FJI. For FJI, two styles of semantics are de�ned: direct style, de�ned by a reduction

relation between FJI expressions, and translation style, de�ned by a translation from FJI to

FJ. The former style provides a direct view of execution while the latter style serves as a model

of the current speci�cation. As we will see, the direct semantics is not so straightforward as

one might expect, due to the interaction between inner classes and inheritance. We prove type

soundness of the direct semantics and equivalence of the direct and translation semantics: it

is proved that the translation preserves typing and behavior of the program in an appropriate

sense.

� Formal model of the core of GJ-style parametric classes. As we do for inner classes, we de�ne

Featherweight GJ (or FGJ for short) by extending FJ with parametric classes. First, we de�ne
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type-passing semantics, de�ned by a reduction relation where type parameter information is

carried along, and prove type soundness. Second, we give an erasure translation from FGJ

to FJ, where type parameter information is removed; it models the current speci�cation and

compilation scheme of GJ. We prove not only that the translation preserves typing but also

that the translation preserves execution results. As we will see, the argument for preservation

of behavior is much trickier than one would expect.

� Formalization of raw types. Finally, we extend FGJ with raw types, one of the distinctive

features of GJ. The main result here is a proof of type soundness. Actually, the current type

system, given by the o�cial speci�cation [BOSW98a], is found 
awed. We prove subject

reduction for a �xed type system. In addition, we discuss the notion of program evolution

based on our model. We conjecture desired properties of raw types about program evolution

and discuss the current GJ design.

Direct semantics discussed in both extensions is important since semantics depending on trans-

lation makes reasoning about program behavior hard. For both inner classes and GJ (and other

proposals of parametric classes for Java), this work is the �rst (at least to our knowledge) formal

presentation of their direct semantics. On the other hand, translation-based semantics is useful

to understand the essence of compilation. Proving equivalence of the two styles corresponds to

showing correctness of the compiler.

Through this work, we have tested a few Java compilers and the GJ compiler, and found several

small bugs in them (though they have been �xed). Moreover, we have found a few underspeci�ca-

tions in the current speci�cations and even some design bugs (of GJ).

1.6 Overview of the Thesis

The rest of this thesis is organized as follows. Chapter 2 introduces Featherweight Java. After its

syntax, semantics and type system are presented, type soundness is proved; then, we discuss a small

extension of FJ, which serves as a base language for Featherweight GJ. In Chapter 3, we extend

Featherweight Java with inner classes. For the extended language FJI, we present the two styles of

semantics and prove their type soundness and equivalence in an appropriate sense. We also discuss

scoping issues in a language with inner classes. Chapters 4 and 5 are concerned with GJ-style

parametric classes. In Chapter 4, we deal with the core of GJ without raw types. Like the pre-

vious chapter, extending Featherweight Java with parametric classes, we introduce Featherweight

GJ with the de�nitions of both direct and translation semantics; we prove their type soundness

and equivalence of the two styles. Then, we further augment Featherweight GJ with raw types in

Chapter 5, in which the main theoretical result is proof of type soundness. We also discuss rela-

tionship between raw types and program evolution, and conjecture the desired properties. Finally,

after discussing related work in Chapter 6, we conclude the thesis with discussion on future work

in Chapter 7.
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Chapter 2

Featherweight Java

In this chapter, we introduce the vehicle of our study, Featherweight Java (or FJ), on which we

will build models of inner classes and GJ in the later chapters. One main goal in designing FJ

is to make proofs for complex extensions tractable. Although the language closely follows Java's

syntax, typing rules, and semantics (in fact, every FJ program is literally an executable Java

program), any language feature that made those proofs longer without making it signi�cantly

di�erent was a candidate for omission. As in previous studies of core languages for Java, we

don't treat advanced features such as concurrency, re
ection, and packages. Other Java features

omitted from FJ include assignment, interfaces, overloading, messages to super, null pointers,

base types (int, boolean, etc.), abstract method declarations, shadowing of superclass �elds by

subclass �elds, access control (public, private, etc.), and exceptions. The features of Java that

we do model include mutually recursive class de�nitions, inheritance, subtyping, method override,

object instantiation, �eld access, method invocation, method recursion through the special variable

this. This extreme simplicity lets us focus on the essential issues of complex extensions.

One key simpli�cation in FJ is the omission of assignment. We assume that an object's �elds

are initialized by its constructor and never changed afterwards. This restricts FJ to a \functional"

fragment of Java, in which many common Java idioms, such as use of enumerations, cannot be

represented. Nonetheless, this fragment is computationally complete (it is easy to encode the

lambda calculus into it), and is large enough to include many useful programs (many of the programs

in Felleisen and Friedman's Java text [FF98] use a purely functional style). Moreover, most of the

tricky typing issues in any of Java, inner classes, and GJ are independent of assignment.

The remainder of this chapter is organized as follows. Section 2.1 introduces the main ideas

of FJ. The following three sections (Sections 2.2, 2.3, and 2.4) present the syntax, semantics, and

typing rules of FJ. Section 2.5 develops a type soundness proof. Section 2.6 extends FJ with

typecasts, which play an important role in the modeling of GJ. Finally, Section 2.7 summarizes

this chapter.

2.1 Overview of Featherweight Java

In FJ, a program consists of a collection of class de�nitions plus an expression to be evaluated.

(This expression corresponds to the body of the main method in Java.) Here are some typical class

de�nitions in FJ.

9
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class Pair extends Object {

Object fst;

Object snd;

Pair(Object fst, Object snd) {

super(); this.fst=fst; this.snd=snd;

}

Pair setfst(Object newfst) {

return new Pair(newfst, this.snd);

}

}

class A extends Object {

A() { super(); }

}

class B extends Object {

B() { super(); }

}

For the sake of syntactic regularity, we always include the superclass (even when it is Object),

we always write out the constructor (even for the trivial classes A and B), and we always write the

receiver for a �eld access (as in this.snd) or a method invocation. Constructors always take the

same stylized form: there is one parameter for each �eld, with the same name as the �eld; the

super constructor is invoked on the �elds of the supertype; and the remaining �elds are initialized

to the corresponding parameters. Here the supertype is always Object, which has no �elds, so the

invocations of super have no arguments. Constructors are the only place where super or = appears

in an FJ program. Since FJ provides no side-e�ecting operations, a method body always consists

of return followed by an expression, as in the body of setfst().

In the context of the above de�nitions, the expression

new Pair(new A(), new B()).setfst(new B())

evaluates to the expression

new Pair(new B(), new B()).

There are �ve forms of expression in FJ. Here, new A(), new B(), and new Pair(e

1

,e

2

) are object

constructors, and e

3

.setfst(e

4

) is a method invocation. In the body of setfst, the expression

this.snd is a �eld access, and the occurrences of newfst and this are variables. FJ treats this

as a special variable, which can be a subject of substitution but may not be used as, for example,

a method parameter.

In Java, one may pre�x a �eld or parameter declaration with the keyword final to indicate

that it may not be assigned to, and all parameters accessed from an inner class must be declared

final. Since FJ contains no assignment, it matters little whether or not final appears, so we omit

it for brevity.

Dropping side e�ects has a pleasant side e�ect: evaluation can be easily formalized entirely

within the syntax of FJ, with no additional mechanisms for modeling the heap. Moreover, in the

absence of side e�ects, the order in which expressions are evaluated does not a�ect the �nal out-

come, so we can de�ne the operational semantics of FJ straightforwardly using a nondeterministic

small-step reduction relation, following long-standing tradition in the lambda calculus. Of course,

Java's call-by-value evaluation strategy is subsumed by this more general relation, so the soundness

properties we prove for reduction will hold for Java's evaluation strategy as a special case.
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There are two basic computation rules: one for �eld access and one for method invocation.

Recall that, in the lambda calculus, the beta-reduction rule for applications assumes that the

function is �rst simpli�ed to a lambda abstraction. Similarly, in FJ the reduction rules assume the

object operated upon is �rst simpli�ed to a new expression. Thus, just as the slogan for the lambda

calculus is \everything is a function," here the slogan is \everything is an object."

Here is the rule for �eld access in action:

new Pair(new A(), new B()).snd �! new B()

Because of the stylized form for object constructors, we know that the constructor has one parameter

for each �eld, in the same order that the �elds are declared. Here the �elds are fst and snd, and

an access to the snd �eld selects the second parameter.

Here is the rule for method invocation in action (= denotes substitution):

new Pair(new A(), new B()).setfst(new B())

�!

�

new B()=newfst;

new Pair(new A(),new B())=this

�

new Pair(newfst, this.snd)

i.e., new Pair(new B(), new Pair(new A(), new B()).snd)

The receiver of the invocation is the object new Pair(new A(), new B()), so we look up the

setfst method in the Pair class, where we �nd that it has formal parameter newfst and body

new Pair(newfst, this.snd). The invocation reduces to the body with the formal parameter

replaced by the actual, and the special variable this replaced by the receiver object. This is

similar to the beta rule of the lambda calculus, (�x.e

0

)e

1

�! [e

1

=x]e

0

. The key di�erences are

the fact that the class of the receiver determines where to look for the body (supporting method

override), and the substitution of the receiver for this (supporting \recursion through self").

Readers familiar with Abadi and Cardelli's Object Calculus will see a strong similarity to their

&-reduction rule [AC96]. In FJ, as in the lambda calculus and the pure Abadi-Cardelli calculus, if

a formal parameter appears more than once in the body this may lead duplication of the actual,

but since there are no side e�ects this causes no problems.

There are two ways in which a computation may get stuck: an attempt to access a �eld not

declared for the class (corresponding to the Java exception NoSuchFieldError), or an attempt to

invoke a method not declared for the class (NoSuchMethodError). We will prove a type soundness

result, which guarantees that these two errors never happen in well-typed programs, by using a

standard technique [WF94].

With this informal introduction in mind, we may now proceed to a formal de�nition of FJ.

2.2 Syntax and Auxiliary De�nitions

We give the syntax for FJ programs and a few auxiliary functions to look up from a class table

information used for reduction and typing rules. The metavariables A, B, C, D, and E range over

class names; f and g range over �eld names; m ranges over method names; x ranges over parameter

names; d and e range over expressions; L ranges over class declarations; K ranges over constructor
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declarations; and M ranges over method declarations. The syntax of FJ classes is given below:

L ::= class C extends D {

C

1

f

1

; � � � C

n

f

n

;

K

M

1

� � � M

k

}

K ::= C(C

1

f

1

, : : : , C

n

f

n

) {

super(f

1

, : : : ,f

k

);

this.f

k+1

= f

k+1

; � � � this.f

n

= f

n

; }

M ::= C m(C

1

f

1

, : : : , C

n

f

n

) { return e; }

e ::= x variables

j e.f �eld access

j e.m(e

1

; : : : ; e

n

) method invocation

j new C(e

1

; : : : ; e

n

) object constructor

We write f as shorthand for f

1

,. . . ,f

n

(and similarly for C, x, e, etc.) and write M as shorthand

for M

1

. . . M

n

(with no commas). We write the empty sequence as � and denote concatenation of

sequences using a comma. The length of a sequence x is written #(x). We abbreviate operations

on pairs of sequences in the obvious way, writing \C f" as shorthand for \C

1

f

1

,. . . ,C

n

f

n

",

and similarly \C f;" as shorthand for \C

1

f

1

;. . . C

n

f

n

;", and \this.f=f;" as shorthand for

\this.f

1

=f

1

;. . . this.f

n

=f

n

;". We assume that the set of variables includes the special variable

this, but that this is never used as either the name of a formal parameter of a method, or the

name of a �eld. We write X

i

2 X when X

i

appear in the sequence X, where X stands for a syntactic

entry such as a �eld name or a method de�nition.

A class declaration has declarations of its name (class C), �elds (C f), one constructor (K),

and methods (M); moreover, every class must explicitly declare its superclass with extends even

if it is Object. Each argument of a constructor corresponds to an initial (and also �nal) value of

each �elds of the class. As in Java, �elds inherited from superclasses are initialized by super();

and newly declared �elds by this.f = f;, although, as we will see, those statements do not have

signi�cance during execution of programs. A body of a method just returns an expression, which

is either a variable, �eld access, method invocation, or object instantiation.

A class table CT is a mapping from class names C to class declarations L. A program is a

pair (CT ; e) of a class table and an expression. To lighten the notation in what follows, we always

assume a �xed class table CT .

Every class has a superclass, declared with extends. This raises a question: what is the

superclass of the Object class? There are various ways to deal with this issue; the simplest one

that we have found is to take Object as a distinguished class name whose de�nition does not appear

in the class table. The auxiliary functions that look up �elds and method declarations in the class

table are equipped with special cases for Object that return the empty sequence of �elds and the

empty set of methods. (In full Java, the class Object does have several methods. We ignore these

in FJ.)

By looking at the class table, we can read o� the subtype relation between classes. We write

C <

:

D when C is a subtype of D|i.e., subtyping is the re
exive and transitive closure of the

immediate subclass relation given by the extends clauses in CT . Formally, it is de�ned by the

following rules:
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C <

:

C

C <

:

D D <

:

E

C <

:

E

CT (C) = class C extends D {...}

C <

:

D

The given class table is assumed to satisfy some sanity conditions: (1) sequences of �eld dec-

larations, parameter names, and method declarations are assumed to contain no duplicate names;

(2) CT (C) = class C... for every C 2 dom(CT ); (3) Object =2 dom(CT ); (4) for every class name

C (except Object) appearing anywhere in CT , we have C 2 dom(CT ); and (5) there are no cycles

in the subtype relation induced by CT|that is, the <

:

relation is antisymmetric. By the condition

(1), we can identify a class table with a corresponding sequence of class declarations in an obvious

way.

For the typing and reduction rules, we need a few auxiliary de�nitions to look up information

on �elds or methods from a class table. The �elds of a class C, written �elds(C), is a sequence

C f pairing the class of a �eld with its name, for all the �elds declared in class C and all of its

superclasses.

�elds(Object) = �

CT (C) = class C extends D {C f; K M} �elds(D) = D g

�elds(C) = D g; C f

It �rst looks up the �elds D g of the superclass and append the �elds de�ned in the current class

C f after it.

2.2.1 Example: With a class table including class Pair,

�elds(Pair) = Object fst, Object snd

holds.

The body of the method m in class C, written mbody(m; C), is a pair, written (x,e), of a sequence

of formal parameters x and an expression e.

CT (C) = class C extends D {C f; K M}

B m (B x) { return e; } 2 M

mbody(m; C) = (x; e)

CT (C) = class C extends D {C f; K M}

m is not de�ned in M

mbody(m; C) = mbody(m; D)

In case of overriding, from (possibly) several de�nitions of m, it will �nd one in the nearest superclass

to C.

Similarly, the type of the method m in class C, written mtype(m; C), is a pair, written B!B, of a

sequence of argument types B and a result type B.
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CT (C) = class C extends D {C f; K M}

B m (B x) { return e; } 2 M

mtype(m; C) = B!B

CT (C) = class C extends D {C f; K M}

m is not de�ned in M

mtype(m; C) = mtype(m; D)

2.2.2 Example: With a class table including Pair class, we have

mbody(setfst; Pair) = (newfst; new Pair(newfst, this.snd)

and

mtype(setfst; Pair) = Object!Pair:

2.3 Semantics

The reduction relation is of the form e �! e

0

, read \expression e reduces to expression e

0

in one

step." We write �!

�

for the re
exive and transitive closure and �!

+

for the transitive closure of

�!.

The reduction rules for basic computation are given as follows.

�elds(C) = C f

(new C(e)).f

i

�! e

i

(R-Field)

mbody(m; C) = (x; e

0

)

(new C(e)).m(d) �! [d=x; new C(e)=this]e

0

(R-Invk)

There are two reduction rules, one for �eld access, and one for method invocation. These were

already explained in the introduction to this chapter. We write [d=x; e=y]e

0

for the result of

replacing x

1

by d

1

, . . . , x

n

by d

n

, and y by e in expression e

0

. Note that, since there are no bound

variables in expressions, [d=x; e=y] performs just syntactic replacements.

The reduction rules may be applied at any point in an expression, so we also need the obvious

congruence rules below.

e

0

�! e

0

0

e

0

.f �! e

0

0

.f

(RC-Field)

e

0

�! e

0

0

e

0

.m(e) �! e

0

0

.m(e)

(RC-Invk-Recv)

e

i

�! e

i

0

e

0

.m( : : : ,e

i

, : : : ) �! e

0

.m( : : : ,e

i

0

, : : : )

(RC-Invk-Arg)

e

i

�! e

i

0

new C( : : : ,e

i

, : : : ) �! new C( : : : ,e

i

0

, : : : )

(RC-New-Arg)
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2.4 Typing

An environment, ranged over by �, is a �nite mapping from variables to types. We write x:C for

an environment � where its domain is x and �(x

i

) = C

i

for each x

i

. The typing judgment for

expressions has the form � ` e 2 C, read \in the environment �, expression e has type C."

The typing rules, given below, are syntax directed, with one rule for each form of expression.

� ` x 2 �(x) (T-Var)

� ` e

0

2 C

0

�elds(C

0

) = C f

� ` e

0

.f

i

2 C

i

(T-Field)

� ` e

0

2 C

0

mtype(m; C

0

) = D!C � ` e 2 C C <

:

D

� ` e

0

.m(e) 2 C

(T-Invk)

�elds(C) = D f � ` e 2 C C <

:

D

� ` new C(e) 2 C

(T-New)

The typing rules for constructors and method invocations check that each actual parameter has a

type that is a subtype of the corresponding formal. Note that, following Java's typing rules, we

don't allow subsumption (if e is given type C, which is a subtype of D, then e is given type D)

in an arbitrary place. We abbreviate typing judgments on sequences in the obvious way, writing

� ` e 2 C as shorthand for � ` e

1

2 C

1

, . . . , � ` e

n

2 C

n

and writing C <

:

D as shorthand for

C

1

<

:

D

1

, . . . , C

n

<

:

D

n

.

The typing judgment for method declarations has the form M OK IN C, read \method declara-

tion M is ok if it occurs in class C," and is derived by the following rule:

x : C; this : C ` e

0

2 E

0

E

0

<

:

C

0

CT (C) = class C extends D {...}

if mtype(m; D) = D!D

0

; then C = D and C

0

= D

0

C

0

m (C x) {return e

0

;} OK IN C

(T-Method)

The method body e

0

must be well typed under the environment where the parameters of the

method are given their declared types, plus the special variable this with type C, in which the

method declaration should occur. In case of overriding, if a method with the same name is declared

in the superclass then it must have the same argument and result types.

The typing judgment for class declarations has the form L OK, read \class declaration L is ok,"

and is derived by the following rule:

K = C(D g, C f) {super(g); this.f = f;}

�elds(D) = D g M OK IN C

class C extends D {C f; K M} OK

(T-Class)

It checks that the constructor applies super to the �elds of the superclass and initializes the �elds

declared in this class, and that each method declaration in the class is ok.

The type of an expression may depend on the type of any methods it invokes, and the type of

a method depends on the type of an expression (its body), so it behooves us to check that there is

no ill-de�ned circularity here. Indeed there is none: the circle is broken because the type of each

method is explicitly declared. It is possible to load and use the class table before all the classes in

it are checked, as long as each class is eventually checked.
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2.5 Properties

FJ typing rules are proved to be sound with respect to reduction. Type soundness consists of two

theorems: subject reduction and progress. The �rst theorem ensures that, if e is well-typed and

reduces to e

0

, then e

0

is also well-typed and given a subtype of e's type. The second one ensures that

a well-typed expression does not include expressions that try to access (or invoke) a non-existing

�eld (or method). Two theorems together guarantee that a well-typed program will never cause

errors due to access (or invocation) of a non-existing �eld (or method).

2.5.1 Theorem [Subject Reduction]: If � ` e 2 C, and e �! e

0

, then � ` e

0

2 C

0

for some

C

0

<

:

C.

Proof: See below. �

2.5.2 Theorem [Progress]: Suppose e is a well-typed expression.

(1) If e includes new C

0

(e).f as a subexpression, then �elds(C

0

) = T f and f 2 f.

(2) If e includes new C

0

(e).m(d) as a subexpression, then mbody(m; C

0

) = (x; e

0

) and #(x) =

#(d).

Proof: Straightforward induction on the derivation of � ` e 2 C. We only show two main cases:

Case T-Field: e = e

0

.f

i

C = C

i

�; x : B ` e

0

2 D

0

�elds(D

0

) = C f

If e

0

is an object constructor, it must be of the form new D

0

(e) because � ` e

0

2 D

0

; the conclusion

follows from �elds(D

0

) = C f. The case where e

0

is not an object constructor is trivial by using

the induction hypothesis.

Case T-Method: e = e

0

.m(e) � ` e

0

2 D

0

mtype(m; D

0

) = E!C

� ` e 2 D D <

:

E

If e

0

is an object constructor, it must be of the form new D

0

(d); it is easy to show mbody(m; D

0

) =

(x; e

0

) and #(x) = #(e) from the fact that mtype(m; D

0

) = E!C and #(x) = #(E). The case where

e

0

is not an object constructor is trivial. �

Before giving a proof of Theorem 2.5.1, we develop a number of required lemmas.

2.5.3 Lemma: If mtype(m; D) = C!C

0

, then mtype(m; C) = C!C

0

for all C <

:

D.

Proof: Straightforward induction on the derivation of C <

:

D. Note that whether m is not de�ned in

CT (C) or not, mtype(m; C) should be the same asmtype(m; E) where CT (C) = class C extends E {...}.

�

2.5.4 Lemma [Term substitution preserves typing]: If �; x : B ` e 2 D, and � ` d 2 A where

A <

:

B, then � ` [d=x]e 2 C for some C <

:

D.

Proof: By induction on the derivation of �; x : B ` e 2 D.

Case T-Var: e = x D = �(x)

If x 62 x, then it's trivial since [d=x]x = x. On the other hand, if x = x

i

and D = B

i

, then, since

[d=x]x = d

i

, letting C = A

i

�nishes the case.
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Case T-Field: e = e

0

.f

i

D = C

i

�; x : B ` e

0

2 D

0

�elds(D

0

) = C f

By the induction hypothesis, we have some C

0

such that � ` [d=x]e

0

2 C

0

and C

0

<

:

D

0

. Then, it is

easy to show that

�elds(C

0

) = �elds(D

0

); D g

for some D g. Therefore, by the rule T-Field, � ` ([d=x]e

0

).f

i

2 C

i

.

Case T-Invk: e = e

0

.m(e) �; x : B ` e

0

2 D

0

mtype(m; D

0

) = E!D

�; x : B ` e 2 D D <

:

E

By the induction hypothesis, we have some C

0

and C such that

� ` [d=x]e

0

2 C

0

C

0

<

:

D

0

� ` [d=x]e 2 C C <

:

D

By Lemma 2.5.3, mtype(m; C

0

) = E!D. Moreover, C <

:

E by transitivity of <

:

. Therefore, by the

rule T-Invk, � ` ([d=x]e

0

).m([d=x]e) 2 D.

Case T-New: e = new C(e) �elds(C) = D f �; x : B ` e 2 C C <

:

D

By the induction hypothesis, we have E such that � ` [d=x]e 2 E and E <

:

C. Moreover E <

:

D, by

transitivity of <

:

. Therefore, by the rule T-New, � ` new C([d=x]e) 2 C.

�

2.5.5 Lemma [Weakening]: If � ` e 2 C, then �; x : D ` e 2 C.

Proof: By straightforward induction on the derivation of � ` e 2 C. �

2.5.6 Lemma: If mtype(m; C

0

) = D!D, and mbody(m; C

0

) = (x; e), then there exist some C and D

0

such that C <

:

D and C

0

<

:

D

0

and x : D; this : D

0

` e 2 C.

Proof: By induction on the derivation of mbody(m; C

0

). The base case, where m is de�ned in

CT (C

0

), is easy since it must be the case that x : D; this : C

0

` e 2 C. by T-Class and

T-Method. The induction step is also straightforward. �

Proof of Theorem 2.5.1: By induction on a derivation of e �! e

0

, with a case analysis on the

reduction rule used.

Case R-Field: e = (new C

0

(e)).f

i

e

0

= e

i

�elds(C

0

) = D f

By the rule T-Field, we have

� ` new C

0

(e) 2 D

0

C = D

i

:

for some D

0

. Again, by the rule T-New,

� ` e 2 C

C <

:

D

D

0

= C

0

In particular, � ` e

i

2 C

i

, �nishing the case since C

i

<

:

D

i

.
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Case R-Invk: e = (new C

0

(e)).m(d)

e

0

= [d=x; new C

0

(e)=this]e

0

mbody(m; C

0

) = (x; e

0

)

By the rules T-Invk and T-New, we have

� ` new C

0

(e) 2 C

0

mtype(m; C

0

) = D!C

� ` d 2 C

C <

:

D:

By Lemma 2.5.6, x : D; this : D

0

` e

0

2 B for some D

0

and B where C

0

<

:

D

0

and B <

:

C. By

Lemma 2.5.5, �; x : D; this : D

0

` e

0

2 B. Then, by Lemma 2.5.4, � ` [d=x; new C

0

(e)=this]e

0

2 E

for some E <

:

B. By transitivity of <

:

, E <

:

C. Finally, letting C

0

= E �nishes this case.

Cases for congruence rules are easy. �

2.6 Extension with Typecasts

In this section, we discuss a small but interesting extension for FJ|that is, FJ with typecasts,

which will serve as a base language when a model of GJ is built in Chapter 4. As we will see later,

unlike FJ, this extension raises an interesting technical problem in proving type soundness.

The class Pair shown in Section 2.1 is not so useful as one might expect: since the types of fst

and snd �elds are Object, we cannot perform any interesting operations on a result of �eld access.

For example, the expression

new Pair(new Pair(new A(), new B()), new A()).fst.snd

is ill typed because the expression new Pair(...).fst is given type Object, which has no �elds,

even though it can successfully reduce to new B().

One solution for this problem is to declare di�erent classes for each type of values to be stored,

for example, PairOfAA for pairs of A objects, PairOfAB for pairs of an A object and a B object,

and so on. Another solution is use of typecasts, which can change the static type of an expression.

In Java, an expression (C)e is given type C, and, at run-time, it checks whether e evaluates to an

object of type C (or subtype of C). Thus, using typecasts, we can rewrite the expression above to

the expression below:

((Pair)new Pair(new Pair(new A(), new B()), new A()).fst).snd.

Now that (Pair)new Pair(new Pair(new A(), new B()), new A()).fst is given type Pair, the

whole expression is well-typed. Here is the rule for a cast in action:

(Pair)new Pair(new A(), new B()) �! new Pair(new A(), new B())

Once the subject of the cast is reduced to an object, it is easy to check that the class of the

constructor is a subclass of the target of the cast. If so, as is the case here, then the reduction

removes the cast. If not, as in the expression (A)new Object(), then no rule applies and the

computation is stuck, denoting a run-time error.

In what follows, we give the additional syntax, semantics, and typing rules for FJ with typecasts.

As we will see later, typecasts introduce a subtlety into type soundness proof.
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Syntax: First, we add typecast expressions to the syntax:

e ::=

.

.

.

j (C)e

As in Java, we assume that casts bind less tightly than other forms of expression. For example,

(C)e.f means (C)(e.f), not ((C)e).f.

Reduction: As mentioned above, typecasts will succeed when the class of the constructor is a

subclass of the target of the cast. We also require a congruence rule for typecasts.

C <

:

D

(D)(new C(e)) �! new C(e)

(R-Cast)

e

0

�! e

0

0

(C)e

0

�! (C)e

0

0

(RC-Cast)

Typing: There are three rules, shown below, for type casts: in an upcast the subject is a subclass

of the target (T-UCast), in a downcast the target is a subclass of the subject (T-DCast), and

in a stupid cast the target is unrelated to the subject. In Java, the target type of a typecast

must be comparable with the (static) type of the subject by the subtyping relation. For example,

both (Object)new A() and (A)new Object() are allowed but (A)new B() is not. Thus, the Java

compiler rejects as ill typed an expression containing a stupid cast, but we must allow stupid

casts in FJ if we are to formulate type soundness as a subject reduction theorem for a small-step

semantics. This is because a sensible expression may be reduced to one containing a stupid cast.

For example, consider the following reduction step:

(A)(Object)new B() �! (A)new B()

We indicate the special nature of stupid casts by including the hypothesis stupid warning in the type

rule for stupid casts (T-SCast); an expression signaling stupid warning must fail when the typecast

is to be performed. An FJ typing corresponds to a legal Java typing only if it does not contain this

rule. (Stupid casts were omitted from the �rst published version of Classic Java [FKF98a], causing

its published proof of type soundness to be incorrect; this error was discovered independently by

ourselves and the Classic Java authors [FKF98b].)

� ` e

0

2 D D <

:

C

� ` (C)e

0

2 C

(T-UCast)

� ` e

0

2 D C <

:

D C 6= D

� ` (C)e

0

2 C

(T-DCast)

� ` e

0

2 D C 6<

:

D D 6<

:

C stupid warning

� ` (C)e

0

2 C

(T-SCast)
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Properties: This extension also enjoys the same properties, including subject reduction and

progress, as stated in Section 2.5. Since the proof method is also the same, we show only interesting

parts that involve stupid casts.

2.6.1 Lemma [Term substitution preserves typing]: If �; x : B ` e 2 D, and � ` d 2 A where

A <

:

B, then � ` [d=x]e 2 C for some C <

:

D.

Proof: By induction on the derivation of �; x : B ` e 2 D with a case analysis on the last rule

used. We show only the cases additional to the proof of Lemma 2.5.4.

Case T-UCast: e = (D)e

0

�; x : B ` e

0

2 C C <

:

D

By the induction hypothesis, we have some E such that � ` [d=x]e

0

2 E and E <

:

C. Moreover,

E <

:

D by transitivity of <

:

; �nally, � ` (D)([d=x]e

0

) 2 D is derived by the rule T-UCast.

Case T-DCast: e = (D)e

0

�; x : B ` e

0

2 C D <

:

C D 6= C

By the induction hypothesis, we have some E such that � ` [d=x]e

0

2 E and E <

:

C. If E <

:

D or

D <

:

E, then � ` (D)([d=x]e

0

) 2 D by the rule T-UCast or T-DCast, respectively. On the other

hand, if both D 6<

:

E and E 6<

:

D hold, then � ` (D)([d=x]e

0

) 2 D with stupid warning by the rule

T-SCast.

Case T-SCast: e = (D)e

0

�; x : B ` e

0

2 C D 6<

:

C C 6<

:

D

By the induction hypothesis, we have some E such that � ` [d=x]e

0

2 E and E <

:

C.

Now we show D 6<

:

E and E 6<

:

D by contradiction. Suppose E <

:

D. By using that fact that,

for every class F, there is only one class G such that CT (F) = class F extends G, we can show

that either proof of E <

:

C or E <

:

D is a part of the other proof; it means C <

:

D or D <

:

C,

which contradicts the assumption. Therefore, E 6<

:

D. Furthermore, since D <

:

E leading to D <

:

C

contradicts the assumption, D 6<

:

E.

Finally, � ` (D)([d=x]e

0

) 2 D with stupid warning, by the rule T-SCast. �

2.6.2 Theorem [Subject Reduction]: If � ` e 2 C and e �! e

0

, then � ` e

0

2 C

0

for some

C

0

<

:

C.

Proof: By induction on a derivation of e �! e

0

, with a case analysis on the reduction rule

used. We show the cases R-Cast and RC-Cast here; otherwise the proof is the same as before

(Theorem 2.5.1).

Case R-Cast: e = (D)(new C

0

(e)) e

0

= new C

0

(e) C

0

<

:

D

The proof of � ` (D)(new C

0

(e)) 2 C must end with the rule T-UCast since the derivation ending

with T-SCast or T-DCast contradicts the assumption C

0

<

:

D. By the rule T-UCast, we have

� ` new C

0

(e) 2 C

0

and D = C, which �nishes the case.

Case RC-Cast: e = (D)e

0

e

0

= (D)e

0

0

e

0

�! e

0

0

We have three subcases according to the last type rule used.

Subcase T-UCast: � ` e

0

2 C

0

C

0

<

:

D D = C

By the induction hypothesis, � ` e

0

0

2 C

0

0

for some C

0

0

<

:

C

0

. By transitivity of <

:

, C

0

0

<

:

C.

Therefore, by the rule T-UCast, � ` (C)e

0

0

2 C (without any additional stupid warning).

Subcase T-DCast: � ` e

0

2 C

0

D <

:

C

0

D = C

By the induction hypothesis, � ` e

0

0

2 C

0

0

for some C

0

0

<

:

C

0

. If C

0

0

<

:

C or C <

:

C

0

0

, then

� ` (C)e

0

0

2 C by the rule T-UCast or T-DCast (without any additional stupid warning). On

the other hand, if both C

0

0

6<

:

C and C 6<

:

C

0

0

, then, � ` (C)e

0

0

2 C with stupid warning by the rule

T-SCast.
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Subcase T-SCast: � ` e

0

2 C

0

D 6<

:

C

0

C

0

6<

:

D D = C

By the induction hypothesis, � ` e

0

0

2 C

0

0

for some C

0

0

<

:

C

0

. Then, both C

0

0

6<

:

C and C 6<

:

C

0

0

also

hold. Therefore � ` (C)e

0

0

2 C with stupid warning. �

As mentioned before, these properties above guarantee that a well-typed program never cause

NoSuchFieldError or NoSuchMethodError during execution, but they do not say anything about

typecasts; in fact, the proofs of Lemma 2.6.1 and Theorem 2.6.2 show that a downcast expression,

which is typed by T-DCast, may reduce to a stupid cast expression, which is typed by T-SCast.

To state a similar property for casts, we say that an expression e is safe in � if the type

derivations of the underlying CT and � ` e 2 C contain no downcasts or stupid casts (uses of

rules T-DCast or T-SCast). In other words, a safe program includes only upcasts. Then we see

that a safe expression always reduces to another safe expression, and, moreover, typecasts in a safe

expression will never fail, as shown in the following pair of theorems.

2.6.3 Theorem [Reduction preserves safety]: If e is safe in � and e�!e

0

, then e

0

is safe in �.

Proof: By induction on a derivation of e �! e

0

, with a case analysis on the reduction rule used.

Note that, the derivation of e

0

will have additional stupid warning only if the derivation of e (and

CT ) uses the rules T-DCast and/or T-SCast. �

2.6.4 Theorem [Progress of safe programs]: Suppose e is safe in �. If e has (C)new C

0

(e)

as a subexpression, then C

0

<

:

C.

Proof: Trivial from the fact that the subexpression (C)new C

0

(e) is given type C by the rule

T-UCast. �

2.7 Summary

We have presented Featherweight Java, a core language for Java. Its design strongly favors com-

pactness instead of completeness; we have dropped as many features as possible while still capturing


avors of computation and the type system in Java. As a result, the proof of soundness is both

concise and straightforward, making it a suitable arena for the study of ambitious extensions to

the type system, discussed in the following chapters.

As a small extension, we have added typecasts, which are required to model compilation of GJ

to JVML, and proved type soundness of the extended language. In order to type soundness for

semantics based on a small-step reduction relation, the type system requires the stupid cast rule,

which is not a part of Java's typing rules. This small but interesting technicality has not been

pointed out in the previous work of core languages for Java.



22 CHAPTER 2. FEATHERWEIGHT JAVA



Chapter 3

FJI: Featherweight Java with Inner

Classes

In this chapter, we discuss an extension of FJ with inner classes in the style of Java 1.1. Just like

nested de�nitions of functions, found in functional languages, nested structure of classes allows inner

classes to access directly to the members of their enclosing de�nitions. Such nested structures can

be found in a few object-oriented languages. For example, Smalltalk [GR83] has special syntax for

\block" objects, similar to anonymous functions, and Beta [MMPN93] provides patterns, unifying

classes and functions, which can be nested arbitrarily.

Inner classes are useful when an object needs to send another object a chunk of code that can

manipulate the �rst object's methods and/or instance variables. Such situations are typical in

user-interface programming: for example, Java's Abstract Window Toolkit [CL97] allows a listener

object to be registered with a user-interface component such as a button; when the button is

pressed, the actionPerformed method of the listener is invoked. For example, suppose we want to

increment a counter when a button is pressed. We begin by de�ning a Java class Counter with an

inner class Listener:

class Counter {

int x;

class Listener implements ActionListner {

public void actionPerformed(ActionEvent e) { x++; }

}

void listenTo(Button b) {

b.addActionListener(new Listener());

}

}

In the de�nition of the method actionPerformed, the �eld x of the enclosing Counter object is

changed. The method listenTo creates a new listener object and sends it to the given Button.

Now we can write

Counter c = new Counter();

Button b = new Button("Increment");

c.listenTo(b);

gui.add(b);

to create and display a button that increments a counter every time it is pressed.

23
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Inner classes are a powerful abstraction mechanism, allowing programs like the one above to be

expressed much more conveniently and transparently than would be possible using only top-level

classes. However, this power comes at a signi�cant cost in complexity: inner classes interact with

other features of object-oriented programming|especially inheritance|in some quite subtle ways.

For example, a closure in a functional language has a simple lexical environment, including all the

bindings in whose scope it appears. An inner class, on the other hand, has access, via methods

inherited from superclasses, to a chain of environments|including not only the lexical environment

in which it appears, but also the lexical environment of each superclass. Conversely, the presence

of inner classes complicates our intuitions about inheritance. What should it mean, for example,

for an inner class to inherit from its enclosing class? What happens if a top-level class inherits from

an inner class de�ned in a di�erent top-level class?

JavaSoft's Inner Classes Speci�cation [Jav97] provides one answer to these questions by showing

how to translate a program with inner classes into one using only top-level classes, adding to each

inner class an extra �eld that points to an instance of the enclosing class. This speci�cation gives

clear basic intuitions about the behavior of inner classes, but it falls short of a completely satisfying

account. First, the style is indirect: it forces programmers to reason about their code by �rst passing

it through a rather heavy transformation. Second, the document itself is somewhat imprecise,

consisting only of examples and English prose. Di�erent compilers (even di�erent versions of Sun's

JDK!) have interpreted the speci�cation di�erently in some signi�cant details.

We will clarify the essential features of inner classes as follows:

� First, we de�ne an extension of FJ with inner classes, called FJI, and give a direct operational

semantics and typing rules. The reduction rules show the inherent complexity of inner classes.

The typing rules are shown to be sound for the operational semantics in the standard sense.

To our knowledge, this direct style of semantics is formalized for the �rst time.

To keep the model as simple as possible, we focus on the most basic form of inner classes in

Java, omitting the related mechanisms of anonymous classes, local classes within blocks, and

static nested classes. Also, we do not deal with the (important) interactions between access

control annotations (public/private/etc.) and inner classes (cf. [Jav97, BP]).

� Next, we give a translation from FJI to FJ, formalizing the translation semantics of the Java

Inner Classes Speci�cation. We show that the translation preserves typing.

� Finally, we prove that the two semantics de�ne the same behavior for inner classes, in the sense

that the translation commutes with the high-level reduction relation in the direct semantics.

This property, together with the property of preservation of typing, guarantees correctness

of the translation semantics with respect to the direct semantics, for the case where whole

programs are being translated.

The case where some translated classes are linked with classes written directly in the target

language is more subtle, and we do not handle it here. The main desired theorem in this case

would be full abstraction, which states that translated expressions that can be distinguished

by a target language context can also be distinguished in the source language. Unfortunately,

our translation is not fully abstract, because our modeling language does not include private

�elds, which are used by the real translation to prevent observers from directly accessing the

�eld of an inner class instance that holds a pointer to its containing object. (The question of

full abstraction for full-scale inner class translations has been considered by Abadi [Aba98]

and Bhowmik and Pugh [BP].)
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FJI omits assignments as well as FJ; of course, most useful examples of programming with

inner classes do involve the side-e�ecting features of Java. In fact, inner classes do interact with

assignment: in particular, if inner classes may appear inside method de�nitions, then local variables

of the enclosing method must be marked final if they are mentioned in an inner class. To handle

this feature, our model would need to be extended with assignment. But, we do not need it for the

present modeling task, and by omitting assignment from FJ and FJI, we obtain a much simpler

model that o�ers just as much insight into inner classes.

The remainder of the chapter is organized as follows. We begin with an informal overview of

FJI and a discussion how tricky inner classes can be in the presence of inheritance in Section 3.1.

Then, we proceed to a formal de�nition of FJI, consisting of its syntax (3.2), two styles of semantics

(3.4 and 3.5), and typing rules (3.6). In Section 3.7, we prove standard type soundness for direct

semantics, type preservation of translation semantics, and equivalence of two semantics. Like FJ,

FJI imposes some syntactic restriction, not found in Java, to make the de�nition of semantics

easier. For example, a �eld access to the current object must be written this.f (as in FJ),

instead of just f, and types for inner classes must always be written in a full path form, such as

Counter.Listener, instead of an abbreviation Listener even in the de�nition of the class Counter.

Section 3.8 discusses elaboration process from an abbreviated program to an FJI program. We also

summarize an underspeci�cation, which caused to have di�erent meanings in di�erent versions of

JDK, in Section 3.9.

3.1 Overview of FJI

3.1.1 Enclosing Instances

Before proceeding to formal de�nitions of FJI, we begin with an informal discussion of FJI and its

the key idea of enclosing instances, and argue that interactions between inner classes and subclassing

are trickier than one would expect.

This is a sample FJI class declaration:

class Outer extends Object {

Pair p;

Outer(Pair p) {super(); this.p = p;}

class Inner extends Object {

Inner() {super();}

Object snd_p { return Outer.this.p.snd; }

}

Outer.Inner make_inner () { return this.new<Outer> Inner(); }

}

Conceptually, each instance o of the class Outer contains a specialized version of the Inner class,

which, when instantiated, yields instances of Outer.Inner that refer to o's �eld p. The object o is

called the enclosing instance of these Outer.Inner objects.

This enclosing instance can be named explicitly by a \quali�ed this" expression (found in both

Java and FJI), consisting of the simple name of the enclosing class followed by \.this". In general,

the class C

1

. � � � .C

n

can refer to n � 1 enclosing instances, C

1

.this to C

n�1

.this, as well as the

usual this, which can also be written C

n

.this. To avoid ambiguity of the meaning of C.this, the

name of an inner class must be di�erent from any of its superclasses.

In FJI, an object of an inner class is instantiated by an expression of the form e.new<T> C(e),

where e is the enclosing instance and T is the static type of e. The result of e.new<T> C(e) is
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always an instance of T.C, regardless of the run-time type of e. This rigidity re
ects the static

nature of Java's translation semantics for inner classes. The explicit annotation <T> is used in FJI

to \remember" the static type of e. (By contrast, inner classes in Beta are virtual [MMP89], i.e.,

di�erent constructors may be invoked depending on the run-time type of the enclosing instance;

for example, if there were a subclass Outer

0

of the class Outer that also had an inner class Inner,

then o.new Inner() might build an instance of either Outer.Inner or Outer

0

.Inner, depending

on the dynamic type of o.)

Like FJ, FJI imposes some syntactic restrictions, which is not found in Java, to simplify its

operational semantics: (1) receivers of �eld access, method invocation, or inner class constructor

invocation must be explicitly speci�ed (no implicit this); (2) type names are always absolute paths

to the classes they denote (no short abbreviations); and (3) an inner class instantiation expression

e.new C(e) is annotated with the static type T of e, written e.new<T> C(e). Because of conditions

(2) and (3), FJI is not quite a subset of Java (whereas FJ is); instead, we view FJI as an intermediate

language, to which the user's programs are translated by a process of elaboration. The elaboration

process allows type names to be abbreviated in Java programs. For example, the FJI program

above can be written

class Outer extends Object {

Pair p;

Outer(Pair p) {super(); this.p = p;}

class Inner extends Object {

Inner() {super();}

Object snd_p () { return p.snd; }

}

Inner make_inner () { return new Inner(); }

}

in Java. Here, the return type Inner of the make_inner method denotes the nearest Inner dec-

laration. Also, in Java, enclosing instances can be omitted when they are this or a quali�ed

this. Thus, this.new<Outer> Inner() from the original example is written new Inner() here.

Section 3.8 describes how to recover omitted information.

3.1.2 Inner Classes and Inheritance

Almost any form of inheritance involving inner classes is allowed in Java (and FJI): a top-level

class can extend an inner class of another top-level class, or an inner class can extend another

inner class from a completely di�erent top-level class. An inner class can even extend its own

enclosing class. (Only one case is disallowed: a class cannot extend its own inner class. We

discuss the restriction later.) This liberality, however, introduces signi�cant complexity because a

method inherited from a superclass must be executed in a \lexical environment" di�erent from the

subclass's. Figure 3.1 shows a situation where three inner classes, A1.A2.A3 and B1.B2.B3 and

C1.C2.C3, are in a subclass hierarchy. Each white oval represents an enclosing instance and the

three shaded ovals indicate the regions of the program where the methods of a C1.C2.C3 object

may have been de�ned. A method inherited from A1.A2.A3 is executed under the environment

consisting of enclosing instances A1.this and A2.this and may access members of enclosing classes

via A1.this and A2.this; similarly for B1.B2.B3 and C1.C2.C3. In general, when a class has n

superclasses which are inner, n di�erent environments may be accessed by its methods. Moreover,

each environment may consist of more than one enclosing instance; six enclosing instances are

required for all the methods of C1.C2.C3 to work in the example above.
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A1.this.a1

B2.this.b2

T1 a1;

T2 b2;

A1 A1.A2 A1.A2.A3

B1 B1.B2 B1.B2.B3

C1 C1.C2 C1.C2.C3

extends

extends

Figure 3.1: A chain of environments

From the foregoing, we see that we will have to provide, in some way, six enclosing instances

to instantiate a C1.C2.C3 object. Recall that, when an object of an inner class is instantiated, the

enclosing object is provided by a pre�x e of the new expression. For example, a C1.C2.C3 object is

instantiated by writing e.new<C1.C2> C3(e), where e is the enclosing instance corresponding to

C2.this. Where do the other enclosing instances come from?

First, enclosing instances from enclosing classes other than the immediately enclosing class, such

as C1.this, do not have to be supplied to a new expression explicitly, because they can be reached

via the direct enclosing instance|for example, the enclosing instance e in e.new<C1.C2> C3(e)

has the form new C1(c).new<C1> C2(d), which includes the enclosing instance new C1(c) that

corresponds to C1.this.

Second, the enclosing instances of superclasses are determined by the constructor of a subclass.

Taking a simple example, suppose we extend the inner class Outer.Inner. An enclosing instance

corresponding to Outer.this is required to make an instance of the subclass. Here is an example

of a subclass of Outer.Inner:

class RefinedInner extends Outer.Inner {

Object c;

RefinedInner(Outer this$Outer$Inner, Object c) {

this$Outer$Inner.super(); this.c=c; }

}

In the declaration of the RefinedInner constructor, the ordinary argument this$Outer$Inner

becomes the enclosing instance pre�x for the super constructor invocation, providing the value of

Outer.this referred to in the inherited method snd_p. Similarly, in the C1.C2.C3 example, the

subclass B1.B2.B3 is written as follows (we assume A1.A2.A3 has a �eld a3 of type Object):

class B1 extends ... { ...

class B2 extends ... { ...

class B3 extends A1.A2.A3 {

Object b3;

B3(Object a3, A1.A2 this$A1$A2$A3, Object b3) {
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this$A1$A2$A3.super(a3); this.b3 = b3; }

}}}

Note that, since an enclosing instance corresponding to A1.this is included in an enclosing instance

corresponding to A2.this, the B3 constructor takes only one extra argument for enclosing instances.

Here is C1.C2.C3 class:

class C1 extends ... { ...

class C2 extends ... { ...

class C3 extends B1.B2.B3 {

Object c3;

C3(Object a3, A1.A2 this$A1$A2$A3, Object b3, B1.B2 this$B1$B2$B3, Object c3) {

this$B1$B2$B3.super(a3, this$A1$A2$A3, b3); this.c3 = c3; }

}}}

Since the constructor of a superclass B1.B2.B3 initializes A2.this, the constructor C3 initializes

only B2.this by qualifying the super invocation; the argument this$A1$A2$A3 is just passed to

super as an ordinary argument.

In FJI, we restrict the quali�cation of super to be a constructor argument, whereas Java

allows any expression for the quali�cation. (Thus, in Java, extra arguments are not mandatory;

moreover, such quali�cations can be even omitted when they are C.this.) This permits the same

clean de�nition of operational semantics we saw in FJ, since all the state information (including

�elds and enclosing instances) of an object appears in its new expression. Moreover, for technical

reasons connected with the name mangling involved in the translation semantics, we require that a

constructor argument used for quali�cation of super be named this$C

1

$ � � � $C

n

, where C

1

. � � � .C

n

is the (direct) superclass, as in the example above.

Lastly, we can now explain why it is not allowed for a class to extend one of its (direct or

indirect) inner classes. It is because there is no sensible way to make an instance of such a class.

Suppose we could de�ne the class below:

class Foo extends Foo.Bar {

Foo (Foo f) { f.super(); }

class Bar { ... } }

Since Foo extends Foo.Bar, the constructor Foo will need an instance of Foo as an argument,

making it impossible to make an instance of Foo. (Perhaps one could use null as the enclosing

instance in this case, but this would not be useful, since inner classes are usually supposed to make

use of enclosing instances.)

3.2 Syntax

Now, we proceed to the formal de�nitions of FJI. We use the same notational conventions as in the

previous section. Besides, the metavariables S, T, U, and V ranges over types, which are quali�ed

class names (a sequence of simple names C

1

,. . . ,C

n

concatenated by periods). For compactness in

the de�nitions, we introduce the notation ? for a \null quali�cation" and identify ?:C with C. The

metavariable P ranges over types (T) and ? . We write C 2 P if P = C

1

. � � � .C

n

and C = C

i

for some

i.
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The abstract syntax of the language is as follows:

T ::= C

1

. � � � .C

n

L ::= class C extends T {T f; K L M}

K ::= C(T f) {super(f); this.f = f;}

j C(T f) {f.super(f); this.f = f;}

M ::= T m (T x) {return e;}

e ::= x

j e.f

j e.m(e)

j new C(e)

j e.new<T> C(e)

A class declaration L includes declarations of its simple name C, superclass T, �elds T f, constructor

K, inner classes L, and methods M. There are two kinds of constructor declaration, depending on

whether the superclass is inner or top-level: when the superclass is inner, the subclass constructor

must call the super constructor with a quali�cation \f." to provide the enclosing instance visible

from the superclass's methods. As we will see in typing rules, constructor arguments should be

arranged in the following order: (1) the superclass's �elds, initialized by super(f) (or f.super(f));

(2) the enclosing instance of the superclass (if needed); and (3) the �elds of the class to be de�ned,

initialized by this.f=f. Like FJ, the body of a method just returns an expression, which is

a variable, �eld access, method invocation, or object instantiation. We assume that the set of

variables includes the special variables this and C.this for every C, and that these variables are

never used as the names of arguments to methods.

In FJI, a class table CT is a mapping from types T to class declarations L. From the class table,

we can read o� the subtype relation between classes, as in FJ. We write S <

:

T when S is a subtype

of T|the re
exive and transitive closure of the immediate subclass relation given by the extends

clauses in CT . The formal rules are given below:

T <

:

T

S <

:

T T <

:

U

S <

:

U

CT (S) = class C extends T {...}

S <

:

T

We impose the following sanity conditions on the class table: (1) CT (P.C) = class C ...

for every P.C 2 dom(CT ). (2) If CT (P.C) has an inner class declaration L of name D, then

CT (P.C.D) = L. (3) Object 62 dom(CT ). (4) For every type T (except Object) appearing anywhere

in CT , we have T 2 dom(CT ). (5) For every e

0

.new<T> C(e) (and new C(e), respectively)

appearing anywhere in CT , we have T.C 2 dom(CT ) (and C 2 dom(CT ), respectively). (6) There

are no cycles in the subtyping relation. (7) T 6<

:

T.U, for any two types T and T.U. By conditions

(1) and (2), a class table of FJI can be identi�ed with a set of top-level classes. Condition (7)

prohibits a class from extending one of its inner classes.
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3.3 Auxiliary De�nitions

We need to extend the auxiliary de�nitions such as �elds to deal with inner classes. Two functions

mtype and mbody are essentially the same as before, except that mbody(m; C) returns the quali�ed

class name where the de�nition of m is found, as well as the formal arguments and the method

body:

CT (T) = class C extends S {S f; K L M}

U

0

m (U x) {return e;} 2 M

mtype(m; T) = U!U

0

CT (T) = class C extends S {S f; K L M}

m is not de�ned in M

mtype(m; T) = mtype(m; S)

CT (T) = class C extends S {S f; K L M}

U

0

m (U x) {return e;} 2 M

mbody(m; T) = (x; e; T)

CT (T) = class C extends S {S f; K L M}

m is not de�ned in M

mbody(m; T) = mbody(m; S)

The �elds of a class T, written �elds(T), are given by the following rules:

�elds(Object) = �

CT (T) = class C extends D {T f; K L M}

�elds(D) = S g

�elds(T) = S g; T f

CT (T) = class C extends C

1

. � � � .C

n

{T f; K L M}

�elds(C

1

. � � � .C

n

) = S g

f

0

= this$C

1

$ � � � $C

n

�elds(T) = S g; C

1

. � � � .C

n�1

f

0

; T f

It collects not only the type of each �eld with its name but also the types of (direct) enclosing

instances of all the superclasses of T. For example, �elds(C1.C2.C3) returns the following sequence:

�elds(C1.C2.C3) = Object a3, (the �eld from A1.A2.A3)

A1.A2 this$A1$A2$A3, (the enclosing instance bound to A2.this)

Object b3, (the �eld from B1.B2.B3)

B1.B2 this$B1$B2$B2, (the enclosing instance bound to B2.this)

Object c3 (the �eld from C1.C2.C3)

The third rule in the de�nition inserts enclosing instance information between the �elds S g of the

superclass C

1

. � � � .C

n

and the �elds T f of the current class. In a well-typed program, �elds(T) will

always agree with the constructor argument list of T.
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Finally, the function encl

T

(e), which plays a crucial role in the semantics of FJI, is de�ned

below:

encl

T.C

(e

0

.new<T> C(e)) = e

0

CT (C) = class C extends D {S f; ...} #(f) = #(e)

encl

T

(new C(d, e)) = encl

T

(new D(d))

CT (C) = class C extends U.D {S f; ...} #(f) = #(e)

encl

T

(new C(d, d

0

, e)) = encl

T

(d

0

.new<U> D(d))

CT (S.C) = class C extends D {S f; ...} #(f) = #(e) T 6= S.C

encl

T

(e

0

.new<S> C(d, e)) = encl

T

(new D(d))

CT (S.C) = class C extends U.D {S f; ...} #(f) = #(e) T 6= S.C

encl

T

(e

0

.new<S> C(d, d

0

, e)) = encl

T

(d

0

.new<U> D(d))

Intuitively, when e is an object instantiation, encl

T

(e) returns the direct enclosing instance of e

that is visible from class T (i.e., the enclosing instance that provides the correct lexical environment

for methods inherited from T). The �rst rule is the simplest case: since the type of an expression

e

0

.new<T> C(e) agrees with the subscript T.C, it just returns the (direct) enclosing instance e

0

.

The other rules follow a common pattern; we explain the �fth rule as a representative. Since

the subscripted type T is di�erent from the type of the argument e

0

.new<S> C(d, d

0

, e), the

enclosing instance e

0

is not the correct answer. We therefore make a recursive call with an object

d

0

.new<U> D(d) of the superclass obtained by dropping e

0

and as many arguments e as the �elds

f of the class S.C. We keep going like this until, �nally, the argument becomes an instance of T

and we match the �rst rule. For example:

encl

A1.A2.A3

(e.new<C1.C2> C3(a, new A1().new<A1> A2(),

b, new B1().new<B1> B2(), c)

= encl

A1.A2.A3

(new B1().new<B1> B2.new<B1.B2> B3(a, new A1().new<A1> A2(), b))

= encl

A1.A2.A3

(new A1().new<A1> A2().new<A1.A2> A3(a))

= new A1().new<A1> A2()

Note that the encl function outputs only the direct enclosing instance. To obtain outer enclosing

instances, such as A1.this, encl can be used repeatedly: encl

A1.A2

(encl

A1.A2.A3

(e)).

3.4 Direct Semantics

As in FJ, the reduction relation of FJI has the form e �! e

0

. We write �!

�

for the re
exive and

transitive closure of �!. First, the rules for computation are as follows:

�elds(C) = T f

new C(e).f

i

�! e

i

(IR-FieldT)

�elds(T.C) = T f

e

0

.new<T> C(e).f

i

�! e

i

(IR-FieldI)
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mbody(m; C) = (x; d

0

; C

1

. � � � .C

n

)

c

n

def

= new C(e) c

i

def

= encl

C

1

.���.C

i+1

(c

i+1

)

i21:::n�1

new C(e).m(d) �!

�

d=x; c

n

=this;

c

i

=C

i

.this

i21:::n

�

d

0

(IR-InvkT)

mbody(m; T.C) = (x; d

0

; C

1

. � � � .C

n

)

c

n

def

= e

0

.new<T> C(e) c

i

def

= encl

C

1

.���.C

i+1

(c

i+1

)

i21:::n�1

e

0

.new<T> C(e).m(d) �!

�

d=x; c

n

=this;

c

i

=C

i

.this

i21:::n

�

d

0

(IR-InvkI)

There are four computation rules, two for �eld access and two for method invocation. The �eld

access expression new C(e).f

i

looks up the �eld names f of C using �elds(C) and yields the construc-

tor argument e

i

in the position corresponding to f

i

in the �eld list; e.new<T> C(e).f

i

behaves

similarly. The method invocation expression new C(e).m(d) �rst calls mbody(m; C) to obtain a

triple of the sequence of formal arguments x, the method body e, and the class C

1

. � � � .C

n

where

m is de�ned; it yields a substitution instance of the method body in which the x are replaced with

the actual arguments d, the special variables this and C

n

.this with the receiver object new C(e),

and each C

i

.this (for i < n) with the corresponding enclosing instance c

i

, obtained from encl .

Since the method to be invoked is de�ned in C

1

. � � � .C

n

, the direct enclosing instance C

n�1

.this

is obtained by encl

C

1

.���.C

n

(e), where e is the receiver object; similarly, C

n�2

.this is obtained by

encl

C

1

.���.C

n�1

(encl

C

1

.���.C

n

(e)), and so on. Similarly for e.new<T> C(e).m(d). The context rules to

apply a computation rule at any point in an expression are given below:

e

0

�! e

0

0

e

0

.f �! e

0

0

.f

(IRC-Field)

e

0

�! e

0

0

e

0

.m(e) �! e

0

0

.m(e)

(IRC-Invk-Recv)

e

i

�! e

i

0

e

0

.m( : : : ,e

i

, : : : ) �! e

0

.m( : : : ,e

i

0

, : : : )

(IRC-Invk-Arg)

e

i

�! e

i

0

new C( : : : ,e

i

, : : : ) �! new C( : : : ,e

i

0

, : : : )

(IRC-Top-Arg)

e

0

�! e

0

0

e

0

.new<T> C(e) �! e

0

0

.new<T> C(e)

(IRC-Inner-Enc)

e

i

�! e

i

0

e

0

.new<T> C( : : : ,e

i

, : : : ) �! e

0

.new<T> C( : : : ,e

i

0

, : : : )

(IRC-Inner-Arg)

For example, if the class table includes Outer and RefinedInner of this chapter and Pair, A,

and B from the previous chapter, then

new RefinedInner(new Outer(new Pair(new A(), new B())), x).snd_p()
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reduces to new B() as follows,

new RefinedInner(new Outer(new Pair(new A(), new B())), x).snd_p()

�! new Outer(new Pair(new A(), new B())).p.snd

�! new Pair(new A(), new B()).snd

�! new B()

where the underlined subexpressions are the redices at each reduction step.

3.5 Translation Semantics

In this section we consider the other style of semantics: translation from FJI to FJ. Every inner class

is compiled to a top-level class with one additional �eld holding a reference to the direct enclosing

instance; occurrences of quali�ed this are translated into accesses to this �eld. For example, the

Outer and RefinedInner classes in the previous section are compiled to the following three FJ

classes.

class Outer extends Object {

Pair p;

Outer(Pair p) { super(); this.p = p; }

Outer$Inner make_inner () { return new Outer$Inner(this); }

}

class Outer$Inner extends Object {

Outer this$Outer$Inner;

Outer$Inner(Outer this$Outer$Inner) {

super(); this.this$Outer$Inner = this$Outer$Inner; }

Object snd_p { return this.this$Outer$Inner.p.snd; }

}

class RefinedInner extends Outer$Inner {

Object c;

RefinedInner(Outer this$Outer$Inner, Object c) {

super(this$Outer$Inner); this.c = c;

}

}

The inner class Outer.Inner is compiled to the top-level class Outer$Inner; the �eld this$Outer$Inner

holds an Outer object, which corresponds to the direct enclosing instance Outer.this in the original

FJI program; thus, Outer.this is compiled to the �eld access expression this.this$Outer$Inner.

We give a compilation function j � j for each syntactic category. Except for types, the compilation

functions take as their second argument the FJI class name (or, ?) where the entity being translated

is de�ned, written j � j

T

(or j � j

?

).
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3.5.1 Types, Expressions and Methods

Every quali�ed class name is translated to a simple name obtained by syntactic replacement of .

with $.

jC

1

. � � � .C

n

j = C

1

$ � � � $C

n

The compilation of expressions, written jej

T

, is given below. We write jej

T

as shorthand for

je

1

j

T

; : : : ; je

n

j

T

(and similarly for

�

�

T

�

�

,

�

�

M

�

�

T

and

�

�

L

�

�

P

).

jxj

T

= x

je.fj

T

= jej

T

:f

je.m(e)j

T

= jej

T

.m( jej

T

)

jnew D(e)j

T

= new D( jej

T

)

je

0

.new<T> D(e)j

T

= new jT.Dj ( jej

T

, je

0

j

T

)

jthisj

T

= this

jC

n

.thisj

C

1

.���.C

n

= this

jC

i

.thisj

C

1

.���.C

n

= jC

i+1

.thisj

C

1

.���.C

n

.this$C

1

$ � � � $C

i+1

(1 � i � n� 1)

As we saw above, a compiled inner class has one additional �eld, called this$ jTj, where T is the

original class name. C

i

.this in the class C

1

. � � � .C

n

becomes an expression that follows references

to the direct enclosing instance in sequence until it reaches the desired one. An enclosing instance

e

0

of e

0

.new<T> C(e) will become the last argument of the compiled constructor invocation.

Compilation of methods, written jMj

T

, is straightforward. We use the notation

�

�

T

�

�

x for

jT

1

j x

1

; : : : ; jT

n

j x

n

.

�

�

T

0

m (T x) { return e; }

�

�

T

= jT

0

j m (

�

�

T

�

�

x) { return jej

T

; }

3.5.2 Constructors and Classes

Compilation of constructors, written jKj

T

, is given below.

�

�

�

�

C(S g, T f)

{ super(g); this.f = f;}

�

�

�

�

C

= C(

�

�

S

�

�

g,

�

�

T

�

�

f) {super(g); this.f = f;}

�

�

�

�

C(S g, S

0

g

0

, T f)

{g

0

.super(g); this.f = f;}

�

�

�

�

C

=

C(

�

�

S

�

�

g, jS

0

j g

0

,

�

�

T

�

�

f)

{super(g, g

0

); this.f = f;}

�

�

�

�

C(S g, T f)

{super(g); this.f = f;}

�

�

�

�

T.C

=

jT.Cj (

�

�

S

�

�

g,

�

�

T

�

�

f, jTj this$ jT.Cj ){

super(g); this.f = f;

this.this$ jT.Cj = this$ jT.Cj ; }

�

�

�

�

C(S g, S

0

g

0

, T f)

{ g

0

.super(g); this.f = f; }

�

�

�

�

T.C

=

jT.Cj (

�

�

S

�

�

g, jS

0

j g

0

,

�

�

T

�

�

f, jTj this$ jT.Cj ){

super(g, g

0

); this.f = f;

this.this$ jT.Cj = this$ jT.Cj ; }

It has four cases, depending on whether the current class is a top-level class or an inner class and

whether its superclass is a top-level class or an inner class. When the current class is an inner

class, one more argument corresponding to the enclosing instance is added to the argument list; the

name of the constructor becomes jT.Cj, the translation of the quali�ed name of the class. When
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the superclass is inner, the argument used for the quali�cation of f.super(f) becomes the last

argument of the super() invocation.

Finally, the compilation of classes, written jLj

P

, is as follows:

�

�

class C extends S {T f; K L M}

�

�

?

=

class C extends jSj {

�

�

T

�

�

f; jKj

C

�

�

M

�

�

C

}

�

�

L

�

�

C

�

�

class C extends S {T f; K L M}

�

�

T

=

class jT.Cj extends jSj {

�

�

T

�

�

f; jTj this$ jT.Cj ; jKj

T.C

�

�

M

�

�

T.C

}

�

�

L

�

�

T.C

The constructor, inner classes, and methods of class C de�ned in P are compiled with the auxiliary

argument P.C. Inner classes L become top-level classes. As in constructor compilation, when the

compiled class is inner, its name changes to jT.Cj and the �eld this$ jT.Cj, holding an enclosing

instance, is added. The compilation of the class table, written jCT j, is achieved by compiling all

top-level classes L in CT (i.e.,

�

�

L

�

�

?

).

3.6 Typing

An environment � is a �nite mapping from variables to types, written x:T. The typing judgment

for expressions has the form � ` e 2 T, read \in the environment �, expression e has type T." We

abbreviate sequences of typing or subtyping judgments as before, writing � ` e 2 T as shorthand

for � ` e

1

2 T

1

, . . . , � ` e

n

2 T

n

and S <

:

T as shorthand for S

1

<

:

T

1

; : : : ; S

n

<

:

T

n

. The typing

rules are given as follows:

�(x) = T

� ` x 2 T

(IT-Var)

� ` e

0

2 T

0

�elds(T

0

) = T f

� ` e

0

.f

i

2 T

i

(IT-Field)

� ` e

0

2 T

0

mtype(m; T

0

) = U!U

0

� ` e 2 S S <

:

U

� ` e

0

.m(e) 2 U

0

(IT-Invk)

�elds(C) = T f � ` e 2 S S <

:

T

� ` new C(e) 2 C

(IT-NewTop)

�elds(T.C) = T f � ` e

0

2 S S <

:

T � ` e 2 S S <

:

T

� ` e

0

.new<T> C(e) 2 T.C

(IT-NewInner)

The typing rules of FJI are a straightforward extension of those of FJ. The typing rules for object

instantiations and method invocations check that each actual parameter has a type which is subtype

of the corresponding formal parameter type obtained by �elds or mtype; the enclosing object must

have a type which is a subtype of the annotated type T in new<T>.

The typing judgment for method declarations has the form M OK IN C

1

. � � � .C

n

, read \method

declaration M is ok if it is declared in class C

1

. � � � .C

n

," and given by the following rule, which is

also a straightforward extension of the rule T-Method:
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x : T; this : C

1

. � � � .C

n

;

C

i

.this : C

1

. � � � .C

i

i21:::n

` e

0

2 S

0

S

0

<

:

T

0

CT (C

1

. � � � .C

n

) = class C

n

extends S {...}

if mtype(m; S) = U!U

0

, then U = T and U

0

= T

0

T

0

m (T x) {return e

0

;} OK IN C

1

. � � � .C

n

(IT-Method)

The typing judgment for class declarations has the form L OK IN P, read \class declaration L

is ok if it is declared in P," and given by the following rules:

K = C(S g, T f) {super(g); this.f = f;}

�elds(D) = S g C 62 P

M OK in P.C L OK in P.C

class C extends D {T f; K L M} OK IN P

(IT-ExtTop)

K =

C(S g, T g

0

, T f)

{g

0

.super(g); this.f = f;}

�elds(T.D) = S g C 62 P

M OK in P.C L OK in P.C

class C extends T.D {T f; K L M} OK IN P

(IT-ExtInner)

We have two cases according to whether the class extends a top-level class or an inner class; if

P is a type T, the class declaration L is an inner class, and otherwise L is a top-level class. The

typing rules check that the constructor applies super to the �elds of the superclass and initializes

the �elds declared in this class, and that each method declaration and inner class declaration in

the class is ok. The condition C 62 P ensures that the (simple) class name to be de�ned is not also

a simple name of one of the enclosing classes, so as to avoid ambiguity of the meaning of C.this.

3.7 Properties

3.7.1 Properties of Direct Semantics

It is easy to show that FJI programs enjoy standard subject reduction and progress properties,

exactly like FJ programs do.

3.7.1.1 Theorem [Subject Reduction]: If � ` e 2 T and e �! e

0

, then � ` e

0

2 T

0

for some T

0

such that T

0

<

:

T.

3.7.1.2 Theorem [Progress]: Suppose e is a well-typed expression.

(1) If e includes new C

0

(e).f as a subexpression, then �elds(C

0

) = T f and f 2 f. Similarly, if

e includes e

0

.new<T

0

> C(e).f as a subexpression, then �elds(T

0

.C) = T f and f 2 f.

(2) If e includes new C

0

(e).m(d) as a subexpression, then mbody(m; C

0

) = (x; e

0

; C

1

. � � � .C

n

) and

#(x) = #(d) and c

1

; : : : ; c

n

appearing in the rule IR-InvkT are well de�ned.

Similarly, if e includes e

0

.new<T

0

> C(e).m(d) as a subexpression, then mbody(m; T

0

.C) =

(x; d

0

; C

1

. � � � .C

n

) and #(x) = #(d) and c

1

; : : : ; c

n

appearing in the rule IR-InvkI are well

de�ned.
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Moreover, FJI is a conservative extension of FJ. In the statement of the theorem, We use

subscripts FJ and FJI to show which set of rules is used.

3.7.1.3 Theorem [FJI is a conservative extension of FJ]: Let e be an FJ expression and the

underlyingCT be an FJ class table. Then, � `

FJ

e 2 C if and only if � `

FJI

e 2 C. Moreover,

e �!

FJ

e

0

if and only if e �!

FJI

e

0

.

Proof: In the �rst half, both directions are shown by straightforward induction on the derivation

of � `

FJ

e 2 C or � `

FJI

e 2 C. In the second half, both directions are shown by induction on a

derivation of the reduction relation. �

In what follows, we develop proofs of Theorem 3.7.1.1 and Theorem 3.7.1.2 after proofs of

required lemmas.

3.7.1.4 Lemma: If � ` e 2 T, then �; x : T ` e 2 T.

Proof: By straightforward induction on the derivation of � ` e 2 T. �

3.7.1.5 Lemma: If mtype(m; T) = U!U

0

, then mtype(m; S) = U!U

0

for all S <

:

T.

Proof: Straightforward induction on the derivation of S <

:

T. Note that whether m is not de�ned in

CT (S) or not, mtype(m; S) should be the same asmtype(m; U) where CT (S) = class C extends U ....

�

3.7.1.6 Lemma: If � ` new C(e) 2 T and T <

:

U.D, then � ` encl

U.D

(new C(e)) 2 S for

some S such that S <

:

U. Similarly, if � ` e

0

.new<T

0

> C(e) 2 T and T <

:

U.D, then � `

encl

U.D

(e

0

.new<T

0

> C(e)) 2 S for some S such that S <

:

U.

Proof: Both parts are proved simultaneously by induction on the derivation of T <

:

U.D.

Case: T = U.D

The assumption � ` new C(e) 2 T of the �rst part never holds. As for the second part, by the rule

IT-NewInner, we have

T

0

= U C = D

� ` e

0

2 S

0

S

0

<

:

T

0

� ` e 2 S S <

:

�elds(T

0

.C)

Since encl

U.D

(e

0

.new<T

0

> C(e)) = e

0

, letting S = S

0

�nishes the case.

Case: CT (T) = class C extends T

0

{U g; ...} T

0

<

:

U.D

We have four subcases depending on whether T (or T

0

) is a simple name or not. We only show a

subcase where T = C and T

0

= S

0

.D

0

since the other cases are similar. It su�ces to show the �rst

part where we have � ` new C(e) 2 C. (We never have � ` e

0

.new<T

0

> C(e) 2 C.) By the rule

IT-NewTop, we have

�elds(C) = T f � ` e 2 S S <

:

T

Also, we have T f = �elds(S

0

.D

0

); S

0

this$S

0

$D

0

; U g. Thus, � ` d

0

.new<S

0

> D

0

(d) 2 T

0

.D

0

where e = d; d

0

; c and #(c) = #(g). On the other hand, by de�nition,

encl

U.D

(new C(d, d

0

, c)) = encl

U.D

(d

0

.new<T

0

> D

0

(d)):

Finally, the induction hypothesis �nishes the case. �

3.7.1.7 Lemma [Term Substitution]: If �; x : U ` e 2 T and � ` d 2 T where T <

:

U, then

� ` [d=x]e 2 S and S <

:

T.

Proof: By induction on the derivation of �; x : U ` e 2 T.
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Case IT-Var: e = x T = �(x)

If x 62 x, then it's trivial since [d=x]x = x. On the other hand, if x = x

i

and T = U

i

, then, since

[d=x]x = d

i

, letting S = T

i

�nishes the case.

Case IT-Field: e = e

0

.f

i

T = S

i

�; x : U ` e

0

2 T

0

�elds(T

0

) = S f

By the induction hypothesis, we have some S

0

such that � ` [d=x]e

0

2 S

0

and S

0

<

:

T

0

. It is easy

to show that

�elds(S

0

) = �elds(T

0

); D g

for some D g. Therefore, by the rule IT-Field, � ` ([d=x]e

0

).f

i

2 S

i

.

Case IT-Invk: e = e

0

.m(e) �; x : U ` e

0

2 T

0

mtype(m; T

0

) = V!T

�; x : U ` e 2 T T <

:

V

By the induction hypothesis, we have some S

0

and S such that

� ` [d=x]e

0

2 S

0

S

0

<

:

T

0

� ` [d=x]e 2 S S <

:

T

By Lemma 3.7.1.5, mtype(m; S

0

) = V!T. Moreover, S <

:

V by transitivity of <

:

. Therefore, by the

rule IT-Invk, � ` [d=x]e

0

.m([d=x]e) 2 T.

Case IT-NewTop: e = new C(e) �elds(C) = T f �; x : U ` e 2 S S <

:

T

By the induction hypothesis, we have V such that � ` [d=x]e 2 V and V <

:

S. Moreover V <

:

T, by

transitivity of <

:

. Therefore, by the rule IT-NewTop, � ` new C([d=x]e) 2 C.

The case for IT-NewInner is similar. �

3.7.1.8 Lemma: If mtype(m; T) = U!U

0

and mbody(m; T) = (x; e

0

; C

1

. � � � .C

n

), then T <

:

C

1

. � � � .C

n

and x : U; this : C

1

. � � � .C

n

; C

i

.this : C

1

. � � � .C

i

i21:::n

` e

0

2 T

0

for some T

0

where

T

0

<

:

U

0

.

Proof: By induction on the derivation of mbody(m; T). The base case (where m is de�ned in T and

T = C

1

. � � � .C

n

) is easy since x : U; this : C

1

. � � � .C

n

; C

i

.this : C

1

. � � � .C

i

i21:::n

` e 2 T

0

for some

T

0

such that T

0

<

:

U

0

by IT-Method. The induction step also straightforward. �

Proof of Theorem 3.7.1.1: By induction on a derivation of e �! e

0

, with a case analysis on

the reduction rule used.

Case IR-FieldT: e = (new C

0

(e)).f

i

�elds(C

0

) = T f e

0

= e

i

By the rule IT-Field, we have

� ` new C

0

(e) 2 T

0

C = T

i

for some T

0

. Again, by the rule IT-NewTop,

� ` e 2 S

S <

:

T

T

0

= C

0

In particular, � ` e

i

2 S

i

, �nishing the case since S

i

<

:

T

i

.

Case IR-FieldI:

Similar to the case for IR-FieldT.
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Case IR-InvkT: e = (new C

0

(e)).m(d)

mbody(m; C

0

) = (x; e

0

; C

1

. � � � .C

n

)

c

i

=

�

new C

0

(e) (i = n)

encl

C

1

.���.C

i+1

(c

i+1

) (i 2 1 : : : n� 1)

e

0

= [d=x; c

n

=this; c

i

=C

i

.this

i21:::n

]e

0

By the rules IT-Invk and IT-NewTop, we have

� ` new C

0

(e) 2 C

0

� ` d 2 S

S <

:

T

mtype(m; C

0

) = T!T

By Lemma 3.7.1.8,

x : D; this : C

1

. � � � .C

n

; C

i

.this : C

1

. � � � .C

i

i21:::n

` e

0

2 S

0

where S

0

<

:

T and C <

:

C

1

. � � � .C

n

. By Lemma 3.7.1.4,

�; x : D; this : C

1

. � � � .C

n

; C

i

.this : C

1

. � � � .C

i

i21:::n

` e

0

2 S

0

:

By using the fact that C <

:

C

1

. � � � .C

n

and Lemma 3.7.1.6 repeatedly, we have U such that � ` c

i

2 U

i

and U

i

<

:

C

1

. � � � .C

i

for i 2 1 : : : n. Then, by Lemma 3.7.1.7,

� ` [d=x; c

n

=this; c

i

=C

i

.this

i21:::n

]e

0

2 U

0

for some U

0

<

:

S

0

. Finally, letting T

0

= U

0

�nishes this case.

Case IR-InvkI:

Similar to the case IR-InvkT. Cases for congruence rules (IRC-� � �) are straightforward. �

Proof of Theorem 3.7.1.2: (1) If e has new C

0

(e).f (or e

0

.new<T

0

> C(e).f) as a subexpres-

sion, then, by well-typedness of the subexpression, it's easy to check that �elds(C

0

) (or �elds(T

0

.C))

is well-de�ned and f appears in it.

(2) If e has new C

0

(e).m(d) as a subexpression, then, it's also easy to show mbody(m; C) =

(x; e

0

; C

0

. � � � .C

n

) and #(x) = #(d) from the fact that mtype(m; C) = D!D where #(x) = #(D).

Finally, by Lemma 3.7.1.6,

encl

C

1

.���.C

n

(e

0

.new<T

0

> C(e).m(d));

.

.

.

encl

C

1

(� � � encl

C

1

.���.C

n

(e

0

.new<T

0

> C(e).m(d)))

are well de�ned. Similarly for a subexpression of the form e

0

.new<T

0

> C(e).m(d). �
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3.7.2 Properties of Translation Semantics

We develop three theorems here. First, the translation semantics preserves typing, in the sense that

a well-typed FJI program is compiled to a well-typed FJ program (Theorem 3.7.2.1). Second, we

show that the behavior of a compiled program exactly re
ects the behavior of the original program

in FJI: for every step of reduction of a well-typed FJI program, the compiled program takes one or

more steps and reaches a corresponding state (Theorem 3.7.2.2) and vice versa (Theorem 3.7.2.3).

3.7.2.1 Theorem [Compilation preserves typing]: When � = x : T, we write j�j for x :

�

�

T

�

�

. If

an FJI class table CT is ok and x : T; this : C

1

. � � � .C

n

; C

i

.this : C

1

. � � � .C

i

i21:::n

`

FJI

e 2 T with

respect to CT , then jCT j is ok and x :

�

�

T

�

�

; this : jC

1

. � � � .C

n

j `

FJ

jej

C

1

.���.C

n

2 jTj with respect to

jCT j.

3.7.2.2 Theorem [Compilation commutes with reduction]: If � `

FJI

e 2 T where dom(�)

does not include this or C.this for any C, and e�!

FJI

e

0

, then jej

?

�!

FJ

�

je

0

j

?

. In other words,

the following diagram commutes.

e

reduce (FJI)

//

��

e

0

��

jej

reduce (FJ)

�

//

je

0

j

3.7.2.3 Theorem [Compilation preserves termination]: If � `

FJI

e 2 T where dom(�) does

not include this or C.this, and jej

?

�!

FJ

e

0

, then e�!

FJI

e

00

for some e

00

, and e

0

�!

FJ

�

je

00

j

?

. In

other words, the following diagram commutes.

e

reduce (FJI)

//

��

e

0

��

jej

reduce (FJ)

//

e

00

reduce (FJ)

�

//

je

0

j

Unfortunately, Theorems 3.7.2.2 and 3.7.2.3 would not hold for a call-by-value version of FJI,

since their properties depend on our non-deterministic reduction strategy. An intuitive reason is

as follows: in FJI, after method invocation, C.this is directly replaced with the corresponding

enclosing instance, but, in the compiled FJ program, C.this is translated to this followed by a

sequence of �eld access, which is not necessarily an expression to be evaluated next. Thus, for call-

by-value FJI, another technique for proving equivalence, such as contextual equivalence [Plo77], is

required to show correctness of compilation.

Before giving their proofs, we develop a number of required lemmas.

3.7.2.4 Lemma: Suppose jCT j is well de�ned. (1) If �elds

FJI

(C) = T f, then �elds

FJ

(jCj) =

�

�

T

�

�

f.

(2) If �elds

FJI

(T.C) = T f then �elds

FJ

(jT.Cj) =

�

�

T

�

�

f; jTj this$ jT.Cj.

Proof: Both parts are simultaneously proved by induction on the derivation of �elds

FJI

(T) with

an inspection of the compilation rule for classes. �
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3.7.2.5 Lemma: If jCT j is well de�ned and mtype

FJI

(m; T) = T!U, then mtype

FJ

(m; jTj) =

�

�

T

�

�

!jUj.

Proof: By induction on the derivation of mtype

FJI

(m; T) with an analysis of the compilation rules

for classes and methods. �

3.7.2.6 Lemma: If jCT j is well de�ned and mbody

FJI

(m; T) = (x; e

0

; S), then mbody

FJ

(m; jTj) =

(x; je

0

j

S

).

Proof: By induction on the derivation of mbody

FJI

(m; T) with an analysis of compilation rules for

classes and methods. �

3.7.2.7 Lemma: S <

:

FJI

T if and only if jSj <

:

FJ

jTj.

Proof: Straightforward induction on the derivation of S <

:

FJI

T. �

Proof of Theorem 3.7.2.1: We prove the theorem in three steps: �rst, we show jCT j is well

de�ned; second, it is shown that, if �; this : C

1

. � � � .C

n

; C

i

.this : C

1

. � � � .C

i

i21:::n

`

FJI

e 2 T with

respect to CT , then j�j ; this : jC

1

. � � � .C

n

j `

FJ

jej

C

1

.���.C

n

2 jTj with respect to jCT j; and third,

we show jCT j is ok.

The �rst step is easy since each method body is well typed and so there are no such C.this

that C 62 S where S is the class name to which the method belongs. Note that well-de�nedness of

jCT j implies well-de�nedness of auxiliary functions.

The second step is proved by induction on the derivation of �; this : C

1

. � � � .C

n

; C

i

.this :

C

1

. � � � .C

i

i21:::n

`

FJI

e 2 T with a case analysis on the last rule used. We show a few main cases.

Case IT-Field: e = e

0

.f

i

�; this : C

1

. � � � .C

n

; C

i

.this : C

1

. � � � .C

i

i21:::n

`

FJI

e

0

2 T

0

�elds

FJI

(T

0

) = T f

T = T

i

By the induction hypothesis, j�j ; this : jC

1

. � � � .C

n

j `

FJ

je

0

j

C

1

.���.C

n

2 jT

0

j. By Lemma 3.7.2.4,

�elds

FJ

(jT

0

j) = : : : ; jT

i

j f

i

; : : :. Then, the rule IT-Field �nishes the case.

Case IT-NewInner: e = e

0

.new<T

0

> C(e)

�; this : C

1

. � � � .C

n

; C

i

.this : C

1

. � � � .C

i

i21:::n

`

FJI

e

0

2 S

0

S

0

<

:

FJI

T

0

�elds

FJI

(T

0

.C) = T f

�; this : C

1

. � � � .C

n

; C

i

.this : C

1

. � � � .C

i

i21:::n

`

FJI

e 2 S

S <

:

FJI

T

T = T

0

.C

We must show j�j ; this : jC

1

. � � � .C

n

j `

FJ

new jT

0

.Cj ( jej

C

1

.���.C

n

, je

0

j

C

1

.���.C

n

) 2 jT

0

.Cj. By the

induction hypothesis,

j�j ; this : jC

1

. � � � .C

n

j `

FJ

je

0

j

C

1

.���.C

n

2 jS

0

j

and

j�j ; this : jC

1

. � � � .C

n

j `

FJ

jej

C

1

.���.C

n

2

�

�

S

�

�

:

By Lemma 3.7.2.4, �elds

FJ

(jT

0

.Cj) =

�

�

T

�

�

f

0

; jT

0

j this$ jT

0

.Cj. Since jS

0

j <

:

FJ

jT

0

j and

�

�

S

�

�

<

:

FJ

�

�

T

�

�

by Lemma 3.7.2.7, the rule T-New �nishes the case.

Finally, the third step is proved by analyzing the derivation of `

FJI

L OK IN P with the result

of the second step. �
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3.7.2.8 Lemma: Suppose T <

:

FJI

C

1

. � � � .C

n

where n � 2. If T = C and � `

FJI

new C(e) 2 C

where dom(�) does not include this or D.this for any D, then

jnew C(e)j

?

.this$C

1

$ � � � $C

n

�!

FJ

jencl

C

1

.���.C

n

(new C(e))j

?

:

Similarly, if T = S.C and � ` e

0

.new<S> C(e) 2 S.C, then

je

0

.new<S> C(e)j

?

.this$C

1

$ � � � $C

n

�!

FJ

jencl

C

1

.���.C

n

(e

0

.new<S> C(e))j

?

:

Proof: By induction on the derivation of T <

:

FJI

C

1

. � � � .C

n

.

Case: T = C

1

. � � � .C

n

S = C

1

. � � � .C

n�1

C = C

n

� `

FJI

e

0

.new<S> C(e) 2 S.C

Since je

0

.new<S> C(e)j

?

= new jS.Cj ( jej

?

, je

0

j

?

) and �elds

FJ

(jS.Cj) =

�

�

T

�

�

f; jSj this$C

1

$ � � � $C

n

for some T and f,

je

0

.new<S> C(e)j

?

.this$C

1

$ � � � $C

n

�!

FJ

je

0

j

?

:

Finally, by de�nition, encl

C

1

.���.C

n

(e

0

.new<S> C(e)) = e

0

, �nishing the case.

Case: CT (T) = class C extends U U <

:

FJI

C

1

. � � � .C

n

We have four cases depending on whether T (respectively U) is a top-level class or not. We show

the case where T = C and U = U

0

.D for some C, U

0

and D since the other cases are similar. Since

� `

FJI

new C(e) 2 C, we have � `

FJI

e

0

.new<U

0

> D(d) 2 U

0

.D for some e

0

and d such that

e = d; e

0

; c and #(c) is equal to the number of �elds declared in C. By the induction hypothesis,

�

�

e

0

.new<U

0

> D(d)

�

�

?

.this$C

1

$ � � � $C

n

�!

FJ

�

�

encl

C

1

.���.C

n

(e

0

.new<U

0

> D(d))

�

�

?

:

It is easy to show that

jnew C(e)j

?

.this$C

1

$ � � � $C

n

�!

FJ

�

�

encl

C

1

.���.C

n

(e

0

.new<U

0

> D(d))

�

�

?

:

By de�nition,

encl

C

1

.���.C

n

(e

0

.new<U

0

> D(d)) = encl

C

1

.���.C

n

(new C(e))

�nishing the case. �

Proof of Theorem 3.7.2.2: By induction on the derivation of e �!

FJI

e

0

with a case analysis

on the last rule used. We show only the cases for IR-FieldT and IR-InvkT since the other base

cases are similar to either of them. The cases for congruence rules are straightforward.

Case IR-FieldT: e = new C(e).f

i

e

0

= e

i

�elds

FJI

(C) = T f

By Lemma 3.7.2.4, �elds

FJ

(jCj) = : : : ; jT

i

j f

i

; : : :, and thus,

jej

?

= new C( jej

?

).f

i

�! je

i

j

?

:
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Case IR-InvokeT: e = new C(e).m(d)

(x; e

0

; C

1

. � � � .C

n

) = mbody

FJI

(m; C)

c

n

= new C(e)

c

i

= encl

C

1

.���.C

i+1

(c

i+1

) (i 2 1 : : : n� 1)

e

0

= [d=x; c

n

=this; c

i

=C

i

.this

i21:::n

]e

0

:

By Lemma 3.7.2.6, mbody

FJ

(m; jCj) = (x; je

0

j

C

1

.���.C

n

). Thus,

jej

?

= new C( jej

?

).m(

�

�

d

�

�

?

)�![

�

�

d

�

�

?

=x; new C( jej

?

)=this] je

0

j

C

1

.���.C

n

:

Since jC

i

.thisj

C

1

.���.C

n

= this.this$C

1

$ � � � $C

n

. � � � .this$C

1

$ � � � $C

i

, by Lemma 3.7.2.8,

[

�

�

d

�

�

?

=x; new C( jej

?

)=this] je

0

j

C

1

.���.C

n

�!

FJ

�

�

�

[d=x; c

i

=C

i

.this

i21:::n

]e

0

�

�

?

= je

0

j

?

�

Proof of Theorem 3.7.2.3: By induction on the derivation of jej

?

�!

FJ

e

0

with a case analysis

on the last rule used.

Case R-Field: jej

?

= new C(e).f

i

�elds

FJ

(C) = C f e

0

= e

i

By inspecting compilation rules, e must be �eld access to a top-level object or an inner class

object. Moreover, e is well typed; by Theorem 3.7.1.2 and Lemma 3.7.2.4, we have e�!

FJI

e

i

0

, and

je

i

0

j

?

= e

i

, �nishing the case.

Case R-Invk: jej

?

= new C(e).m(d)

mbody

FJ

(m; C) = (x; e

0

)

e

0

= [d=x; new C(e)=this]e

0

By inspecting compilation rules, e must be method invocation on a top-level object or an inner class

object. Moreover, e is well typed; by Theorem 3.7.1.2, we have e�!

FJI

e

00

by using IR-InvokeI

or IR-InvokeT. In either case, by Theorem 3.7.2.2, we have jej

?

�!

FJ

�

je

00

j

?

. Then, it is easy to

check that

jej

?

�!

FJ

�

je

00

j

?

= jej

?

�!

FJ

e

0

�!

FJ

�

je

00

j

?

by Lemma 3.7.2.6. (Refer to the case for IR-InvokeT in the proof of Theorem 3.7.2.2.)

Case RC-New-Arg: jej

?

= new C( : : : ,e

i

, : : : ) e

i

�!

FJ

e

i

0

e

0

= new C( : : : ,e

i

0

, : : : )

By inspecting compilation rules, emust be an object constructor. We have three subcases according

to the form of e.

Subcase: e = d

0

.new<T

0

> C

0

( : : : ,d

i

, : : : ) jd

j

j

?

= e

j

(j 2 f1; : : : n� 1g)

jd

0

j

?

= e

n

By the induction hypothesis, d

i

�!

FJI

d

i

0

for some d

i

0

. By IRC-Inner-Arg,

e �!

FJI

d

0

.new<T

0

> C

0

( : : : ,d

i

0

, : : : ):

The other subcases (where e is a top-level class constructor and where e is an inner class constructor

and e

i

is the last argument) are similar.

Case RC-Field, RC-Invk-Recv, RC-Invk-Arg:

Easy. �



44 CHAPTER 3. FJI: FEATHERWEIGHT JAVA WITH INNER CLASSES

3.8 Elaboration of Source Programs

In this section we formalize the elaboration of user programs. In user programs, the receivers

of �eld access or method invocation, the enclosing instances of inner class instantiation, and the

quali�cations of type names may be omitted. For example, a simple name C means an inner class

T.C when it is used in the direct enclosing class T. A basic job of elaboration is to �nd where a

name f, m, or C is bound and to recover its receiver information or absolute path.

In the conventional scoping rules of simple block structured languages, simple names are bound

to their syntactically nearest declaration. In Java, however, they can be bound to declarations in

superclasses, or even in superclasses of enclosing classes. For example, in the class below, f in the

method m is bound to the �eld f of the enclosing class C unless D has a �eld f.

class C extends Object {

Object f; ...

class D extends Object { ...

Object m () { return f; }

}}

Similarly, f in the method m is bound to the �eld f of its superclass B (when neither C nor D has

�eld f) in the following classes.

class B extends Object { Object f; ... }

class C extends Object { ...

class D extends B { ...

Object m () { return f; }

}}

In general, beginning with the current class where the �eld/method name is used, the search

algorithm looks for the de�nition in superclasses; if there is no de�nition in any superclass, it looks

in the direct enclosing class and its superclasses, and then in the second direct enclosing class and

its superclasses, and so on. Once the declaration where a name is bound is known, it is easy to

recover the appropriate quali�cation. In the examples above, f becomes C.this.f and D.this.f,

respectively.

Suppose the algorithm above �nds the de�nition of the �eld/method in one of the superclasses

of the current class. Then, a �eld/method of the same name must not be de�ned in any of the

enclosing classes. Similarly, if the �eld/method de�nition is found in a superclass of an enclosing

class C, a �eld/method of the same name must not be de�ned in any of C's enclosing classes. In

the example above, if both B and C declared a �eld f (and D did not), then elaboration would

fail as f in m is ambiguous; the user must write C.this.f or D.this.f, specifying the enclosing

instance explicitly. This rule also has one signi�cant exception: it is not considered ambiguous if

the de�nition found in a superclass is also the syntactically nearest de�nition in enclosing classes.

This situation occurs when an inner class extends one of its enclosing classes. For example, suppose

E does not declare the �eld f in the class de�nition below.

class C extends Object {

Object f; ...

class D extends Object { ...

class E extends C { ...

Object m () { return f; }

}}}
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The reference to f in m is not ambiguous unless D declares the �eld f. (The algorithm �nds the

de�nition f in a superclass of E.)

Simple type names obey similar elaboration rules. For example, D occurring in C is elaborated

to C.D. However, unlike �eld names and method names, pre-elaborated type names themselves can

be quali�ed. In such a case the head simple name is elaborated �rst, then it looks up the de�nitions

of the following names in a manner similar to �eld lookup. For example, consider the following

class declarations:

class A extends Object { ...

class B extends Object { ... }

}

class C extends Object { ...

class D extends A { ... }

}

class E extends C { D.B f; ... }

The type D.B of f is elaborated to A.B as follows:

1. The �rst name D is elaborated to C.D.

2. It is checked whether C.D.B makes sense; in this case, it does not, since the inner class D

does not have the declaration of B. The elaborator replaces C.D with its superclass A and

elaborates A.B in the context of C.

3. Since A is not declared in C, it denotes the top-level class A.

4. Finally, since B is declared in the top-level class A, A.B is the elaborated type for D.B in the

context of E.

Last, we describe how a constructor invocation new T(e) is elaborated. Actually, it is slightly

more involved than others since it requires both elaboration of the type and recovering of an

enclosing instance (when it turns out to be instantiation of an inner class). First of all, the pre-

elaborated type name T is elaborated to T

0

. If T

0

is a simple name C, then the constructor invocation

does not need an enclosing instance. On the other hand, if T

0

is U.C, then we have to make up

an enclosing instance D.this, whose type is subtype of U, by checking which enclosing class is a

subclass of U. Finally, among such enclosing classes, the innermost one is chosen and new T(e)

is elaborated to D.this.new<U> C(...). The annotation <U> is important to specify which inner

class is instantiated, since there might be more than one inner class C de�ned in classes between D

and U. Consider the following classes and the expression new A.B() inside the class D.E:

class A extends Object { ...

class B extends Object { ... }

}

class C extends A { ...

class B extends Object { ... }

}

class D extends C { ...

class E extends C { ...

Object m () { ... new A.B() ...}

}

}
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First, A.B is elaborated to itself. Now, we need to �nd out which enclosing class (including the

current class) is a subclass of A. In this case, both D and D.E are; then, the innermost one, D.E,

is chosen, and new A.B() is elaborated to E.this.new<A> B(). The annotation <A> is important

since we have to remember that the class A.B is to be instantiated (not C.B).

In the rest of this section, we give the formal rules of elaboration. We use the metavariables

X, Y, and Z for pre-elaborated type names, which are non-empty strings obtained by concatenating

simple names by \.". The notation P.C always denotes an (elaborated) type.

3.8.1 Pre-elaborated Syntax

In pre-elaborated programs, pre-elaborated names X are used where types are required; it is al-

lowed to write a �eld access f and a method invocation m(e) without a receiver, and constructor

invocation new X(e) of pre-elaborated type name without an enclosing instance. We assume the

sanity conditions, only (1){(3); (4) will be automatically satis�ed when elaboration succeeds (see

Theorem 3.8.3.1 (1)) and (5){(7) can be checked after the elaboration of types.

L ::= class C extends X {X f; K L M}

K ::= C(X f) {super(f); this.f = f;}

j C(X f) {f.super(f); this.f = f;}

M ::= X m (X x) { return e; } method declarations

e ::= x variable or �eld access

j e.f �eld access

j m(e) method invocation

j e.m(e) method invocation

j new X(e) constructor invocation

j e.new C(e) inner class constructor

We do not deal with omitted quali�cations of super constructor invocations. An explicit quali�ca-

tion using a constructor argument is needed.

3.8.2 Elaboration Rules

Elaboration is performed in two steps: (1) elaboration of types (except the ones that occur in

method bodies); and (2) elaboration of expressions. The step (2) must be performed after (1) since

elaboration of expressions require type names (in particular X after extends) to be elaborated.

Elaboration of Types

First, we need an auxiliary function to look up the de�nition of an inner class in enclosing classes.

The function type-encl(C; P) de�ned below returns the innermost enclosing class name (or ?) where

the inner class of name C is de�ned:

P.C 2 dom(CT )

type-encl(C; P) = P

P.D.C 62 dom(CT )

type-encl(C; P.D) = type-encl(C; P)

The elaboration relation for types is written P ` X ) T, read as \X is elaborated to T in P."

We write type-encl(C; P) ", which means there is no T such that type-encl(C; P) = T. Similarly

for the other functions. We also write P ` X *, which means there is no T such that P ` X ) T.

The key rules are ET-SimpEncl and ET-SimpSuper. The rule ET-SimpEncl is used when the
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ambiguous name D is de�ned in neither the current class P.C nor superclasses (P ` X.D *); it

is resolved in the context of the direct enclosing class P. On the other hand, ET-SimpSuper is

used when the ambiguous name D is de�ned in a superclass (P ` X.D ) T). Then, the nearest

declaration in enclosing classes, if any, should be the same (type-encl(D; P) = U and U.D = T).

P ` Object ) Object (ET-Object)

P.C 2 dom(CT )

P ` C ) P.C

(ET-InCT)

P.C.D 62 dom(CT ) P ` D ) T

CT (P.C) = class C extends X {...} P ` X.D *

P.C ` D ) T

(ET-SimpEncl)

P.C.D 62 dom(CT )

CT (P.C) = class C extends X {...} P ` X.D ) T

type-encl(D; P) " or (type-encl(D; P) = U and U.D = T)

P.C ` D ) T

(ET-SimpSuper)

P ` X ) T T.C 2 dom(CT )

P ` X.C ) T.C

(ET-Long)

P ` X ) P

0

.D P

0

.D.C 62 dom(CT )

CT (P

0

.D) = class D extends Y {...} P

0

` Y.C ) U

P ` X.C ) U

(ET-LongSuper)

Remark: A straightforward elaboration algorithm obtained by reading the rules in a bottom-up

manner might diverge. For example, consider the following class declaration.

class A extends A.B {

A () { super(); }

}

Since there is no class A.B, elaboration of A.B must fail. However, using ET-LongSuper, it tries

to �nd T such that ? ` A.B.B ) T since A does not have B and A.B is speci�ed as a superclass

of A; it then tries to �nd T

0

such that ? ` A.B.B.B ) T

0

and so on. To prevent divergence, an

elaboration algorithm should detect circularity by keeping previous inputs for recursive calls: in

this example, the algorithm will try to �nd T such that ? ` A.B ) T twice.

Elaboration of Expressions, Methods and Classes

After elaboration of types, we can check all the sanity conditions except (5). Then, elaboration can

proceed to the next step|that is, elaboration of expressions, methods, and classes.

Similarly to elaboration of types, we need auxiliary functions to lookup a �eld/method de�nition

in enclosing classes. The functions �eld-encl(f; T) and meth-encl(m; T) de�ned below returns which

enclosing class has the declaration of the simple name f or m, when it is mentioned in T. (Note

that, unlike type-encl(C; P), the second argument of �eld-encl(f; T) and meth-encl(m; T) cannot be ?

since �elds and methods are always de�ned in some class.) The function subty-encl(U; C

1

. � � � .C

n

),
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used in elaboration of constructor invocations, returns a simple name C

i

of the innermost enclosing

class such that C

1

. � � � .C

i

<

:

U.

f is de�ned in CT (T)

�eld-encl(f; T) = T

f is not de�ned in CT (T.D)

�eld-encl(f; T.D) = �eld-encl(f; T)

m is de�ned in CT (T)

meth-encl(m; T) = T

m is not de�ned in CT (T.D)

meth-encl(m; T.D) = meth-encl(m; T)

P.C <

:

U

subty-encl(U; P.C) = C

T.C 6<

:

U

subty-encl(U; T.C) = subty-encl(U; T)

We also need auxiliary functions to lookup a �eld/method de�nition in superclasses. The func-

tions �eld-super(f; T) and meth-super(m; T) de�ned below return the path of the nearest superclass

where a �eld/method name f or m is de�ned.

f is de�ned in CT (T)

�eld-super(f; T) = T

f is not de�ned in CT (T.D)

CT (T.D) = class D extends S {...}

�eld-super(f; T.D) = �eld-super(f; S)

m is de�ned in CT (T)

meth-super(m; T) = T

m is not de�ned in CT (T.D)

CT (T.D) = class D extends S {...}

meth-super(m; T.D) = meth-super(m; S)

Then, we can de�ne the functions whereis(f; T) and whereis(m; T) to resolve the �eld/method

name binding. Given a �eld/method name and the path where the name is referred to, they return

a simple name C of the innermost enclosing class that has the de�nition of the �eld/method in itself

or one of its superclasses. The rules below closely follow the algorithm described in the introduction

to this section, including check of ambiguity.

S = �eld-super(f; P.C) �eld-encl(f; P.C) " or �eld-encl(f; P.C) = S

whereis(f; P.C) = C

(EF-This)

�eld-super(f; T.C) " whereis(f; T) = D

whereis(f; T.C) = D

(EF-Encl)

S = meth-super(m; P.C) meth-encl(m; P.C) " or meth-encl(m; P.C) = S

whereis(m; P.C) = C

(EM-This)

meth-super(m; T.C) " whereis(m; T) = D

whereis(m; T.C) = D

(EM-Encl)

Elaboration relation of expressions (method bodies) T; x ` e ) e

0

is read \e is elaborated to

e

0

in the class T when x are formal arguments of the method." Thanks to auxiliary functions, most

rules are straightforward. Note that the elaborated expression is not an FJI expression yet. The

static types of the enclosing instances in inner class constructors may be still omitted; they are

recovered during typechecking.

x 2 x

T; x ` x ) x

(E-Var)
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f 62 x whereis(f; T) = C

T; x ` f ) C.this.f

(E-FieldSimp)

T; x ` e

0

) e

0

0

T; x ` e

0

.f ) e

0

0

.f

(E-Field)

whereis(m; T) = C T; x ` e ) e

0

T; x ` m(e) ) C.this.m(e

0

)

(E-InvkSimp)

T; x ` e

0

) e

0

0

T; x ` e ) e

0

T; x ` e

0

.m(e) ) e

0

0

.m(e

0

)

(E-Invk)

T ` X ) C T; x ` e ) e

0

T; x ` new X(e) ) new C(e

0

)

(E-NewTop)

T ` X ) U.D subty-encl(U; T) = C T; x ` e ) e

0

T; x ` new X(e) ) C.this.new<U> D(e

0

)

(E-NewInner)

T; x ` e

0

) e

0

0

T; x ` e ) e

0

T; x ` e

0

.new C(e) ) e

0

0

.new C(e

0

)

(E-New)

T; x ` this ) this
(E-This)

C 2 T

T; x ` C.this ) C.this

(E-QlThis)

Elaboration of Methods and Classes

Elaboration of methods, written T ` M ) M

0

read \method M in class T is elaborated to M

0

, just

replaces the method body since return type and argument types are already elaborated.

T; x ` e ) e

0

T ` U

0

m (U x) { return e; } ) U

0

m (U x) { return e

0

; }

(E-Method)

Elaboration of classes, written P ` L ) L

0

read \class L declared in P is elaborated to L

0

, is also

straightforward; methods M and inner classes L are elaborated, recursively.

P.C ` L ) L

0

P.C ` M ) M

0

P ` class C extends T { T f; K L M } ) class C extends T { T f; K L

0

M

0

}

(E-Class)
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3.8.3 Properties of Elaboration

A minimal requirement for elaboration is that guessed information is sensible in the sense that

elaborated types are really de�ned in the class table and recovered receivers this or C.this really

o�er the �eld or the method to be used.

3.8.3.1 Theorem: The following propositions hold.

1. If P ` X ) T, then T 2 dom(CT ).

2. If T; x ` f ) C.this.f, then T = P.C.S and �elds(P.C) = : : : ; U f; : : : for some P, S and U.

3. If T; x ` m(e) ) C.this.m(e

0

), then T = P.C.S and mtype(P.C) is well de�ned for some P

and S.

4. If T; x ` new X(e) ) C.this.new<U> D(e

0

), then T = P.C.S and U.D 2 dom(CT ) and

P.C <

:

U.

Proof: Each of them is proved by induction of the derivation of the condition. Note that

�eld-super(f; T) = S implies �elds(T) = ...,U f,... for some U, and meth-super(m; T) = U

implies well-de�nedness of mtype(m; T). �

3.9 Interpretations of the Inner Class Speci�cation

Through this work, we have experimented a few Java compilers, including Sun's JDK (for Solaris),

JDK for linux, and guavac. Besides �nding a few bugs related to inner classes (mostly already

known to the developers), we observed some interesting variations in behavior corresponding to

an underspeci�cation in the currently available Inner Classes Speci�cation [Jav97], concerning the

meaning of the C.this expression. Consider the following Java program:

class C {

void who () {

System.out.println("I'm a C object");

}

class D extends C {

void m () { C.this.who(); }

void who () {

System.out.println("I'm a C.D object");

}

}

public static void main (String[] args) {

new C().new D().m();

}

}

Surprisingly, this program prints out I

0

m a C.D object when compiled with JDK 1.1.7a, but

I

0

m a C object under JDK 1.2. In the old JDK, the meaning of C.this is exactly the same as

D.this or this when C is a superclass of the inner class C.D; thus, C.this is bound to the receiver

new C().new D (). In JDK 1.2, on the other hand, C.this is always bound to the enclosing object

of the receiver regardless of superclass.
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3.10 Summary

We have studied FJI, an extension of FJ with inner classes, whose semantics is complicated because

of interaction with inheritance. Two styles of semantics for inner classes have been considered: a

direct style and a translation style, where semantics is given by compilation to a low-level language

without inner classes, following Java's Inner Classes Speci�cation. We have proved that the direct

style is type sound and the translation preserves typing; �nally, it has been proved that the two

styles correspond, in the sense that the translation commutes with the high-level reduction relation

in the direct semantics. The correspondence justi�es the current compilation scheme of inner classes

with respect to the direct semantics.

In addition, we have shown the elaboration rules to recover fully-quali�ed types from abbreviated

type names, receivers of �eld accesses (or method invocations), and enclosing instances of inner

class constructor invocations.

We have also pointed out an underspeci�cation in the o�cial speci�cation, which allowed signif-

icant change of an interpretation of C.this expression in di�erent versions of the JDK compilers.
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Chapter 4

Featherweight GJ

It is well known that parametric polymorphism, found in functional languages such as ML and

Haskell, is useful for generic data structures, such as lists or trees. For example, a procedure to

extract the n-th element of a list is uniform, regardless of the type of elements. Such a procedure

can be written in polymorphically typed langauges in such a way that it takes the element type as

a parameter; every time a concrete element type is given, it (conceptually) produces a de�nition

specialized to the given type. Hence, parametric polymorphism encourages code reuse and makes

it easier to maintain programs.

The basic idea of parametric polymorphism itself can naturally �t into the idea of classes|for

example, list class would take the element type as a parameter, and some of its method may take

other type parameters|for example, a \map" method may take a type parameter which repre-

sents the element type of the resulted list. However, there are many design issues on interaction

with features of the base language; in fact, even for a single base language, Java, several pro-

posals [AFM97, MBL97, OW97, BOSW98b, CS98] have been proposed and they are signi�cantly

di�erent from each other in details.

Among them, the design of GJ [BOSW98b] is heavily constrained by compatibility with the

legacy Java system, including Java Virtual Machine (JVM) [LY99] and Java libraries. Distinctive

features of GJ include the following:

� Compilation from GJ programs to JVM code. GJ compiler erases type parameter information

from GJ programs and generates JVM code, which cannot maintain such information. As

we will see later, this compilation scheme has signi�cantly a�ected some of the language

constructs.

� Introduction of raw types to maintain compatibility with legacy code. In GJ, parameterized

classes can be referred to as if they were non-parameterized, by using the mechanism of raw

types. They are useful to re�ne library code with type parameters: for example, the raw

type List can be used for the parametric class List<X> where X is the type parameter that

represents the element type. Thus, the client side does not need to change the program even

when the old library List is replaced with the new version List<X>.

� Method type parameter inference. GJ compiler supports partial type inference of type pa-

rameters for method invocations.

Although their mechanisms and correctness are not trivial at all, discussion has been given only

informally in prose. Moreover, its semantics is given in an indirect manner [BOSW98a], in terms

of its compilation to the Java Virtual Machine Language (JVML) [LY99]. This chapter discusses

53
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semantics and the compilation scheme of GJ. Raw types are discussed in the next chapter; type

parameter inference is left for future work.

We extend FJ with type parameters and obtain Featherweight GJ (or FGJ). The main results

in this chapter are:

1. Formalization of direct semantics of FGJ with a reduction relation, as in FJ, and its type

soundness proofs. This semantics would correspond to an implementation that augments the

run-time system to carry information about type parameters.

2. Formalization of translation from FGJ to FJ and development of correctness proofs: preserva-

tion of types and execution will be proved. This semantics models the current implementation

style, compilation from GJ to JVML.

Since compiled FJ programs involve typecasts, the base language for the extension is actually

FJ with typecasts, introduced in Section 2.6. Aside from that, since use of typecasts in GJ are

restricted due to the compilation scheme, FGJ also includes typecasts. In this chapter, we refer to

FJ with typecasts by FJ.

The rest of this chapter is organized as follows. Section 4.1 gives an informal overview of

FGJ. The following Sections 4.2, 4.3, and 4.4 give the formal de�nition of FGJ with its syntax,

type system, and reduction semantics, respectively. Then, we develop a type soundness result

in Section 4.5. After Section 4.6 de�nes compilation rules from FGJ to FJ, theorems for their

correctness are developed in Section 4.7. Finally, Section 4.8 summarizes this chapter.

4.1 Overview of Featherweight GJ

We begin with the class de�nition for pairs from Chapter 2, rewritten with type parameters in

FGJ.

class Pair<X extends Object, Y extends Object> extends Object {

X fst;

Y snd;

Pair(X fst, Y snd) {

super(); this.fst=fst; this.snd=snd;

}

<Z extends Object> Pair<Z,Y> setfst(Z newfst) {

return new Pair<Z,Y>(newfst, this.snd);

}

}

Both classes and methods may take type parameters. Here X and Y are parameters of the class, and

Z is a parameter of the setfst method. Each type parameter has a bound ; the actual parameter for

a type variable must be subtype of its bound. Here X, Y, and Z must be subtype of Object|that

is, any type. To instantiate an object from a polymorphic class, we have to specify actual type

parameters as found in the body of setfst method; similarly, polymorphic method invocation is

written e.m<T>(e) where T denotes actual type parameters. To keep backward compatibility with

FJ, we allow to omit the empty angle brackets <> from class/method declarations; thus, classes A

and B may remain the same:

class A extends Object {

A() { super(); }

}
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class B extends Object {

B() { super(); }

}

Moreover, we can omit type parameters for instantiation and method invocation when they are

empty|for example, new A<>() may be abbreviated to new A(). In the context of the above

de�nitions, the expression

new Pair<A,B>(new A(), new B()).setfst<B>(new B())

evaluates to the expression

new Pair<B,B>(new B(), new B())

as follows (in direct semantics):

new Pair<A,B>(new A(), new B()).setfst<B>(new B())

�! new Pair<B,B>(new B(), new Pair<A,B>(new A(), new B()).snd)

�! new Pair<B,B>(new B(), new B())

In GJ, type parameters to generic method invocations are inferred. Thus, in GJ, the expression

above would be written

new Pair<A,B>(new A(), new B()).setfst(new B())

with no <B> in the invocation of setfst. So while FJ is a subset of Java, FGJ is not quite a

subset of GJ. We regard FGJ as an intermediate language|the form that would result after type

parameters have been inferred. While parameter inference is an important aspect of GJ, we chose

in FGJ to concentrate on modeling other aspects of GJ.

The bound of a type variable may not be a type variable, but may be a type expression involving

type variables, and may be recursive (or even, if there are several variables and bounds, mutually

recursive)|that is, FGJ supports F-bounded polymorphism [CCH

+

89]. For example, if C<X> and

D<Y> are classes with one parameter each, one may have bounds such as <X extends C<X>> or

even <X extends C<Y>, Y extends D<X>>. Here is an example of the use of recursive bounds in

FGJ.

class Max<X extends Max<X>> extends Object {

Max() { super(); }

X max(X that) { return this.max(that); }

}

class Integer extends Max<Integer> {

...

Integer max(Integer that) { ... }

}

class MaxPair<X extends Max<X>, Y extends Max<Y>> extends Max<MaxPair<X,Y>> {

X fst;

Y snd;

MaxPair(X fst, Y snd) { super(); this.fst=fst; this.snd=snd; }

MaxPair<X,Y> max(MaxPair<X,Y> that) {

return new MaxPair<X,Y>(this.fst.max(that.fst), this.snd.max(that.snd));

}

}
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Class Max has a type parameter X bounded by Max<X>; thus, an actual parameter T for X must

extend Max<T>. Such type can be explicitly declared: for example, class Integer is declared to

extend Max<Integer> and, as a result, the method max will take a parameter of type Integer

and return an object of type Integer. As such, we can enforce every class that (directly) extends

Max<X> to have a method max that takes another object of the same type and returns an object of

the same type. More complicated use appears in parametric class MaxPair. The method invocation

e.max(e

0

) where e and e

0

are of type MaxPair<S,T> returns a pair consisting of the greater elements

obtained by comparing each element from e and e

0

. Since the types S and T of elements themselves

extend Max<S> and Max<T>, the method max can be invoked on the elements of pairs.

4.2 Syntax of FGJ and Auxiliary De�nitions

We use the notational conventions as in FJ, plus the following ones: the metavariables X, Y, and Z

range over type variables; S, T, U, and V range over types; and N, P and Q range over nonvariable

types (types other than type variables). In what follows, for the sake of conciseness we abbreviate

the keyword extends to the symbol / and the keyword return to the symbol ". We write X as

shorthand for X

1

,. . . ,X

n

(and similarly for T, N, etc.), write X / N for X

1

/ N

1

,. . . ,X

n

/ N

n

, and assume

sequences of type variables contain no duplicate names.

The abstract syntax of FGJ is given as follows:

N ::= C<T>

T ::= X

j N

L ::= class C<X / N> / N {T f; K M}

K ::= C(T f) { super(f); this.f = f; }

M ::= <X / N> T m (T x) {"e;}

e ::= x

j e.f

j e.m<T>(e)

j new N(e)

j (N)e

A non-variable type is a class name C followed by type parameters T enclosed by <>. A type is either

a non-variable type or a type variable. A class declaration L has its name C, formal type arguments

X, their bounds N, supertype N, �eld declarations T f, a constructor declaration K, and method

declarations M. A method declaration M can also have formal type arguments X with their bounds

N. An expression is a variable, �eld access, method invocation, object constructor, or typecast.

Unlike GJ, method invocation in FGJ needs explicit type parameters for the polymorphic method.

Note that type variables cannot be bounds, the instantiated type of an object constructor, and

the target of a typecast expression: since, in erasure semantics, type parameter information is not

available at run-time, we could neither check bounds and typecast nor instantiate an object, if we

allowed type variable for them.

The type variables X are bound in N, N, and the class body {T f; K M} of a class declaration

class C<X / N> / N {T f; K M}. Similarly, the type variables X are bound in N, T, T, and e of

a method declaration <X / N> T m (T x) {"e;}. Note that X binds their occurrences in their
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bounds N. We de�ne �-conversions of bound (type) variables in a customary manner and identify

�-convertible classes. We use the notation [T/X] for a capture-avoiding substitution of T for X,

de�ned in the standard manner. The head of a non-variable type, written head(N), is de�ned by

head(C<T>) = C.

We allow a pair of angle brackets to be omitted when the sequence between them is empty:

for example, a non-variable type C<> may be written C, and a method invocation expression

e.m<>(e) may be written e.m(e), and a method declaration <> T m (T x) {"e;} may be written

T m (T x) {"e;}.

As in FJ (and FJI), we assume a �xed class table CT , which is a mapping from class names C to

class declarations L, obeying the same sanity conditions given for FJ except for (5) (The de�nition

of subtyping in FGJ is not syntactic, as we will see below). We use, instead, the partial order

C E D, which is the re
exive and transitive closure of the relation between two class names in the

extends relation; then, given CT , C E D must be antisymmetric.

We de�ne auxiliary functions �elds , mtype, mbody, and dcast for reduction and typing rules.

The �elds of non-variable type C<T>, written �elds(C<T>), is a sequence S f pairing the type of a

�eld with its name, for all the �elds declared in class C and all of its superclasses.

�elds(Object) = � (F-Object)

CT (C) = class C<X / N> / N {S f; K M}

�elds([T=X]N) = U g

�elds(C<T>) = U g; [T=X]S f

(F-Class)

It �rst looks up the �elds U g of the superclass and append the �elds de�ned in the current class

S f after it. Actual type arguments T are substituted for formal arguments X in S and supertype

N.

4.2.1 Example: Under a class table including class Pair,

�elds(Pair<A,B>) = [A=X; B=Y](X fst, Y snd) = A fst, B snd

holds.

The body of the method m with type arguments T in non-variable type N, writtenmbody(m<T>; N),

is a pair, written (x; e), of a sequence of formal parameters x and an expression e.

CT (C) = class C<X / N> / N {S f; K M}

<Y / P> U m (U x) {"e

0

;} 2 M

mbody(m<V>; C<T>) = (x; [T=X; V=Y]e

0

)

(MB-Class)

CT (C) = class C<X / N> / N {S f; K M}

m is not de�ned in M

mbody(m<V>; C<T>) = mbody(m<V>; [T=X]N)

(MB-Super)

When a method de�nition is found, the formal type parameters X and Y are replaced with actual

type parameters T and V, respectively.
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4.2.2 Example: Under a class table including class Pair,

mbody(setfst<B>; Pair<A,B>)

= (newfst; [A=X; B=Y; B=Z](new Pair<Z,Y>(newfst, this.snd)))

= (newfst; new Pair<B,B>(newfst, this.snd))

holds.

The type of the method m in non-variable type C<T>, written mtype(m; C<T>), is of the form

<Y / P>T!T

0

consisting of formal type arguments Y with their bound P, argument types T and a

result type T

0

.

CT (C) = class C<X / N> / N {S f; K M}

<Y / P> U m (U x) {"e;} 2 M

mtype(m; C<T>) = [T=X](<Y / P>U!U)

(MT-Class)

CT (C) = class C<X / N> / N {S f; K M}

m is not de�ned in M

mtype(m; C<T>) = mtype(m; [T=X]N)

(MT-Super)

The type variables Y are bound in P, T and T

0

in <Y / P>T!T

0

.

Unlikembody, mtype does not take actual type argument for the method as a part of arguments:

it is checked whether actual type arguments satisfy constraints of the bounds after looking up the

class table, as we will see in typing rules. (We could integrate that check in the rule MT-Class,

but, for simplicity, it is separated.)

4.2.3 Example: Under a class table including class Pair,

mtype(setfst; Pair<A,B>)

= [A=X; B=Y](<Z / Object>Z!Pair<Z,Y>)

= <Z / Object>Z!Pair<Z,B>

dcast(C; D) is the least partial order closed under the following rule:

CT (C) = class C<X / N> / N {...} X = FV (N)

dcast(C; D)

where FV (N) denotes the set of type variables in N. For example, dcast(A; Object) holds but

dcast(Pair; Object) does not.

4.3 Typing

An environment � is a �nite mapping from variables to types, written x:T. A type environment

� is a �nite mapping from type variables to nonvariable types, written X<

:

N, that takes each type

variable to its bound. We write bound

�

(T) for the least non-variable supertype of T under �, as

de�ned below.

bound

�

(X) = �(X)

bound

�

(N) = N:

Unlike calculi such as F

�

[CMMS94], this promotion relation does not need to be de�ned recursively:

the bound of a type variable in a type environment is always a nonvariable type.
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4.3.1 Subtyping

We write � ` S <

:

T if S is a subtype of T under the assumption given by �. As before, subtyping

is derived from the extends relation.

� ` T <

:

T (S-Refl)

� ` S <

:

T � ` T <

:

U

� ` S <

:

U

(S-Trans)

� ` X <

:

�(X) (S-Var)

CT (C) = class C<X / N> / N {...}

� ` C<T> <

:

[T=X]N

(S-Class)

Type parameters are invariant with regard to subtyping, so � ` T <

:

U does not (and must not)

imply � ` C<T> <

:

C<U>. For example, consider the following classes:

class Id extends Object {

Id() { super(); }

Id id() { return this; }

}

class Cell<X extends Object> extends Object{

X elm;

Cell (X elm) { super(); this.elm=elm; }

Cell<X> set(X newelm) { return new Cell<X>(newelm);}

}

class IdCell extends Cell<Id> {

IdCell(Id elm) { super(elm); }

Cell<Id> set(Id newelm) { return new Cell<Id>(newelm.id()); }

}

We have polymorphic Cell class and a subclass IdCell where the element type is specialized

to Id; moreover, set method is overridden so that it works only for an argument of the type Id.

Now, if we allowed Cell<Id> (and IdCell) to be subtype of Cell<Object>, the expression

((Cell<Object>)new IdCell(new Id())).set(new Object())

would be well typed (by the typing rule given later) because the argument type of set from Cell,

the static type of the receiver, is Object. But, it would crash when it tries to invoke the id method

on new Object().
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4.3.2 Well-Formed Types

A type expression C<T> makes sense only when each T

i

satis�es the constraint enforced by the

bound of X

i

. We write � ` T ok if the type T is well formed in the type environment �. The rules

for well-formed types are given as follows:

� ` Object ok
(WF-Object)

X 2 dom(�)

� ` X ok

(WF-Var)

CT (C) = class C<X / N> / N {...}

� ` T ok � ` T <

:

[T=X]N

� ` C<T> ok

(WF-Class)

The type Object is always well formed and a type variable is well formed if it is in the domain of

the type environment. If the declaration of a class C begins with class C<X / N>, then a type like

C<T> is well formed only if substituting T for X respects the bounds N, that is if T <

:

[T=X]N. Note

that we perform a simultaneous substitution, and so any variable in X may appear in N, permitting

recursion and mutual recursion between variables and bounds.

A type environment � is well formed if � ` �(X) ok for all X in dom(�). We also say that

an environment � is well formed with respect to �, written � ` � ok, if � ` �(x) ok for all x in

dom(�).

4.3.3 Typing Rules

The typing judgment for expressions is of the form �; � ` e 2 T, read as \in the type environment

� and the environment �, e has type T."

As before, the type of a variable is determined by the environment.

�; � ` x 2 �(x) (GT-Var)

The rule GT-Field below for �eld access is essentially the same as in FJ. In case the type of

e

0

is a type variable, the least non-variable supertype bound

�

(T

0

) is used to obtain the �elds of

the type.

�; � ` e

0

2 T

0

�elds(bound

�

(T

0

)) = T f

�;� ` e

0

.f

i

2 T

i

(GT-Field)

The rule GT-Invk for method invocation looks complicated but it is actually straightforward, too.

�; � ` e

0

2 T

0

mtype(m; bound

�

(T

0

)) = <Y / P>U!U

� ` V ok � ` V <

:

[V=Y]P �;� ` e 2 S � ` S <

:

[V=Y]U

�;� ` e

0

.m<V>(e) 2 [V=Y]U

(GT-Invk)

It �rst obtain the type <Y / P>U!U of the method m; then, it is checked that the type arguments V

are well-formed and respect the bounds P of the method. As in FJ, the actual type arguments must

be subtypes of those of the formal arguments (where the formal type arguments Y are replaced with

the actual type arguments V); the type of the whole expression is the result type of the method.
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The rule GT-New for object constructors is simple:

� ` N ok �elds(N) = T f �;� ` e 2 S � ` S <

:

T

�;� ` new N(e) 2 N

(GT-New)

As in FJ (with typecasts), we have three rules for typecasts:

�; � ` e

0

2 T

0

� ` bound

�

(T

0

) <

:

N

�;� ` (N)e

0

2 N

(GT-UCast)

�; � ` e

0

2 T

0

� ` N ok

� ` N <

:

bound

�

(T

0

) N 6= bound

�

(T

0

)

dcast(head(N); head(bound

�

(T

0

)))

�; � ` (N)e

0

2 N

(GT-DCast)

�; � ` e

0

2 T

0

� ` N ok

C = head(N) D = head(bound

�

(T

0

)) C 6E D D 6E C

stupid warning

�;� ` (N)e

0

2 N

(GT-SCast)

The rules GT-DCast and GT-SCast are equipped with conditions to ensure that the result of

the cast will be the same at run time, no matter whether we use the high-level (type-passing)

reduction rules de�ned in the following section or the erasure semantics considered in Section 4.6.

For example, suppose we have de�ned:

class List<X / Object> / Object { ... }

class LinkedList<X / Object> / List<X> { ... }

Now, if o has type Object, then the cast (List<C>)o is not permitted since List<D> is another

subtype of Object. (At run time, o may be bound to new List<D>(); then the cast would fail in the

type-passing semantics but succeed in the erasure semantics, since (List<C>)o erases to (List)o

by removing type parameter while both new List<C>() and new List<D>() erase to new List().)

On the other hand, if cl is given type List<C>, then the cast (LinkedList<C>)cl is permitted,

since the type-passing and erased versions of the cast are guaranteed to either both succeed or both

fail. Similarly, GT-SCast prevents a stupid cast from succeeding in erasure semantics.

The typing judgment for method declarations has the form M OK IN C<X / N>, read \method

declaration M is ok if it occurs in class C<X / N>," and is derived by the following rule:

� = X<

:

N; Y<

:

P � ` T; T; P ok

�; x : T; this : C<X> ` e

0

2 S � ` S <

:

T

CT (C) = class C<X / N> / N {...}

if mtype(m; N) = <Z / Q>U!U, then P; T = [Y=Z](Q; U) and � ` T <

:

[Y=Z]U

<Y / P> T m (T x) {"e

0

;} OK IN C<X / N>

(GT-Method)

First of all, the declared bounds P and types T and T

0

must be well-formed. The method body e

0

must be given a subtype of the declared result type. The last conditions contains one additional

subtlety that FJ (and Java) do not have. In FGJ (and GJ), unlike in FJ (and Java), covariant

subtyping of method results is allowed. That is, the result type of a method may be subtype of the
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result type of the corresponding method in the superclass, while the bounds of type variables and

the argument types must be identical (modulo renaming of type variables).

The typing judgment for class declarations has the form L OK, read \class declaration L is ok,"

and is derived by the following rule:

X<

:

N ` N; N; T ok �elds(N) = U g M OK IN C<X / N>

K = C(U g, T f) {super(g); this.f = f;}

class C<X / N> / N {T f; K M} OK

(GT-Class)

It checks well-formedness of the bounds N of type parameters, supertype N, and the type of the

�elds T; constructor arguments must agree with the types of all the �elds from this class and its

superclasses; and methods must be ok. Finally, a class table is said to be ok if all its class de�nitions

are ok.

4.4 Reduction Semantics

The reduction relation is of the form e �! e

0

, read \expression e reduces to expression e

0

in one

step." We write �!

�

for the re
exive and transitive closure of �!.

The reduction rules for basic computation are given as follows.

�elds(N) = T f

(new N(e)).f

i

�! e

i

(GR-Field)

mbody(m<V>; N) = (x; e

0

)

(new N(e)).m<V>(d) �! [d=x; new N(e)=this]e

0

(GR-Invk)

; ` N <

:

P

(P)(new N(e)) �! new N(e)

(GR-Cast)

There are three reduction rules, one for �eld access, one for method invocation, and one for type-

casts. Actually, thanks to auxiliary functions, they are a little more complicated than we had in

FJ.

The reduction rules may be applied at any point in an expression, so we also need the obvious

congruence rules as before.

e

0

�! e

0

0

e

0

.f �! e

0

0

.f

(GRC-Field)

e

0

�! e

0

0

e

0

.m<T>(e) �! e

0

0

.m<T>(e)

(GRC-Inv-Recv)

e

i

�! e

i

0

e

0

.m<T>( : : : ,e

i

, : : : ) �! e

0

.m<T>( : : : e

i

0

, : : : )

(GRC-Inv-Arg)

e

i

�! e

i

0

new N( : : : ,e

i

, : : : ) �! new N( : : : e

i

0

, : : : )

(GRC-New-Arg)

e

0

�! e

0

0

(N)e

0

�! (N)e

0

0

(GRC-Cast)



4.5. PROPERTIES OF REDUCTION SEMANTICS 63

4.5 Properties of Reduction Semantics

4.5.1 Type Soundness

FGJ programs enjoy subject reduction and progress properties exactly like programs in FJ (Theo-

rems 2.5.1 and 2.5.2) The basic structures of the proofs are similar to those of Theorem 2.5.1 and

2.5.2. For subject reduction, however, since we now have parametric polymorphism combined with

subtyping, we need a few more lemmas. The main lemmas required are a term substitution lemma

as before, plus similar lemmas about the preservation of subtyping and typing under type substitu-

tion. (Readers familiar with proofs of subject reduction for typed lambda-calculi like F

�

[CMMS94]

will notice many similarities).

4.5.1.1 Theorem [Subject reduction]: If �; � ` e 2 T and e �! e

0

, then �; � ` e

0

2 T

0

, for

some T

0

such that � ` T

0

<

:

T.

Proof: See below. �

4.5.1.2 Theorem [Progress]: Suppose e is a well-typed expression.

(1) If e includes new N

0

(e).f as a subexpression, then �elds(N

0

) = T f and f 2 f.

(2) If e includes new N

0

(e).m<V>(d) as a subexpression, then mbody(m<V>; N

0

) = (x; e

0

) and

#(x) = #(d).

Proof: Similar to the proof of Theorem 2.5.2. �

We will develop the proof of Theorem 4.5.1.1; we begin with required lemmas.

4.5.1.3 Lemma [Weakening]: Suppose �; X<

:

N ` N ok and � ` U ok.

1. If � ` S <

:

T, then �; X<

:

N ` S <

:

T.

2. If � ` S ok, then �; X<

:

N ` S ok.

3. If �; � ` e 2 T, then �; �; x : U ` e 2 T, and �; X<

:

N; � ` e 2 T.

Proof: Each of them is proved by straightforward induction on the derivation of � ` S <

:

T and

� ` S ok and �; � ` e 2 T. �

4.5.1.4 Lemma: If � ` E<V> <

:

D<U> and D 6E C and C 6E D, then E 6E C and C 6E E.

Proof: It is easy to see that � ` E<V> <

:

D<U> implies E E D. The conclusions are easily proved

by contradiction. (A similar argument is found in the proof of Lemma 2.6.1.) �

4.5.1.5 Lemma: Suppose dcast(C; D) and � ` C<T> <

:

D<U>. If � ` C<T

0

> <

:

D<U>, then T

0

= T.

Proof: The case where C = D is easy: since dcast is antisymmetric, if � ` C<T> <

:

D<U>, then

C<T> and D<U> must be equal. The case where dcast(C; D) because dcast(C; E) and dcast(E; D) is

also easy: note that, from every judgment � ` C<T> <

:

D<U>, we can have � ` C<T> <

:

E<V> and

� ` E<V> <

:

D<U>. Finally, if D is the direct superclass of C, C<T> is uniquely determined by D<U>

because FV (N) = X where CT (C) = class C<X / N> / N{...}, �nishing the proof. �
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4.5.1.6 Lemma: If dcast(C; E) and C E D E E, then dcast(C; D) and dcast(D; E).

Proof: Easy. �

4.5.1.7 Lemma [Type substitution preserves subtyping]: If �

1

; X<

:

N;�

2

` S <

:

T and �

1

`

U <

:

[U=X]N with �

1

` U ok and none of X appearing in �

1

, then �

1

; [U=X]�

2

` [U=X]S <

:

[U=X]T.

Proof: By induction on the derivation of �

1

; X<

:

N;�

2

` S <

:

T.

Case S-Refl:

Trivial.

Case S-Trans, S-Class:

Easy.

Case S-Var: S = X T = (�

1

; X<

:

N;�

2

)(X)

If X 2 dom(�

1

)[ dom(�

2

), then it's trivial. On the other hand, if X = X

i

, then, by assumption, we

have �

1

` U

i

<

:

[U=X]N

i

. Finally, Lemma 4.5.1.3 �nishes the case. �

4.5.1.8 Lemma [Type substitution preserves type well-formedness]: If �

1

; X<

:

N;�

2

` T ok

and �

1

` U <

:

[U=X]N with �

1

` U ok and none of X appearing in �

1

, then �

1

; [U=X]�

2

` [U=X]T ok.

Proof: By induction on the derivation of �

1

; X<

:

N; �

2

` T ok, with a case analysis on the last

rule used.

Case WF-Object:

Trivial.

Case WF-Var:

It follows from �

1

` U ok and Lemma 4.5.1.3.

Case WF-Class: T = C<T> �

1

; X<

:

N; �

2

` T ok �

1

; X<

:

N; �

2

` T <

:

[T=Y]P

CT (C) = class C<Y / P> / N {...}

By the induction hypothesis,

�

1

; [U=X]�

2

` [U=X]T ok:

On the other hand, by Lemma 4.5.1.7, �

1

; [U=X]�

2

` [U=X]T <

:

[U=X][T=Y]P. Since Y<

:

P ` P by the

rule GT-Class, P does not include any of X as a free variable. Thus, [U=X][T=Y]P = [[U=X]T=Y]P,

and �nally, we have �

1

; [U=X]�

2

` C<[U=X]T> ok by WF-Class. �

4.5.1.9 Lemma: Suppose �

1

; X<

:

N;�

2

` T ok and �

1

` U <

:

[U=X]N with �

1

` U ok and none of X

appearing in �

1

. Then, �

1

; [U=X]�

2

` bound

�

1

; [U=X]�

2

([U=X]T) <

:

[U=X](bound

�

1

;X<

:

N;�

2

(T)).

Proof: The case where T is a nonvariable type is trivial. The case where T is a type variable X and

X 2 dom(�

1

)[dom(�

2

) is also easy. Finally, if T is a type variable X

i

, then bound

�

1

; [U=X]�

2

([U=X]T) =

U

i

and [U=X](bound

�

1

;X<

:

N;�

2

(T)) = [U=X]N

i

; the assumption �

1

` U <

:

[U=X]N and Lemma 4.5.1.3

�nish the proof. �

4.5.1.10 Lemma: If � ` S <

:

T and �elds(bound

�

(T)) = T f, then �elds(bound

�

(S)) = S g and

S

i

= T

i

and g

i

= f

i

for all i � #(f).

Proof: By straightforward induction on the derivation of � ` S <

:

T.
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Case S-Trans:

Trivial.

Case S-Var:

Trivial because bound

�

(S) = bound

�

(T).

Case S-Trans:

Easy.

Case S-Class: S = C<T> T = [T=X]N CT (C) = class C<X / N> / N {S g; ...}

By the rule F-Class, �elds(C<T>) = U f; [T=X]S g where U f = �elds([T=X]N). �

4.5.1.11 Lemma: If � ` T ok and mtype(m; bound

�

(T)) = <Y / P>U!U

0

, then for any S such that

� ` S <

:

T and � ` S ok, we have mtype(m; bound

�

(S)) = <Y / P>U!U

0

0

and �; Y<

:

P ` U

0

0

<

:

U

0

.

Proof: By straightforward induction on the derivation of � ` S <

:

T with a case analysis by the

last rule used.

Case S-Var:

Trivial because bound

�

(S) = bound

�

(T).

Case S-Trans:

Easy.

Case S-Class: S = C<T> T = [T=X]N CT (C) = class C<X / N> / N { ... M}

If M do not include a declaration of m, it is easy to show the conclusion, since

mtype(m; bound

�

(S)) = mtype(m; bound

�

(T))

by the rule MT-Super.

On the other hand, suppose M includes a declaration of m. By straightforward induction on the

derivation of mtype(m; T), we can show

mtype(m; T) = [T=X]<Y / P

0

>U

0

!U

0

0

where <Y / P

0

>U

0

!U

0

00

= mtype(m; N). Without loss of generality, we can assume that X and Y are

distinct and, in particular, that [T=X]U

0

00

= U

0

. By GT-Method, it must be the case that

<Y / P

0

> W

0

0

m (U

0

x) {...} 2 M

and

X<

:

N; Y<

:

P

0

` W

0

0

<

:

U

0

00

:

By Lemmas 4.5.1.7 and 4.5.1.3, we have

�; Y<

:

P ` [T=X]W

0

0

<

:

U

0

:

Since mtype(m; bound

�

(S)) = mtype(m; S) = [T=X]<Y / P

0

>U

0

!W

0

0

by MT-Class, letting U

0

0

=

[T=X]W

0

0

�nishes the case. �

4.5.1.12 Lemma [Type substitution preserves typing]: If �

1

; X<

:

N; �

2

; � ` e 2 T and �

1

`

U <

:

[U=X]N where �

1

` U ok and none of X appears in �

1

, then �

1

; [U=X]�

2

; [U=X]� ` [U=X]e 2 S for

some S such that �

1

; [U=X]�

2

` S <

:

[U=X]T.

Proof: By induction on the derivation of �

1

; X<

:

N;�

2

; � ` e 2 T with a case analysis on the last

rule used.



66 CHAPTER 4. FEATHERWEIGHT GJ

Case GT-Var:

Trivial.

CaseGT-Field: e = e

0

.f

i

�

1

; X<

:

N; �

2

; � ` e

0

2 T

0

�elds(bound

�

1

; X<

:

N; �

2

(T

0

)) = T f

T = T

i

By the induction hypothesis, �

1

; [U=X]�

2

; [U=X]� ` [U=X]e

0

2 S

0

and �

1

; [U=X]�

2

` S

0

<

:

[U=X]T

0

.

By Lemma 4.5.1.9,

�

1

; [U=X]�

2

` bound

�

1

; [U=X]�

2

(T

0

) <

:

[U=X]bound

�

1

; X<

:

N; �

2

(T

0

):

Then, it is easy to show

�

1

; [U=X]�

2

` bound

�

1

; [U=X]�

2

(S

0

) <

:

[U=X]bound

�

1

; X<

:

N; �

2

(T

0

):

By Lemma 4.5.1.10, �elds(bound

�

1

; [U=X]�

2

(S

0

)) = S g and we have f

j

= g

j

and S

j

= [U=X]T

j

for

j � #(f). By the rule GT-Field, �

1

; [U=X]�

2

; [U=X]� ` [U=X]e

0

.f

i

2 S

i

. Letting S = S

i

(= [U=X]T

i

)

�nishes the case.

Case GT-Invk: e = e

0

.m<V>(e) �

1

; X<

:

N; �

2

; � ` e

0

2 T

0

mtype(m; bound

�

1

;X<

:

N;�

2

(T

0

)) = <Y / P>W!W

0

�

1

; X<

:

N; �

2

` V ok �

1

; X<

:

N; �

2

` V <

:

[V=Y]P

�

1

; X<

:

N; �

2

; � ` e 2 S �

1

; X<

:

N; �

2

` S <

:

[V=Y]W

T = [V=Y]W

0

By the induction hypothesis,

�

1

; [U=X]�

2

; [U=X]� ` [U=X]e

0

2 S

0

�

1

; [U=X]�

2

` S

0

<

:

[U=X]T

0

and

�

1

; [U=X]�

2

; [U=X]� ` [U=X]e 2 S

0

�

1

; [U=X]�

2

` S

0

<

:

[U=X]S:

By using Lemma 4.5.1.9, it is easy to show

�

1

; [U=X]�

2

` bound

�

1

; [U=X]�

2

(S

0

) <

:

[U=X]bound

�

1

; X<

:

N; �

2

(T

0

):

Then, by Lemma 4.5.1.11,

mtype(m; bound

�

1

;[U=X]�

2

(S

0

)) = <Y / [U=X]P>[U=X]W!W

0

0

�

1

; [U=X]�

2

; Y<

:

[U=X]P ` W

0

0

<

:

[U=X]W

0

:

By Lemma 4.5.1.8,

�

1

; [U=X]�

2

` [U=X]V ok

Without loss of generality, we can assume that X and Y are distinct and that none of Y appear in

U; then [U=X][V=Y] = [[U=X]V=Y][U=X]. By Lemma 4.5.1.7,

�

1

; [U=X]�

2

` [U=X]V <

:

[U=X][V=Y]P (= [[U=X]V=Y][U=X]P)

�

1

; [U=X]�

2

` [U=X]S <

:

[U=X][V=Y]W (= [[U=X]V=Y][U=X]W):

By the rule S-Trans,

�

1

; [U=X]�

2

` S

0

<

:

[[U=X]V=Y][U=X]W:
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By Lemma 4.5.1.7, we have

�

1

; [U=X]�

2

` [V=Y]W

0

0

<

:

[U=X][V=Y]W

0

(= [[U=X]V=Y][U=X]W

0

):

Finally, by the rule GT-Invk,

�

1

; [U=X]�

2

; [U=X]� ` ([U=X]e

0

).m<[U=X]V>([U=X]d) 2 S

where S = [V=Y]W

0

0

, �nishing the case.

Case GT-New, GT-UCast:

Easy.

Case GT-DCast: e = (N)e

0

� = �

1

; X<

:

N; �

2

�;� ` e

0

2 T

0

C = head(N) E = head(bound

�

(T

0

)) � ` N <

:

bound

�

(T

0

)

N 6= bound

�

(T

0

) dcast(C; E)

By the induction hypothesis, �

1

; [U=X]�

2

; [U=X]� ` [U=X]e

0

2 S

0

for some S

0

such that �

1

; [U=X]�

2

`

S

0

<

:

[U=X]T

0

. Let �

0

= �

1

; [U=X]�

2

. We have three subcases according to a relation between S

0

and N.

Subcase: �

0

` bound

�

(S

0

) <

:

N

By the rule GT-UCast, �

0

; � ` [U=X]((N)e

0

) 2 N.

Subcase: �

0

` N <

:

bound

�

0

(S

0

)

By using Lemma 4.5.1.9 and the fact that � ` S <

:

T implies � ` bound

�

(S) <

:

bound

�

(T), we

have �

0

` bound

�

0

(S

0

) <

:

[U=X]bound

�

(T

0

). Then, C E D E E where D = head(bound

�

0

(S

0

)). By

Lemma 4.5.1.6, we have dcast(C; D); �nally, the rule GT-DCast �nishes the subcase.

Subcase: �

0

` N 6<

:

bound

�

(S

0

) �

0

` bound

�

(S

0

) 6<

:

N

By using Lemma 4.5.1.9 and the fact that �

0

` S <

:

T implies �

0

` bound

�

(S) <

:

bound

�

(T), we

have �

0

` bound

�

0

(S

0

) <

:

[U=X]bound

�

(T

0

).

Let D = head(bound

�

(S

0

)). We show below that, by contradiction, that neither C 6E D nor

D 6E C holds. Suppose C E D. Then, there exist some V

0

such that �

0

` C<V

0

> <

:

bound

�

(S

0

).

By Lemma 4.5.1.6, we have dcast(C; D); it follows from Lemma 4.5.1.5 that C<V

0

> = N, con-

tradicting the assumption; thus, C 6E D. On the other hand, suppose D E C. Since we have

�

0

` bound

�

0

(S

0

) <

:

[U=X](bound

�

(T

0

)), we can have C<V

0

> such that �

0

` bound

�

0

(S

0

) <

:

C<V

0

>

and �

0

` C<V

0

> <

:

[U=X](bound

�

(T

0

)). Then, N = C<V

0

> by Lemma 4.5.1.5, contradicting the

assumption �

0

` bound

�

0

(S

0

) <

:

N; thus, D 6E C.

Finally, by the rule GT-SCast, �; � ` [d=x]((N)e

0

) 2 N with stupid warning. �

Case GT-SCast: e = (N)e

0

� = �

1

; X<

:

N; �

2

�;� ` e

0

2 T

0

C = head(N) E = head(bound

�

(T

0

)) C 6E E E 6E C

By the induction hypothesis, �

1

; [U=X]�

2

; [U=X]� ` [U=X]e

0

2 S

0

for some S

0

such that �

1

; [U=X]�

2

`

S

0

<

:

[U=X]T

0

. Using Lemma 4.5.1.9, we have �

1

; [U=X]�

2

` bound

�

1

; [U=X]�

2

(S

0

) <

:

[U=X]bound

�

(T

0

).

Since head([U=X]bound

�

(T

0

)) = head(bound

�

(T

0

)) = E, by Lemma 4.5.1.4, head(bound

�

(S

0

)) 6E C

and C 6E head(bound

�

(S

0

)). By the rule GT-SCast, �

1

; [U=X]�

2

; [U=X]� ` [U=X](N)e

0

2 N with

stupid warning, �nishing the case.

4.5.1.13 Lemma [Term substitution preserves typing]: If �; �; x : T ` e 2 T and, �; � `

d 2 S where � ` S <

:

T, then �; � ` [d=x]e 2 S for some S such that � ` S <

:

T.

Proof: By induction on the derivation of �; �; x : T ` e 2 T with a case analysis on the last rule

used.
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Case GT-Var: e = x

If x 2 dom(�), then it's trivial since [d=x]x = x. On the other hand, if x = x

i

and T = T

i

, then

letting S = S

i

�nishing the case.

Case GT-Field: e = e

0

.f

i

�;�; x : T ` e

0

2 T

0

�elds(bound

�

(T

0

)) = T f T = T

i

By the induction hypothesis, �; � ` [d=x]e

0

2 S

0

for some S

0

such that � ` S

0

<

:

T

0

. By

Lemma 4.5.1.10, �elds(bound

�

(S

0

)) = S g such that S

j

= T

j

and f

j

= g

j

for all j � #(T).

Therefore, by the rule GT-Field, �; � ` [d=x]e

0

.f

i

2 T

CaseGT-Invk: e = e

0

.m<V>(e) �;�; x : T ` e

0

2 T

0

mtype(m; bound

�

(T

0

)) = <Y / P>U!U

� ` V ok � ` V <

:

[V=Y]P �;�; x : T ` e 2 S

� ` S <

:

[V=Y]U T = [V=Y]U

By the induction hypothesis, �; � ` [d=x]e

0

2 S

0

for some S

0

such that � ` S

0

<

:

T

0

and

�;� ` [d=x]e 2 W for some W such that � ` W <

:

S. By Lemma 4.5.1.11, mtype(m; bound

�

(S

0

)) =

<Y / P>U!U

0

and �; Y<

:

P ` U

0

<

:

U. By Lemma 4.5.1.7, � ` [V=Y]U

0

<

:

[V=Y]U. By the rule

GT-Method, �; � ` [d=x](e

0

.m<V>(e)) 2 [V=Y]U

0

. Letting S = [V=Y]U

0

�nishes the case.

Case GT-New, GT-UCast:

Easy.

Case GT-DCast: �;�; x : T ` e

0

2 T

0

C = head(N) E = head(bound

�

(T

0

))

� ` N <

:

bound

�

(T

0

) N 6= bound

�

(T

0

) dcast(C; E)

By the induction hypothesis, �; � ` [d=x]e

0

2 S

0

for some S

0

such that � ` S

0

<

:

T

0

. We have

three subcases according to a relation between S

0

and N.

Subcase: � ` bound

�

(S

0

) <

:

N

By the rule GT-UCast, �; � ` [d=x]((N)e

0

) 2 N.

Subcase: � ` N <

:

bound

�

(S

0

)

Since � ` S

0

<

:

T

0

implies � ` bound

�

(S

0

) <

:

bound

�

(T

0

), for any S such that � ` C<S> <

:

bound

�

(S

0

) and � ` C<S> ok, we have � ` C<S> <

:

bound

�

(T

0

), which implies S = U for all S.

Finally, the rule GT-DCast �nishes the subcase.

Subcase: � ` N 6<

:

bound

�

(S

0

) � ` bound

�

(S

0

) 6<

:

N

Let bound

�

(S

0

) = D<V> and bound

�

(T

0

) = E<W>. We show that, by contradiction, that C 6E D or

D 6E C.

Suppose C E D. Then, we can have C<U

0

> such that � ` C<U

0

> <

:

D<V>. By transitivity of <

:

and the fact that � ` S

0

<

:

T

0

implies � ` bound

�

(S

0

) <

:

bound

�

(T

0

), we have � ` C<U

0

> <

:

bound

�

(T

0

). Thus, U

0

= U, contradicting the assumption � ` N 6<

:

bound

�

(S

0

) (= D<V>). On the

other hand, suppose D ext C. Then, we can have a sequence of types T

0

where T

1

0

= bound

�

(S

0

)

and T

n

0

= bound

�

(T

0

) and � ` T

i

0

<

:

T

i+1

0

derived by S-Class; moreover it must include C<U

0

>;

then, � ` C<U

0

> <

:

bound

�

(T

0

) and U

0

= U, contradicting the assumption � ` bound

�

(S

0

) 6<

:

N.

Therefore, C 6E D and D 6E C.

By the rule GT-SCast, �; � ` [d=x]((N)e

0

) 2 N with stupid warning. �

Case GT-SCast: �;�; x : T ` e

0

2 T

0

C = head(N) D = head(bound

�

(T

0

))

C 6E D D 6E C

By the induction hypothesis, �; � ` [d=x]e

0

2 S

0

for some S

0

such that � ` S

0

<

:

T

0

, which implies

� ` bound

�

(S

0

) <

:

bound

�

(T

0

). Let E = head(bound

�

(S

0

)). By Lemma 4.5.1.4, we have E 6E C

and C 6E E. Then, by the rule GT-SCast, �; � ` [d=x]((N)e

0

) 2 N with stupid warning.
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4.5.1.14 Lemma: If mtype(m; C<T>) = <Y / P>U!U and mbody(m<V>; C<T>) = (x; e

0

) where � `

C<T> ok and � ` V ok and � ` V <

:

[V=Y]P, then there exist some N and S such that � ` C<T> <

:

N

and � ` N ok and � ` S <

:

[V=Y]U and � ` S ok and �; x : [V=Y]U; this : N ` e

0

2 S.

Proof: By induction on the derivation of mbody(m<V>; C<T>) = (x; e) using Lemmas 4.5.1.7 and

4.5.1.12.

Case MB-Class: CT (C) = class C<X / N> / P {... M}

<Y / Q> T

0

m (S x) {"e;} 2 M

Let � = x : S; this : C<X> and �

0

= X<

:

N; Y<

:

Q. By the rules GT-Class and GT-Method, we

have �

0

; � ` e 2 S

0

and �

0

; � ` S

0

<

:

T

0

for some S

0

. Since � ` C<T> ok, we have � ` T <

:

[T=X]N

by the rule WF-Class. By Lemmas 4.5.1.3, 4.5.1.7, and 4.5.1.12,

�; Y<

:

[T=X]Q ` [T=X]S

0

<

:

[T=X]T

0

and

�; Y<

:

[T=X]Q; x : [T=X]S; this : C<T> ` [T=X]e 2 S

0

0

where

�; Y<

:

[T=X]Q ` S

0

0

<

:

[T=X]S

0

:

By the rule MT-Class, we have

[T=X]Q = P [T=X]S = U [T=X]T

0

= U:

Again, by Lemmas 4.5.1.7 and 4.5.1.12,

� ` [V=Y]S

0

0

<

:

[V=Y]U

and

�; x : [V=Y]U; this : C<T> ` [V=Y][T=X]e 2 S

0

00

:

where

� ` S

0

00

<

:

[V=Y]S

0

0

:

Since any of Y does not occur in T,

e

0

= [T=X; V=Y]e = [V=Y][T=X]e:

Letting N = C<T> and S = S

0

00

�nishes the case.

Case MB-Super: CT (C) = class C<X / N> / N {... M}

m is not de�ned in M.

Easy from the induction hypothesis and the fact that � ` C<T> <

:

[T=X]N. �

Now we can prove Theorem 4.5.1.1.

Proof of Theorem 4.5.1.1: By induction on the derivation of e �! e

0

with a case analysis on

the reduction rule used. We will show main cases.
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Case GR-Field: e = new N(e).f

i

�elds(N) = T f e

0

= e

i

By the rules GT-Field and GT-New, we have

�; � ` new N(e) 2 N

�;� ` e 2 S

� ` S <

:

T:

In particular, �; � ` e

i

2 S

i

�nishes the case.

Case GR-Invk: e = new N(e).m<V>(d) mbody(m<V>; N) = (x; e

0

)

e

0

= [d=x; new N(e)=this]e

0

By the rules GT-Invk and GT-New, we have

�; � ` new N(e) 2 N mtype(m; bound

�

(N)) = <Y / P>U!U

� ` V ok � ` V <

:

[V=Y]P

�;� ` d 2 S � ` S <

:

[V=Y]U

T = [V=Y]U � ` N ok

By Lemma 4.5.1.14, �; x : [V=Y]U; this : P ` e

0

2 S for some P and S such that � ` N <

:

P

where � ` P ok, and � ` S <

:

[V=Y]U where � ` S ok. Then, by Lemmas 4.5.1.3 and 4.5.1.13,

�; � ` [d=x; new N(e)=this]e

0

2 T

0

for some T

0

such that � ` T

0

<

:

S. By the rule S-Trans, we

have � ` T

0

<

:

T. Finally, letting T

0

= T

0

�nishes the case.

Case GR-Cast:

Easy.

Case GRC-Field: e = e

0

.f e

0

= e

0

0

.f e

0

�! e

0

0

By the rule GT-Field, we have

�; � ` e

0

2 T

0

�elds(bound

�

(T

0

)) = T f

T = T

i

By the induction hypothesis, �; � ` e

0

0

2 T

0

0

for some T

0

0

such that � ` T

0

0

<

:

T

0

. By

Lemma 4.5.1.10, �elds(bound

�

(T

0

0

)) = T

0

g, and for j � #(f), we have g

i

= f

i

and T

i

0

= T

i

.

Therefore, by the rule GT-Field, �; � ` e

0

0

.f 2 T

i

0

. Letting T

0

= T

i

0

�nishes the case.

Case GRC-Inv-Recv: e = e

0

.m<V>(e) e

0

= e

0

0

.m<V>(e) e

0

�! e

0

0

By the rule GT-Invk, we have

�; � ` e

0

2 T

0

mtype(m; bound

�

(T

0

)) = <Y / P>T!U

� ` V ok � ` V <

:

[V=Y]P

� ` e 2 S � ` S <

:

[V=Y]T

T = [V=Y]U

By the induction hypothesis, �; � ` e

0

0

2 T

0

0

for some T

0

0

such that � ` T

0

0

<

:

T

0

. By

Lemma 4.5.1.11, mtype(m; bound

�

(T

0

0

)) = <Y / P>T!V and �; Y<

:

P ` V <

:

U. By Lemma 4.5.1.7,

� ` [V=Y]V <

:

[V=Y]U. Then, by the rule GT-Invk, �; � ` e

0

0

.m<V>(e) 2 [V=Y]V. Letting

T

0

0

= [V=Y]V �nishes the case.

Case GRC-Cast: e = (N)e

0

e

0

= (N)e

0

0

e

0

�! e

0

0

There are three subcases according to the last typing rule GT-UCast, GT-DCast or GT-SCast.

These subcases are similar to the subcases in the case forGT-DCast in the proof of Lemma 4.5.1.13.

Case GRC-Inv-Arg, GRC-New-Arg:

Easy. �
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4.5.2 Backward Compatibility

FGJ is backward compatible with FJ. Intuitively, this means that an implementation of FGJ can

be used to typecheck and execute FJ programs without changing their meaning. In the following

statements, we use subscripts FJ or FGJ to show which set of rules is used.

4.5.2.1 Lemma: If CT is an FJ class table, then �elds

FJ

(C) = �elds

FGJ

(C) for all C 2 dom(CT ).

4.5.2.2 Lemma: Suppose CT is an FJ class table. Then, mtype

FJ

(m; C) = C ! C if and only if

mtype

FGJ

(m; C) = C ! C.

4.5.2.3 Lemma: Suppose CT is an FJ class table. Then, mbody

FJ

(m; C) = (x; e) if and only if

mbody

FGJ

(m; C) = (x; e).

Proof: All these lemmas are easy. Note that all substitutions in the derivations are always empty

and there are no methods with type arguments. �

We can show that a well-typed FJ program is always a well-typed FGJ program and that FJ

and FGJ reduction correspond. (Note that it isn't quite the case that the well-typedness of an

FJ program under the FGJ rules implies its well-typedness in FJ, because FGJ allows covariant

overriding of methods and FJ does not.)

4.5.2.4 Theorem [Backward compatibility]: If an FJ program (e; CT ) is well typed under the

typing rules of FJ, then it is also well-typed under the rules of FGJ. Moreover, for all FJ programs

e and e

0

(whether well typed or not), e �!

FJ

e

0

if and only if e �!

FGJ

e

0

.

Proof: The �rst half is shown by straightforward induction on the derivation of � `

FJ

e 2

C, followed by an analysis of the rules GT-Method and GT-Class. In the second half, both

directions are shown by induction on a derivation of the reduction relation, with a case analysis on

the last rule used. �

4.6 Compiling FGJ to FJ

We now explore the second implementation style for GJ and FGJ. The current GJ compiler works

by translation into the standard JVM, which maintains no information about type parameters at

run-time. In the literature [OW97], there have been proposed two strategies for compiling para-

metric classes to non-parametric classes. One strategy, called heterogeneous translation adopted by

implementation of C++ templates [Str97], is as follows. Suppose we have a parametric class C<X>;

for each type parameter T used in a program, the compiler generates a specialized class obtained by

replacing X with T. The other strategy, we discuss here, is called homogeneous style: the compiler

translates one parametric class to one class by removing type parameter information. The class

C<X> is compiled to a single class de�nition of C. We model this compilation in our framework

by an erasure translation from FGJ into FJ. We show that this translation maps well-typed FGJ

programs into well-typed FJ programs, and that the behavior of a program in FGJ matches (in a

suitable sense) the behavior of its erasure under the FJ reduction rules.

We begin with a brief overview of the erasure translation with a concrete example. A program

is erased by removing type parameters and inserting downcasts where required. The erasure of a

non-variable type is obtained just by removing type parameters, and the erasure of type variables

is the erasure of their bounds. For example, Pair<A,B> is erased to Pair and X in the de�nition of

Pair<X,Y> class is erased to Object; the class Pair<X,Y> of Section 4.1 erases to the following:
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class Pair extends Object {

Object fst;

Object snd;

Pair(Object fst, Object snd) {

super(); this.fst=fst; this.snd=snd;

}

Pair setfst(Object newfst) {

return new Pair(newfst, this.snd);

}

}

For expressions, the erasure inserts downcasts to recover type information of the original program.

For example, the �eld selection

new Pair<A,B>(new A(), new B()).snd

erases to

(B)new Pair(new A(), new B()).snd

Since the type of �eld snd is Object in the compiled de�nition, the downcast (B) is needed to use

the result of the �eld access as a B object. We call such downcasts inserted by erasure synthetic.

A key property of the erasure transformation is that it satis�es a so-called cast-iron guarantee: if

the FGJ program is well-typed, then no synthetic downcast will fail at run-time. In the following

discussion, we often distinguish synthetic casts from typecasts derived from original FGJ programs

by superscripting typecast expression, writing (C)

s

. Otherwise, they behave exactly the same as

ordinary typecasts.

In FGJ (and GJ), a subclass may extend an instantiated superclass. This means that, unlike in

FJ (and Java), the types of the �elds and the methods in the subclass may not be identical to the

types in the superclass. For example, we may declare a specialized subclass PairOfA as a subclass

of the instantiation Pair<A,A>, which instantiates both X and Y to a given class A.

class PairOfA extends Pair<A,A> {

PairOfA(A fst, A snd) {

super(fst, snd);

}

PairOfA setfst(A newfst) {

return new PairOfA(newfst, this.snd);

}

}

Note that, in the setfst method, the argument type A matches the argument type of setfst

in Pair<A,A>, while the result type PairOfA is a subtype of the result type in Pair<A,A>; this

is permitted by FGJ's covariant overriding, found in the rule GT-Method. Erasing the class

PairOfA yields the following:

class PairOfA extends Pair {

PairOfA(Object fst, Object snd) {

super(fst, snd);

}

Pair setfst(Object newfst) {

return new PairOfA((A)newfst, (A)this.snd);

}

}
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Here arguments to the constructor and the method are given type Object, even though the erasure

of A is itself; and the result of the method is given type Pair, even though the erasure of PairOfA is

itself. In both cases, the types are chosen to correspond to types in Pair, the highest superclass in

which the �elds and method are de�ned.

1

Two synthetic downcasts (A)

s

are inserted to remember

the intended types of newfst and the �eld snd are A (although, in this example, these synthetic

casts do not have signi�cance).

Now, we proceed to the formal de�nition of erasure.

4.6.1 Erasure of Types

To erase a type, we remove any type parameters and replace type variables with the erasure of

their bounds. Write jTj

�

for the erasure of type T with respect to type environment �:

jTj

�

= head(bound

�

(T))

4.6.2 Auxiliary De�nitions

As we have seen above, in order to specify a type-preserving erasure from FGJ to FJ, it is necessary

to know the type of a �eld or method in the highest superclass in which it is de�ned. The maximum

�eld types of a class C, written �eldsmax (C), is the sequence of pairs of a type and a �eld name

de�ned as follows:

�eldsmax (Object) = �

CT (C) = class C<X / N> / N {T f; ... }

� = X<

:

N C g = �eldsmax (head(N))

�eldsmax (C) = C g; jTj

�

f

The maximum method type of m in C, written mtypemax(m, C), is de�ned as follows:

CT (C) = class C<X / N> / N {...} <Y / P>T!T = mtype(m; N)

mtypemax(m; C) = mtypemax(m; head(D))

CT (C) = class C<X / N> / N {...}

mtype(m; N) unde�ned

<Y / P>T!T = mtype(m; C<X>) � = X<

:

N; Y<

:

P

mtypemax(m; C) = jTj

�

!jTj

�

Notice that mtypemax(m; C) returns only when m is de�ned in C but it is not de�ned in any super-

classes of C: it ignores all overriding de�nitions of m.

We also need a way to look up the maximum type of a given �eld. If �eldsmax (C) = D f then

we set �eldsmax (C)(f

i

) = D

i

.

1

In Java, it is allowed that the argument types of the constructor to be A.
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4.6.3 Erasure of Expressions

We write jej

�;�

for the erasure of a well-typed expression e with respect to environment � and type

environment �. The erasure of an expression depends on the typing of that expression, since the

types are used to determine which downcasts to insert. The erasure rules are de�ned below.

The erasure of variables is the identity function.

jxj

�;�

= x (E-Var)

We have two rules each for a �eld access and a method invocation. The erasure rules are

optimized to omit synthetic casts when it is trivially safe to do so; this happens when the maximum

type is equal to the erased type.

�; � ` e

0

.f 2 T �;� ` e

0

2 T

0

�eldsmax (jT

0

j

�

)(f) = jTj

�

je

0

.fj

�;�

= je

0

j

�;�

.f

(E-Field)

�; � ` e

0

.f 2 T �;� ` e

0

2 T

0

�eldsmax (jT

0

j

�

)(f) 6= jTj

�

je

0

.fj

�;�

= (jTj

�

)

s

je

0

j

�;�

.f

(E-Field-Cast)

�; � ` e

0

.m<V>(e) 2 T �;� ` e

0

2 T

0

mtypemax(m; jT

0

j

�

) = C!D D = jTj

�

je

0

.m<V>(e)j

�;�

= je

0

j

�;�

.m(jej

�;�

)

(E-Invk)

�; � ` e

0

.m<V>(e) 2 T �;� ` e

0

2 T

0

mtypemax(m; jT

0

j

�

) = C!D D 6= jTj

�

je

0

.m<V>(e)j

�;�

= (jTj

�

)

s

je

0

j

�;�

.m(jej

�;�

)

(E-Invk-Cast)

The rules for object constructors and typecasts are straightforward:

jnew N(e)j

�;�

= new jNj

�

(jej

�;�

)
(E-New)

j(N)e

0

j

�;�

= (jNj

�

) je

0

j

�;�

(E-Cast)

Strictly speaking, one should think of the erasure operation as acting on typing derivations

rather than expressions. Since well-typed �eld access and method invocation expressions are in 1-1

correspondence with their typing derivations, the abuse of notation creates no confusion.

4.6.4 Erasure of Methods and Classes

The erasure of a method m with respect to type environment � in class C, written jMj

�;C

, is de�ned

as follows:

� = x:T; this:C<X> �

0

= X<

:

N; Y<

:

P

mtypemax(m; C) = D!D e

i

=

�

x

i

0

if D

i

= jT

i

j

�

0

(jT

i

j

�

0

)

s

x

i

0

otherwise

j<Y / P> T m (T x) {"e;}j

X<

:

N;C

= D m (D x

0

) {"[e=x]jej

�

0

;�

;}

(E-Method)

It erases the method body under the relevant environments; in case an erasure jT

i

j

�

0

of an argument

type di�ers from the corresponding argument type D

i

obtained from mtypemax(m; C), a synthetic

cast is inserted for method arguments.
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Remark: In GJ, the actual erasure is somewhat more complex, involving the introduction of

bridge methods, so that one ends up with two overloaded methods: one with the maximum type,

and one with the instantiated type. For example, the erasure of PairOfA would be:

class PairOfA extends Pair {

PairOfA(Object fst, Object snd) {

super(fst, snd);

}

Pair setfst(A newfst) {

return new PairOfA(newfst, (A)this.snd);

}

Pair setfst(Object newfst) {

return this.setfst((A)newfst);

}

}

where the second de�nition of setfst is the bridge method, which overrides the de�nition of setfst

in Pair. We don't model that extra complexity here, because it depends on overloading of method

names, which is not modeled in FJ.

The erasures of constructors and classes are straightforward:

jC(U g, T f) {super(g); this.f = f;}j

C

= C(�eldsmax (C)) {super(g); this.f = f;}

(E-Constr)

The erasure of a constructor just replaces argument declarations with �eldsmax (C).

� = X<

:

N

jclass C<X / N> / N {T f; K M}j = class C / jNj

�

{jTj

�

f; jKj

C

jMj

�;C

}

(E-Class)

We write jCT j for the erasure of a class table CT , de�ned in an obvious way.

4.7 Properties of Compilation

Having de�ned erasure, we may investigate some of its properties. As in the discussion of backward

compatibility in Section 4.5.2, we often use subscripts FJ or FGJ to avoid confusion.

4.7.1 Preservation of Typing

First, a well-typed FGJ program erases to a well-typed FJ program, as expected; moreover, syn-

thetic casts are not stupid.

4.7.1.1 Theorem [Erasure preserves typing]: If an FGJ class table CT is ok and �;� `

FGJ

e 2 T, then jCT j is ok using the FJ typing rules and j�j

�

`

FJ

jej

�;�

2 jTj

�

. Moreover, every

synthetic cast in jCT j and jej

�;�

does not involve stupid warning.

First, we show that, if an expression is well-typed, then its type is well formed (Lemma 4.7.1.5).

4.7.1.2 Lemma: If � ` S <

:

T and � ` S ok for some well-formed type environment �, then

� ` T ok.

Proof: By induction on the derivation of � ` S <

:

T with a case analysis on the last rule used.

The cases for S-Refl and S-Trans are easy.



76 CHAPTER 4. FEATHERWEIGHT GJ

Case S-Var: S = X T = �(X)

T must be well formed since � is well formed.

Case S-Class: S = C<T> T = [T=X]N CT (C) = class C<X / N> / N {...}

� ` T ok � ` T <

:

[T=X]N

Since CT (C) is ok, we also have X<

:

N ` N ok by the rule GT-Class. Then, by Lemmas 4.5.1.3 and

4.5.1.8, � ` [T=X]N ok. �

4.7.1.3 Lemma: If � ` N ok for some well-formed type environment � and �elds

FGJ

(N) = U f,

then � ` U ok.

Proof: By induction on the derivation of �elds

FGJ

(N) with a case analysis on the last rule used.

The case for F-Object is trivial.

Case F-Class: N = C<T> CT (C) = class C<X / N> / P {S f; K M}

�elds

FGJ

([T=X]P) = U g

Since CT (C) is ok, by the rule GT-Class, X<

:

N ` P ok. By Lemmas 4.5.1.3 and 4.5.1.8, � `

[T=X]P ok. Then, by the induction hypothesis, � ` U ok. Since � ` C<T> ok, we have � ` T ok

and � ` T <

:

[T=X]N by the rule WF-Class. On the other hand, by the rule GT-Class, we have

X<

:

N ` S ok: Finally, by Lemmas 4.5.1.3 and 4.5.1.8, � ` [T=X]S ok �nishing the case. �

4.7.1.4 Lemma: If � ` N ok for some well-formed type environment � and mtype

FGJ

(m; N) =

<Y / P>U!U

0

, then �; Y<

:

P ` U

0

ok.

Proof: By induction on the derivation of mtype

FGJ

(m; N) with a case analysis on the last rule

used.

Case MT-Class: N = C<T>

CT (C) = class C<X / N> / P {... M}

<Y / Q> S

0

m (S x) {"e

0

;} 2 M

[T=X](<Y / Q>S!S

0

) = <Y / P>U!U

0

Without loss of generality, we can assume that X and Y are distinct and that [T=X]Q = P and

[T=X]S

0

= U

0

. By the rule GT-Method, we have

X<

:

N; Y<

:

Q ` S

0

ok:

By the rule WF-Class, we have � ` T ok and � ` T <

:

[T=X]N. Then, by Lemma 4.5.1.3 and

4.5.1.8,

�; Y<

:

[T=X]Q ` [T=X]S

0

ok:

�nishing the case.

Case MT-Super:

Since CT (C) is ok, by the rule GT-Class, X<

:

N ` P ok. By Lemmas 4.5.1.3 and 4.5.1.8, � `

[T=X]P ok. The induction hypothesis �nishes the case. �

4.7.1.5 Lemma: If � ` � ok and �;� `

FGJ

e 2 T for some well-formed type environment �, then

� ` T ok.

Proof: By induction on the derivation of �; � `

FGJ

e 2 T with a case analysis on the last rule

used.
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Case GT-Var:

Trivial by the de�nition of well-formedness of �.

Case GT-Field: �;� `

FGJ

e

0

2 T

0

�elds

FGJ

(bound

�

(T

0

)) = T f

By the induction hypothesis, � ` T

0

ok. Since � is well formed, � ` bound

�

(T

0

) ok. Then, by

Lemma 4.7.1.3, we have � ` T ok, �nishing the case.

Case GT-Invk: �;� `

FGJ

e

0

2 T

0

mtype

FGJ

(m; bound

�

(T

0

)) = <Y / P>U!U

� ` V ok � ` V <

:

[V=Y]P

�;� `

FGJ

e 2 S � ` S <

:

[V=Y]U

T = [V=Y]U

0

By the induction hypothesis, � ` T

0

ok. Since � is well formed, � ` bound

�

(T

0

) ok. Then, by

Lemma 4.7.1.4, �; Y<

:

P ` U

0

ok. Finally, by Lemma 4.5.1.8, we have � ` [V=Y]U

0

ok �nishing the

case.

Case GT-UCast: �;� `

FGJ

e

0

2 T

0

� ` T

0

<

:

N

By the induction hypothesis, � ` T

0

ok. By Lemma 4.7.1.2, � ` N ok �nishes the case.

Case GT-New, GT-DCast, GT-SCast:

Trivial since T is well formed by assumption. �

After developing several lemmas about erasure, we prove Theorem 4.7.1.1.

4.7.1.6 Lemma: If � ` S <

:

FGJ

T, then jSj

�

<

:

FJ

jTj

�

.

Proof: Straightforward induction on the derivation of � ` S <

:

FGJ

T. �

4.7.1.7 Lemma: If �

1

; X<

:

N; �

2

` U ok where none of X appear in �

1

, and �

1

` T <

:

FGJ

[T=X]N,

then j[T=X]Uj

�

1

; [T=X]�

2

<

:

FJ

jUj

�

.

Proof: If U is nonvariable or a type variable Y 62 X, then the result is trivial. If U is a type variable

X

i

, it's also easy since [T=X]U = T

i

and, by Lemma 4.7.1.6, jT

i

j

�

1

; [T=X]�

2

= jT

i

j

�

1

<

:

FJ

j[T=X]N

i

j

�

1

=

jN

i

j

�

= jXj

�

. �

4.7.1.8 Lemma: If � ` C<U> ok and �elds

FGJ

(C<U>) = V f, then �eldsmax (C) = D f and jVj

�

<

:

FJ

D.

Proof: By induction on the derivation of �elds

FGJ

(C<U>) using Lemma 4.7.1.7 and the fact that

� ` U <

:

[U=X]N, where CT (C) = class C<X / N> ..., derived from the rule WF-Class. �

4.7.1.9 Lemma: If � ` C<T> ok and mtype

FGJ

(m; C<T>) = <Y / P>U!U

0

where � ` V <

:

FGJ

[V=Y]P,

then mtypemax(m; C) = C!C

0

and j[V=Y]Uj

�

<

:

FJ

C and j[V=Y]U

0

j

�

<

:

FJ

C

0

.

Proof: Since � ` C<T> ok, we can have a sequence of type S such that S

1

= C<T> and S

n

= Object

and � ` S

i

<

:

FGJ

S

i+1

derived by the rule S-Class for any i. We prove by induction on the length

n of the sequence.
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Case: n = 2

It must be the case that

CT (C) = class C<X / N> / Object { ...

<Y / Q>W

0

m (W x) {...} ...}:

By the de�nition of mtypemax , C = jWj

X<

:

N; Y<

:

Q

and C

0

= jW

0

j

X<

:

N; Y<

:

Q

. Without loss of generality,

we can assume X and Y are distinct. By the de�nition of mtype

FGJ

,

[T=X]Q = P

[T=X]W = U

[T=X]W

0

= U

0

;

and therefore

� ` V <

:

FGJ

[V=Y][T=X]Q:

Moreover, by the rule WF-Class, we have

� ` T <

:

[T=X]N (= [V=Y][T=X]N since Y do not appear in [T=X]N):

By Lemma 4.7.1.7, j[V=Y][T=X]Wj

�

<

:

FJ

C and j[V=Y][T=X]W

0

j

�

<

:

FJ

C

0

, �nishing the case.

Case: n = k + 1

Suppose

CT (C) = class C<X / N> / N { ...}:

Note that � ` C<T> <

:

FGJ

[T=X]N by the rule S-Class. Now, we have three subcases:

Subcase: mtype

FGJ

(m; [T=X]N) is not well de�ned.

The method m must be declared in C. Similarly for the base case above.

Subcase: mtype

FGJ

(m; [T=X]N) is well de�ned and m is de�ned in C.

By the rule GT-Method, it must be the case that

mtype

FGJ

(m; [T=X]N) = <Y / P>U!U

0

0

where �; Y<

:

P ` U

0

<

:

FGJ

U

0

0

. By Lemmas 4.5.1.7 and 4.7.1.6, j[V=Y]U

0

j

�

<

:

FJ

j[V=Y]U

0

0

j

�

. The

induction hypothesis and transitivity of <

:

�nish the subcase.

Subcase: mtype

FGJ

(m; [T=X]N) is well de�ned and m is not de�ned in C.

It is easy because mtype

FGJ

(m; [T=X]N) = mtype

FGJ

(m; C<T>), by the ruleMT-Super. The induction

hypothesis �nishes the subcase. �

Proof of Theorem 4.7.1.1: We prove the theorem in three steps: �rst, we show jCT j is well

de�ned; second, it is shown that, if �; � `

FGJ

e 2 T, then j�j

�

`

FJ

jej

�;�

2 jTj

�

; and third, we

show jCT j is ok.

The �rst part is easy because every method body is well typed and every type is well formed

under appropriate (type) environments. Now, by the de�nition of erasure, it is obvious that

�elds

FJ

(C) = �eldsmax (C) and mtype

FJ

(m; C) = mtypemax(m; C) for all m and C.

The second part is proved by induction on the derivation of �; � `

FGJ

e 2 T with a case analysis

on the last rule used.
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Case GT-Field: e = e

0

.f

i

�;� `

FGJ

e

0

2 T

0

�elds

FGJ

(bound

�

(T

0

)) = T f T = T

i

By the induction hypothesis, we have j�j

�

`

FJ

je

0

j

�

2 jT

0

j

�

: By Lemma 4.7.1.5, � ` T

0

ok. Then,

whether T

0

is a type variable or not, we have, by Lemma 4.7.1.8, �eldsmax (jT

0

j

�

) = C f and

jTj

�

<

:

C. By the rule T-Field, we have j�j

�

`

FJ

je

0

j

�;�

.f

i

2 C

i

.

If jT

i

j

�

= C

i

, then the equation je

0

.f

i

j

�;�

= je

0

j

�;�

.f

i

derived from the rule E-Field �nishes

the case. On the other hand, if (jT

i

j

�

6= C

i

), then

je

0

.f

i

j

�;�

= (jT

i

j

�

)

s

je

0

j

�;�

.f

i

by the rule E-Field-Cast and j�j

�

`

FJ

(jTj

�

)

s

je

0

j

�;�

.f

i

2 jTj

�

by the rule T-DCast, �nishing

the case. Note that the synthetic cast is not stupid.

Case GT-Invk:

Similar to the case above.

Case GT-New, GT-UCast, GT-DCast, GT-SCast:

Easy. Notice that the nature of the cast (up, down, or stupid) is also preserved.

The third part (jCT j is ok) follows from the �rst part with examination of the rulesGT-Method

and GT-Class. We show that, if M OK IN C<X / N> and jMj

X<

:

N; C

= M

0

, then M

0

OK IN C. Suppose

M = <Y / P> T m (T x) {"e;}

M

0

= D m (D x

0

) {"e

0

;}

mtypemax(m; C) = D!D

� = x : T

� = X<

:

N; Y<

:

P

e

i

=

�

x

i

0

if D

i

= jT

i

j

�

(jT

i

j

�

)

s

x

i

0

otherwise

e

0

= [e=x]jej

�; (�;this:C<X>)

:

By the rule GT-Method, we have

� ` T; T; P ok

�;�; this : C<X> `

FGJ

e 2 S

� ` S <

:

FGJ

T

if mtype

FGJ

(m; N) = <Z / Q>U!U, then P; T = [Y=Z](Q; U) and � ` T <

:

FGJ

[Y=Z]U

where CT (C) = class C<X / N> / N {...}. We must show that

x

0

: D; this : C `

FJ

e

0

2 E

E <

:

FJ

D

if mtype

FJ

(m; jNj

�

) = E!D

0

, then E = D and D

0

= D.

for some E. By the result of the second part, j�j

�

; this : C `

FJ

jej

�;�

2 jSj

�

. Since, by

Lemma 4.7.1.9, jT

i

j

�

<

:

D

i

, we have x

i

0

: D

i

` e

i

2 jT

i

j

�

. By Lemma 4.5.1.13,

x

0

: D; this : C ` e

0

2 C

0

for some C

0

where C

0

<

:

FJ

jSj

�

. On the other hand, by Lemma 4.7.1.9, jTj

�

<

:

D. Since we

have jSj

�

<

:

jTj

�

by Lemma 4.7.1.6, C

0

<

:

D by transitivity of <

:

. Let E be C

0

. Finally, sup-

pose mtypemax(m; jNj

�

) is well de�ned. Then, mtype

FGJ

(m; N) is also well de�ned. By de�nition,

mtypemax(m; jNj

�

) = D!D = mtype

FJ

(m; jNj

�

).

It is easy to show that L OK in FGJ implies jLj OK in FJ. �
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4.7.2 Preservation of Execution

More interestingly, we would intuitively expect that erasure from FGJ to FJ should also preserve

the reduction behavior of FGJ programs:

e

reduce (FGJ)

//

erase

��

e

0

erase

��

jej

reduce (FJ)

//

je

0

j

Unfortunately, this is not quite true. For example, consider the FGJ expression

e = new Pair<A,B>(a,b).fst;

where a and b are expressions of type A and B, respectively, and its erasure:

jej

�;�

= (A)

s

new Pair(jaj

�;�

,jbj

�;�

).fst

In FGJ, e reduces to a, while the erasure jej

�;�

reduces to (A)

s

jaj

�;�

in FJ; it does not reduce

to jaj

�;�

when a is not a new expression. (Note that it is not an artifact of our nondeterministic

reduction strategy: it happens even if we adopt a call-by-value reduction strategy, since, after

method invocation, we may obtain an expression like (A)

s

e where e is not a new expression.) Thus,

the above diagram does not commute even if one-step reduction (�!) at the bottom is replaced

with many-step reduction (�!

�

). In general, synthetic casts can persist for a while in the FJ

expression, although we expect those casts will eventually turn out to be upcasts when a reduces

to a new expression.

In the example above, an FJ expression d reduced from jej

�;�

had more synthetic casts than

je

0

j

�;�

. However, this is not always the case: d may have less casts than je

0

j

�;�

when the reduction

step involves method invocation. Consider the FGJ expression

e = new Pair<A,B>(a, b).setfst<B>(b

0

)

and its erasure

jej

�;�

= new Pair(jaj

�;�

,jbj

�;�

).setfst(jb

0

j

�;�

):

where a is an expression of type A and b and b

0

are of type B. In FGJ,

e �!

FGJ

new Pair<B,B>(b

0

,new Pair<A,B>(a,b).snd):

In FJ, on the other hand,

jej

�;�

�!

FJ

new Pair(jb

0

j

�;�

,new Pair(jaj

�;�

,jbj

�;�

).snd)

which has fewer synthetic casts than

new Pair(jb

0

j

�;�

,(B)

s

new Pair(jaj

�;�

,jbj

�;�

).snd);

which is the erasure of the reduced expression in FGJ. The subtlety we observe here is that, when

the erased term is reduced, synthetic casts may become \coarser" than the casts inserted when the

reduced term is erased, or may be removed entirely as in this example. (Removal of downcasts
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can be considered as a combination of two operations: replacement of (A)

s

with the coarser cast

(Object)

s

and removal of the upcast (Object)

s

, which does not a�ect the result of computation.)

To formalize both of these observations, we de�ne an auxiliary relation that relates FJ expres-

sions di�ering only by the addition and replacement of some synthetic casts. Suppose � `

FJ

e 2 C.

Let us call an expression d an expansion of e under �, written � ` e

exp

=) d, if d is obtained from

e by some combination of (1) addition of zero or more synthetic upcasts, (2) replacement of some

synthetic casts (D) with (C), where C is a supertype of D, or (3) removal of some synthetic casts,

and � `

FJ

d 2 D for some D.

4.7.2.1 Example: Suppose � = x:A; y:B; z:B for given classes A and B. Then,

� ` x

exp

=) (A)

s

x

and

� ` new Pair(z,(B)

s

new Pair(x,y).snd)

exp

=) new Pair(z,new Pair(x,y).snd):

Then, reduction commutes with erasure modulo expansion:

4.7.2.2 Theorem [Erasure preserves reduction modulo expansion]: If �; � ` e 2 T and

e �!

FGJ

�

e

0

, then there exists some FJ expression d

0

such that j�j

�

` je

0

j

�;�

exp

=) d

0

and jej

�;�

�!

FJ

d

0

. In other words, the following diagram commutes.

e

reduce (FGJ)

�

//

erase

��

e

0

erase

��

je

0

j

��

jej

reduce (FJ)

�

//

d

0

Conversely, for the execution of an erased expression, there is a corresponded execution in FGJ

semantics:

4.7.2.3 Theorem [Erased program re
ects FGJ execution]: Suppose �; � ` e 2 T and j�j

�

`

jej

�;�

exp

=) d. If d reduces to d

0

with zero or more steps by reducing at synthetic casts, followed by

one step by other kinds of reduction, then e�!

FGJ

e

0

for some e

0

and j�j

�

` je

0

j

�;�

exp

=) d

0

. In other

words, the following diagram commutes.

e

reduce (FGJ)

//

erase

��

e

0

erase

��

jej

��

je

0

j

��

d

R-Cast

�

//

reduce (FJ)

//

d

0
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As easy corollaries of these theorems, it can be shown that, if an FGJ expression e reduces to

a \fully-evaluated expression," then the erasure of e reduces to exactly its erasure and vice versa.

Similarly, if FGJ reduction gets stuck at a stupid cast, then FJ reduction also gets stuck because

of the same typecast and vice versa. We use the metavariable v (or w) for fully evaluated FGJ (or

FJ, respectively) expressions, de�ned as follows:

v ::= new N(v)

w ::= new C(w)

4.7.2.4 Corollary [Erasure preserves execution results]: If �; � ` e 2 T and e �!

FGJ

�

v,

then jej

�;�

�!

FJ

�

jvj

�;�

. Similarly, if �; � ` e 2 T and jej

�;�

�!

FJ

�

w, then there exists an FGJ

expression v such that e �!

FGJ

�

v and jvj

�;�

= w.

4.7.2.5 Corollary [Erasure preserves typecast errors]: If �; � ` e 2 T and e �!

FGJ

�

e

0

,

where e

0

has a stuck subexpression (C<S>)new D<T>(e), then jej

�;�

�!

FJ

�

d

0

such that d

0

has a

stuck subexpression (C)new D(d), where d are expansions of the erasures of e, at the same position

(modulo synthetic casts) as the erasure of e

0

. Similarly, if �; � ` e 2 T and jej

�;�

�!

FJ

�

e

0

, where

e

0

has a stuck subexpression (C)new D<T>(e), then there exists an FGJ expression d such that

e �!

FGJ

�

d and j�j

�

` jdj

�;�

exp

=) e

0

and d has a stuck subexpression (C<S>)new D<T>(d), where

e are expansions of the erasures of d, at the same position (modulo synthetic casts) as e

0

.

In the rest of this section, we prove these theorems and corollaries; we �rst prove the required

lemmas.

4.7.2.6 Lemma: Suppose dom(�) = dom(�

0

) and � = �

1

; X<

:

N; �

2

where none of X appears in

�

1

. If �; � `

FGJ

e 2 T and �

1

` U <

:

FGJ

[U=X]N where �

1

` U ok, and �

1

; [U=X]�

2

` �

0

(x) <

:

FGJ

[U=X]�(x) for all x 2 dom(�), then jej

�;�

is obtained from j[U=X]ej

�

1

; [U=X]�

2

;�

0

by some combination

of replacements of some synthetic casts (D)

s

with (C)

s

where D <

:

C, or removals of some synthetic

casts.

Proof: By induction on the derivation of �; � ` e 2 T with a case analysis on the last rule used.

Case GT-Var:

Trivial.

Case GT-Field: e = e

0

.f �;� ` e

0

2 T

0

�elds

FGJ

(bound

�

(T

0

)) = T f T = T

i

By the induction hypothesis, je

0

j

�;�

is obtained from j[U=X]e

0

j

�

1

; [U=X]�

2

; �

0

by some combination of

replacements of some synthetic casts (D)

s

with (C)

s

where D <

:

C, or removals of some synthetic

casts. By Theorem 4.7.1.1, j�j

�

`

FJ

je

0

j

�;�

2 jT

0

j

�

. By Lemma 4.7.1.8, �eldsmax (jT

0

j

�

) = C f

and jTj

�

<

:

FJ

C.

Now we have two subcases.

Subcase: jT

i

j

�

6= C

i

By the rule E-Field-Cast,

jej

�;�

= (jT

i

j

�

)

s

je

0

j

�;�

.f

i

:

Now we must show that j[U=X]ej

�

1

; [U=X]�

2

; �

0

= (D)

s

j[U=X]e

0

j

�

1

; [U=X]�

2

; �

0

.f

i

for some D <

:

FJ

jTj

�

.

By Lemmas 4.5.1.12 and 4.5.1.13,

�

1

; [U=X]�

2

; �

0

`

FGJ

[U=X]e

0

2 S

0

�

1

; [U=X]�

2

` S

0

<

:

FGJ

[U=X]T

0

:
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By Lemmas 4.5.1.9 and 4.5.1.10 and

�elds

FGJ

(bound

�

1

; [U=X]�

2

(S

0

)) = [U=X]T f; T

0

g

Then, by Lemma 4.7.1.7,

j[U=X]T

i

j

�

1

; [U=X]�

2

<

:

FJ

jT

i

j

�

:

On the other hand,

�eldsmax (jS

0

j

�

1

; [U=X]�

2

) = C f; D g:

Therefore, by the rule E-Field-Cast,

j[U=X]ej

�

1

; [U=X]�

2

; �

0

= (j[U=X]T

i

j

�

1

; [U=X]�

2

)

s

j[U=X]ej

�

1

; [U=X]�

2

; �

0

.f

i

:

�nishing the subcase.

Subcase: jT

i

j

�

= C

i

Similar to the above subcase.

Case GT-Method: e = e

0

.m<V>(d) �;� `

FGJ

e

0

2 T

0

mtype

FGJ

(m; bound

�

(T

0

)) = <Y / P>U!U

0

� ` V ok � ` V <

:

FGJ

[V=Y]P

�;� `

FGJ

d 2 S � ` S <

:

FGJ

[V=Y]U

T = [V=Y]U

0

By the induction hypothesis, jdj

�;�

are obtained from j[U=X]dj

�

1

; [U=X]�

2

; �

0

by some combination of

replacements of some synthetic casts (D)

s

with (C)

s

where D <

:

C, or removals of some synthetic

casts. By Theorem 4.7.1.1, j�j

�

`

FJ

je

0

j

�;�

2 jT

0

j

�

. By Lemma 4.7.1.9, mtypemax(m; jT

0

j

�

) =

E!E

0

and jTj

�

<

:

FJ

E

0

.

Now we have two subcases:

Subcase: jTj

�

6= E

0

By the rule E-Invk-Cast,

jej

�;�

= (jTj

�

)

s

je

0

j

�;�

.m(jdj

�;�

):

Now, we must show that

j[U=X]ej

�

1

; [U=X]�

2

; �

0

= (D)

s

j[U=X]e

0

j

�

1

; [U=X]�

2

; �

0

.m(j[U=X]dj

�

1

; [U=X]�

2

; �

0

)

for some D <

:

FJ

jTj

�

. By Lemmas 4.5.1.12 and 4.5.1.13,

�

1

; [U=X]�

2

; �

0

`

FGJ

[U=X]e

0

2 S

0

�

1

; [U=X]�

2

` S

0

<

:

FGJ

[U=X]T

0

:

Without loss of generality, we can assume X and Y are distinct. By Lemmas 4.5.1.9 and 4.5.1.11,

we have

mtype

FGJ

(m; bound

�

1

; [U=X]�

2

(S

0

)) = <Y / [U=X]P>[U=X]U!U

0

0

�

1

; [U=X]�

2

; Y<

:

[U=X]P ` U

0

0

<

:

FGJ

[U=X]U

0

:

By Lemma 4.5.1.7,

�

1

; [U=X]�

2

` [U=X]V <

:

FGJ

[U=X][V=Y]P (= [[U=X]V=Y]([U=X]P))
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and by the same lemma,

�

1

; [U=X]�

2

` [[U=X]V=Y]U

0

0

<

:

FGJ

[[U=X]V=Y][U=X]U

0

(= [U=X][V=Y]U

0

= [U=X]T):

Then, by Lemmas 4.7.1.6 and 4.7.1.7,

j[[U=X]V=Y]U

0

0

j

�

1

; [U=X]�

2

<

:

FJ

j[U=X]Tj

�

1

; [U=X]�

2

<

:

FJ

jTj

�

:

On the other hand, it is easy to show that

mtypemax(m; jS

0

j

�

1

; [U=X]�

2

) = mtypemax(m; j[U=X]T

0

j

�

1

; [U=X]�

2

) = E!E

0

:

Then, by the rule E-Invk-Cast,

j[U=X]ej

�

1

; [U=X]�

2

; �

0

= (j[[U=X]V=Y]U

0

0

j

�

1

; [U=X]�

2

)

s

j[U=X]e

0

j

�

1

; [U=X]�

2

; �

0

.m(j[U=X]dj

�

1

; [U=X]�

2

; �

0

)

�nishing the subcase.

Subcase: jTj

�;�

= E

0

Similar to the subcase above.

Case GT-New, GT-UCast, GT-DCast, GT-SCast:

Easy. �

4.7.2.7 Lemma: Suppose

1. mbody

FGJ

(m<V>; C<T>) = (x; e),

2. mtype

FGJ

(m; C<T>) = <Y / P>U!U

0

,

3. � ` C<T> ok,

4. � ` V <

:

FGJ

[V=Y]P, and

5. mbody

FJ

(m; C) = (x; e

0

).

Then, jx : [V=Y]U; this : C<T>j

�

` jej

�; x:[V=Y]U;this:C<T>

exp

=) e

0

.

Proof: By induction on the derivation of mbody

FGJ

(m<V>; C<T>) with a case analysis on the last

rule used.

Case MB-Class: CT (C) = class C<X / N> / N { ...

<Y / Q> S

0

m (S x) {"e

0

;}

[T=X; V=Y]e

0

= e

[T=X]Q = P

[T=X]S = U

[T=X]S

0

= U

0

Let �

0

= X<

:

N; Y<

:

P and � = x : S; this : C<X>. By Lemma 4.7.1.9, mtypemax(m; C) = D!D

and j[V=Y]Uj

�

<

:

FJ

D. By WF-Class, � ` T <

:

FGJ

[T=X]N (= [V=Y][T=X]N). By Lemma 4.7.2.6,

je

0

j

�

0

; x:S;this:C<X>

is obtained from jej

�; x:[V=Y]U;this:C<T>

by some combination of replacements of

some synthetic casts (D)

s

with (C)

s

where D <

:

C, or removals of some synthetic casts. By Theo-

rem 4.7.1.1, jx : S; this : C<X>j

�

0

`

FJ

je

0

j

�

0

; x:S;this:C<X>

2 jS

0

j

�

0

Now, let

e

i

=

�

x

i

if D

i

= jS

i

j

�

0

(jS

i

j

�

0

)

s

x

i

otherwise



4.7. PROPERTIES OF COMPILATION 85

for i = 1; : : : ;#(x). Since e

0

= [e=x]je

0

j

�

0

;�

and j[V=Y]Uj

�

<

:

FJ

jSj

�

0

by Lemma 4.7.1.7, each e

i

is

either a variable or a variable with an upcast under the environment jx : [V=Y]U; this : C<T>j

�

.

jx : [V=Y]U; this : C<T>j

�

`

FJ

e

0

2 D

for some D such that D <

:

FJ

jS

0

j

�

0

by Lemma 2.5.4. Therefore, we have

jx : [V=Y]U; this : C<T>j

�

` je

0

j

�; �

0

; x:S;this:C<X>

exp

=) e

0

�nishing the case.

Case MB-Super: CT (C) = class C<X / N> / D<S> { ...}

m is not de�ned in CT (C).

By the induction hypothesis,

jx : [V=Y]U; this : [T=X]D<S>j

�

` jej

�; x:[V=Y]U;this:[T=X]D<S>

exp

=) e

0

:

Then, by Lemma 4.7.2.6,

jx : [V=Y]U; this : C<T>j

�

` jej

�; x:[V=Y]U;this:C<T>

exp

=) jej

�; x:[V=Y]U;this:[T=X]D<S>

and, by Lemma 2.5.4,

jx : [V=Y]U; this : C<T>j

�

`

FJ

e

0

2 E

for some E. Therefore,

jx : [V=Y]U; this : C<T>j

�

` jej

�; x:[V=Y]U;this:[T=X]D<S>

exp

=) e

0

�nishing the case. �

4.7.2.8 Lemma: If �; � `

FGJ

e 2 T and e �!

FGJ

e

0

, then there exists some FJ expression d

0

such

that j�j

�

`

FJ

je

0

j

�;�

exp

=) d

0

and jej

�;�

�!

FJ

d

0

. In other words, the following diagram commutes.

e

reduce (FGJ)

//

erase

��

e

0

erase

��

je

0

j

��

jej

reduce (FJ)

//

d

0

Proof: By induction on the derivation of e �!

FGJ

e

0

with a case analysis on the last reduction

rule used. We show the main base cases.

Case GR-Field: e = new N(e).f

i

e

0

= e

i

�elds

FGJ

(N) = T f

We have two subcases depending on the last erasure rule used.

Subcase E-Field-Cast: jej

�;�

= (D)

s

(new C(jej

�;�

).f

i

)

We have jNj

�

= C by de�nition of erasure. Since �elds

FJ

(C) = C f for some C, we have jej

�;�

�!

FJ

(D)

s

je

i

j

�;�

. On the other hand, by Theorem 4.5.1.1, �; � `

FGJ

e

i

2 T

i

such that � ` T

i

<

:

FGJ

T.

By Theorem 4.7.1.1, jTj

�

= D and j�j

�

`

FJ

je

i

j

�;�

2 jT

i

j

�

. Since jT

i

j

�

<

:

FJ

D by Lemma 4.7.1.6,

(D)

s

je

i

j

�;�

is obtained by adding an upcast to je

i

j

�;�

.



86 CHAPTER 4. FEATHERWEIGHT GJ

Subcase E-Field: jej

�;�

= new C(jej

�;�

).f

i

Follows from the induction hypothesis.

Case GR-Invk: e = new C<T>(e).m<V>(d) e

0

= [d=x; new N(e)=this]e

0

mbody

FGJ

(m<V>; N) = (x; e

0

)

We have two subcases depending on the last erasure rule used.

Subcase E-Invk-Cast: jej

�;�

= (D)

s

(new C(jej

�;�

).m(jdj

�;�

))

By Theorem 4.7.1.1, we have jTj

�

= D. Since

je

0

j

�;�

= [jdj

�;�

=x; jnew N(e)j

�;�

=this]je

0

j

�;�

0

where �

0

= x : T; this : N and T are types of d, we have, by Theorems 4.5.1.1 and 4.7.1.1,

j�j

�

`

FJ

[jdj

�;�

=x; jnew N(e)j

�;�

=this]je

0

j

�; �

0

2 jT

0

j

�

for some T

0

such that � ` T

0

<

:

FGJ

T. By Lemma 4.7.1.6, jT

0

j

�

<

:

FJ

D. Thus,

j�j

�

` [jdj

�;�

=x; jnew N(e)j

�;�

=this]je

0

j

�;�

0

exp

=) (D)

s

[jdj

�;�

=x; jnew N(e)j

�;�

=this]je

0

j

�;�

0

:

Now, because mbody

FGJ

(m; C) is well de�ned, mbody

FJ

(m; C) is well de�ned. Suppose it is equal to

(x; e

0

). By Lemma 4.7.2.7,

j�

0

j

�

` je

0

j

�;�

0

exp

=) e

0

:

Therefore,

j�j

�

` [jdj

�;�

=x; jnew N(e)j

�;�

=this]je

0

j

�;�

0

exp

=) (D)

s

[jdj

�;�

=x; jnew N(e)j

�;�

=this]e

0

;

�nishing the subcase. Note that new C(jej

�;�

).m(jdj

�;�

) �!

FJ

[jdj

�;�

=x; jnew N(e)j

�;�

=this]e

0

:

Subcase E-Invk:

Similarly to the subcase above.

Case GR-Cast:

Easy. �

4.7.2.9 Lemma: If � `

FJ

e 2 C and e �!

FJ

e

0

and � ` e

exp

=) d, then there exists some FJ

expression d

0

such that � ` e

0

exp

=) d

0

and d �!

FJ

�

d

0

. In other words, the following diagram

commutes.

e

reduce (FJ)

//

��

e

0

��

d

reduce (FJ)

�

//

d

0

Proof: By induction on the derivation of e �!

FJ

e

0

with a case analysis on the last reduction

rule used.

Case R-Field: e = new C(e).f

i

�elds

FJ

(C) = C f e

0

= e

i

The expansion d must have a form of (D

1

)

s

� � � (D

n

)

s

(new C(d).f

i

) where � ` e

exp

=) d and C <

:

FJ

D

i

for 1 � i � n because each D

i

is introduced as an upcast. Thus, d �!

FJ

�

new C(d).f

i

�!

FJ

d

i

.

The other base cases are similar and the cases for induction steps are straightforward. �

Proof of Theorem 4.7.2.2: By induction on the length n of reduction sequence e �!

FGJ

�

e

0

.
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Case: n = 0

Trivial since e = e

0

.

Case: e �!

FGJ

e

0

�!

FGJ

�

e

00

We have the following commuting diagram.

e

reduce (FGJ)

//

erase

��

(1)

e

0

reduce (FGJ)

�

//

erase

��

e

00

erase

��

(2)
je

00

j

��

je

0

j

reduce (FJ)

�

//

��

(3)

d

0

��

jej

reduce (FJ)

//

d

reduce (FJ)

�

//

d

00

Commutation (1) is proved by Lemma 4.7.2.8, (2) by the induction hypothesis and (3) by Lemma 4.7.2.9.

�

4.7.2.10 Lemma: Suppose �; � `

FGJ

e 2 T. If jej

�;�

�!

FJ

d, then e�!

FGJ

e

0

for some e

0

and

j�j

�

` je

0

j

�;�

exp

=) d. In other words, the following diagram commutes:

e

reduce (FGJ)

//

erase

��

e

0

erase

��

je

0

j

��

jej

reduce (FJ)

//

d

Proof: By induction on the derivation of jej

�;�

�!

FJ

d with a case analysis by the last rule used.

Case RC-Cast:

We have two subcases according to whether the cast is synthetic (jej

�;�

= (C)

s

e

0

) or not (jej

�;�

=

(C)e

0

). The latter case follows from the induction hypothesis. We show the former case where

jej

�;�

= (C)

s

e

0

e

0

�!

FJ

d

0

d = (C)

s

d

0

Then e

0

must be either a �eld access or a method invocation. We have another case analysis with

the last reduction rule for the derivation of e

0

�!

FJ

d

0

. The cases for RC-Field, RC-Invk-Recv

and RC-Invk-Arg are omitted since they follow from the induction hypothesis.
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Subcase R-Field: e

0

= new D(e).f

i

d

0

= e

i

�elds

FJ

(D) = C f

By inspecting the derivation of jej

�;�

, it must be the case that

e = new D<T>(e

0

).f

i

je

0

j

�;�

= e

�eldsmax (D) = C f

jTj

�

= C 6= C

i

:

By Theorems 4.5.1.2 and 4.5.1.1, we have e �!

FGJ

e

i

0

and �;� `

FGJ

e

i

0

2 S and � ` S <

:

FGJ

T. By

Theorem 4.7.1.1, j�j

�

`

FJ

je

i

0

j

�;�

2 jSj

�

. By Lemma 4.7.1.6, jSj

�

<

:

FJ

jTj

�

. Then, j�j

�

` e

i

exp

=)

(jTj

�

)e

i

, �nishing the case.

Subcase R-Invk: e

0

= new D(d).m(e)

d

0

= [e=x; new D(d)=this]e

m

mbody

FJ

(m; D) = (x; e

m

)

By inspecting the derivation of jej

�;�

, it must be the case that

e = new D<T>(d

0

).m<V>(e

0

)

jd

0

j

�;�

= d

je

0

j

�;�

= e

mtype

FGJ

(m; D<T>) = <Y / P>U!U

0

[V=Y]U

0

= T

mtypemax(m; D) = C!C

0

jTj

�

= C 6= C

0

:

By Theorems 4.5.1.2 and 4.5.1.1, e �!

FJ

[e

0

=x; new D<T>(d

0

)=this]e

m

0

wherembody

FGJ

(m<V>; D<T>) =

(x; e

m

0

) and �;� `

FGJ

[e

0

=x; new D<T>(d

0

)=this]e

m

0

2 S for some S such that � ` S <

:

T. Then,

j[e

0

=x; new D<T>(d

0

)=this]e

m

0

j

�;�

= [e=x; new D(d)=this]je

m

0

j

�; x:[V=Y]U; this:D<T>

By Theorem 4.7.1.1,

j�j

�

`

FJ

[e=x; new D(d)=this]je

m

0

j

�; x:[V=Y]U; this:D<T>

2 jSj

�

:

Since we have jSj

�

<

:

FJ

jTj

�

by Lemma 4.7.1.6,

j�j

�

` [e=x; new D(d)=this]je

m

0

j

�; x:[V=Y]U; this:D<T>

exp

=) (jTj

�

)[e=x; new D(d)=this]je

m

0

j

�; x:[V=Y]U; this:D<T>

Then, by Lemma 4.7.2.7,

j�j

�

` je

m

0

j

�; x:[V=Y]U; this:D<T>

exp

=) e

m

:

and, �nally,

j�j

�

` j[e

0

=x; new D<T>(d

0

)=this]e

m

0

j

�;�

exp

=) (jTj

�

)[e=x; new D(d)=this]e

m

Case R-Field:

Similar to the subcase for R-Field above.
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Case R-Invk:

Similar to the subcase for R-Invk above. Other cases are straightforward. �

4.7.2.11 Lemma: Suppose �; � `

FGJ

e 2 T and j�j

�

` jej

�;�

exp

=) d. If d reduces to d

0

with zero

or more steps by reducing synthetic casts, followed by one step by other kinds of reduction, then

jej

�;�

�!

FJ

e

0

and j�j

�

` e

0

exp

=) d

0

. In other words, the following diagram commutes:

jej

reduce (FJ)

//

��

e

0

��

d

R-Cast

�

//

reduce (FJ)

//

d

0

Proof: By induction on the derivation of the last reduction step with a case analysis by the last

rule used.

Case R-Field: d �!

FJ

�

new C(e).f

i

�elds

FJ

(C) = C f d

0

= e

i

The expression dmust be of the form ((D

1

)

s

: : : (D

n

)

s

new C(e

0

)).f

i

where C <

:

D

i

for any i and each

e

i

0

reduces to e

i

by reducing upcasts (in several steps). In other words, j�j

�

` e

0

exp

=) e. Moreover,

since j�j

�

` jej

�;�

exp

=) d, jej

�;�

must be of the form, either new C(e

00

).f

i

or (D)

s

new C(e

00

).f

i

,

where j�j

�

` e

00

exp

=) e

0

. Therefore, jej

�;�

�!

FJ

e

i

00

or jej

�;�

�!

FJ

(D)

s

e

i

00

. It is easy to see

j�j

�

` (D)

s

e

i

00

exp

=) e

i

and

j�j

�

` e

i

00

exp

=) e

i

:

Other base cases are similar; induction steps are straightforward. �

Proof of Theorem 4.7.2.3: Follows from Lemmas 4.7.2.10 and 4.7.2.11. �

Proof of Corollary 4.7.2.4: By Theorem 4.7.2.2, we have an FJ expression d such that jej

�;�

�!

FJ

�

d

and j�j

�

` jvj

�;�

exp

=)d. Since jvj

�;�

does not include any typecasts, d is obtained only by adding

some (synthetic) upcasts. Therefore, d reduces to jvj

�;�

.

The second part follows from a similar argument using Theorem 4.7.2.3. �

Proof of Corollary 4.7.2.5: Similar to the proof of Corollary 4.7.2.4. �

4.8 Summary

We have studied the core of GJ-style parametric classes with Featherweight GJ, an extension

of FJ with parametric classes. We have de�ned the two styles of semantics of FGJ: the direct

semantics, based on reduction of FGJ expressions, and the translation semantics, based on the

erasure translation from FGJ to FJ. The type system is proved to be sound with respect to the

reduction semantics. As for the translation semantics, the main results are preservation of typing

and behavior of a program. The proof of preservation of program behavior is not trivial at all

because a reduction step of execution of an FGJ program does not correspond to a sequence of

reduction steps of execution of its erasure. We have proved slightly weaker theorems that guarantee

the execution results correspond to each other. The result also guarantees that synthetic casts,

inserted by the compiler, can never fail during the execution of the compiled program.
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Chapter 5

Raw Types

Compatibility is one of the important issues in the design of language extensions; especially, when

the base language is already wide spread, its importance will increase. If old programs cannot

run on the new environment, users of the base language won't use the extension regardless of its

usefulness.

The design of GJ is signi�cantly a�ected by issues concerning compatibility with the current

Java language environment. For example, the language is backward compatible with Java in the

sense that every Java program is also a GJ program, and GJ programs are compiled to Java Virtual

Machine Language so that they can run on the old Java environment.

Moreover, GJ's novel feature called raw types makes a shift from the Java environment to the

GJ environment easier. Every parameterized class C<X> provides the raw type C, which can be

used as usual type. So, even when a monomorphic class C (in Java library or your program) is

upgraded into a parameterized version C<X>, the code that uses it by using C may remain the

same; it accesses the parameterized version through the raw type C instead of C<T>. Figure 5.1

summarizes the process, which we call program evolution: beginning with a Java program, which is

also a GJ program, we replace each class by a polymorphic version one by one to make the whole

program polymorphic; during this process, old classes refer to new classes through raw types but

it remains accepted by the compiler and still runs. Thus, programmers will not be bothered too

much by incompatibility with new polymorphic classes and legacy monomorphic classes; they may

add type parameters to the Java code at any time.

A raw type roughly corresponds to the set of all objects instantiated from one parameterized

class (possibly with di�erent type parameters). In other words, a type with type parameters, which

we call cooked type, is subtype of the corresponding raw type|that is, Pair<X,Y> <

:

Pair for any

X and Y. As for �eld and method types, raw types provide erased types: for example, the type of

the fst and snd �elds of the raw type Pair is Object, which is the erasure of X and Y.

Not only are raw types useful to support smooth program evolution but also they lighten the

restriction on downcasts. As we discussed in the previous chapter, downcasts are prohibited when

the run-time check will require type parameter information of objects. For example, you cannot

write an equal method like this:

class Pair<X extends Object, Y extends Object> extends Object {

...

boolean equal(Object p) {

return this.fst.equal.(((Pair<X,Y>)p).fst) &&

this.snd.equal.(((Pair<X,Y>)p).snd);

}

91
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class C ... {
  ...
}

class D ... {
  ... new C() ..
}

class C<X extends Object> ... {
  ...
}

class D ... {
  ... new C() ...
}

class C<X extends Object> ... {
  ...
}

class D<Y extends Object> ... {
  ... new C<E>() ...
}

Java program as GJ program

GJ program using raw types

GJ program (after evolution)

access via raw types

Figure 5.1: Program evolution

}

(where && is a binary operator for conjunction of two booleans). Here, the downcast (Pair<X,Y>)p

is prohibited because the check requires the actual types bound to X and Y. Raw types solve this

problem: instead of (Pair<X,Y>)p, you are allowed to write (Pair)p. Since it just checks whether

p's run-time type is Pair<X,Y> for some X and Y

1

, it does not require run-time type parameter

information and can be executed by using erasure semantics.

Although raw types provide a nice solution for the problems about compatibility and restriction

on downcasts, abuse of them leads to an unsound type system, as we see in detail. In fact, GJ

programs are characterized into three classes: ill-typed programs, which will be rejected by the

compiler; checked programs, which correspond to well-typed programs in the standard sense and

are guaranteed to run safely; and unchecked programs, which are accepted by the compiler but may

cause run-time errors. Even though they are unsafe, unchecked programs help program evolution

since many programs during evolution are exected to be unchecked. We hope that, since rules for

checked programs are conservative, many unchecked programs can run without run-time errors.

In this chapter, we augment FGJ with raw types and obtain Raw FGJ. The main theoretical

results are formalization of Raw FGJ, and proof of type soundness for checked programs with

respect to reduction semantics. Typing rules for checked programs are very subtle, and, in fact,

the current GJ compiler (and speci�cation) overlooks one source of unsoundness, making some

compiled GJ programs fail on a synthetic cast. One of the main contributions in this chapter is to

propose a �xed type system and to prove its type soundness. We also discuss desired properties

of unchecked programs with respect to program evolution. Unfortunately, we �nd that the current

GJ design does not satisfy some of the important properties, either; a possible �x for this problem

is proposed.

The rest of this chapter is organized as follows. Section 5.1 gives more details about raw

types and discusses the border between checked programs and unchecked programs, in detail. The

following Sections 5.2, 5.3, and 5.4 de�ne Raw FGJ, with its syntax, type system, and reduction

1

In this sense, raw types resembles to existential types [MP88].
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semantics, respectively. We prove type soundness in Section 5.5. Section 5.6 discusses desired

properties of unchecked programs. Finally, Section 5.7 summarizes this chapter.

5.1 Overview of Raw FGJ

5.1.1 Basic of Raw Types

As mentioned above, each class C provides the raw type C, which is supertype of any parametric

type C<T>. Basically, the �elds and methods of C are given the same types as those of the erasure

of C<X>. Consider, for example, the following Raw FGJ classes Pair and PairClient.

class Pair<X extends Object, Y extends Object> extends Object {

X fst;

Y snd;

Pair(X fst, Y snd) {

super(); this.fst=fst; this.snd=snd;

}

<Z extends Object> Pair<Z,Y> setfst(Z newfst) {

return new Pair<Z,Y>(newfst, this.snd);

}

}

class PairClient extends Object {

PairClient() { super(); }

A m(Pair p, A a) {

return (A)p.setfst(a).fst;

}

}

The method m takes an argument p of the raw type Pair and invokes the method setfst on p; the

argument type will be an Object, the erasure of X, and the return type will be Pair, the erasure

of Pair<Z,Y>. Then, the fst �eld, whose type is Object, is accessed; �nally the downcast (A) is

required for the return type of m to be A, although we know the content of the fst �eld is a of the

type A.

Now, since a class name without type parameters can be used as a type, it poses a question

about the previous assumption that C used without angle brackets is an abbreviation of C<>: is C

still an abbreviation of C<>, or the raw type for the class C? In GJ, C is an abbreviation of C<>

when the class C does not take type parameters (methods in C may take type parameters). In other

words, there is no raw type for the class without type parameters since every occurrence of C is

interpreted as the cooked type C<>. However, it will turn out that this rule create a problem about

the evolution property, as we discuss later in Section 5.6. Therefore, in Raw FGJ, the use of C

and C<> as types are strictly distinguished. (The declaration of a class without type parameters

class C<> extends ... is abbreviated to class C extends .... Also, we still omit <> before

method declarations and use an abbreviation e.m(e) for a method invocation e.m<>(e) without

type parameters.)
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5.1.2 Checked and Unchecked Programs

In Raw FGJ, as well as GJ, well-typed programs are further classi�ed into two categories, checked

and unchecked. The typechecker issues unchecked warnings for unchecked programs. Checked

programs are guaranteed to be safe in the sense that the subject reduction property holds, while

unchecked programs are not. Even so, unchecked programs are still important to make program

evolution easier. In fact, many unchecked programs can be executed without run-time errors since

unchecked warnings are conservative. In this subsection, we show a few case studies of unchecked

programs and explain why they can be unsafe.

First, in Raw FGJ (and GJ), a raw type C can be subtype of C<T> with unchecked warnings.

However, this subtyping apparently leads to unsoundness because it essentially allows two cooked

types with di�erent type parameters to be compatible. Consider the following classes:

class A extends Object {

A() { super(); }

A<> m() { return this; }

A<> n(Pair<A<>,A<>> p) { return p.fst.m(); }

}

class B extends Object {

B() { super(); }

}

and the expression

new A<>().n((Pair)new Pair<B<>,B<>>(new B<>(), new B<>())).

The expression is well typed since Pair<B,B> is (safe) subtype of Pair and Pair is (unsafe) subtype

of Pair<A,A>.

2

However, it eventually invokes the method m on a B object, which does not have

such a method.

Second, method invocation on an expression of raw type is unchecked when the argument types

involve any type parameters|that is, when they are di�erent from their erasures. Suppose a is

given raw type A. Then, the expression

a.n(new Pair<B<>,B<>>(new B<>(), new B<>()))

is well typed but unchecked since the argument type is changed by erasure from Pair<A<>,A<>> to

Pair. Actually, following the same story as before, it will cause a run-time error. Consider another

example:

class Cell<X extends Object> extends Object {

Cell() { super(); }

X id(X x) { return x; }

}

class CellOfA extends Cell<A<>> {

CellOfA() { super(); }

A<> id (A<> x) { return x.m(); }

}

2

The unchecked subtyping relation may not be combined with checked subtyping: in Raw FGJ and GJ, it is not

the case that Pair<B,B> is subtype of Pair<A,A> whether it is checked or not, even though Pair<B,B> is subtype of

Pair and Pair is unchecked subtype of Pair<A,A>. Thus, the upcast (Pair) is required here.
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and an expression c.id(o) where c and o are given type Cell and Object, respectively. Since,

erasing the argument type X generates another type Object, the method invocation c.id(o) will

be unchecked; in fact, if c is bound to a CellOfA object and o is an object of type other than A,

then it will cause a run-time error when the overriding method is invoked.

Finally, an instantiation of an object using a raw type should be unchecked. Consider the

following classes:

class Cell<X extends Object> {

X f;

Cell(X f) { this.f = f; }

}

class E<X extends Cell<A>> {

X g;

E(X g) { this.g = g; }

A loophole() { return this.g.f.m(); }

}

In the method loophole, this is given type E<X> under the constraint X <

:

Cell<A>, and so

this.g.f will be given type A and so this.g.f.m() is well typed. On the other hand, the type

of the �eld g accessed through the raw type E is given type Cell, the erasure of X. Therefore,

the constructor invocation new E(c) seems safe if c has type Cell. However, consider the expres-

sion new E(new Cell<B<>>(new B<>())).loophole(). Although it is a well-typed expression, it

eventually tries to invoke the method m on new B(), causing a run-time error. Similarly, if a class

extends the raw type E (not E<T>), invocation of loophole on the object of the subclass causes a

run-time error.

An problem here is similar to the case for unchecked method invocations above: when loophole

is invoked, this of type E<X> is replaced with a receiver object of raw type E, which is not a safe

subtype of E<X>. There are at least two choices where unchecked warning should be signaled. One

is where such a method is invoked and the other is where an object of raw type is instantiated.

However, the former seems too restrictive because it implies that every method invocation on an

expression of raw type should signal an unchecked warning. Therefore, we adopted the latter rule

here. This rule is also preferable from the point of view of program evolution since this rule is

helpful to detect the problem where one forget to attach type parameters, creating a raw type by

mistake.

Actually, this source of unsoundness is overlooked by GJ designers and the current GJ compiler

does not signal an unchecked warning for instantiation of raw types. As a result, a program compiled

without unchecked warnings, such as the above one, fails on synthetic casts at run-time.

5.1.3 Raw Method Invocation and the Bottom Type

Introduction of raw types makes semantics of method invocations much more complicated. It

is not straightforward at all to de�ne type-preserving reduction since the number of actual type

arguments may not be equal to the one expected by the method. Such a situation occurs when

the expression on which a method is invoked is given a raw type. Statically, no type arguments

are required for a method invocation on an expression of raw types since the argument types and

return type are erased. However, at run-time, the actual method receiver may be an object of

cooked type and the method may require type parameters! For example, suppose a variable p is of

raw type Pair; then, the method setfst takes an argument of Object, which is erasure of Z, and

the method invocation p.setfst(x) without type parameters is well typed. But, at run-time, a
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cooked object such as new Pair<A,B>(a,b) may be bound to p; now the invoked method requires

a type parameter bound to Z. In general, when type arguments are missing from the expression,

we have to synthesize type arguments that satisfy constraints on the type variables.

A key innovation to solve this problem is introduction of the bottom type *, which is subtype of

every type. Intuitively, the bottom type represents the empty set; there is no value of the bottom

type. In our reduction semantics, de�ned later, the bottom type * is bound to the formal type

arguments when the actual type parameters are missing from the method invocation expression.

In the example above, * is substituted for Z and reduces as follows:

new Pair<A,B>(a,b).setfst(a

0

)�!new Pair<*,B>(a

0

, new Pair<A,B>(a,b).snd):

Actually, the reduced expression may become ill typed when the method invocation is unchecked;

indeed, expression new Pair<*,B>(a

0

, new Pair<A,B>(a,b).snd) is not well typed since the ac-

tual argument a

0

cannot given type *. (Notice that it is unchecked because erasure changes the

original argument type Z to Object). On the other hand, if the method invocation is checked|

that is, erasure does not change method parameter types|then the reduced expression remains

well typed. We give a discussion why reduction preserves well-typedness, for a simple case. (A

proof of subject reduction is given in Section 5.5.) Consider the following reduction steps:

e

0

.m(d) �!

�

new C<T>(e).m(d) �! [d=x; new C<T>(e)=this]d

0

where the de�nition of the class C is

class C<X extends Object> extends ... {

...

<Y extends T'> U m (S x) { return d_0; }

}

and suppose e

0

is given raw type C and e

0

.m(d) is well typed without unchecked warnings. Since

the original method invocation is checked, erasure of S is equal to S|that is, S does not involve

any type parameters and should be another raw type D|and the result type is erasure of U. (Note

that U may include type parameters.) Moreover, the actual argument d is given type S

0

, which is

subtype of S. Now, the method body of m should be typed as

X<

:

Object; Y<

:

T

0

; S : x; this : C<X> ` d

0

2 U

0

where

X<

:

Object; Y<

:

T

0

` U

0

<

:

U:

Since T is subtype of Object and * is subtype of any type, it is safe to substitute T and * for X and

Y, respectively; we obtain

;; S : x; this : C<T> ` [T=X; *=Y]d

0

2 [T=X; *=Y]U

0

and

; ` [T=X; *=Y]U

0

<

:

[T=X; *=Y]U:

The important point here is the argument type S remains the same after the substitution; thus, it

is safe to substitute the actual argument for the formal argument. (On the other hand, if erasure

changes S, S

0

may not be subtype of [T=X; *=Y]S and the substitution may not be safe.) Finally, we

have

;; ; ` [d=x; new C<T>(e)=this][T=X; *=Y]d

0

2 [T=X; *=Y]U

0

and it is easy to show [T=X; *=Y]U

0

is subtype of the erasure of U, the type of the original expression

e

0

.m(d).
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5.2 Syntax of Raw FGJ

We use the same notational conventions as in FGJ. The abstract syntax of Raw FGJ is as follows:

N ::= C<T>

j C

T ::= X

j *

j N

L ::= class C<X / N> / N {T f; K M}

K ::= C(T f) {super(f); this.f = f;}

M ::= <X / N> T m (T x) {"e;}

e ::= x

j e.f

j e.m<T>(e)

j new N(e)

j (N)e

Now that raw types are introduced, a non-variable type N is either cooked, which has type pa-

rameters, or raw. We use head(N) to know the class name of the non-variable type N: head(C) =

head(C<T>) = C. We often use * for a sequence of the bottom types *,...,* (without subscripts).

We enforce to the class table a sanity condition that the bottom type appear only in e, as well as

the ones for FGJ; the additional condition means, in other words, that types of �elds or method

argument/return types cannot include *.

We require erasure of types to de�ne the type system (including auxiliary functions de�ned

below). The de�nitions of type environments �, bound

�

(T) and jTj

�

remain the same:

bound

�

(X) = �(X)

bound

�

(N) = N

jTj

�

= head(bound

�

(T))

Note that bound

�

(*) and j*j

�

are unde�ned.

We de�ne auxiliary functions �elds, mtype, mbody, and dcast below. Their de�nitions get more

complicated because of raw types. First, the de�nition of �elds(N) is as follows:

�elds(Object) = � (F-Object)

CT (C) = class C<X / N> / N {S f; K M}

�elds([T=X]N) = U g

�elds(C<T>) = U g; [T=X]S f

(F-Class)

CT (C) = class C<X / N> / N {S f; K M}

�elds(head(N)) = C g

�elds(C) = C g; jSj

X<

:

N

f

(F-Raw)

The cases for Object and cooked types are the same as before; the case for raw types returns the

erased types of the �elds.
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5.2.1 Example: Under a class table including class Pair,

�elds(Pair) = jXj

X<

:

Object; Y<

:

Object

fst; jYj

X<

:

Object; Y<

:

Object

snd

= Object fst, Object snd

The function mtype now takes actual type arguments, as well as the method name and the type

of a receiver, written mtype(m<V>; N). Actual type arguments V are used to determine whether the

invocation is raw or not. Remember that, even if the type of the receiver is cooked, type arguments

may be missing. Therefore, the length of V is zero and the method takes more than zero type

parameters, it returns the erased types, whether N is cooked or not; if the erasure changes the

argument types, unchecked warning is signaled. (the rules MT-ClassRaw and MT-Raw).

CT (C) = class C<X / N> / N {S f; K M}

<Y / P> U m (U x) {"e;} 2 M #(V) = #(Y)

mtype(m<V>; C<T>) = [T=X](<Y / P>U!U)

(MT-Class)

CT (C) = class C<X / N> / N {S f; K M}

<Y / P> U m (U x) {"e;} 2 M #(Y) > 0

�

0

= X<

:

N; Y<

:

P unchecked warning if jUj

�

0

6= U

mtype(m<>; C<T>) = jUj

�

0

!jUj

�

0

(MT-ClassRaw)

CT (C) = class C<X / N> / N {S f; K M}

<Y / P> U m (U x) {"e;} 2 M

�

0

= X<

:

N; Y<

:

P unchecked warning if jUj

�

0

6= U

mtype(m<>; C) = jUj

�

0

!jUj

�

0

(MT-Raw)

CT (C) = class C<X / N> / N {S f; K M}

m is not de�ned in M

mtype(m<V>; C<T>) = mtype(m<V>; [T=X]N)

(MT-Super)

CT (C) = class C<X / N> / N {S f; K M}

m is not de�ned in M

mtype(m<>; C) = mtype(m<>; head(N))

(MT-Super-Raw)

As in FGJ, mbody(m<V>; N) returns the method body where type variables are replaced by

actual ones. When actual type parameters are missing (V is empty or N is raw), the bottom type is

substituted for type variables (the rules MB-ClassRaw and MB-Raw).

CT (C) = class C<X / N> / N {S f; K M}

<Y / P> U m (U x) {"e

0

;} 2 M #(V) = #(Y)

mbody(m<V>; C<T>) = (x; [T=X; V=Y]e

0

)

(MB-Class)

CT (C) = class C<X / N> / N {S f; K M}

<Y / P> U m (U x) {"e

0

;} 2 M #(Y) > 0

mbody(m<>; C<T>) = (x; [T=X; *=Y]e

0

)

(MB-ClassRaw)

CT (C) = class C<X / N> / N {S f; K M}

<Y / P> U m (U x) {"e

0

;} 2 M

mbody(m<>; C) = (x; [*=X; *=Y]e

0

)

(MB-Raw)
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CT (C) = class C<X / N> / N {S f; K M}

m is not de�ned in M

mbody(m<V>; C<T>) = mbody(m<V>; [T=X]N)

(MB-Super)

CT (C) = class C<X / N> / N {S f; K M}

m is not de�ned in M

mbody(m<>; C) = mbody(m<>; head(N))

(MB-Super-Raw)

The de�nition of dcast(C; D) is exactly the same as before. dcast(C; D) is the least partial order

closed under the following rule:

CT (C) = class C<X / N> / N {...} X = FV (N)

dcast(C; D)

where FV (N) denotes the set of type variables in N.

5.3 Typing

5.3.1 Subtyping

We write � ` S <

:

T if S is a safe subtype of T under the assumption given by �. The �rst four

rules below are from the FGJ subtyping rules:

� ` T <

:

T (S-Refl)

� ` S <

:

T � ` T <

:

U

� ` S <

:

U

(S-Trans)

� ` X <

:

�(X) (S-Var)

CT (C) = class C<X / N> / N {...}

� ` C<T> <

:

[T=X]N

(S-Class)

Besides these rules, we have rules for the bottom types and raw types. First, the bottom type

is a subtype of any type.

� ` * <

:

T (S-Bot)

For raw types, we have two rules; a raw type C is subtype of D if D is a name of a superclass

of C (strictly speaking, the rule S-Trans is required), and a cooked type C<T> is a subtype of the

corresponding raw type C.

CT (C) = class C<X / N> / N {...}

� ` C <

:

head(N)

(S-Raw)

� ` C<T> <

:

C (S-Cooked/Raw)

The judgment of unsafe subtyping is written � ` S <

:

unsafe

T. As we will see in the typing rules,

unsafe subtyping is used in comparing the types of formal arguments (of a constructor or method)
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with those of actual arguments. First of all, if S is a safe subtype of T, then S is also a unsafe

subtype of T.

� ` S <

:

T

� ` S <

:

unsafe

T

(SU-Safe)

If a raw type C is a safe subtype of another raw type D, then we allow C to be an unsafe subtype of

the cooked type D<T> with unchecked warning.

� ` C <

:

D unchecked warning

� ` C <

:

unsafe

D<T>

(SU-Unchecked)

5.3.2 Well-Formed Types

We write � ` T ok if type T is well formed in the context �. The �rst four rules below are the

same as ones for FGJ:

� ` Object ok
(WF-Object)

X 2 dom(�)

� ` X ok

(WF-Var)

CT (C) = class C<X / N> / N {...}

� ` T ok � ` T <

:

[T=X]N

� ` C<T> ok

(WF-Class)

Besides, we have rules for the bottom type and raw types: the bottom type is always well formed

and a raw type is well formed if it is in the domain of CT .

� ` * ok (WF-Bot)

CT (C) = class C<X / N> / N {...}

� ` C ok

(WF-Raw)

5.3.3 Typing Rules

As before, an environment � is a �nite mapping from variables to types, written x:T and the typing

judgment for expressions is of the form �;� ` e 2 T, read as \in the type environment � and the

environment �, the expression e has type T." Most rules are the same as in FGJ:

�; � ` x 2 �(x) (GT-Var)

�; � ` e

0

2 T

0

�elds(bound

�

(T

0

)) = T f

�;� ` e

0

.f

i

2 T

i

(GT-Field)

In the rules GT-Invk and GT-New below, the types S of the actual arguments e can be unsafe

subtypes of the expected argument types [V=Y]U.
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�; � ` e

0

2 T

0

mtype(m<V>; bound

�

(T

0

)) = <Y / P>U!U

� ` V ok � ` V <

:

[V=Y]P

�;� ` e 2 S � ` S <

:

unsafe

[V=Y]U

�;� ` e

0

.m<V>(e) 2 [V=Y]U

(GT-Invk)

� ` N ok �elds(N) = T f

�;� ` e 2 S � ` S <

:

unsafe

T

unchecked warning if � ` N <

:

C and C 6= Object but � ` N 6<

:

C<T> for all T

�;� ` new N(e) 2 N

(GT-New)

The last condition of the rule GT-New make sure that the class of N does not extend (whether

directly or not) a raw type.

The rules for typecasts are essentially the same as before except some notational di�erences: <

:

is substituted for E since C E D if and only if C <

:

D.

�; � ` e

0

2 T

0

� ` T

0

<

:

N

�;� ` (N)e

0

2 N

(GT-UCast)

�; � ` e

0

2 T

0

� ` N ok

� ` N <

:

bound

�

(T

0

) N 6= bound

�

(T

0

)

dcast(jNj

�

; jT

0

j

�

)

�; � ` (N)e

0

2 N

(GT-DCast)

�; � ` e

0

2 T

0

� ` N ok

� ` jT

0

j

�

6<

:

jNj

�

� ` jNj

�

6<

:

jT

0

j

�

stupid warning

�;� ` (N)e

0

2 N

(GT-SCast)

In addition to the rules above, we require the following two rules relevant to the bottom type:

�; � ` e

0

2 *

�;� ` e

0

.f

i

2 *

(GT-Bot-Field)

�; � ` e

0

2 * � ` V ok �;� ` e 2 S

�;� ` e

0

.m<V>(e) 2 *

(GT-Bot-Invk)

We allow a �eld access and a method invocation on an expression of the bottom type since the

bottom type is subtype of any type; the resulted expression is also given the bottom type. Roughly

speaking, the bottom type corresponds the empty set. Thus, any operation on the element of the

empty set is vacuously allowed and the result also belongs to the empty set. Similar rules can be

found in an extension of System F

�

[CMMS94] with the bottom type [Pie97].

These rules are required mainly for technical reasons. The subject reduction theorem (The-

orem 5.5.1) is proved by induction on the derivation of e �! e

0

. The rules above can easily

handle with the case where the reduction step is derived from the context rule GRC-Field or

GRC-Invk-Recv de�ned later. For example, suppose we have e

0

.f �! e

0

0

.f from e

0

�! e

0

0

.
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By the induction hypothesis e

0

0

is given some subtype of the type of e

0

, which might be the bottom

type. In that case, the rule GT-Bot-Field is used to give e

0

0

.f the bottom type. Although it

makes the proof of subject reduction easier and clearer, it complicates other portions of the for-

malization, such as properties of erasure (see Section 5.6). Thus, it is desirable to have a proof

without depending on these rules; it should be possible because we expect that an expression is

always given type other than * as long as the program satis�es the syntactic condition that the

bottom type appear only in expressions. But, it is left for future work for now.

The typing rules for method declarations and classes remain the same.

� = X<

:

N; Y<

:

P � ` T; T; P ok

�; x: T; this: C<X> ` e

0

2 S � ` S <

:

T

CT (C) = class C<X / N> / N {...}

if mtype(m<>; head(N)) is de�ned, then mtype(m<Y>; N) = <Y / P>T!U and � ` T <

:

U

<Y / P> T m (T x) {"e

0

;} OK IN C<X / N>

(GT-Method)

X<

:

N ` N; T; N ok �elds(N) = U g M OK IN C<X / N>

K = C(U g, T f) {super(g); this.f = f;}

class C<X / N> / N {T f; K M} OK

(GT-Class)

5.4 Reduction Semantics

The reduction relation is of the form e �! e

0

, read \expression e reduces to expression e

0

in one

step." We write �!

�

for the re
exive and transitive closure of �!.

Thanks to the auxiliary de�nitions, the reduction rules are exactly the same as before. We show

them just for a reminder:

�elds(N) = T f

(new N(e)).f

i

�! e

i

(GR-Field)

mbody(m<V>; N) = (x; e

0

)

(new N(e)).m<V>(d) �! [d=x; new N(e)=this]e

0

(GR-Invk)

; ` N <

:

P

(P)(new N(e)) �! new N(e)

(GR-Cast)

e

0

�! e

0

0

e

0

.f �! e

0

0

.f

(GRC-Field)

e

0

�! e

0

0

e

0

.m<T>(e) �! e

0

0

.m<T>(e)

(GRC-Inv-Recv)

e

i

�! e

i

0

e

0

.m<T>( : : : ,e

i

, : : : ) �! e

0

.m<T>( : : : e

i

0

, : : : )

(GRC-Inv-Arg)

e

i

�! e

i

0

new N( : : : ,e

i

, : : : ) �! new N( : : : e

i

0

, : : : )

(GRC-New-Arg)
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e

0

�! e

0

0

(N)e

0

�! (N)e

0

0

(GRC-Cast)

5.5 Properties of Checked Programs

In this section, we show type soundness for checked programs. Although the proof steps are similar

to those of FGJ, each proof of the lemmas becomes complicated due to raw types and the bottom

type.

5.5.1 Theorem [Subject reduction]: If �; � ` e 2 T without unchecked warning and e �! e

0

,

then �; � ` e

0

2 T

0

without unchecked warning, for some T

0

such that � ` T

0

<

:

T.

Proof: See below. �

5.5.2 Theorem [Progress]: Suppose e is a well-typed expression.

(1) If e includes new N

0

(e).f as a subexpression, then �elds(N

0

) = T f and f 2 f.

(2) If e includes new N

0

(e).m<V>(d) as a subexpression, then mbody(m<V>; N

0

) = (x; e

0

) and

#(x) = #(d).

Proof: Similar to the proof of Theorem 4.5.1.2. �

We develop a proof of Theorem 5.5.1 below.

5.5.3 Lemma [Weakening]: Suppose �; X<

:

N ` N ok and � ` U ok.

1. If � ` S <

:

T, then �; X<

:

N ` S <

:

T.

2. If � ` S ok, then �; X<

:

N ` S ok.

3. If �; � ` e 2 T, then �; �; x : U ` e 2 T, and �; X<

:

N; � ` e 2 T.

Proof: Each of them is proved by straightforward induction on the derivation of � ` S <

:

T and

� ` S ok and �; � ` e 2 T. �

5.5.4 Lemma: If � ` N <

:

P and � ` head(P) 6<

:

C and � ` C 6<

:

head(P), then � ` head(N) 6<

:

C

and � ` C 6<

:

head(N).

Proof: It is easy to see that � ` N <

:

P implies � ` head(E) <

:

head(D). The conclusions are

easily proved by contradiction. �

5.5.5 Lemma: Suppose � ` C<T> <

:

N and dcast(C; head(N)). If � ` C<T

0

> <

:

N, then T

0

= T.

Proof: The case where C = head(N) is easy; since dcast is antisymmetric, if � ` C<T> <

:

N, then

C<T> and N must be equal. The case where dcast(C; D) because dcast(C; E) and dcast(E; head(N)) is

also easy; note that, from every judgment � ` C<T> <

:

N, we can have � ` C<T> <

:

P and � ` P <

:

N

where head(P) = E. Finally, if head(N) is a direct superclass of C, C<T> is uniquely determined by

N because FV (N

0

) = X where CT (C) = class C<X / N> / N

0

{...}, �nishing the proof. �
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5.5.6 Lemma [Type substitution preserves subtyping]: If �

1

; X<

:

N;�

2

` S <

:

T and �

1

`

U <

:

[U=X]N with �

1

` U ok, and none of X appearing in �

1

, then �

1

; [U=X]�

2

` [U=X]S <

:

[U=X]T.

Proof: By induction on the derivation of �

1

; X<

:

N;�

2

` S <

:

T. Similar to the proof of Lemma 5.5.6.

Note that the cases (S-Bot, S-Raw, S-Cooked/Raw) are trivial. �

5.5.7 Lemma [Type substitution preserves type well-formedness]: If �

1

; X<

:

N;�

2

` T ok

and �

1

` U <

:

[U=X]N with �

1

` U ok and none of X appearing in �

1

, then �

1

; [U=X]�

2

` [U=X]T ok.

Proof: By induction on the derivation of �

1

; X<

:

N; �

2

` T ok, with a case analysis on the last

rule used. Similar to the proof of Lemma 5.5.7. Note that the cases (WF-Bot and WF-Raw) are

trivial. �

5.5.8 Lemma: If � ` S <

:

T and � ` S ok and � ` T ok and neither S nor T is *, then ; ` jSj

�

<

:

jTj

�

.

Proof: By straightforward induction on the derivation of � ` S <

:

T. �

5.5.9 Lemma: Suppose �

1

; X<

:

N;�

2

` T ok where T 6= * and �

1

` U <

:

[U=X]N with �

1

` U ok and

none of X appearing in �

1

. Then, �

1

; [U=X]�

2

` bound

�

1

; [U=X]�

2

([U=X]T) <

:

[U=X](bound

�

1

;X<

:

N;�

2

(T)).

Proof: The case where T is a nonvariable type is trivial. The case where T is a type variable X and

X 2 dom(�

1

)[dom(�

2

) is also easy. Finally, if T is a type variable X

i

, then bound

�

1

; [U=X]�

2

([U=X]T) =

U

i

and [U=X](bound

�

1

;X<

:

N;�

2

(T)) = [U=X]N

i

; the assumption �

1

` U <

:

[U=X]N and Lemma 5.5.3 �nish

the proof. �

5.5.10 Lemma: If � ` S <

:

T and S 6= * and � ` S ok and �elds(bound

�

(T)) = T f, then

�elds(bound

�

(S)) = S g and � ` S

i

<

:

T

i

and g

i

= f

i

for all i � #(f).

Proof: By induction on the derivation of � ` S <

:

T with a case analysis on the last rule used.

The cases similar to those in the proof of Lemma 4.5.1.10 are omitted.

Case S-Bot:

Can't happen.

Case S-Raw: S = C T = D CT (C) = class C<X / N> / D<T> {S g; ...}

Easy. By the rule F-Raw, �elds(C) = U f; jSj

X<

:

N

g where U f = �elds([T=X]N).

Case S-Cooked/Raw: S = C<T> T = C

By induction on the derivation of �elds(C). Suppose CT (C) = class C<X / N> / D<T> {S g; ...}.

Since � ` S ok, we have � ` T <

:

[T=X]N. Then, it is easy to show that � ` [T=X]S <

:

jSj

X<

:

N

. �

5.5.11 Lemma: If � ` T ok andmtype(m<V>; bound

�

(T)) = <Y / P>U!U

0

without unchecked warning,

then for any S such that � ` S <

:

T and � ` S ok and S 6= *, we have mtype(m<V>; bound

�

(S)) =

<Y / P>U!U

0

0

without unchecked warning and �; Y<

:

P ` U

0

0

<

:

U

0

.

Proof: By induction on the derivation of � ` S <

:

T with a case analysis on the last rule used.

The cases similar to those in the proof of Lemma 4.5.1.11 are omitted.

Case S-Bot:

Can't happen.
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Case S-Raw: S = C T = D CT (C) = class C<X / N> / N { ... M}

head(N) = D

The length of V must be zero. If M do not include m, it is easy to show the conclusion, since

mtype(m<>; bound

�

(S)) = mtype(m<>; bound

�

(T)) by the rule MT-Super-Raw.

On the other hand, suppose M includes the declaration <Z / Q>T

0

0

m (T x) {"e;}. We have two

subcases according to whether N is raw or not.

Subcase: N = D<S>

Since mtype(m<>; D) is well de�ned, by the rule GT-Method, mtype(m<Z>; N) = <Z / Q>T!T

0

and

X<

:

N; Z<

:

Q ` T

0

0

<

:

T

0

. By Lemma 5.5.8, ; ` jT

0

0

j

X<

:

N; Z<

:

Q

<

:

jT

0

j

X<

:

N; Z<

:

Q

. It is easy to see that, by

induction on the derivation of mtype(m<Z>; N), <Y / P>U!U

0

= T!E and ; ` jT

0

j

X<

:

N; Z<

:

Q

<

:

E and

jTj

X<

:

N; Z<

:

Q

= T.

Subcase: N = D

Similar.

Case S-Cooked/Raw: S = C<T> T = C

By induction on the derivation of mtype(m<>; C). If m is de�ned in CT (C) then, it must be of the

form <Y / P>T

0

m (D x) {"e;} and it is easy to show �; Y<

:

P ` T

0

<

:

jT

0

j

�; Y<

:

P

. �

5.5.12 Lemma [Type substitution preserves typing]: If �

1

; X<

:

N; �

2

; � ` e 2 T without

unchecked warning and �

1

` U <

:

[U=X]N where �

1

` U ok and none of X appears in �

1

, then

�

1

; [U=X]�

2

; [U=X]� ` [U=X]e 2 S without unchecked warning for some S such that �

1

; [U=X]�

2

`

S <

:

[U=X]T.

Proof: By induction on the derivation of �

1

; X<

:

N;�

2

; � ` e 2 T with a case analysis on the last

rule used. The cases similar to those in the proof of Lemma 4.5.1.12 are omitted.

CaseGT-Field: e = e

0

.f

i

�

1

; X<

:

N; �

2

; � ` e

0

2 T

0

�elds(bound

�

1

; X<

:

N; �

2

(T

0

)) = T f

T = T

i

By the induction hypothesis, �

1

; [U=X]�

2

; [U=X]� ` [U=X]e

0

2 S

0

and �

1

; [U=X]�

2

` S

0

<

:

[U=X]T

0

.

Now we have two subcases:

Subcase: S

0

= *

By the rule GT-Bot-Field, �

1

; [U=X]�

2

` [U=X]e 2 *.

Subcase: S

0

6= *

By Lemma 5.5.9,

�

1

; [U=X]�

2

` bound

�

1

; [U=X]�

2

(T

0

) <

:

[U=X]bound

�

1

; X<

:

N; �

2

(T

0

):

Then, it is easy to show

�

1

; [U=X]�

2

` bound

�

1

; [U=X]�

2

(S

0

) <

:

[U=X]bound

�

1

; X<

:

N; �

2

(T

0

):

By Lemma 5.5.10, �elds(bound

�

1

; [U=X]�

2

(S

0

)) = S g and we have f

j

= g

j

and � ` S

j

<

:

[U=X]T

j

for

j � #(f). By the rule GT-Field, �

1

; [U=X]�

2

; [U=X]� ` [U=X]e

0

.f

i

2 S

i

. Letting S = S

i

�nishes

the case.
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Case GT-Invk: e = e

0

.m<V>(e) �

1

; X<

:

N; �

2

; � ` e

0

2 T

0

mtype(m; bound

�

1

;X<

:

N;�

2

(T

0

)) = <Y / P>W!W

0

�

1

; X<

:

N; �

2

` V ok �

1

; X<

:

N; �

2

` V <

:

[V=Y]P

�

1

; X<

:

N; �

2

; � ` e 2 S �

1

; X<

:

N; �

2

` S <

:

[V=Y]W

T = [V=Y]W

0

By the induction hypothesis,

�

1

; [U=X]�

2

; [U=X]� ` [U=X]e

0

2 S

0

�

1

; [U=X]�

2

` S

0

<

:

[U=X]T

0

and

�

1

; [U=X]�

2

; [U=X]� ` [U=X]e 2 S

0

�

1

; [U=X]�

2

` S

0

<

:

[U=X]S:

We have two subcases:

Subcase: S

0

= *

By the rule GT-Bot-Invk, �

1

; [U=X]�

2

` e 2 *.

Subcase: S

0

6= *

This subcase is essentially similar to the case for GT-Invk in the proof of Lemma 4.5.1.12.

By using Lemma 4.5.1.9, it is easy to show

�

1

; [U=X]�

2

` bound

�

1

; [U=X]�

2

(S

0

) <

:

[U=X]bound

�

1

; X<

:

N; �

2

(T

0

):

Then, by Lemma 5.5.11,

mtype(m; bound

�

1

;[U=X]�

2

(S

0

)) = <Y / [U=X]P>[U=X]W!W

0

0

�

1

; [U=X]�

2

; Y<

:

[U=X]P ` W

0

0

<

:

[U=X]W

0

:

By Lemma 5.5.7,

�

1

; [U=X]�

2

` [U=X]V ok

Without loss of generality, we can assume that X and Y are distinct and that none of Y appear in

U, and thus [U=X][V=Y] = [[U=X]V=Y][U=X]. By Lemma 5.5.6,

�

1

; [U=X]�

2

` [U=X]V <

:

[U=X][V=Y]P (= [[U=X]V=Y][U=X]P)

�

1

; [U=X]�

2

` [U=X]S <

:

[U=X][V=Y]W (= [[U=X]V=Y][U=X]W):

By the rule S-Trans,

�

1

; [U=X]�

2

` S

0

<

:

[[U=X]V=Y][U=X]W:

By Lemma 5.5.6, we have

�

1

; [U=X]�

2

` [V=Y]W

0

0

<

:

[U=X][V=Y]W

0

(= [[U=X]V=Y][U=X]W

0

):

Finally, by the rule GT-Invk,

�

1

; [U=X]�

2

; [U=X]� ` ([U=X]e

0

).m<[U=X]V>([U=X]d) 2 S

where S = [V=Y]W

0

0

, �nishing the case.
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Case GT-Bot-Field:

Straightforward.

Case GT-Bot-Method:

Straightforward. �

5.5.13 Lemma [Term substitution preserves typing]: If �; �; x : T ` e 2 T and, �; � `

d 2 S both without unchecked warning where � ` S <

:

T, then �; � ` [d=x]e 2 S without

unchecked warning for some S such that � ` S <

:

T.

Proof: By induction on the derivation of �; �; x : T ` e 2 T. The cases similar to those in the

proof of Lemma 4.5.1.13 are omitted.

Case GT-Field: e = e

0

.f

i

�;�; x : T ` e

0

2 T

0

�elds(bound

�

(T

0

)) = T f T = T

i

By the induction hypothesis, �; � ` [d=x]e

0

2 S

0

for some S

0

such that � ` S

0

<

:

T

0

.

We have two subcases:

Subcase: S

0

= *

By the rule GT-Bot-Field, �; � ` [d=x]e 2 *.

Subcase: S

0

= *

Essentially similar to the case for GT-Field in the proof of Lemma 4.5.1.13. By Lemma 5.5.10,

�elds(bound

�

(S

0

)) = S g such that � ` S

j

<

:

T

j

and f

j

= g

j

for all j � #(T). Therefore, by the

rule GT-Field, �; � ` [d=x]e

0

.f

i

2 S

i

.

CaseGT-Invk: e = e

0

.m<V>(e) �;�; x : T ` e

0

2 T

0

mtype(m; bound

�

(T

0

)) = <Y / P>U!U

� ` V ok � ` V <

:

[V=Y]P �;�; x : T ` e 2 S

� ` S <

:

[V=Y]U T = [V=Y]U

By the induction hypothesis, �; � ` [d=x]e

0

2 S

0

for some S

0

such that � ` S

0

<

:

T

0

and

�;� ` [d=x]e 2 W for some W such that � ` W <

:

S.

We have two subcases now:

Subcase: S

0

= *

By the rule GT-Bot-Invk, �; � ` e 2 *.

Subcase: S

0

6= *

This subcase is essentially similar to the case for GT-Invk in the proof of Lemma 4.5.1.13. By

Lemma 5.5.11, mtype(m; bound

�

(S

0

)) = <Z / Q>U

0

!U

0

where Q = [Z=Y]P and U

0

= [Z=Y]U and

�; Z<

:

Q ` [Z=Y]U

0

<

:

U. By Lemma 5.5.6, � ` [V=Z]U

0

<

:

[V=Z]U. (Note that � ` V <

:

[V=Z]Q since

Q = [Z=Y]P.) By the rule GT-Method, �; � ` [d=x](e

0

.m<V>(e)) 2 [V=Z]U

0

. Letting S = [V=Z]U

0

�nishes the case.

�

5.5.14 Lemma: Suppose � ` N ok and for any C such that � ` N <

:

C, there exists T such that

� ` N <

:

C<T>. If mtype(m<V>; N) = <Y / P>U!U without unchecked warning and mbody(m<V>; N) =

(x; e

0

) with � ` V ok and � ` V <

:

[V=Y]P, then there exist some P and S such that � ` N <

:

P

where � ` P ok, and � ` S <

:

[V=Y]U where � ` S ok and �; x : [V=Y]U; this : P ` e

0

2 S without

unchecked warning.

Proof: By induction on the derivation of mbody(m<V>; C<T>) = (x; e).
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Case MB-Raw, MB-SuperRaw: N = C

Can't happen since there is no C<T> such that � ` N <

:

C<T>.

Case MB-Class:

Similar to the case for MB-Class in the proof of Lemma 4.5.1.14.

Case MB-Class/Raw: N = C<T>

CT (C) = class C<X / N> / P { ... M }

<Y / Q>T

0

m (S x) {"e

0

;} 2 M

#(V) = 0

Let � = x : S; this : C<X> and �

0

= X<

:

N; Y<

:

Q. By the rules GT-Class and GT-Method, we

have �

0

; � ` e 2 S

0

and �

0

; � ` S

0

<

:

T

0

for some S

0

. Since � ` C<T> ok, we have � ` T <

:

[T=X]N

by the rule WF-Class. By Lemmas 5.5.3, 5.5.12 and 5.5.6, we have

�; [T=X; *=Y]� ` [T=X; *=Y]e

0

2 [T=X; *=Y]S

0

and

� ` [T=X; *=Y]S

0

<

:

[T=X; *=Y]T

0

:

Since #(V) = 0, mtype(m<>; N) is derived by the rule MT-ClassRaw; moreover, since there is no

unchecked warning, we have jSj

�

0

= S and mtype(m<>; N) = S!jT

0

j

�

0

. Then, [T=X; *=Y]� = �.

Now, we have

�; x : S; this : C<T> ` [T=X; *=Y]e

0

2 [T=X; *=Y]S

0

and

� ` [T=X; *=Y]S

0

<

:

jT

0

j

�

0

�nishing the case.

Case MB-Super: N = C<T>

CT (C) = class C<X / N> / P { ... M }

m is not de�ned in M

Follows from the induction hypothesis. Note that [T=X]P also satis�es the property that, for any D

such that � ` [T=X]P <

:

D, � ` [T=X]P <

:

D<S> for some S because we can have � ` N <

:

D<S>, from

which we have � ` N <

:

[T=X]P and � ` [T=X]P <

:

D<S>. �

Proof of Theorem 5.5.1: By induction on the derivation of e �! e

0

with a case analysis on

the reduction rule used. The cases similar to those in the proof of Theorem 4.5.1.1 are omitted.

Case GR-Invk: e = new N(e).m<V>(d) mbody(m<V>; N) = (x; e

0

)

e

0

= [d=x; new N(e)=this]e

0

By the rules GT-Invk and GT-New, we have

�; � ` new N(e) 2 N mtype(m; bound

�

(N)) = <Y / P>U!U

� ` V ok � ` V <

:

[V=Y]P

�;� ` d 2 S � ` S <

:

[V=Y]U

T = [V=Y]U � ` N ok

for D such that � ` N <

:

D, there exist S

0

such that � ` N <

:

D<S

0

>.

By Lemma 5.5.14, �; x : [V=Y]U; this : P ` e

0

2 S for some P and S such that � ` N <

:

P

where � ` P ok, and � ` S <

:

[V=Y]U where � ` S ok. Then, by Lemmas 5.5.3 and 5.5.13,

�; � ` [d=x; new N(e)=this]e

0

2 T

0

for some T

0

such that � ` T

0

<

:

S. By the rule S-Trans, we

have � ` T

0

<

:

T. Finally, letting T

0

= T

0

�nishes the case.
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Case GRC-Field: e = e

0

.f e

0

= e

0

0

.f e

0

�! e

0

0

By the rule GT-Field, we have

�; � ` e

0

2 T

0

�elds(bound

�

(T

0

)) = T f

T = T

i

By the induction hypothesis, �; � ` e

0

0

2 T

0

0

for some T

0

0

such that � ` T

0

0

<

:

T

0

. Now we have

two subcases:

Subcase: T

0

0

= *

By the rule GT-Bot-Field, �; � ` e

0

0

.f 2 *.

Subcase: T

0

0

6= *

By Lemma 5.5.10, �elds(bound

�

(T

0

0

)) = T

0

g, and for j � #(f), we have g

i

= f

i

and � ` T

i

0

<

:

T

i

.

Therefore, by the rule GT-Field, �; � ` e

0

0

.f 2 T

i

0

. Letting T

0

= T

i

0

�nishes the case.

Case GRC-Inv-Recv: e = e

0

.m<V>(e) e

0

= e

0

0

.m<V>(e) e

0

�! e

0

0

By the rule GT-Invk, we have

�; � ` e

0

2 T

0

mtype(m; bound

�

(T

0

)) = <Y / P>T ! U

� ` V ok � ` V <

:

[V=Y]P

� ` e 2 S � ` S <

:

[V=Y]T

T = [V=Y]U

By the induction hypothesis, �; � ` e

0

0

2 T

0

0

for some T

0

0

such that � ` T

0

0

<

:

T

0

.

Subcase: T

0

0

= *

By the rule GT-Bot-Invk, �; � ` e

0

0

.m<V>(e) 2 *.

Subcase: T

0

0

6= *

By Lemma 5.5.11, mtype(m; bound

�

(T

0

0

)) = <Y / P>T ! V and �; Y<

:

P ` V <

:

U. By Lemma 5.5.6,

� ` [V=Y]V <

:

[V=Y]U. Then, by the rule GT-Invk, �; � ` e

0

0

.m<V>(e) 2 [V=Y]V. Letting T

0

0

=

[V=Y]V �nishes the case. �

5.6 Program Evolution and Unchecked Programs

As discussed at the beginning of this chapter, unchecked programs are important when program

evolution is taken into account. The goal of program evolution is to augment monomorphic Java

classes with type parameters and obtain checked GJ classes. Let us review the process of program

evolution:

1. To begin with, a Java program has to be considered a GJ program. After this step, we can

discuss program evolution within the framework of GJ. Here, it is desirable for every Java

program to be a checked GJ program, which behaves exactly the same as before; otherwise,

programmers are forced to worry about a possible crash of the program, from the beginning.

2. Programmers pick up a monomorphic class, written in the Java syntax, and upgrade it to

a polymorphic version one by one, repeatedly. During this step, the whole program may

become unchecked, but it continues to run.

3. Finally, a checked GJ program is obtained.

In this section, we discuss desired properties of Raw FGJ about program evolution and some

observed di�culties for the proof; their rigorous treatment are left for future work.
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5.6.1 Backward Compatibility

For the �rst step, it should be guaranteed that an FJ program is also a checked Raw FGJ program

and behaves exactly the same. However, it is not quite true if we interpret an FJ program as it is,

since, in Raw FGJ, every object instantiation new C(e) is unchecked (remember that C is raw even

if the class C does not take type parameters). Thus, to ensure this property, it seems to important

to use a trick similar to the one used in FGJ (and GJ)|that is, the notation C is the abbreviation

of the cooked type C<> when the class does not take type parameters. Then, the property could

be proved just as in FGJ (Theorem 4.5.2.4). In fact, the current GJ compiler adopts this rule

and seems to achieve backward compatibility with Java. The minimal requirement for the rule to

achieve backward compatibility would be that C is interpreted as C<> if the class de�nition of C is

written in the Java syntax. Thus, the rule adopted by the GJ compiler regards more occurrences of

C as C<>. However, the GJ rule causes a problem to prove the evolution property discussed below.

5.6.2 Compilation of Raw FGJ

During the iteration of the second step, a program may become unchecked; even so, we expect

that it continues to run. We have modeled the half of the story by de�ning direct semantics of

unchecked programs. The other half, connected with erasure semantics, would be formalized as the

following two properties: (1) an unchecked Raw FGJ program erases to a well-typed FJ program

(like Theorem 4.7.1.1); and (2) semantic equivalence of an unchecked Raw FGJ program and its

erasure (like Theorems 4.7.2.2 and 4.7.2.3).

The proof for the �rst property would be more complicated because of the bottom type, since,

in FJ, there is no type corresponding to the bottom type. One solution might be to augment FJ

with the bottom type. However, we do not expect that such an extension is essential to prove.

It is expected that there is no expression whose type is the bottom type in the type derivation of

the class table, if the bottom type appears only in the method body, as is ensured by the sanity

conditions. If it is really the case, we will not be bothered by ill-de�nedness of the absence of the

bottom type in FJ.

The semantic equivalence seems hard to prove since the proof technique in the previous chap-

ter depends on well-typedness of expressions: erasure and expansion are not de�ned for ill-typed

expressions.

5.6.3 Evolution Property

In the second step, each class will be replaced with another version. Then, we would like to

guarantee the evolution property that each replacement does not a�ect the well-typedness and

behavior of the whole program if the replacement is \sensible."

First of all, it is crucial to have a reasonable de�nition of sensible replacement. The de�nition

should re
ect our intuition behind upgrade of classes without changing the behavior. One rea-

sonable choice of sensible replacements seems to replace a class, written in the FJ syntax, with a

well-typed class so that the erasure of the latter is the original one. For example, the class Pair

in Chapter 2 can be replaced with the class Pair<X,Y> in Chapter 4. However, this de�nition

seems too restricted; it is often the case that intuitively reasonable replacement makes the erasure

di�erent. Consider a method declaration

Pair copy(Pair p) { return new Pair(p.fst, p.snd); }

that uses Pair<X,Y> via the raw type Pair. We might want to replace it with a new de�nition
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Pair<A,B> copy(Pair<A,B> p) { return new Pair<A,B>(p.fst, p.snd); }

but it would not be allowed since the erasure return

new Pair((A)p.fst, (B)p.snd);

of the new method body involves synthetic casts. Therefore, we will need a more permissible

de�nition. We may be able to ignore di�erence by the insertions of synthetic casts, as we did in

the proof of correctness of FGJ compilation, since synthetic casts are supposed not to a�ect the

behavior of programs.

Although we do not yet have a rigorous de�nition of such sensible replacements, we can observe

Raw FGJ (and GJ) do not quite satisfy the evolution property, in particular, the preservation of

well-typedness. The intuitive reason behind that property is that every occurrence of C, where the

class C is written in the FJ (or Java) syntax, will become a raw type after the class is upgraded to

a polymorphic version. However, it is now always the case in the presence of the GJ abbreviation

rule mentioned above. Consider the following Raw FGJ classes:

class C<X> extends Object {

}

class A extends C<A> {

}

class B extends C<B> {

}

class Pair<X,Y> extends Object {

X f; Y g;

Pair(X f, Y g) { this.f = f; this.g = g; }

}

class Factory extends Object {

Factory() { super(); }

Pair doublet(C f, C g) { return new Pair(f,g); }

}

class Test extends Object {

Test() { super(); }

Pair foo() { return new Factory().doublet(new A(),new B()); }

}

The classes A, B, C, and Pair have already been evolved; now we are going to replace the class

Factory. Consider the following new de�nition of Factory:

class Factory extends Object {

Factory() { super(); }

<X extends C<X>> Pair<X,X> doublet(X f, X g) {

return new Pair<X,X>(f,g);

}

}

Notice that the new class does not take type parameters, but the method doublet is augmented

with a type parameter X bounded by C<X>. The new de�nition is well typed and erases to the old

one. However, the class Test is not well typed any more; in particular, the method body of foo is

ill-typed now since the occurrence of Factory in foo is considered the abbreviation of Factory<>
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and the invocation of doublet lacks type parameters. Even if we had a GJ-style type parameter

inference, it would not help very much since there is no appropriate type parameter for the method

invocation. (Notice that there are no type T such that A <

:

T and B <

:

T and T <

:

C<T>.)

The abbreviation rule of GJ seems harmful for the evolution property. Since type inference

may fail anyway, the new program should not trigger type inference. In the particular example

above, if new Factory() instantiated the raw type Factory, the class Test would be well typed,

even though it becomes a unchecked program, though. One possible �x for this problem would be

to restrict how a cooked type C<> is abbreviated to C in program texts: our proposed �x is that C

is the abbreviation of C<> only when the class C does not take type parameters and no method of

C takes type parameters. This new rule will still keep the backward compatibility with FJ.

5.7 Summary

This chapter has further extended Featherweight GJ with raw types, a distinctive feature of GJ

to make it smooth to upgrade a monomorphic program to a polymorphic version. Since raw types

allow programmers to use parametric classes without type parameters, even when a monomorphic

part of a program is replaced with its polymorphic variant, its clients still typecheck and the whole

program will run.

Programs using raw types are classi�ed into checked and unchecked programs. Although checked

programs are supposed to run safely, we have found GJ's type system for raw types is 
awed and

some compiled program can fail at synthetic casts. We have proved type soundness of a �xed

type system. In our formalization of semantics and proof, the key idea was introduction of the

bottom type. On the other hand, as for unchecked programs, we have given an informal discussion

on relationship with program evolution, and conjectured some desired properties of unchecked

programs. The current GJ seems not to satisfy one of those properties.
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Related Work

6.1 Class-Based Object Calculi

6.1.1 Core Languages for Java

There are several known proofs in the literature of type soundness for subsets of Java. In the earliest,

Drossopoulou, Eisenbach and Khurshid [DEK99] (using a technique later mechanically checked by

Syme [Sym97]) prove soundness for a fairly large subset of sequential Java. Like us, they use

a small-step operational semantics, but they avoid the subtleties of \stupid casts" by omitting

casting entirely. Nipkow and Oheimb [NvO98] give a mechanically checked proof of soundness for

a somewhat larger core language. Their language does include casts, but it is formulated using a

\big-step" operational semantics, which sidesteps the stupid cast problem. Flatt, Krishnamurthi,

and Felleisen [FKF98a, FKF98b] use a small-step semantics and formalize a language with both

assignment and casting. Their system is somewhat larger than ours (the syntax, typing, and

operational semantics rules take perhaps three times the space), and the soundness proof, though

correspondingly longer, is of similar complexity. Their published proof of subject reduction in the

earlier version is slightly 
awed|the case that motivated our introduction of stupid casts is not

handled properly|but the problem can be repaired by applying the same re�nement we have used

here.

Of these three studies, that of Flatt, Krishnamurthi, and Felleisen is closest to ours in an

important sense: the goal there, as here, is to choose a core calculus that is as small as possible,

capturing just the features of Java that are relevant to some particular task. In their case, the task

is analyzing an extension of Java with Common Lisp style mixins|in ours, extensions with inner

classes and parametric classes. The goal of the other two systems, on the other hand, is to include

as large a subset of Java as possible, since their primary interest is proving the soundness of Java

itself.

6.1.2 Other Class-Based Object Calculi

The literature on foundations of object-oriented languages contains many papers formalizing class-

based object-oriented languages, either taking classes as primitive (e.g., [Wan89, Bru94, BPSM99,

BPS99]) or translating classes into lower-level mechanisms (e.g., [FM98, BF98, AC96, PT94]. Some

of these systems (e.g. [PT94, Bru94]) include generic classes and methods, but only in fairly simple

forms.

113



114 CHAPTER 6. RELATED WORK

6.2 Generic Extensions of Java

A number of extensions of Java with parametric classes and methods have been proposed by various

groups, including the language of Agesen, Freund, and Mitchell [AFM97]; PolyJ, by Myers, Bank,

and Liskov [MBL97]; Pizza, by Odersky and Wadler [OW97]; GJ, by Bracha, Oderksy, Stoutamire,

and Wadler [BOSW98b]; and NextGen, by Cartwright and Steele [CS98]. While all these languages

are believed to be type-safe, our study of FGJ is the �rst to give rigorous proof of soundness for

a generic extension of Java. We have used GJ as the basis for our generic extension, but similar

techniques should apply to the forms of genericity found in the rest of these languages.

Recently, Duggan [Dug99] has proposed a technique to translate monomorphic classes to para-

metric classes by inference of type argument information. He has also de�ned a polymorphic

extension of Java, slightly less expressive than GJ (for example, polymorphic methods are not

allowed and a subclass must have the same number of type arguments as its superclass). Type

soundness theorem of the language is mentioned but stupid cast problem is not taken into account.

As an alternative to parametric classes, virtual types [Tho97] have been proposed for an exten-

sion to Java. Since the original proposal was not statically type-safe, several type-safe variants have

been proposed [Tor98, BOW98, BV99] later. Pierce and the author [IP99] have shown examples of

an encoding of objects and classes involving virtual types in an extension of System F

!

�

. However,

since the target language is not class-based, comparison of the variants are done via encoding. It

would be possible to formalize a variety of virtual types as an extension of FJ and obtain more

direct accounts of the proposed variants.

6.3 Nested Declarations in Object-Oriented Languages

Beta [MMPN93] also allows nested class de�nitions (as an instance of nested patterns, the only

abstraction mechanism in Beta, which uni�es classes and procedures). There are two signi�cant

di�erences from Java-style inner classes. First, in Beta, inner classes are specialized in a subclass: for

example, if C <

:

D and both C and D have the declaration of an inner class of name E, then C.E must

extend D.E. Second, nested classes are virtual [MMP89], in the sense that it depends on run-time

type of the enclosing instance which constructor is invoked. A constructor invocation e.new E(e)

instantiates an object of class C.E when the run-time type of e is C while it instantiates an object

of class D.E when that of e is D. Madsen has recently described the algorithm of elaboration (they

call semantic analysis) used in the Mj�lner Beta compiler [Mad99]. The algorithm is very close to

the rules presented in Section 3.8, in the sense that the search order is the same as ours, although

the presence of virtual classes complicates the algorithm.

Block expressions of Smalltalk [GR83] provides block structure of objects rather than classes.

Since block expressions can o�er only one method and cannot inherit from another class, their

expressiveness is limited.
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6.4 Microsoft's Delegates

Microsoft has proposed delegates [Mic99] as an alternative to inner classes. The basic idea of

delegates resembles the function pointers found in C and C++. Programmers can create a delegate

with an expression of the form e.m (without parameters) and pass it elsewhere; later, the method

m can be invoked through the delegate. We believe it would be possible to model delegates in

an extension of FJ, as we have done here for inner classes. On the one hand, the formalization

would be simpler than inner classes due to the absence of interaction with inheritance. On the

other hand, it would be hard to model the implementation scheme of delegates, since it depends

on Java's re
ection features.

6.5 Object Closure Conversion

Recently, Glew [Gle99a] has studied closure conversion in the context of a call-by-value object

calculus (without classes) and shown correctness of conversion based on contextual equivalence.

Our translation semantics can also be viewed as closure conversion of class de�nitions. Since his

calculus does not have classes, semantic account of interaction between inheritance and nested

classes is not given. On the other hand, he has dealt with subtlety in the proof of correctness of

conversion in the presence of a call-by-value reduction strategy.
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Chapter 7

Conclusions

7.1 Summary of the Thesis

In this thesis, we have studied two advanced class mechanisms, Java-style inner classes and GJ-

style parametric classes. We have designed a small class-based object-oriented language, FJ, and

formalized the core features of those mechanisms on top of FJ. Several properties such as type

soundness and correctness of the compilation schemes have been proved. The main contributions

are summarized as follows:

� The design of FJ. FJ has been designed to be a sublanguage of Java. We have dropped as

many features as possible and left the essential features required to understand the essence

of the extensions. As a result, FJ is much smaller than any other existing core languages for

Java; this extreme simplicity was important in order to make proofs for complex extensions

tractable.

We have also identi�ed the stupid cast problem in the proof of subject reduction for FJ with

typecasts. Although it is a rather small technicality, it is worth pointing out. In fact, it has

been overlooked in other formalizations of the core languages for Java.

� Formalization of the core of inner classes. One of the main di�culties in understanding inner

class lies in interaction with inheritance, which complicates semantics and scoping rules of the

language. We have clari�ed the key notion of enclosing instance, which roughly corresponds

to an environment under which a method is executed. We have extended FJ with inner classes

to FJI and de�ned its semantics in the two styles: the direct style, de�ned by a reduction

relation between FJI expressions, provides a model of direct execution of the program; and the

translation style, de�ned by translation from FJI to FJ, captures the essence of the current

compilation scheme, given by the o�cial speci�cation. Type soundness and equivalence of

the two styles have been proved. The equivalence guarantees correctness of the current

compilation scheme.

As for scoping rules, we have de�ned formal rules of elaboration from user programs, where

receivers (e

0

of e

0

.f or e

0

.m(e)) may be omitted when they are this or C.this, to FJI

programs, where they must be explicit.

� Formalization of the core of GJ. We have augmented FJ with type parameterization and

obtained Featherweight GJ. As we did for FJI, we have de�ned the direct and translation

styles of semantics and proved type soundness for each of them. The most challenging property
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was correctness of the translation style with respect to the direct style. Naive correspondence

between FGJ reduction steps and FJ reduction steps did not hold. Nevertheless, we have

proved a slightly weaker property that the execution results in both semantics correspond to

each other.

� We have further extended FGJ with raw types to Raw FGJ. Raw FGJ programs are classi�ed

into checked and unchecked programs, where the former is guaranteed to be safe, whereas the

latter is not. The main technical result is a proof of subject reduction property for checked

Raw FGJ programs. Surprisingly, the current typing rules of GJ has turned out to be 
awed;

we have proved it for a �xed type system. In our de�nition of semantics and proof of subject

reduction, the bottom type has played an important role.

We have also discussed roles of raw types and unchecked programs in evolution from legacy

monomorphic programs to its polymorphic variant. Some desired properties have been con-

jectured. Once again, we have found the current design of GJ does not satisfy one of those

important properties.

To our knowledge, this work gives for the �rst time a direct style of formal semantics of both inner

classes and parametric classes (as an extension for Java); in particular, the use of the bottom type

in the operational semantics of Raw FGJ seems new. The direct style should be deemed important

since semantics depending on translation makes reasoning about program behavior considerably

hard.

Besides the technical contributions above, we have found several bugs in a few Java compilers

and the GJ compiler (though most of them are not critical and have already been �xed in the

currently available versions). Moreover, some signi�cant underspeci�cation in the o�cial document

of inner classes and bugs in the GJ design has been revealed.

In conclusion, although our approach, formalization of the core features with a small core

language, is far from completeness, it is really useful not only for con�rming expected properties

but also for discovering 
aws that even the designers did not know.

7.2 Future Work

Future work mainly consists of two directions: modeling of features left out from this work, and

investigating connection between FJ (including the extensions) and more primitive calculi.

7.2.1 Formalization of Other Aspects of Inner Classes

Local Classes and Anonymous Classes

In Java, programmers are allowed to declare inner classes not only as members of a class but also

in a method body as local classes, declared in a block just as local variables, or anonymous classes,

considered a combination of a local class declaration and its instantiation. Formalizing these classes

should face another subtle rule, found in the speci�cation, that method formal parameters used in

local/anonymous classes should be marked final, which prohibits assignment to the parameters.

This rule is derived from the current compilation scheme; method parameters referred to in a

local/anonymous class are translated to �elds of the compiled class and they are initialized with the

values of the method parameters. The annotation final is required to keep consistency between the

values of the method parameters of the enclosing class and those of the �elds of the local/anonymous

class.
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Moreover, anonymous classes raise an interesting question on the type system, namely, \what

would be the type of instances of an anonymous class?" On the one hand, it seems reasonable to

introduce structural types for anonymous classes. On the other hand, the introduction of structural

types seems incompatible with translation semantics in the sense that di�erent anonymous class

types with the same structure may be mapped into the same types.

Inner Classes and Access Control

Combination of inner classes and access control is subtle especially in the presence of translation

semantics. It has been already pointed out that the current compilation scheme may compromise

access control annotation in the original program [Aba98, BP] since, when an inner class accesses

privatemembers of the enclosing class, those members are translated into members accessible from

other classes of the same package. One solution has been proposed by Bhowmik and Pugh [BP].

In their translation, the inner class and its enclosing class will share a secret key to access private

members; since the secret is generated at run-time, it is unforgeable. Formalizing their translation

and showing its correctness should be interesting. To express such information sharing, assignments

seem essential.

7.2.2 Formalization of Other Aspects of GJ

Raw Types

As discussed in Section 5.6, the properties about program evolution and unchecked programs should

be proved. The main di�culties in the proof would lie in erasure semantics and the formal de�nition

of evolution.

Since we do not have the bottom type in FJ, the erasure of the bottom type is not clear. It

seems to require some workaround in a proof of the property that an unchecked program compiles

to a well-typed FJ program. One possible solution is to extend FJ with the bottom type. However,

we do not expect that such an extension is essential to prove it; it seems that, if a program is well

typed, there is no type judgment that gives an expression the bottom type and, hence, we do not

have to consider the erasure of the bottom type. This conjecture also a�ects our proof of subject

reduction: we may not need the special typing rules for the bottom types.

The properties about program evolution seem much harder to proof because even the formal

de�nition of program evolution is not clear yet.

Type Inference

The GJ compiler supports partial type inference for polymorphic method invocations. Basically,

it is an instance of local type inference scheme [PT98] in the sense that missing type parameters

are determined only by the types of the receiver and the actual arguments, not depending on the

context of the invocation. Hence, a similar formalization seems possible.

However, the type system for type inference uses the bottom type, making argument of sound-

ness of type inference very subtle. For example, the type C<*> is considered subtype of C<A> for

any type A. In general, this kind of covariant subtyping should not be allowed for the type system

to be sound. (Java's subtyping rule for array is such an example: in Java, String[] is subtype of

Object[], forcing run-time checks for insertions of a value into an array.) Another subtle rule is

that, if * is inferred for an type parameter, the type parameter may not appear more than once in

the result type. For example, if the result type of an method is C<X,X>, the bottom type cannot be

a choice for X. We expect that these rules are signi�cant in the presence of side-e�ects; therefore,
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the base language may have to be extended with assignments to capture subtleties of GJ type

inference.

Combination of Inner Classes and Raw Types

It might be worth investigating a combination of inner classes and raw types. It is not immediately

clear what a quali�ed type name consisting of cooked types and raw types since an inner class may

refer to type parameters derived from enclosing classes. Does the type C.D<A> make sense when

C is raw? Or, what does C<A>.D mean if D is raw? It seems that the current GJ compiler ignores

type parameters when one of simple names in a quali�ed name is raw. For example, the following

GJ class de�nitions

class A extends Object{

void m() { return; }

}

class C<X extends Object> extends Object {

class D<Y extends Object> extends Object {

X f;

D(X f) { this.f = f; }

}

void test (C<A>.D x) {

x.f.m();

}

}

are not accepted by the compiler, saying that method m not found in class Object, although one

might expect that x.f is given type A, the type parameter for X.

7.2.3 Connection between FJ and Object-Based Calculi

As discussed in Chapter 1, the �rst step of our approach to this work was to create an appropriate

setting to concentrate on study of the essence of inner classes and GJ. Hence, we did not choose

existing object-based calculi such as Abadi-Cardelli's calculi [AC96] mainly because even basic class

mechanisms seemed hard to express in such low-level calculi and, as a result, the essential points

would be blurred.

It is interesting to �ll the gap between FJ and more primitive object-based calculi: FJ may

be encoded in a lower-level calculus. The biggest di�erence lies in their type systems; FJ is based

on name-based subtyping and most of the calculi used for theoretical studies of object-oriented

languages are based on structural subtyping. Above all, encoding of typecasts seems challenging.

Although we can �nd a similar construct such as the so-called \typecase" construct [ACPR95,

HM95], its detail is signi�cantly di�erent from typecasts because of name-based subtyping. Glew's

recent work [Gle99b] on a language with type dispatch for generative and hierarchical types would

be a good starting point.
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7.2.4 Primitive Calculus for Compilation and Raw Types

When we design FJ, we dropped as many features as possible from Java. The simplicity was really

useful to prove formal properties of the languages such as type soundness. However, some of the

problems such as compilation from FGJ to FJ and raw types are not necessarily inherent in object-

oriented programming and FJ seems still too big to study them. We could think of similar problems

in, say, functional programming. For example, it might be possible to mimic programming with a

polymorphic type system by a monomorphic language with subtyping and a dynamic typechecking

construct similar to typecasts of Java.

Therefore, it will be worth investigating the essence of raw types and compilation from a poly-

morphic language to a monomorphic language with subtyping and typecasts in a simpler setting.

Then, we will not be bothered by details of object-oriented features.
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