
Matching ThisType to Subtyping

Chieri Saito
Graduate School of Informatics

Kyoto University
Kyoto 606-8501 JAPAN

saito@kuis.kyoto-u.ac.jp

Atsushi Igarashi
Graduate School of Informatics

Kyoto University
Kyoto 606-8501 JAPAN

igarashi@kuis.kyoto-u.ac.jp

ABSTRACT
The notion of ThisType has been proposed to promote type-
safe reuse of binary methods and recently extended to mu-
tually recursive definitions. It is well-known, however, that
ThisType does not match with subtyping well. In the cur-
rent type systems, type safety is guaranteed by the sacrifice
of subtyping, hence dynamic dispatch. In this paper, we pro-
pose two mechanisms, namely, nonheritable methods and lo-
cal exactization to remedy the mismatch between ThisType

and subtyping. We rigorously prove their safety by modeling
them in a small calculus.

Categories and Subject Descriptors
D.3.1 [Programing Languages]: Formal Definitions and
Theory; D.3.2 [Programming Languages]: Language Clas-
sifications—Object-oriented languages ; D.3.3 [Programming
Languages]: Language Constructs and Features—Classes
and objects; Polymorphism; F.3.3 [Logics and Meaning
of Programs]: Studies of Program Constructs—Object-
oriented constructs; Type structure

General Terms
Design, Languages, Theory

Keywords
binary methods, dynamic dispatch, exact types, subtyping,
ThisType

1. INTRODUCTION

Background. Language designs for statically-typed class-
based object-oriented programming languages have been stud-
ied to promote code reuse by inheritance. The target of reuse
has been scaling up from a class to a group of classes and
even a class hierarchy so that reusable units (components)
can have more complex structures. The key to achieving

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

reuse is to keep intra-component dependencies through ex-
tension. There have been many proposals, in which there
are two styles to write the dependencies, that is, one using
dependent types [11, 12, 19, 20, 10, 22] and the other not [17,
24, 16, 5, 6, 9, 3]. The discussion in this paper focuses on
the latter style.

Binary methods [4] is a familiar example showing that
even a single class is difficult to be safely reused by inher-
itance if it has self-recursive references. A binary method
is one whose parameter type is the same as the receiver
type. Ideally, in a class definition, the parameter type has
to change covariantly as the class extends so that subclasses
refer to themselves. However, covariant change is disallowed
in the languages such as C++ and Java for safety. As a re-
sult, the subclasses refer to its superclass and this gap is
often solved by typecasting, a potentially unsafe operation.

ThisType and its Extensions. The notion of MyType [2,
8, 7] is proposed for the languages with structural type sys-
tems to support type-safe reuse of binary methods. My-
Type represents the type of an object that it appears in
and its meaning covariantly changes along with class ex-
tension, as desired. Later, it is adapted to GJ [1] with a
nominal type system, resulting in the language LOOJ [5], in
which MyType is called ThisType1. Subsequently ThisType

is extended to mutually recursive classes [24, 6, 9, 3], class
hierarchies [17], and arbitrarily nested groups of classes [16].

Mismatch between ThisType and Subtyping. It is well-
known that ThisType and its extensions do not match with
subtyping well. If we gave the type system naively, type
safety would be lost. LOOJ guarantees type safety, but
sacrifices subtyping, hence dynamic dispatch, an important
feature of object-oriented programming.

A naive type system can be given by adding the following
(informal) rules: (1) the invocation of a binary method is
well typed only if the argument type is a subtype of the pa-
rameter type which is obtained by replacing ThisType by the
receiver type; (2) a method declaration is typed in a class
under the assumption that ThisType and the class name
are compatible. However, such a type system breaks safety.
The former rule does not guarantee safety of the invoca-
tion because the signature of the dispatched method can be
different from the one obtained at compile-time. The lat-
ter, in particular the assumption that the class name is a

1In LOOJ, actually, ThisType represents the public interface
of the class whereas ThisClass refers to the class type. Here,
we use ThisType for ThisClass.

subtype of ThisType, does not guarantee safe inheritance
because the meaning of ThisType changes along with class
extension—the inherited method may not be well typed in
subclasses.

The type systems of LOOJ and others have two restric-
tions to guarantee type safety:

1. a binary method can be invoked only on the receiver
whose run-time type is statically known; and

2. when a method is typed in a class, the class name is
not a subtype of ThisType.

LOOJ and others are equipped with exact types as a means
to identify run-time types statically; binary methods can be
invoked only on the receivers of exact types. As a result,
it is impossible to dynamically dispatch binary methods.
The latter makes it difficult to implement a method, with
ThisType being its return type, that returns a new object
that is of the same type as the receiver, such as clone(),
since objects have to be created by specifying a concrete
class name in LOOJ2. Giving the return type of clone()

ThisType is crucial to realize that returned objects have the
same type as the receiver whatever type the receiver has. In
Java, returned objects must be casted explicitly since the
return type of clone() is Object.

In summary, in LOOJ and the similar languages, pro-
grams, especially client code, are often tied to a specific im-
plementation. We wish to relax it and realize more “object-
oriented” programming in the sense that we can use dynamic
dispatch in more occasions.

Contributions of the Paper. In this paper, we propose
two mechanisms, namely, local exactization and nonheritable
methods for the languages with ThisType and exact types
such as LOOJ. The former allows binary methods to be
invoked even if the run-time types of the receivers are not
identified. The latter allows a class name to be a subtype of
ThisType under a certain condition.

To rigorously show that our proposing features are safe,
we formalize them on top of Featherweight Java [14], or FJ
in short, and prove its type soundness. Although FJ models
a minimal set of features for class-based languages and is
not equipped with a grouping mechanism, for example class
nesting, our proposals are easily adaptable to the extensions
of ThisType in the languages with grouping mechanisms.

We summarize our technical contributions as follows:

• introduction of the new features, namely, local exacti-
zation and nonheritable methods; and

• a formalization of a sound core language with these
features.

Rest of This Paper. Section 2 examines the mismatch be-
tween ThisType and subtyping after reviewing ThisType and
exact types. Section 3 proposes the two features to remedy
the mismatch. Section 4 gives a formal core calculus for
them and proves a type soundness property. Section 5 dis-
cusses related work. Section 6 concludes. Hereafter, we
write This, as done in [16], for ThisType.

2Such methods can be implemented by using abstract fac-
tory pattern [13] as seen in [5], which will be discussed in
Section 5.

2. MISMATCH BETWEEN THIS AND SUB-
TYPING

In this section, we examine the problems of This and exact
types found in the current type systems such as LOOJ’s after
briefly reviewing them through an example of extensible self-
recursive classes, written in Java-like syntax.

2.1 This and Exact Types
This represents the class in which This appears and its

subclasses. Since the meaning of This changes along with
class extension, This is used to write binary methods. Con-
sider the following class definitions:

class C {
int field1;
bool isEqual(This that){

return this.field1 == that.field1;
}

}
class D extends C {

int field2;
bool isEqual(This that){

return super.isEqual(that)
&& this.field2 == that.field2;

}
}

Class C declares the binary method isEqual() and its sub-
class D overrides it. This refers to class C in class C whereas
This refers to class D in class D. So, the field access that.

field2 in isEqual() in class D is legal. If we wrote isEqual()
with the argument type being C, the field access would be
illegal since D has to override the method with the same
signature, but C does not have field2.

Exact types [16, 5] are used to guarantee the safe invoca-
tions of binary methods. An exact type @C represents the
object of class C exactly, excluding its proper subclasses. In
other words, @C assures that the run-time object is always
an instance of class C. So, the condition for safe invoca-
tion of binary methods (mentioned in Introduction) can be
rephrased “the receivers of binary methods should have exact
types.” Consider the following code:

@C c1; C c2, c3;
c1.isEqual(c2); // 1: allowed
c2.isEqual(c3); // 2: not allowed

The first call is legal since the receiver has @C, an exact type,
and the argument type C is a subtype of the parameter type
C. (The parameter type is obtained by replacing This with
the receiver’s class name). The second call is illegal since the
receiver’s type is not exact. If the second were allowed, the
execution could get stuck since c2 might refer to the object
of class D, dispatching the overridden isEqual(), although
c3 might refer to that of class C, which does not have field2.
Hereafter, we call types without @ inexact.

2.2 Problem Description
We examine the two problems that we tackle in this paper.

Figure 1 shows our running example adapted from [7].
Assume that we develop singly-linked lists, where each

node is represented by an object, and then develop doubly-
linked lists by reusing the definition of the node for the
singly-linked lists. Class LinkedNode<E> defines nodes for
singly-linked lists. (It is not important that the class is pa-
rameterized with the element type E for the field elem and
we sometimes omit the argument for it.) The class has a field

class LinkedNode<E> {
E elem;
@This next;
void insert(@This that){

@This tmp=this.next;
this.next = that;
that.next = tmp;

}
void insertElem(E e){

@This newNode=this.makeNode();
newNode.elem = e;
this.insert(newNode);

}
@This makeNode(){ ... }

}
class DoublyLinkedNode<E> extends LinkedNode<E> {

@This previous;
void insert(@This that){

super.insert(that);
that.previous = this;
that.next.previous = that;

}
@This makeNode(){ ... }

}

Figure 1: LinkedNode and DoublyLinkedNode classes

next, which points to the next node. The type of next is
@This, referring to LinkedNode exactly (and not to its proper
subclasses). Class DoublyLinkedNode<E> for doubly-linked
lists is defined as an extension of LinkedNode<E>. This class
has an extra field previous with the type @This to point its
previous node. Note that the inherited field next now refers
to DoublyLinkedNode in the class.

The use of type @This for next and previous brings the
following property: a singly-linked list consists of only the
objects of LinkedNode; a doubly-linked list consists of only
the objects of DoublyLinkedNode. So, whether a list is singly
or doubly linked, we at least know that the linked objects
in the list are those of a same type.

2.2.1 Binary Methods are Always Statically Dispatched
As mentioned before, binary methods should be invoked

on the receivers of exact types. This restriction prevents
dynamic dispatch of binary methods. Consider the following
client code:

LinkedNode<Integer> head;
head.next.insert(head); // ill-typed

The invocation above attempts to swap the head node and
its next node. The type of head.next is LinkedNode<Integer>,
the same as that of head, in LOOJ. Since insert() is a bi-
nary method and head.next is not of exact type, this call
is not allowed. However, this call could be executed safely
because whether head refers to a singly or doubly-linked
list, the run-time types of the receiver and argument are the
same. The correct implementation would be dispatched, de-
pending on the receiver type.

Bruce et al. [7] claim that the code above could be well
typed by rewriting it into a parameterized method as follows:

<N extends LinkedNode<Integer>>void swap(@N head){
head.next.insert(head);

}

Although the method declaration is well typed, its invoca-
tion swap(head) is not since there is no type that instanti-
ates the type variable N. So, this is not the solution that we
want.

2.2.2 Methods Cannot be Specialized to the Declar-
ing Classes

In the current type systems, the name of a class is not a
subtype of This in the class since This changes its mean-
ing by inheritance. The inconvenience coming from this re-
striction is typically seen in writing factory methods [13] or
cloning methods.

In Figure 1, in insertElem(), the factory makeNode() is
invoked to create a new node. The return type of makeNode()
must be @This so as to guarantee that the new node has ex-
actly the same type as the receiver this whatever class’s
instance this refers to. Naive definitions of makeNode()

would be:

class LinkedNode<E> {
@This makeNode(){

return new LinkedNode<E>();
} // ill-typed

}
class DoublyLinkedNode<E> extends LinkedNode<E> {

@This makeNode(){
return new DoublyLinkedNode<E>();

} // ill-typed
}

Each method returns a new object created by the class
name. However, both are ill-typed, since, for example, the
type @LinkedNode<E> of the new object is not a subtype of
@This in class LinkedNode<E>. If this method were inherited
to DoublyLinkedNode and called on its object, LinkedNode
would appear where DoublyLinkedNode is expected.

The ill-typed example above shows a fundamental differ-
ence between the purpose of the return type This and that
of object creation by a concrete class name3: the use of This
means that the method is reusable in or polymorphic over
subclasses whereas object creation makes code specialized
for that very class, that is, not reusable for its subclasses.

In general, due to the restriction, it is impossible to write
a method such that its implementation is specialized to the
declaring class and, at the same time, its interface is written
by using This.

Although the methods of makeNode() above are ill-typed,
they seem to return an object of the same type as the re-
ceiver correctly.

3. OUR PROPOSALS
In this section, we propose the two language features,

namely, local exactization (Section 3.1) and nonheritable
methods (Section 3.2). Each solves the problem described in
Section 2.2.1 and Section 2.2.2, respectively. Figure 2 shows
the complete definition of the classes in Figure 1 using the
latter proposal.

3.1 Local Exactization
We propose the typing feature local exactization to enable

the invocation of a binary method even if the run-time type
of the receiver is not identified, while we keep the restric-
tion that “binary methods should be called on exact types.”
We get our idea from the context of existential types [23].
We regard an inexact type C as ∃X<:C.@X, where X can be
thought of a run-time class. With this feature, the expres-
sion of an inexact type is unpacked and made temporarily
exact in a local scope.

3LOOJ allows object creation only with a concrete class
name (not including This), just as Java.

class LinkedNode<E> {
E elem;
@This next;
void insert(@This that){

@This tmp=this.next;
this.next = that;
that.next = tmp;

}
void insertElem(E e){

@This newNode=this.makeNode();
newNode.elem = e;
this.insert(newNode);

}
nonheritable @This makeNode(){

return new LinkedNode<E>();
}

}
class DoublyLinkedNode<E> extends LinkedNode<E> {

@This previous;
void insert(@This that){

super.insert(that);
that.previous = this;
that.next.previous = that;

}
nonheritable @This makeNode(){

return new DoublyLinkedNode<E>();
}

}

Figure 2: LinkedNode and DoublyLinkedNode classes
with nonheritable methods

The syntax of local exactization is:

exact ... as x, X in { ... }

The statement begins with exact, followed by the expres-
sion to be exactized. The variable x and type variable X are
bound in the body enclosed by braces. In the body, x has
type @X and X is bounded by the type of the target expres-
sion. At run-time, the body is executed where x is initialized
to the value of the target expression.

The ill-typed invocation of insert() in Section 2.2.1 can
be revised with the proposal as follows:

LinkedNode<Integer> head;
exact head as x, X in {

x.next.insert(x); // well-typed
}

The invocation is now well typed since the receiver x.next

and argument x are of the same exact type @X.
In the body, the introduced type variable X is used as if it

is an ordinary type. For example, we can write as follows:

exact head as x, X in {
@X n = x.makeNode();
n.insert(n); // well-typed

}

3.2 Nonheritable Methods
We propose the feature nonheritable methods4 to allow

a class name to be a subtype of This in that class under
a certain condition. The key observation is that it is safe
to allow a method whose signature contains This to have
a specialized implementation as long as the specialized im-
plementation is not reused in the subclasses. Nonheritable
methods have the following characteristics:

4Do not confuse with NotInheritable in Visual Basic, a mod-
ifier for classes. It prevents the classes from being extended,
corresponding to Java’s final.

1. a nonheritable method is not inherited to subclasses—
they have to rewrite5 the method with the same sig-
nature;

2. This in the signature of a nonheritable method is re-
placed with the name of the declaring class when the
method is typed;

3. it is not necessary that the rewritten methods are non-
heritable.

The first forces each class to have its own implementation.
The second allows This and the class name to be compatible
so that the method will be specialized for the class. The
third is mainly for convenience: we can stop the rewriting
chain in subclasses if we want.

In Figure 2, each of LinkedNode and DoublyLinkedNode

implements the nonheritable method makeNode(), modified
by nonheritable. Both are well typed since, for example, in
LinkedNode, This in the return type @This is replaced with
LinkedNode and its result @LinkedNode is a supertype of the
type @LinkedNode of the new object. If DoublyLinkedNode
did not rewrite makeNode(), it would be ill-typed.

4. A FORMAL CORE CALCULUS
In this section, we formalize the ideas described in the

previous section as a small calculus based on Featherweight
Java [14], a functional core of class-based object-oriented
languages. Section 4.1 defines the syntax; Sections 4.2 and 4.3
define the type system; Section 4.4 defines the operational
semantics. Finally, we show type soundness in Section 4.5.

4.1 Syntax
The abstract syntax of types, class declarations, method

declarations, expressions, and values is given below. In
method declarations, ; is read nonheritable and [;] means
the modifier ; is optional. The metavariables C, D, and E

range over class names; X and Y range over type variables; f
and g range over field names; m ranges over method names;
x and y range over variables. The symbols / and ↑ are read
extends and return, respectively.

H ::= X | C inexact types
S, T, U ::= H | @H types

L ::= class C/C{T f; M} classes
M ::= [;] T m(T x){ ↑ e;} methods

d, e ::= x | e.f | e.m(e) | new C(e) expressions
| exact e as x, X in e

v ::= new C(v) values

Following the custom of FJ, we put an over-line for a pos-
sibly empty sequence. Furthermore, we abbreviate pairs of
sequences in a similar way, writing “T f;” for “T1 f1;. . . Tn

fn;”, where n is the length of T and f. Sequences of field
declarations, parameter names, and method definitions are
assumed to contain no duplicate names. We write the empty
sequence as • and concatenation of sequences using a comma.
As in FJ, every class has a single constructor that takes
initial values of all the fields and assigns them; we omit
constructor declarations for simplicity. Also for simplic-
ity, generics is not supported, unlike LOOJ. Typecasts are

5We do not say “override” since the subclasses do not know
the implementation of the nonheritable method. For the
same reason, it is impossible to call it by super.

dropped since we aim at safe and extensible programming
without typecasting, a possibly unsafe operation.

An inexact type is either a type variable or a class name.
A type is either an inexact type or an exact type, which is
obtained by adding @ to an inexact type. Since this language
is expression-based, the body of exact is a single expression,
rather than a statement as in the previous section. We as-
sume that the set of variables includes the special variable
this, which cannot be used as the name of a parameter to
a method, and that the set of type variables includes the
special type variable This.

A class table CT is a finite mapping from class names C

to class declarations L. A program is a pair (CT , e). In
what follows, we assume a fixed class table CT to simplify
the notation.

4.2 Lookup Functions
We give functions to look up field or method definitions.

The function fields(C) returns a sequence T f of field names
of the class C with their types. The function mtype(m, C)
takes a method name and a class name as input and re-
turns the corresponding method signature of the form T→T0.
They are defined by the rules below. Unlike LOOJ, type
substitution for This is not performed in the definitions—it
is performed in the typing rules. So, the definitions are the
same as those in FJ [14] except that mtype accounts the op-
tional modifier ;. Here, m 6∈ M means the method of name
m does not exist in M.

fields(Object) = •
class C/D{T f;...}

fields(D) = U g

fields(C) = U g, T f

class C/D {...M}

[;] T0 m(T x){ ↑ e; } ∈ M

mtype(m, C) = T→T0

class C/D{...M} m 6∈ M

mtype(m, D) = T→T0

mtype(m, C) = T→T0

4.3 Type System
The main judgments of the type system consist of one ∆ `

S<:T for subtyping, one ∆ ` T ok for type well-formedness,
and one ∆; Γ ` e:T for expression typing. Here, ∆ is a bound
environment, which is a finite mapping from type variables
to their bounds, written X<:H; Γ is a type environment, which
is a finite mapping from variables to types, written x:T. We
abbreviate a sequence of judgments: ∆ ` S1<:T1, . . . , ∆ `
Sn<:Tn to ∆ ` S<:T; ∆ ` T1 ok, . . . , ∆ ` Tn ok to ∆ ` T ok,
and ∆; Γ ` e1:T1, . . . , ∆;Γ ` en:Tn to ∆; Γ ` e:T.

Bound of Types. The function bound∆(H), defined below,
takes an inexact type as input and returns a class name,
which is the least upper bound of the input type.

bound∆(X) = bound∆(∆(X)) bound∆(C) = C

If the input is a type variable, the function is recursively
applied to the output, which, again, can be a type variable.

Subtyping. The subtyping judgment ∆ ` S<:T, read as “S
is a subtype of T under ∆,” is defined below. This relation
is the reflexive and transitive closure of the extends relation
with the rule that an exact type is a subtype of its inexact
version. Note that @C 6<:@D even if class C/D{..}. So, this
subtyping relation is actually “matching” [7] since C<:D does
not always mean that an object of class C, which is of type
@C, is substitutable for one of class D, which is of type @D.

∆ ` T<:T ∆ ` X<:∆(X) ∆ ` @H<:H

class C/D{...}

∆ ` C<:D

∆ ` S<:T ∆ ` T<:U

∆ ` S<:U

Type Well-formedness. The type well-formedness judgment
∆ ` T ok, read as “T is a well-formed type under ∆,” is de-
fined below. Object and class names in CT are well formed.
Type X is well formed if it is in the domain of ∆. Finally,
an exact type @H is well formed if its inexact version H is.

∆ ` Object ok
X ∈ dom(∆)

∆ ` X ok

class C/D{..}

∆ ` C ok

∆ ` H ok

∆ ` @H ok

Closing of Types. Before proceeding to expression typing,
we define the judgment S ⇓X<:H T, read as “type S is closed
to T under X<:H”, for closing of types. The rules are defined
below. This judgment is used in the typing rules for exact

expressions to prevent the type variable introduced from
escaping. The basic idea is to lift the type variable to its
supertype so that the type variable does not appear in the
result. The left rule says that if type T does not contain the
type variable X, the result is the same T. The other rules say
that both X and @X close to H under X<:H. Note that @X does
not close to @H since the subtyping relation is @X<:X<:H, but
@X 6<:@H. Here, fv(T) returns the empty or a singleton set of
type variables that appear in T.

X 6∈ fv(T)

T ⇓X<:H T X ⇓X<:H H @X ⇓X<:H H

Expression Typing. The typing judgment for expressions
is of the form ∆;Γ ` e:T, read as “under bound environment
∆ and type environment Γ, expression e has type T,” defined
below. The key rules are T-Field and T-Invk. Both rules
restrict the receivers’ (e0) types to be exact. Although this
restriction is imposed for all field accesses and method invo-
cations, not only for binary methods, the expressive power
of the language is not lost since we have exact expressions.
(We later give typing rules for field accesses and method in-
vocations on inexact types. See below.) The rule T-Field
means that the type of field access e0.fi is obtained by
looking up field declarations from the bound of H0 and then
substituting H0 for This in the type Ti corresponding to fi.
Similarly, in T-Invk the method type is retrieved from the
receiver’s type; then, it is checked if the types of actual ar-
guments are subtypes of those of the formal parameters.

The rule T-New says that the type of a new expression is
the exact type of the class being instantiated.

There are two rules for exact expressions whether the
expression e to be exactized is of type H or @H. The rule
T-Exact1 means that if e is of type H, the body expression
e0 is typed under ∆ extended by X<:H and Γ extended by
x:@X. Note that variable x is of type @X, an exact type.
Since the resultant type U0 may contain the type variable
X, the type of the whole expression is obtained by closing
U0 under X<:H, preventing X from escaping. We give the
rule T-Exact2 for the case that the expression which will
be exactized is already exact. This rule is required to show
the subject reduction property since an expression of inexact
type eventually reduces to one (typically a value) of an exact
type at run-time. In this rule, the body expression is typed

under ∆ unextended and Γ extended by x:@H since there is
no proper subtype of @H.

∆; Γ ` x : Γ(x) (T-Var)

∆; Γ ` e0 : @H0 fields(bound∆(H0)) = T f

∆;Γ ` e0.fi : [H0/This]Ti
(T-Field)

∆; Γ ` e0 : @H0 mtype(m, bound∆(H0)) = T→T0

∆;Γ ` e : U ∆ ` U <: [H0/This]T

∆;Γ ` e0.m(e) : [H0/This]T0
(T-Invk)

∆ ` C0 ok fields(C0) = T f

∆;Γ ` e : U ∆ ` U <: [C0/This]T

∆;Γ ` new C0(e) : @C0
(T-New)

∆; Γ ` e1 : H ∆, X<:H; Γ, x : @X ` e0 : U0 U0 ⇓X<:H T0

∆;Γ ` exact e1 as x, X in e0 : T0

(T-Exact1)

∆; Γ ` e1 : @H ∆;Γ, x : @H ` e0 : U0

∆;Γ ` exact e1 as x, X in e0 : U0
(T-Exact2)

We show the typing examples of field accesses on exact
and inexact types. Assume that fields(LinkedNode) contains
@This next. If ∆; Γ ` n : @LinkedNode, then ∆; Γ ` n.next :
@LinkedNode(= [LinkedNode/This]@This) by T-Field. If
∆; Γ ` n : LinkedNode, exactization is required before ac-
cessing the field to be well typed: ∆; Γ ` exact n as x, X

in x.next : LinkedNode by T-Exact1 and T-Field since
fields(bound∆,X<:LinkedNode(X)) = fields(LinkedNode) and ∆,
X<:LinkedNode; Γ, x : @X ` x.next : @X and @X ⇓X<:LinkedNode
LinkedNode.

To avoid cumbersome exactization in accessing members
on inexact types, we could give the following derived rules,
which can be obtained by the combination of T-Field/T-
Invk and T-Exact1.

∆; Γ ` e0 : H0 fields(bound∆(H0)) = T f

Ti ⇓This<:H0 T

∆;Γ ` e0.fi : T
(T-Field’)

∆; Γ ` e0 : H0 mtype(m, bound∆(H0)) = T→T0

T does not contain This ∆;Γ ` e : U
∆ ` U <: T T0 ⇓This<:H0 T

∆;Γ ` e0.m(e) : T
(T-Invk’)

Method Typing. The typing judgment for method declara-
tions is written C ` M ok. There are two rules, T-Method
for usual methods and T-NHMethod for nonheritable meth-
ods. In each rule, the last premise is to check if the method
correctly overrides or rewrites (if it does) the method of the
same name in the superclass with the same signature. A
further explanation is given only for the latter, since the
former is straightforward. In premises, This that appears
in the signature is replaced with the class name C as well
as this is of type @C (= [C/This]@This) in the expression
typing judgment. As a result, the method declaration is

safe only for the declaring class and would be unsafe if its
subclasses inherited.

∆ = {This<:C} Γ = {x : T, this : @This}
∆;Γ ` e0:U0 ∆ ` U0 <: T0 ∆ ` T0, T ok

class C/D{...}
mtype(m, D) = U→U0 implies (U, U0) = (T, T0)

C ` T0 m(T x){ ↑ e0;}

(T-Method)

Γ = {x : T, this : @This} ∅; [C/This]Γ ` e0:U0

∅ ` U0 <: [C/This]T0 ∅ ` [C/This](T0, T) ok
class C/D{...}

mtype(m, D) = U→U0 implies (U, U0) = (T, T0)

C ` ; T0 m(T x){ ↑ e0;}

(T-NHMethod)

Class Typing. The typing judgment for class declarations is
written ` L ok. The rule T-Class checks if the field types
are well formed and if the method declarations are ok, as
done in FJ. The introduction of nonheritable methods re-
quires an additional check to make sure that all the nonher-
itable methods in the superclass are rewritten. Here, m ∈ M

means that the method of name m exists in M.

C ` M ok This<:C ` T, D ok class D/E{..M′}
for each ; U0 m(U x){..} ∈ M′, m ∈ M

` class C/D{T f; M} ok
(T-Class)

A class table CT is ok, if all its definitions are ok.

4.4 Operational Semantics
The operational semantics is given by the reduction rela-

tion of the form e−→e′, read “expression e reduces to e′ in
one step.” We require another lookup function mbody(m, C)
(omitted for brevity) for method body with formal parame-
ters, written x.e, of given method and class names.

The reduction rules are given below. We write [d/x, e/y]e0

for the expression obtained from e0 by replacing x1 with d1,
..., xn with dn, and y with e. The rule R-Exact means that
when the expression being exactized is a new expression the
body e0 is evaluated where x is bound to new C(e) and X is
bound to C. Note that the application of type substitution
[C/X] to e0 is omitted since there are no type variables in
expressions. Similarly, [C/This] is omitted in R-Invk. The
reduction rules may be applied at any point in an expression,
so we also need the obvious congruence rules (if e−→e′ then
e.f−→e′.f, and the like), omitted here. We write −→∗ for
the reflexive and transitive closure of −→.

fields(C) = T f

new C(e).fi −→ ei
(R-Field)

mbody(m, C) = x.e0

new C(e).m(d) −→ [d/x, new C(e)/this]e0
(R-Invk)

exact new C(e) as x, X in e0 −→ [new C(e)/x]e0

(R-Exact)

4.5 Properties
The type system is sound with respect to the operational

semantics, as expected. Type soundness is proved in the
standard manner via subject reduction and progress [26,
14]. We omit the proofs of the theorems. We refer interested
readers to http://www.sato.kuis.kyoto-u.ac.jp/∼saito/
oops2009/ for the proofs.

Theorem 1 (Subject Reduction). If ∆;Γ ` e : T

and e−→e′, then ∆;Γ ` e′ : T′, for some T′ such that
∆ ` T′<:T.

Theorem 2 (Progress). If ∅; ∅ ` e : T and e is not a
value, then e−→e′, for some e′.

Theorem 3 (Type Soundness). If ∅; ∅ ` e : T and
e−→∗e′ with e′ a normal form, then e′ is a value v with
∅; ∅ ` v : T′ and ∆ ` T′<:T.

5. RELATED WORK
In this section, the first two subsections discuss the work

related to local exactization whereas the other three discuss
that to nonheritable methods.

Existential Types in Java. In our type system, inexact
types are treated existential. Java is already equipped with
a kind of existential types for generics [1], called wildcard
types [25], derived from variant parametric types [15]. While
type arguments for a parameterized class are abstracted in
wildcard types in Java, run-time classes are abstracted in
inexact types in our language.

Pizza [21], one of the earliest proposals of adding generics
to Java, also has existential types (only internally, though, in
the sense that programmers cannot write down existential
types in their programs). The unpacking construct is in-
tegrated into the switch statement, which makes branches
by pattern matching; here, a pattern to test the run-time
class of an object may contain type variables, which stand
for (existential) type arguments to the generic class of the
matching object.

Dependent Type Systems. In the languages [11, 19, 20,
10, 22] using dependent types, it is possible to dynamically
dispatch binary methods since it is easy to check that both
receiver and argument depend on a same object. In Jx [19],
the return type of makeNode() would be given this.class,
which means that the run-time type of the receiver. In gen-
eral, x.class is a dependent type, meaning the run-time
type of the object that x refers to. For type safety, the vari-
able before .class must be immutable as in the following
example using Jx syntax:

final LinkedNode<Integer> head = ...;
head.class n1 = head.makeNode();
head.class n2 = head.makeNode();
n1.insert(n2);

Here, head is immutable by the modifier final. So, the invo-
cation of insert() is legal. However, if head were mutable,
the type head.class would be illegal since an assignment
on head between the declarations of n1 and n2 would be
possible, resulting in the unsafe method invocation. In our
type system, immutability would not be required even if the
language had side-effects.

Object Creation with Abstract Types. In C#, in parame-
terized classes, objects can be created on the type parameter
with no arguments if it has a constraint new(). For example:

class C<E> where E : new() {
void method(){ ... new E(); ... } // allowed

}

In the code above, E’s object can be created. For type safety,
the type argument for E is legal only if it has a constructor
with no parameters,

This idea can be adapted to the context of This, as can
be seen in BETA [18] and an early version of LOOJ: if each
of a class and its subclasses has a constructor with no pa-
rameters, it is safe to create a new object by new This() in
that class. Our proposal of nonheritable methods can sim-
ulate the idea of new This() by declaring factory methods
with the return type of @This such as those in Figure 2.
Other differences are: (1) nonheritable methods allow arbi-
trary code specialized for the declaring class, not only object
creation; (2) they give a better control on the duty raised
in subclassing: rewriting nonheritable methods in subclasses
does not require the rewritten methods to be nonheritable so
that further subclassing can be free from rewriting, whereas
object creation with type variables requires all classes to
rewrite the constructors, which are not inherited in Java.

In Jx [19] and J& [20], object creation with dependent
types such as new n.class() is allowed. Moreover, the ar-
guments can be of arbitrary many and type if the type of n
has a corresponding constructor. In Jx, constructors are in-
herited to subclasses, unlike Java. If final fields are added
to a subclass, all the constructors inherited must be overrid-
den in the subclass so that the final fields are initialized.

Abstract Factory Pattern. Even though nonheritable meth-
ods are not supported, factory methods and clone() can
be implemented by using abstract factory pattern [13], dis-
cussed in [5], as follows:

interface Factory<T> {
@T create();

}
class LinkedNodeFactory<E>

implements Factory<LinkedNode<E>>{
LinkedNode<E> create(){

return new LinkedNode<E>();
}

}
class LinkedNode<E> {

Factory<This> factory;
@This makeNode() { return factory.create(); }

}

In this programming, a factory class must be defined for
each of class LinkedNode and its extensions. This resem-
bles that all subclasses must rewrite nonheritable meth-
ods. In a nutshell, nonheritable methods are the trick that
allows object creations written in factory classes such as
LinkedNodeFactory to be put into factory methods such as
makeNode().

Template Specialization. Template specialization in C++
allows us to give a definition for the template instantiated
with a certain type. For example, Vector<bool> is defined
in isolation from the definition of template Vector<T> so
as to be space-efficient by using bit operations. It has a
similarity with our nonheritable methods in that we can
give a definition specialized to a certain instantiation of type
variables (in our case, This).

6. CONCLUSION
We propose two mechanisms, namely, local exactization

and nonheritable methods for the languages with This and
exact types. The features remedy the mismatch between
This and subtyping. As a result, programming relying on
dynamic dispatch becomes possible in the presence of This.

Although the proposed mechanisms enhance programming
with This, it is cumbersome to choose correct types, insert
local exactization, or specify the nonheritable modifier in
writing a program. For example, in writing class C, we have
four choices, i.e., @C, C, @This, and This, for variables that
would have been given type C in plain Java. We are de-
veloping an inference algorithm to suggest nonheritable an-
notations and correct types for what seems self-recursive
references.

Other future work is to generalize the proposals for the ex-
tensions of This with grouping mechanisms and to integrate
with generics. For generics, wildcards will be required to
close arbitrary types (LOOJ, which is equipped with gener-
ics, avoids wildcards by posing a syntactic restriction): for
example, when variable c is of type C and class C has a field
f of type List<This>, the expression c.f should be of type
List<? extends C>, but not List<C>.

Acknowledgments
Comments from anonymous reviewers help improve the final
presentation of the present paper. We would like to thank
members of the Kumiki project for fruitful discussions on
this subject. This work was supported in part by Grant-
in-Aid for Scientific Research No. 18200001 and Graint-in-
Aid for Young Scientists (B) No. 18700026 from MEXT of
Japan. Saito is a research fellow of the Japan Society for
the Promotion of Science for Young Scientists.

7. REFERENCES
[1] Gilad Bracha, Martin Odersky, David Stoutamire, and

Philip Wadler. Making the future safe for the past:
Adding genericity to the Java programming language.
In Proc. of OOPSLA ’98, pages 183–200, 1998.

[2] Kim B. Bruce. A paradigmatic object-oriented
programming language: Design, static typing and
semantics. Journal of Functional Programming,
4(2):127–206, April 1994.

[3] Kim B. Bruce. Some challenging typing issues in
object-oriented languages. In Proc. of WOOD’03,
volume 82 of ENTCS, 2003.

[4] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, The
Hopkins Objects Group, Gary T. Leavens, and
Benjamin Pierce. On binary methods. Theory and
Practice of Object Systems, 1(3):221–242, 1996.

[5] Kim B. Bruce and J. Nathan Foster. LOOJ: Weaving
LOOM into Java. In Proc. of ECOOP 2004, volume
3086 of LNCS, pages 390–414, June 2004.

[6] Kim B. Bruce, Martin Odersky, and Philip Wadler. A
statically safe alternative to virtual types. In Proc. of
ECOOP ’98, volume 1445 of LNCS, pages 523–549,
1998.

[7] Kim B. Bruce, Leaf Petersen, and Adrian Fiech.
Subtyping is not a good “match” for object-oriented
languages. In Proc. of ECOOP ’97, volume 1241 of
LNCS, pages 104–127, June 1997.

[8] Kim B. Bruce, Angela Schuett, and Robert van Gent.
PolyTOIL: A type-safe polymorphic object-oriented
language. In W. Olthoff, editor, Proc. of ECOOP ’95,
volume 952 of LNCS, pages 27–51, August 1995.

[9] Kim B. Bruce and Joseph C. Vanderwaart.
Semantics-driven language design: Statically type-safe
virtual types in object-oriented languages. In Proc. of
MFPS XV, volume 20 of ENTCS, 1999.

[10] Dave Clarke, Sophia Drossopoulou, James Noble, and
Tobias Wrigstad. Tribe: A simple virtual class
calculus. In Proc. of AOSD’07, pages 121–134, 2007.

[11] Erik Ernst. Family polymorphism. In Proc. of ECOOP
2001, volume 2072 of LNCS, pages 303–326, 2001.

[12] Erik Ernst. Higher-order hierarchies. In Proc. of
ECOOP 2003, volume 2743 of LNCS, pages 303–328,
2003.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Sotfware. Addison-Wesley, 1995.

[14] Atsushi Igarashi, Benjamin C. Pierce, and Philip
Wadler. Featherweight Java: A minimal core calculus
for Java and GJ. TOPLAS, 23(3):396–450, May 2001.

[15] Atsushi Igarashi and Mirko Viroli. Variant parametric
types: A flexible subtyping scheme for generics.
TOPLAS, 28(5):795–847, September 2006.

[16] Atsushi Igarashi and Mirko Viroli. Variant path types
for scalable extensibility. In Proc. of OOPSLA 2007,
2007.

[17] Paul Jolly, Sophia Drossopoulou, Christopher
Anderson, and Klaus Ostermann. Simple dependent
types: Concord. In Proc. of FTfJP 2004, June 2004.

[18] Ole Lehrmann Madsen, Birger Møller-Pedersen, and
Kristen Nygaard. Object-Oriented Programming in the
BETA Programming Language. Addison Wesley, 1993.

[19] Nathaniel Nystrom, Stephen Chong, and Andrew C.
Myers. Scalable extensibility via nested inheritance. In
Proc. of OOPSLA ’04, pages 99–115, October 2004.

[20] Nathaniel Nystrom, Xin Qi, and Andrew C. Myers.
J&: Nested intersection for scalable software
composition. In Proc. of OOPSLA’06, pages 21–36,
2006.

[21] Martin Odersky and Philip Wadler. Pizza into Java:
Translating theory into practice. In Proc. of POPL,
1997.

[22] Martin Odersky and Matthias Zenger. Scalable
component abstractions. In Proc. of OOPSLA ’05,
pages 41–57, 2005.

[23] Benjamin C. Pierce. Existential Types, chapter 24,
pages 363–379. The MIT Press, 2002.

[24] Chieri Saito, Atsushi Igarashi, and Mirko Viroli.
Lightweight family polymorphism. Journal of
Functional Programming, 18(03):285–331, May 2008.

[25] Mads Torgersen, Erik Ernst, Christian Plesner
Hansen, Peter von der Ahé, Gilad Bracha, and Neal
Gafter. Adding wildcards to the Java programming
language. Journal of Object Technology, 3(11):97–116,
December 2004.

[26] Andrew K. Wright and Matthias Felleisen. A syntactic
approach to type soundness. Information and
Computation, 115(1):38–94, November 1994.

