
Type Relaxed Weaving

Hidehiko Masuhara
University of Tokyo

masuhara@acm.org

Atsushi Igarashi
Kyoto University

igarashi@kuis.kyoto-
u.ac.jp

Manabu Toyama
University of Tokyo

touyama@graco.c.u-
tokyo.ac.jp

ABSTRACT
Statically typed aspect-oriented programming languages re-
strict application of around advice only to the join points
that have conforming types. Though the restriction guar-
antees type safety, it can prohibit application of advice that
is useful, yet does not cause runtime type errors. To this
problem, we present a novel weaving mechanism, called the
type relaxed weaving, that allows such advice applications
while preserving type safety. We formalized the mechanism,
and implemented as an AspectJ compatible compiler, called
RelaxAJ.

Categories and Subject Descriptors
D.3 [Programming Languages]: Language Constructs
and Features—modules, packages

Keywords
Aspect-oriented programming, around advice, type safety

1. INTRODUCTION
The advice mechanism is a powerful means of modifying

behavior of a base program without changing its original
text. AspectJ[10] is one of the most widely used aspect-
oriented programming (AOP) languages that support the
advice mechanism. It is, in conjunction with the mecha-
nism called the inter-type declarations, shown to be useful
for modularizing crosscutting concerns, such as logging, pro-
filing, persistency and security enforcement[1, 3, 16, 19].

One of the unique features of the advice mechanism is the
around advice, which can change parameters to and return
values from operations, or join points, in program execution.
With around advice, it becomes possible to define such as-
pects that directly modify values passed in the program, for
example caching results, pooling resources and encrypting
parameters. Around advice can also modify system’s func-
tionalities by inserting proxies and wrappers to objects that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’10 March 15–19, Rennes and St. Malo, France
Copyright 2010 ACM 978-1-60558-958-9/10/03 ...$10.00.

implement the functionalities, or by replacing the objects
with new ones.

Statically typed AOP languages restrict pieces of around
advice so that they will not cause type errors. Basically,
given a piece of around advice that replaces a value with a
new one, those languages permit the advice if the type of
the new value is a subtype of the join point’s.

Though the above restriction seems to be reasonable, it is
sometimes too strict to support many kinds of advice needed
in practice. In fact, AspectJ and StrongAspectJ[6] relax the
restriction in order to support generic advice declarations
that are applied to join points of different types. The As-
pectJ’s mechanism gives a special meaning to Object type in
around advice declarations at the risk of runtime cast errors.
The StrongAspectJ’s mechanism guarantees type safety.

This paper relaxes the restrictions by giving different kind
of type genericity to around advice. While existing lan-
guages type-check with respect to types of join points, our
proposed mechanism checks how the values supplied from
around advice are used in subsequent computation. This
enables to weave pieces of around advice that have been re-
jected in existing languages, while guaranteeing type-safety.
Examples of such pieces of advice include the one that re-
places an object with another object of a sibling class, and
the one that inserts a wrapper to an anonymous class.

In the rest of the paper, we first introduce around advice
in AspectJ in Section 2. We then, in Section 3, show that
several useful around advice declarations are rejected in As-
pectJ due to its type-checking rules. Section 4 proposes our
new mechanism, called type relaxed weaving, that accepts
such around advice declarations. The section also discusses
subtle design decisions to guarantee type-safety. We formal-
ized a core part of the mechanism to show its type soundness
in Section 5. We also implemented the mechanism as an As-
pectJ compatible compiler called RelaxAJ, as described in
Section 6. After discussing related work in Section 7, Sec-
tion 8 concludes the paper.

2. AROUND ADVICE IN ASPECTJ
This section introduces the around advice mechanism in

AspectJ. Readers familiar with its type checking rules can
skip this section.

We first show a method to which we will apply pieces of
around advice. We sometimes call it a base program or a
base method. The store method (shown in Listing 1) stores
graphical data into a file in a graphical drawing application.1

1The method is taken from JHotDraw (http://www.

PrintStream

FileOutputStream

getFD()

OutputStream

write()

BufferedOutputStream

BufferedOutputStream(s: OutputStream)

DupFileOutputStream

Figure 1: UML class diagram of the classes that
appear in the examples.

It is executed when the user selects the save menu. The
hierarchy of the relevant classes is summarized in Figure 1.

void store(String fileName, Data d) {

FileOutputStream s

= new FileOutputStream(fileName);

BufferedOutputStream output

= new BufferedOutputStream(s);

output.write(d.toByteArray());

output.close();

}

Listing 1: A method that stores graphical data into
a file.

Assume we want to duplicate every file output to the con-
sole for debugging purposes. Without AOP, this can be
achieved by replacing “new FileOutputStream(fileName)”
in the third line of the store method with “new DupFile-

OutputStream(fileName)”, where DupFileOutputStream is
a subclass of FileOutputStream as defined below.

class DupFileOutputStream extends FileOutputStream {

void write(int b) {

super.write(b); System.out.write(b);

}

...overrides other write methods as well...

}

With AOP, instead of textually editing the store method,
we can write an around advice declaration that creates Dup-
FileOutputStream objects instead of FileOutputStream, as
shown in Listing 2. In AspectJ, advice declarations are writ-
ten in aspect declarations, which we omit in the paper for
simplicity.

The advice declaration begins with a return type (File-
OutputStream), which specifies a type of values returned by
the advice, followed by the around keyword. Between the
subsequent parentheses, there are formal parameters to the
advice (String n). The next element is a pointcut, which
specifies when the advice will run. The pointcut in List-
ing 2 specifies constructor calls to the FileOutputStream

class, and also binds the constructor parameter to the vari-
able n when it matches. Finally, a body of the advice, which
consists of Java statements, is written in the braces.

jhotdraw.org/) version 6.0b1, but simplified for explana-
tory purposes.

DupFileOutputStream around(String n):

call(FileOutputStream.new(String)) && args(n) {

return new DupFileOutputStream(n);

}

Listing 2: A piece of advice that creates DupFile-

OutputStream objects instead of FileOutputStream ob-
jects.

Execution of a base program with pieces of around advice
can be explained in terms of join points, which represent
the operations in program execution whose behavior can
be affected by advice. In AspectJ, the join points are the
operations about objects, including method and construc-
tor calls, method and constructor executions, field accesses,
and exception throwing and catching operations. It should
be noted that the operations about local variables are not
included.

When a program is to execute an operation, we say the
program creates a join point corresponding to the opera-
tion. When there is any around advice declaration that has
a pointcut specifying the join point, the body of the advice
runs instead of the join point. For example, when the store

method runs, at line 3, it creates a join point corresponding
to a constructor call to FileOutputStream. Since the join
point is specified by the pointcut of the advice in Listing 2,
the program creates a DupFileOutputStream object instead
of FileOutputStream. If there is more than one around ad-
vice declaration matching a join point, one of them, selected
by a certain rule, will run. Calling a pseudo-method proceed

in the body of around advice lets the next around advice run,
if there is one. Otherwise, the operation corresponding to
the original join point is executed.

Practical AOP languages weave advice declarations into
a base program. AspectJ, for example, weaves advice dec-
larations in two steps. First, it compiles class definitions
into bytecode as if they are pure Java definitions. It also
transforms a body of each advice declaration into a Java
method in a bytecode format. Second, it examines bytecode
instructions generated at the first step. For each sequence
of instructions that creates join points at runtime, which is
called a join point shadow, if there is an advice declaration
that specifies join points created from the shadow, it replaces
the instructions with a call instruction to a method trans-
lated from the advice body. When the advice has a dynamic
pointcut, which specifies join points by using runtime infor-
mation, AspectJ inserts a series of instructions that evaluate
the runtime condition, and then branch to either a call to
the method translated from the advice body, or a call to the
original method.

For the example in Listing 1, the expression new FileOut-

putStream(fileName) is compiled into a sequence of byte-
code instructions that creates and initializes an object, which
is a join point shadow. Since the shadow creates constructor-
call join points that are specified by the pointcut of the
around advice in Listing 2, the compiler replaces the in-
structions with a call to a method that is generated from
the body of the around advice, which creates a DupFile-

OutputStream object.

3. TYPE-CHECKING RULES AND THEIR
PROBLEMS

3.1 The Rules
AspectJ compilers type-check around advice on the follow-

ing two regards: (1) each advice body should be consistent
with a return type of the advice declaration; and (2) the re-
turn type of an advice declaration should be consistent with
join point shadows where the advice is woven into. Below
we present more detailed rules.2

The first rule is similar to the rule for a return statement
in a method.

Rule 1 (Advice Body). Any return statement in the
body of around advice must have a subtype3 of the return
type of the advice declaration.

After checking this rule, we can trust the advice’s return
type. An advice body that does not match the return type
like the one shown below will be rejected.

FileOutputStream around():

call(FileOutputStream.new(String)) {

return "not a stream"; // type error

}

The second rule ensures that around advice will be woven
into “right” join point shadows.

Rule 2 (AspectJ Weaving). The return type of an
around advice declaration must be a subtype of the return
type of any join point shadow where the advice is woven into.

For example, AspectJ allows to weave the around advice in
Listing 2 into an expression new FileOutputStream(fileName)

because the return type of the advice (i.e., DupFileOutput-
Stream) is a subtype of the return type of the join point
shadow (i.e., FileOutputStream).

However, AspectJ reports an error when it attempts to
weave the following into new FileOutputStream(fileName).

String around(): // weave error

call(FileOutputStream.new(String)) {

return "not a stream";

}

This is because, the return type of the advice (i.e., String)
is not a subtype of the return type of the join point shadow
(i.e., FileOutputStream).

Note that AspectJ rejects the above advice when it weaves
the advice into a join point shadow, but not when it checks
the advice declaration itself. In other words, AspectJ does
not use the pointcut expression when it checks the advice
declaration itself, even if it suggests that the advice will be
woven into join points of type FileOutputStream.

3.2 An Example of the Problem: Replacing
with a Sibling

The rules in AspectJ are too restrictive and sometimes
prohibit to define useful advice. For example, assume we

2The rules are guessed by the authors from behavior of exist-
ing compilers, which are consistent with the ones presented
by De Fraine, et al.[6], except that we omit the rules for
ad-hoc generic typing with Object.
3In the paper, subtype and supertype relations are reflexive;
i.e., for any T, T is a subtype and supertype of T.

want to redirect the output to the console, instead of du-
plicating. At first, it would seem easy to define a piece of
advice that returns System.out, which represents a stream
to the console, at the creation of a FileOutputStream object.
However, it is impossible to straightly define such advice in
AspectJ.

Listing 3 defines a piece of advice, which tries to return
System.out whenever a program is to create a FileOutput-

Stream object.

PrintStream around(): // weave error in AspectJ

call(FileOutputStream.new(String)) {

return System.out; // of type PrintStream

}

Listing 3: A piece of advice that returns the
PrintStream object (i.e., the console) instead of cre-
ating FileOutputStream.

Even though the definition looks fine, Rule 2 rejects the
advice in the aspect because the return type of the ad-
vice (i.e., PrintStream) is not a subtype of the join point
shadow’s return type (i.e., FileOutputStream, as shown in
Figure 1). Changing the return type in Listing 3 to Output-

Stream does not help because OutputStream is not a subtype
of FileOutputStream, either. Changing the return type in
Listing 3 to FileOutputStream satisfies Rule 2 but violates
Rule 1.

Interestingly, if we can edit the body of the method store,
it can be easily achieved by replacing the second line of store
(Listing 1)

FileOutputStream s = new FileOutputStream(fileName);

with the next one.

OutputStream s = System.out;// of type PrintStream

3.3 Another Example: Wrapping Anonymous
Classes

Another example of the problem can be found when we
want to wrap handler objects. Java programs frequently use
anonymous class[7, Section 15.9] objects in order to define
handler objects, i.e., objects that define call-back functions.
For example, the next code fragment creates two button ob-
jects in the Swing library and a listener object, and then
registers the listener object into the button objects. The lis-
tener object belongs to an anonymous class that implements
the ActionListener interface. The parameter type of the
addActionListener method is ActionListener.

JButton b1 = new JButton();

JButton b2 = new JButton();

ActionListener a = new ActionListener () {

void actionPerformed(ActionEvent e) { ... }

};

b1.addActionListener(a);

b2.addActionListener(a);

Now, assume that we want to wrap the listener object
with a Wrapper object whose definition is shown in the first
half of Listing 4.

Even though we want to define a piece of advice as shown
at the last half of the Listing 4, Rule 2 rejects it because

class Wrapper implements ActionListener {

Wrapper(ActionListener wrappee) { ... }

...

}

ActionListener around()://weave error in AspectJ

call(ActionListener+.new(..)) {

ActionListener l = proceed();

return new Wrapper(l);

}

Listing 4: A wrapper class and an advice declaration
that wraps ActionListeners.

the return type of the advice (i.e., ActionListener) is not
a subtype of the return type of the join point, which is an
anonymous class that implements ActionListener. Since
the return type of the join point is anonymous, there is no
way—except for generic ones—to declare a piece of around
advice to that join point!

Note that the advice is applied to the constructions of
anonymous class objects thanks to the plus sign in the point-
cut description, which specifies any subtype of ActionLis-
tener.

Again, wrapping can be easily done if we edited the orig-
inal code fragment as follows.

ActionListener a = new Wrapper(

new ActionListener () {

void actionPerformed(ActionEvent e) { ... }

}

);

b1.addActionListener(a);

b2.addActionListener(a);

3.4 Relaxation Opportunities
We carried out preliminary assessment to investigate how

likely the problem mentioned above can happen in practical
application programs. We counted, in practical application
programs, the number of such join point shadows whose re-
turn value is used merely as its strict supertype of the type
of the shadows. As we see in the examples in Sections 3.2
and 3.3, the problem only happens at such join point shad-
ows. In other words, if there are only few such join point
shadows in programs, the problem is unlikely to happen.
Since the assessment does not consider existence of useful
advice in practice, it merely supports chances of existence
of the problem.

We examined five medium-sized Java programs, and clas-
sified relations of a static type of a join point shadow in the
programs and the most general type among static types in
the operations that use the value from the shadow. For the
ease of examination, we identified the dataflow relations by
writing an aspect in AspectJ that dynamically monitors pro-
gram executions. Note that the results are approximation
as we used a dynamic monitoring technique.

The evaluated programs and the results are summarized
in Table 1. The ‘supertype’ row shows the numbers of shad-
ows whose return values are used only as strict supertypes
of the return type in subsequent computation. Similarly,
the ‘subtype,’ ‘unrelated,’ and ‘same’ rows show the num-
ber of shadows classified by the types in the operations using

the returned values4. The numbers on the ‘supertype’ row,
which are approximately 15–30% in the table, suggest that
there are code fragments in practical applications in which
the problem presented in the previous sections can happen.

3.5 Generality of the Problem
While the examples are about return values from around

advice in AspectJ, the problem is not necessarily limited to
those cases.

First, the problem is not limited to return values. Since
around advice can also replace parameter values that are
captured by args and target pointcuts, the same problem
can happen at replacing those values by using the proceed

mechanism. For example, if the store method in Listing 1
takes FileOutputStream rather than a file name string, the
following around advice requires5 relaxed weaving rules.

void around(OutputStream s): args(s,*) &&

execution(void store(FileOutputStream,Data)) {

proceed(System.out);

}

In this paper, however, we only consider types about return
values, and leave types of parameter values to future work.

Second, the problem is not limited to AspectJ. Statically-
typed AOP languages that support around advice, such as
CaesarJ[15] and AspectC++[17], should also have the same
problems.

Third, the problem is not limited to AOP languages. The
same problem would arise with the language mechanisms
that can intercept and replace values, such as method-call
interception[11] and type-safe update programming[5].

4. TYPE RELAXED WEAVING

4.1 Basic Idea
We propose a weaving mechanism, called type relaxed weav-

ing, to address the problem while preserving type safety.
Roughly speaking, it replaces the Rule 2 with the following
one.

Rule 3 (Type Relaxed Weaving). When a piece of
around advice is woven into a join point shadow, the return
type of the advice must be consistent with the operations that
use the return value from the join point shadow.

We here used ambiguous terms such as“consistent with”and
“operations,” which shall be elaborated in the later sections.

For example, the rule allows the advice in Listing 3 to be
woven into the store method (Listing 1). The return type of
the advice (PrintStream) is consistent with the operations
that use the return value, namely the new expression at line 5
in Listing 1.

4.2 Design Principles
We assumed the following principles in designing our weav-

ing mechanism.

4The subtype and unrelated relations appear in programs
that have downcasting and more than one interface type,
respectively.
5Interestingly, an AspectJ compiler (ajc version 1.5.3) com-
piles the example. However, the generate code does not work
as it contains a cast operation to FileOutputStream.

program name Javassist ANTLR JHotDraw jEdit Xerces
program size (KLoC) 43 77 71 140 205

number of shadows 862 1,827 3,558 8,524 3,490
supertype(%) 177 (21) 315(17) 576 (16) 2,499(29) 650(19)

subtype(%) 37 (4) 70 (4) 170 (5) 974(11) 156 (4)
unrelated(%) 0 (0) 4 (0) 42 (1) 42 (0) 64 (2)

same(%) 648 (75) 1,438(79) 2,770 (78) 5,009(59) 2,620(75)

Table 1: Classification of join point shadows by the usage of the supplied values in practical applications.

Preservation of object interfaces: The mechanism should
not change the signatures of methods and fields when
weaving advice declarations into a program. Changing
method/field signatures would give further freedom to
advice, but is problematic with unmodifiable libraries
and programs that use the reflection API.

Bytecode-level weaving: The mechanism weaves advice
declarations into a bytecode program, in a similar way
that most AspectJ compilers do. The mechanism, there-
fore, can merely use type information available in a
bytecode program. At the same time, the mechanism
can generate woven programs that cannot be gener-
ated from Java source code, as we shall discuss in Sec-
tion 4.8.

Compatibility with AspectJ: The mechanism should ac-
cept a program that is accepted by existing AspectJ
compilers, and should yield executable code that has
the same behavior with the one compiled by existing
AspectJ compilers.

Independence of advice precedence: Given advice dec-
larations, the mechanism judges whether it is safe to
weave them, regardless of their precedence. This makes
the mechanism simpler, and to have more predictable
behavior.

Check before weaving: Given a base program and ad-
vice declarations, the mechanism checks whether it is
safe to weave them before actually generating woven
code. An alternative approach is to generate woven
code without checking safety, then type-check the wo-
ven code by using a standard bytecode verifier. It,
however, does not work well because the mechanism
sometimes needs to recompute target types of method
invocations, as we will see in Section 4.5. The ap-
proach also makes the decision dependent on advice
precedence.

4.3 Overview
The type relaxed weaving has the same mechanism as the

ones in existing AOP languages, except for the part that
type-checks advice to be woven. Our mechanism checks
type-safety of advice in the following steps.

First, as explained in Section 2, the weaver processes each
method in the base program. It looks for advice declarations
that are applicable to join point shadows in the method.

Second, for each join point shadow, it performs dataflow
analysis to identify operations that use a return value from
the shadow. (The next section will discuss our choice of op-
erations.) The extent of the analysis is within the method;
i.e., it is an intra-procedural dataflow analysis. It then gath-

ers type constraints based on the usage of parameters in the
identified operations.

Finally, it solves the constraints with respect to the return
types of around advice applicable to the shadows. If there
is a piece of around advice whose return type that does not
meet the constraints, it rejects the advice as a type-error.

Below, we discuss several issues of defining concrete weav-
ing rules.

4.4 Operations that Use Return Values
Basically, operations that use values are determined by the

semantics of the Java bytecode language and the principle
of the interface preservation.

Below, we summarize the operations that use a value (de-
noted as v) returned from a join point shadow. Since we use
a dataflow analysis, v actually denotes any variable that has
a dataflow relation from a join point shadow.

Method or constructor call parameter: A method call
o.m(v) uses v as of the parameter type in the signature
of m. Similarly, a constructor call new C(v) uses v as of
the parameter type in the signature of the constructor.

Note that the method and constructor signatures are
determined before weaving. In other words, even if a
piece of around advice changes types of some values,
it will not change the selection of overloaded methods
and constructors.

Method call target: A method call v.m() uses v as of the
target type in the signature of m. There are subtle
issues of selecting a target type. We will discuss it in
Section 4.5.

Return value from a method: A return statement re-

turn v uses v as of the return type of the method.

Field access target: A field assignment v.f=... or a field
reference v.f uses v as of the class that declares f.

Assigned value to a field: A field assignment o.f = v uses
v as of the f’s type.

Array access target: An array assignment v[i]=... or
an array reference v[i] uses v as an array type. The
type of the elements is determined by the results of a
dataflow analysis on the assigned or referenced value.
For AspectJ compatibility, we regard all the reference
types (i.e., classes, interfaces and arrays) as the same
type when they appear as an element type of an array.

Exception to throw: A throw statement throw v; uses v
as one of the types in the throws clause of the method
declaration, or a type in one of catch clause around
the throw statement.

Note that the above operations do not include accesses to
a local variable. This gives the mechanism more opportunity
to weave advice declarations with more general types. For
example, in Listing 1, even when the return value from new

FileOutputStream(fileName) is stored in a variable of type
FileOutputStream at lines 2–3, the return value is not con-
sidered as used by the assignment. Only the subsequent op-
eration new BufferedOutputStream(s) at line 5 is regarded
as the operation that uses the value.

Ignoring types of local variables also fits for current As-
pectJ compilers, which support bytecode weaving. In Java
bytecode, types of local variables are merely available as an-
notations when a program is compiled with a debug option.

4.5 Target Type of a Method Call
When a value is used as a target of a method call, we

should examine a type hierarchy to decide the types that
the value is used as. This is because, even though there
is target type information in a Java bytecode instruction,
the static type of the target object can be any subtype of
a supertype of the target type, as long as the supertype
declares the method.

For example, assume a method call o.write(...) whose
target type is BufferedOutputStream. Since write is de-
clared in OutputStream (as shown in Figure 1), it is safe to
change the target type of the call to OutputStream. The
static type of o can thus be any subtype of OutputStream.

Therefore, when a value is used as a target of a method
call m, we regard the value is used as a value of the most
general type that declares m, rather than the target type in
the signature of m. This will give our weaver a chance to
accept more advice.

However, when there are interface types, we need to con-
sider that a target object is used as a value of one of several
types, rather than a single type. Consider the interfaces
and class declarations followed by a code fragment shown in
Listing 5.

interface Runnable { ... }

interface Task { void show(); }

class Simulator { void show() { ... } }

class BkSimulator extends Simulator

implements Runnable,Task { ... }

// in a method:

BkSimulator o = new BkSimulator();

new Thread(o).start();

...

o.show(); //signature: void BkSimulator.show()

Listing 5: A method call with a class and interface
types.

At the bottom line, we should regard that o is used as
a value of either Simulator, BkSimulator, or Task, regard-
less of the target type in show’s signature. Since there is no
subtype relation between Simulator and Task, we should at
least consider these two types to maximize weaving oppor-
tunity.

Note that covariant return types[7, Section 8.4] in Java,
which allows an overriding method in a subclass to have a
more specific return type than the one in the overridden
method, can complicate the safety condition. Our current

approach here is to rely on the types in compiled bytecode,
where signatures of two methods—an overriding method
with a covariant return type and the method to be overridden—
are regarded as different (i.e., not overriding).

4.6 Usage as a Value of Multiple Interface Types
Existence of interface types also requires to consider that

an object is used as a value of a subtype of several unrelated
types.

Listing 5, the constructor new Thread(o) has a parameter
of type Runnable. Therefore, we should consider that o is
used as a value of a subtype of both Runnable and Task, in
order to increase a weaving opportunity.

This means that, when there is a class that implements
both Runnable and Task, we can replace the return value
from new BkSimulator() with an object of such a class even
if it is not a subtype of BkSimulator. The following decla-
rations demonstrate the case.

class RunnableTask implements Runnable,Task { ... }

RunnableTask around(): call(BkSimulator.new()) {

return new RunnableTask();

}

Note that application of the above around advice to List-
ing 5 could generate woven code that cannot be generated
from the Java source language when the pointcut contains
a dynamic condition, such as if(debugging). In this case,
the woven code for the line

BkSimulator o = new BkSimulator();

will become the one like below, if translated back into the
source language.

if (debugging) o = new RunnableTask();

else o = new BkSimulator();

Even though it is not a valid source program because we
cannot give a static type for o, the woven code is valid at the
bytecode language level. We refer readers to formalizations
of the Java bytecode language[12] for a detailed discussion.

4.7 Multiple Advice Applications at a Join Point
When the mechanism checks usage of a return value from

a join point, it should also check the operations in advice
bodies that are applied to the same join point. This is be-
cause, when there is more than one piece of advice applied
to a join point, one of the pieces can use a return value from
another piece by executing a proceed operation. Since our
principle is not to rely on advice precedence, the mechanism
should take all pieces of advice applied to the same join point
into account.

For example, assume that the following advice is applied
to the store method (in Listing 1) in conjunction with the
advice in Listing 3.

FileOutputStream around():

call(FileOutputStream.new(String)) {

FileOutputStream s = proceed();

s.getFD().sync();//uses s as BufferedOutputStream

return s;

}

Our weaver then has to reject the combination of the above
advice and the one in Listing 3. This is because, when the

above advice runs prior to the advice in Listing 3, the former
advice receives a return value from the latter, and uses the
value as a FileOutputStream object by calling the getFD

method (see Figure 1).

4.8 Advice Interference
When there are advice declarations applicable to more

than one join point shadow in a method, it should check
consistency among all those shadows in a method at once.
In other words, it is not possible to employ an approach to
safety checking in existing weavers, which check safety for
each join point shadow.

The following example demonstrates a case in which two
advice declarations cannot coexist, even though each of them
can be safely applied without the other.

The case consists of two interfaces I and J, two classes
C and D that implement both interfaces, followed by a code
fragment that assigns objects in different classes into one
variable.

interface I { C m(); }

interface J { C m(); }

class C implements I,J { C m(){ ... } }

class D implements I,J { C m(){ ... } }

// in a method:

I x;

if (...) x = new C(); else x = new D();

x.m(); // uses x as a value of I or J

Now consider the following class and advice declarations
that replace creations of C and D objects with those of E and
F objects, respectively.

class E implements I { C m(){ ... } }

class F implements J { C m(){ ... } }

E around(): call(C.new()) { return new E(); }//CtoE

F around(): call(D.new()) { return new F(); }//DtoF

Application of both advice declarations is not correct be-
cause we cannot give a single target type for x.m(). Appli-
cations of either one of above two advice declarations are,
however, safe.

Even though the inconsistency of the above advice decla-
rations can be detected by checking and weaving for one by
one join point shadow, there are cases where different pro-
cessing orders of shadows will lead to different results. Con-
sider the following declarations and the same base method
as above.

interface K { C m(); }

class G implements I,K { C m(){ ... } }

class H implements K { C m(){ ... } }

G around(): call(C.new()) { return new G(); }//CtoG

H around(): call(D.new()) { return new H(); }//DtoH

It is safe to apply the advice marked as CtoG to the base
program. The woven code is effectively equivalent to the
following code fragment.

if (...) x = new G(); else x = new D();

x.m(); // uses x as a value of I

Then, it is now safe to apply the advice marked as DtoH to
the woven code as we can use K as the target type for x.m().
However, it is not safe to apply the advice marked DtoH first
because we cannot give a single target type for x.m(), which
is required in the Java bytecode language.

Therefore, our mechanism should check all join point shad-
ows in a method at once, in order to detect inconsistency
between shadows.

5. FORMAL CORRECTNESS OF TYPE RE-
LAXED WEAVING

We formalize a core of type relaxed weaving to confirm its
type soundness. Rather than formalizing the entire weav-
ing mechanism, our approach here focuses on replacement
of several expressions in a method body with the ones that
may have different types. We believe that it sufficiently cov-
ers major issues in the type relaxed weaving because around
advice can be basically considered as substitution of expres-
sions. Further issues that should be addressed in practical
weavers are discussed at the end of this section.

Below, we first set up a simple object-oriented language
called Featherweight Java for Relaxation (FJR), which is
an extension of Featherweight Java (FJ)[9]. Its type sys-
tem, which we believe sound with respect to operational
semantics, corresponds to bytecode verification in the Java
Virtual Machine. Then, we give an algorithm G to generate
subtyping constraints from a given expression and a type
environment—types for free variables in the expression. Fi-
nally, we prove that, if the subtyping constraints have a
solution, then the given expression is well typed under the
given type environment.

Our intention is to split the type checking process into two
phases in future so as to fit the load-time weaving mecha-
nism available in many AOP systems: i.e., gathering typing
information at compilation time, and then use the informa-
tion later at weaving time.

Based on that intention, we designed that G will be given
a method body where each join point shadow that a piece of
around advice is woven into is replaced by a (fresh) variable.
Each variable is given the advice’s return type, which may
be different from the type of the join point shadow. When
the subtyping constraints that G generates have a solution,
we can safely replace the variables with the bodies of the
advice, since substitution of expressions for variables of the
same types preserves well-typedness.

We show only a main part of definitions and the state-
ments of theorems here; the full definition of the language
is found in the full version of this paper6.

5.1 Featherweight Java for Relaxation

5.1.1 Syntax
Featherweight Java for Relaxation has, in addition to most

of the features in FJ, interface types (without interface ex-
tension), let expressions, and non-deterministic choice. How-
ever, for simplicity reasons, we remove typecasts and fields
from objects, which can be easily restored without difficulty.
Unlike FJ, where every expression is assigned a class name as
its type, FJR has a restricted version of the union type sys-
tem[8], which allows more liberal use of values as discussed
in the last section.

6Available at http://www.graco.c.u-tokyo.ac.jp/ppp/
projects/typerelaxedweaving.en.

The syntax rules of FJR are given as follows.

CL ::= class C extends C implements I { M }

M ::= T m(T x) { return e; }

IF ::= interface I { S }

S ::= T m(T x);

e ::= x | e.m(e) | new C(e)

| let x = e in e | (?e:e)
S, T ::= C | I
U, V ::= T | U ∪ U

Following the convention of FJ, we use an overline to de-
note a sequence and write, for example, x as shorthand for
x1,. . . ,xn. The metavariables C and D range over class names;
I and J range over interface names; m ranges over method
names; and x and y range over variables, which include the
special variable this.
CL is a class declaration, consisting of its name, a super-

class name, interface names that it implements, and meth-
ods M; IF is an interface declaration, consisting of its name
and method headers S. In addition to class declarations,
FJR has interface declarations, which are needed to discuss
the issues of target types (Sections 4.5 and 4.6) and advice
interference (Section 4.8).

The syntax of expressions is extended from that of FJ,
which already includes variables, method invocation, and
object instantiation (and also field access and typecast, which
are omitted here). We introduce let expressions to illustrate
the cases when a value returned from around advice is used
as values of different types. let is the only binding construct
of an expression and the variable x in let x = e1 in e2 is
bound in e2. We also introduce non-deterministic choice
(?e:e) to handle the cases when a variable contains values
of different types. Although a non-deterministic choice is
not useful in practical programming, it is sufficient to ex-
press such a case. We define the set of free variables in
an expression by a standard manner. We will denote a
capture-avoiding substitution of expressions e for variables
x by [e/x].
S and T stand for simple types, i.e., class and interface

names, and will be used for types written down in classes
and interfaces. U and V stand for union types. For example,
a local variable of type C ∪ D may point to either an object
of class C or that of D.

An FJR program is a pair of a class table CT , which
is a mapping from class/interface names to class and in-
terface declarations, and an expression, which stands for
the body of the main method. We denote the domain of
a mapping by dom(·). We always assume a fixed class ta-
ble, which is assumed to satisfy the following sanity condi-
tions: (1) CT (C) = class C · · · for every C ∈ dom(CT);
(2) CT (I) = interface I · · · for every I ∈ dom(CT);
(3) Object /∈ dom(CT); (4) for every simple type T (except
Object) appearing anywhere in CT , we have T ∈ dom(CT);
and (5) there are no cycles formed by extends clauses.

5.1.2 Lookup Functions
As in FJ, we use the functions, whose definitions are omit-

ted, to look up method signatures and bodies in the class
table. mtype(m, T) returns a pair (written S→S0) of the se-
quence of the argument types S and the return type S0 of
method m in simple type T (or its supertypes). We also use

the function mtypeC(m, C), which also returns the signature
of m in C; unlike mtype, it looks up only superclasses and
do not consider interfaces that the given class implements.
mbody(m, C) returns a pair (written x.e) of the formal param-
eters x and the body e of method m in class C. Since a method
is declared only in classes, mbody takes only class names as
its second argument. We assume Object has no methods
and so neither mtype(m, Object) nor mbody(m, Object) is de-
fined.

5.1.3 Type System
The subtyping relation is written U <: V. It includes extends

and implements relations, and, for union types, we have the
following rules:

U1 <: U1 ∪ U2 U2 <: U1 ∪ U2

U1 <: U3 U2 <: U3

U1 ∪ U2 <: U3

They mean that the union type U1 ∪ U2 is the least upper
bound of U1 and U2. Formally, the subtyping relation is given
as the least set including the reflexive transitive closure of
the union of extends and implements relations, closed by
the three rules above.

The type judgment is of the form Γ ` e : U, read “expres-
sion e is given type U under type environment Γ.” A type
environment Γ, also written x:U, is a finite mapping from
variables x to types U. The typing rules are given below.

Γ ` x : Γ(x) (T-Var)

Γ ` e0 : U0 U0 <: T0 mtype(m, T0) = T→T

Γ ` e : U U <: T

Γ ` e0.m(e) : T
(T-Invk)

Γ ` new C() : C (T-New)

Γ ` e1 : U1 Γ, x:U1 ` e2 : U2

Γ ` let x = e1 in e2 : U2
(T-Let)

Γ ` e1 : U1 Γ ` e2 : U2

Γ ` (?e1:e2) : U1 ∪ U2
(T-Choice)

All rules are straightforward. In T-Invk, the simple type
T0 corresponds to the receiver’s static type recorded in the
bytecode instruction invokevirtual or invokeinterface.
Note that a simple name has to be chosen here. So, even if
two classes C and D that extend Object and implement no
interfaces happen to have a method m of the same signature,
m cannot be invoked on the receiver of type C∪D. T-Let al-
lows local variables to have union types, whereas the method
typing rule, given below, allows method parameters to have
only simple types. In T-Choice, the choice expression is
given the union of the types of the two subexpressions since
its value is that of either e1 or e2.

The type judgment for methods is of the form M OK IN C,
read “method M is well typed in class C.” The typing rule is
given as follows:

x:T, this:C ` e : U U <: T0

class C extends D implements I { · · · }
override(m, D, T→T0)

T0 m(T x) { return e; } OK IN C
(T-Meth)

The method body e has to be well typed under the type dec-
larations of the parameters x and the assumption that this
has type C. As mentioned above, the parameter types and
return type have to be simple types. The predicate override,
whose definition is omitted, checks whether M correctly over-
rides the method of the same name in the superclass D (if
any).

Finally, the type judgment for classes is written C OK,
meaning “class C is well typed,” and the typing rule is given
as follows:

M OK IN C

∀m, I ∈ I.(mtype(m, I) = T→T0) =⇒ (mtypeC(m, C) = T→T0)

class C extends D implements I { M } OK

(T-Class)

It means that all methods have to be well typed and all
methods declared in I have to be implemented (or inherited)
in C with the correct signature. A program is well typed
when all classes in the class table are well typed and the main
expression is well typed under the empty type environment.

5.1.4 Operational Semantics
The reduction relation is of the form e −→ e′, read “ex-

pression e reduces to expression e′ in one step.” We write
−→∗ for the reflexive and transitive closure of −→. Reduc-
tion rules are given below:

mbody(m, C) = x.e0

new C().m(e) −→ [e/x, new C()/this]e0

let x = e1 in e2 −→ [e1/x]e2 (?e1:e2) −→ ei

We omit congruence rules, which allow a subexpression to
reduce.

5.1.5 Properties
FJR enjoys the standard type soundness properties con-

sisting of subject reduction and progress[20]. We show their
statements with Substitution Lemma, which states that sub-
stitution preserves typing. Since the language is mostly
a subset of FJ∨[8], their proofs, not shown here, are very
similar to (and, in fact, easier than) those for FJ∨. Here,
we write Γ ` e : U for the sequence of type judgments
Γ ` e1 : U1, . . . , Γ ` en : Un. Similarly for U <: V.

Lemma 1 (Substitution Lemma). If Γ, x:U ` e : U0

and Γ ` e : V and V <: U, then there exists some type V0

such that Γ ` [e/x]e : V0 and V0 <: U0.

Theorem 1 (Subject Reduction). If Γ ` e : U and
e −→ e′, then there exists some type U′ such that Γ ` e′ : U′

and U′ <: U.

Theorem 2 (Progress). If Γ ` e : U, then e is either
new C() for some C or there exists some expression e′ such
that e −→ e′.

5.2 Constraint Generation
We give the algorithm called G to generate subtyping con-

straints from a given pair of an expression and a type envi-
ronment, after giving preliminary definitions.

First, we extend the syntax of types so that they include
type variables.

S, T ::= · · · | X

G(Γ, x) = (∅, Γ(x))

G(Γ, let x = e1 in e2) =
let (R1, U1) = G(Γ, e1) in
let (R2, U2) = G((Γ, x:U1), e2) in
(R1 ∪R2, U2)

G(Γ, e0.m(e1, · · · ,en)) =
let (R0, V) = G(Γ, e0) in
let (R1, U1) = G(Γ, e1) in

...
let (Rn, Un) = G(Γ, en) in
let T→T = mtype(m, typeOf (e0)) in
(R0 ∪R1 ∪ · · · ∪ Rn ∪ {U <: T}

∪{V <: X, X <:
S

mdeftypes(m, typeOf (e0))},
T)
(for fresh X)

G(Γ, new C()) = (∅, C)

G(Γ, (?e1:e2)) =
let (R1, U1) = G(Γ, e1) in
let (R2, U2) = G(Γ, e2) in
(R1 ∪R2, U1 ∪ U2)

S

{T1, . . . , Tn} stands for the union type T1 ∪ · · · ∪ Tn.

Figure 2: Constraint generation algorithm G.

(The syntax rule for union types remains the same.) We
will denote a substitution of simple types T for type vari-
ables X by [T/X] and use the metavariable S for such type
substitutions. We say a type substitution is ground, if every
type variable in its domain is mapped to either a class or
interface name (not a type variable).

A subtyping constraint, or simply a constraint, is an in-
equality of the form U <: V. A ground type substitution S is
called a solution of the set {U <: V} of subtyping constraints
if and only if for each constraint Ui <: Vi, the subtyping re-
lation (SUi)<:(SVi) is derivable.

Now, we give the definition of G, which takes a type en-
vironment Γ and an expression e and returns a set R of
constraints and a type U. The expression is assumed to be
well typed under some type environment, which may or may
not be the same as Γ, in order to know the signatures of
methods invoked in e. We denote the type of a subexpres-
sion e by typeOf (e). We also need an auxiliary function
mdeftypes(m, T) to collect the set of T’s supertypes that have
m. A formal definition is given as follows:

mdeftypes(m, T) = {S | T <: S and mtype(m, S) defined}

Then, G is defined in Figure 2. The algorithm is obtained
basically by reading typing rules in a bottom-up manner.
The only interesting case is one for method invocations. The
type variable X stands for the receiver type, which has to be a
supertype of the expression e0 at the receiver position, hence
we have an inequality V <: X. X also has to have method m

of the same signature T→T as in the original typing. The
inequation X <:

S

mdeftypes(m, typeOf (e0)) represents this
condition.

If the constraints generated by G(Γ, e) has a solution, e

can be well typed also under Γ, which may be different from
e’s original type environment:

Theorem 3. If Γ ` e : U and dom(Γ) ⊆ dom(Γ′) and
G(Γ′, e) = (R, U′) and R has a solution S, then SΓ′ ` e :
SU′.

The theorem is proved by easy induction on e.

5.3 Soundness of Type Relaxed Weaving
We finally argue that type relaxed weaving is sound, that

is, woven programs do not break type safety, using the ma-
chinery introduced above. Here, we consider a rather simple
case, where advice neither take parameters nor call proceed()
and for each join point at most one piece of advice is applied,
so that weaving is expressed by simple replacement of subex-
pressions with other closed expressions. We discuss about
parameters and proceed() later and leave a more rigorous
treatment to future work. (Our implementation supports
parameter substitution and proceed(), though.)

Given a method definition T0 m(T x) { return e; } in
class C and advice bodies e (which have type S′, respectively,
under the empty type environment), we first replace subex-
pressions where weaving occurs with fresh variables y and
obtain e′. Then, the method body after weaving will be ex-
pressed as [e/y]e′. The intermediate expression e′ can be
typed as

x:T, this:C, y:S ` e′ : U0

where U0 <: T0. Then, we generate constraints by comput-
ing G((x:T, this:C, y:S′), e′) = (R, U0

′). Notice that the
types for y have been changed from S to S′. Then, we check
if R ∪ {U0

′ <: T0} has a solution. If it has a solution S,
then type relaxed weaving is allowed to proceed. Indeed, by
Theorem 3, we have

x:T, this:C, y:S′ ` e′ : SU0
′

and SU0
′ <: T0 (notice that T, C, and S′ do not contain type

variables, so S does not change them). Finally, by Lemma 1,
the method body [e/y]e′ and so the whole method after
weaving are also well typed.

We can easily extend this argument to the case in which
more than one advice body is woven. Since we do not take
advice precedence into account, we simply take the union
of all the return types of possible advice bodies as S′i in
the argument above. Similarly, for advice with a dynamic
pointcut, the type of the original expression Si should be
added to the union.

As discussed in Section 4.7, advice bodies have to be
checked in order to deal with proceed(). The constraint
generation for advice bodies will be similar to the one for
base methods. It suffices to give proceed() the union of
the return types of all other pieces of advice and the base
method when generating constraints.

Finally, parameters to advice are also easy to deal with,
since, in the above type soundness argument, we can re-
gard the expressions e substituted for y as the advice bodies
whose parameters are already replaced with appropriate ac-
tual arguments. This replacement is also type preserving
thanks to Substitution Lemma.

6. IMPLEMENTATION
We implemented an AspectJ compatible compiler that

supports the type relaxed weaving, called RelaxAJ, which

is publicly available7. The implementation is based on an
existing AspectJ compiler (ajc version1.6.1), and modified
ajc’s weaving algorithm. Since the difference is only in be-
tween Rule 2 and Rule 3, we merely needed to modify a
few methods in the original implementation.

The modified compiler works in the following ways. Af-
ter compiling class and aspect declarations into bytecode
class formats, it visits all methods in all classes provided.
For each method, our weaver first accumulates all pieces of
around advice applicable to any join point shadows within
the method. When there are any piece of advice that vi-
olates original compiler’s type-checking rule (i.e., Rule 2),
our weaver performs its own type-checking based on Rule 3.

When it type-checks, the bodies of advice are woven into
the bytecode instructions same as done by the original weaver.
Finally, when the type-checker identifies changes in target
types (as discussed in Section 4.5), it changes the method
invocation instructions and signatures appropriately. It also
removes runtime type-checking (i.e., cast) instructions.

Our type-checker implements the typing rules and the con-
straint generating function G presented in Section 5. In order
to cope with full-set of Java bytecode instructions, which
include branching ones, we implemented the algorithm as
abstract interpretation.

The implementation is approximately 2,200 lines of addi-
tional code to the original AspectJ complier. The additional
type-checking adds relatively small amount of time to com-
pilation time of a practical application program. When we
compiled JHotDraw version 7.1, which consists of 441 classes
or 93,000 lines of code, with a wrapper inserting aspect that
has advice declarations similar to the one in Listing 4, the
compilation time increased 2.41 percent (from 6.411 seconds
to 6.566 seconds on the Sun HotSpot VM version 1.5.0 ex-
ecuted by two 2.8 GHz Quad-Core Intel Xeon processors
with 4 GB memory, under Mac OS X version 10.5) from the
case compiled by ajc with a dummy advice8. In this exper-
iment, the advice body was woven to 51 join point shadows.
Of course, the overheads would become larger when a piece
of around advice that requires type relaxed weaving were
woven to more methods.

7. RELATED WORK

7.1 StrongAspectJ
StrongAspectJ is an extension to AspectJ that supports

generic advice declarations in a type-safe manner[6]. As
mentioned in the first section, the genericity offered by Stron-
gAspectJ is similar to, but different from the one offered by
the type relaxed weaving.

Let’s see similarity and difference by using the example
in Listing 6, which is taken from (but slightly modified for
explanatory purposes) StrongAspectJ’s paper[6]. In Java,
Integer and Float are both subtypes of the Number inter-
face, which requires the intValue method.

Interestingly, the advice declaration, which is rejected by
AspectJ, is accepted both by StrongAspectJ (modulo slight
modifications to the advice declaration) and the relaxed type

7http://www.graco.c.u-tokyo.ac.jp/ppp/projects/
typerelaxedweaving.en
8We declared the return type of the advice as Object in
order to get the advice compiled by AspectJ. With this ad-
vice, ajc can generate woven code, which cause runtime cast
errors.

Integer calcInteger() { return new Integer(...); }

Float calcFloat() { return new Float (...); }

int compute() {

Integer i = calcInteger();

Float f = calcFloat ();

return i.intValue() + f.intValue();

}

Number around():call((Integer||Float) calc*(..)) {

Number n = proceed();

while (n.intValue() > 100)

n = proceed();

return n;

}

Listing 6: An around advice declaration that is ap-
plied to join points of different types.

weaving. With StrongAspectJ, we can redefine the advice
by using a type variable, so that the type system can check
correctness of the advice body with respect to the type of
each join point where the advice is applied to. With the type
relaxed weaving, the advice happens to be accepted because
the return values from the join points are used merely as the
Number objects.

Difference becomes apparent when we modify either the
advice or the compute method. If we modify the body of
the advice so that it returns, for example, new Double(0),
StrongAspectJ cannot accept such a piece of advice. Alter-
natively, if we modify the compute method so that it calls a
method that is not defined in Integer class on f, the type
relaxed weaving cannot accept the advice any longer.

We believe that the type systems of StrongAspectJ and
the type relaxed weaving complement each other, and are
currently designing an AspectJ language extension that sup-
ports both mechanisms.

7.2 Type Systems for Around Advice
As far as the authors know, all formalizations of around

advice are based on Rule 2; i.e., advice types are checked
against types in join points, if they formalized type sys-
tems. Wand, Kiczales and Dutchyn formalized behavior of
around advice without types[18]. Clifton and Leavens for-
malized the proceed mechanism of around advice and its
type safety[2]. Their type system is based on the one in
AspectJ, which is based on Rule 2.

AspectML[4] and Aspectual Caml[14] are AOP extensions
to functional languages. Those languages support polymor-
phic advice, which can be applied to join points that have
polymorphic types. Although polymorphic types might give
similar genericity, we believe that our work first pointed out
the problem in practice, and formalized in a language with
a subtyping relation.

8. CONCLUSION
This paper presented the type relaxed weaving, a novel

weaving mechanism for around advice in statically typed
AOP languages. With the type relaxed weaving, we can
define around advice that replaces a value in a join point
with the one of a different type, as long as the usage of the

value in subsequent computation agrees.
Our contributions are: we (1) pointed out that the prob-

lem of the type-checking rules on around advice in exist-
ing AOP languages, (2) proposed the type relaxed weaving,
which resolves the problem in a type safe manner, (3) for-
malized the core part of the mechanism in order to show
type soundness, and (4) implemented the weaving mecha-
nism as an AspectJ compatible compiler, which is publicly
available.

We are extending our compiler so that it will allow around
advice to provide values of different types to proceed(), as
it allows to provide values to return from the advice. As
for formalization, we plan to incorporate an advice weaving
mechanism into our formalization so that we can express
subtleties in proceed(). We are also designing a language
StrongRelaxAJ, which is a hybrid of StrongAspectJ and Re-
laxAJ by taking advantages of both mechanisms.

Acknowledgements
An earlier version of the paper is presented at the ADI’08
workshop[13] and the Workshop on Programming and Pro-
gramming Languages (PPL’09), at which the authors re-
ceived valuable input and feedback. The authors would like
to thank the members of the PPP Group at the University
of Tokyo, the members of the Kumiki 2.0 Project, and the
anonymous reviewers for their comments.

9. REFERENCES
[1] R. Bodkin. Performance monitoring with AspectJ.

AOP@Work, Sept. 2005.

[2] C. Clifton and G. T. Leavens. MiniMAO1:
Investigating the semantics of proceed. Science of
Computer Programming, 63(3):321–374, 2006.

[3] A. Colyer and A. Clement. Large-scale AOSD for
middleware. In Proc. of AOSD’04, pp.56–65, 2004.

[4] D. S. Dantas, D. Walker, G. Washburn, and
S. Weirich. AspectML: A polymorphic aspect-oriented
functional programming language. TOPLAS,
30(3):1–60, 2008.

[5] M. Erwig and D. Ren. Type-safe update
programming. In Proc. of ESOP’03, pp.269–283, 2003.

[6] B. D. Fraine, M. Südholt, and V. Jonckers.
StrongAspectJ: flexible and safe pointcut/advice
bindings. In Proc. of AOSD’08, pp.60–71, 2008.

[7] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification. Prentice Hall, 3rd ed., 2005.

[8] A. Igarashi and H. Nagira. Union types for
object-oriented programming. In Proc. of SAC’06,
pp.1435–1441, 2006.

[9] A. Igarashi, B. Pierce, and P. Wadler. Featherweight
Java: a minimal core calculus for Java and GJ. In
Proc. of OOPSLA’99, pp.132–146, 1999.

[10] G. Kiczales, et al. An overview of AspectJ. In Proc. of
ECOOP’01, pp.327–353. 2001.

[11] R. Lämmel. A semantical approach to method-call
interception. In Proc. of AOSD’02, pp.41–55. 2002.

[12] X. Leroy. Java bytecode verification: algorithms and
formalizations. Journal of Automated Reasoning,
30(3-4):235–269, 2003.

[13] H. Masuhara. On type restriction of around advice and
aspect interference. In Proc. of Workshop on Aspects,

Dependencies and Interactions (ADI’08), 2008.

[14] H. Masuhara, H. Tatsuzawa, and A. Yonezawa.
Aspectual Caml: an aspect-oriented functional
language. In Proc. of ICFP’05, pp.320–330, 2005.

[15] M. Mezini and K. Ostermann. Conquering aspects
with Caesar. In Proc. of AOSD’03, pp.90–99, 2003.

[16] A. Rashid and R. Chitchyan. Persistence as an aspect.
In Proc. of AOSD’03, pp.120–129. 2003.

[17] O. Spinczyk, A. Gal, and W. Schroder-Preikschat.
AspectC++: An aspect-oriented extension to C++.
In Proc. of TOOLS Pacific’02, pp.18–21, 2002.

[18] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. TOPLAS, 26(5):890–910, Sept. 2004.

[19] D. Wiese, R. Meunier, and U. Hohenstein. How to
convince industry of AOP. In Proc. of Industry Track
at AOSD’07, 2007.

[20] A. K. Wright and M. Felleisen. A syntactic approach
to type soundness. Information and Computation,
115(1):38–94, 1994.

