
Type Relaxed Weaving?

Hidehiko Masuhara1, Atsushi Igarashi2, and Manabu Toyama1

1 Graduate School of Arts and Sciences, University of Tokyo
{masuhara,touyama}@graco.c.u-tokyo.ac.jp

2 Graduate School of Informatics, Kyoto University
igarashi@kuis.kyoto-u.ac.jp

Abstract. Statically typed aspect-oriented programming languages re-
strict application of around advice only to the join points that have
conforming types. Though the restriction guarantees type safety, it can
prohibit application of advice that is useful, yet does not cause runtime
type errors. To this problem, we present a novel weaving mechanism
called type relaxed weaving, that allows such advice applications while
preserving type safety. We formalized the mechanism, and implemented
as an AspectJ compatible compiler called RelaxAJ.

1 Introduction

The advice mechanism is a powerful means of modifying behavior of a base pro-
gram without changing its original text. AspectJ[11] is one of the most widely
used aspect-oriented programming (AOP) languages that support the advice
mechanism. It is, in conjunction with the mechanism called the inter-type dec-
larations, shown to be useful for modularizing crosscutting concerns, such as
logging, profiling, persistency and security enforcement[2, 4, 18, 21].

One of the unique features of the advice mechanism is the around advice,
which can change parameters to and return values from operations, or join points,
in program execution. With around advice, it becomes possible to define such
aspects that directly modify values passed in the program, for example caching
results, pooling resources and encrypting parameters. Around advice can also
modify a system’s functionalities by inserting proxies and wrappers to objects
that implement the functionalities, or by replacing the objects with new ones.

Statically typed AOP languages restrict pieces of around advice so that they
will not cause type errors. Basically, given a piece of around advice that replaces
a value with a new one, those languages permit the advice if the type of the new
value is the same type or a subtype of the join point’s.

Though the above restriction seems to be reasonable, it is sometimes too
strict to support many kinds of advice needed in practice as we will discuss in
Section 3. In fact, AspectJ and StrongAspectJ[7] relax the restriction in order

? The core part of the paper was presented at the 9th International Conference on
Aspect-Oriented Software Development (AOSD.10)[15]. We revised the formalization
in Section 5 along with full language definition and correctness proofs.

1

PrintStream

FileOutputStream

getFD()

OutputStream

write()

BufferedOutputStream

BufferedOutputStream(s: OutputStream)

DupFileOutputStream

Fig. 1. UML class diagram of the classes that appear in the examples.

to support generic advice declarations that are applied to join points of different
types. AspectJ’s mechanism gives a special meaning to Object type in around
advice declarations at the risk of runtime cast errors, whereas StrongAspectJ’s
mechanism guarantees type safety.

In this paper, we present an approach that relaxes the restrictions by giving
different kind of type genericity to around advice. While existing languages type-
check with respect to types of join points, our proposed mechanism checks how
the values supplied from around advice are used in subsequent computation. This
enables to weave pieces of around advice that have been rejected in existing
languages, while guaranteeing type safety. Examples of such pieces of advice
include the one that replaces an object with another object of a sibling class,
and the one that inserts a wrapper to an anonymous class.

In the rest of the paper, we first introduce around advice in AspectJ in Sec-
tion 2. We then, in Section 3, show that several useful around advice declarations
are rejected in AspectJ due to its type-checking rules. Section 4 proposes our
new mechanism called type relaxed weaving, that accepts such around advice dec-
larations. The section also discusses subtle design decisions to guarantee type
safety. We formalized a core part of the mechanism to show its type soundness
in Section 5. We also implemented the mechanism as an AspectJ compatible
compiler called RelaxAJ, as described in Section 6. After discussing related work
in Section 7, Section 8 concludes the paper. The detailed language definitions
and proofs are presented in the appendices.

2 Around Advice in AspectJ

This section introduces the around advice mechanism in AspectJ by using an
example where around advice in AspectJ works well. Readers familiar with its
type-checking rules can skip this section.

We first show a method to which we will apply pieces of around advice. We
sometimes call it a base program or a base method. The store method (shown in

2

Listing 1.1) stores graphical data into a file in a graphical drawing application.3

It is executed when the user selects the save menu. The hierarchy of the relevant
classes is summarized in Figure 1.

void store(String fileName, Data d) {

FileOutputStream s = new FileOutputStream(fileName);

BufferedOutputStream output = new BufferedOutputStream(s);

output.write(d.toByteArray());

output.close();

}

Listing 1.1. A method that stores graphical data into a file.

Assume we want to duplicate every file output to the console for debugging
purposes. Without AOP, this can be achieved by replacing “new FileOutput-

Stream(fileName)” in the second line of the store method with “new Dup-

FileOutputStream(fileName)”, where DupFileOutputStream is a subclass of
FileOutputStream as defined below.

class DupFileOutputStream extends FileOutputStream {

void write(int b) {

super.write(b); System.out.write(b);

}

...overrides other write methods as well...

}

With AOP, instead of textually editing the store method, we can write an
around advice declaration that creates DupFileOutputStream objects instead of
FileOutputStream, as shown in Listing 1.2. In AspectJ, advice declarations are
written in aspect declarations, which we omit in the paper for simplicity.

DupFileOutputStream around(String n):

call(FileOutputStream.new(String)) && args(n) {

return new DupFileOutputStream(n);

}

Listing 1.2. A piece of advice that creates DupFileOutputStream objects instead of
FileOutputStream objects.

The advice declaration begins with a return type (FileOutputStream), which
specifies a type of values returned by the advice, followed by the around keyword.

3 The method is taken from JHotDraw (http://www.jhotdraw.org/) version 6.0b1,
but simplified for explanatory purposes.

3

Between the subsequent parentheses, there are formal parameters to the advice
(String n). The next element is a pointcut, which specifies when the advice will
run. The pointcut in Listing 1.2 specifies constructor calls to the FileOutput-

Stream class, and also binds the constructor parameter to the variable n when
it matches. Finally, a body of the advice, which consists of Java statements, is
written in the braces.

Execution of a base program with pieces of around advice can be explained in
terms of join points, which represent the operations in program execution whose
behavior can be affected by advice. In AspectJ, the join points are the operations
about objects, including method and constructor calls, method and constructor
executions, field accesses, and exception throwing and catching operations. It
should be noted that the operations about local variables are not included.

When a program is to execute an operation, we say the program creates a
join point corresponding to the operation. When there is any around advice dec-
laration that has a pointcut specifying the join point, the body of the advice runs
instead of the join point. For example, when the store method runs, at line 2,
it creates a join point corresponding to a constructor call to FileOutputStream.
Since the join point is specified by the pointcut of the advice in Listing 1.2, the
program creates a DupFileOutputStream object instead of FileOutputStream.
If there is more than one around advice declaration matching a join point, one
of them, selected by a certain rule, will run. Calling a pseudo-method proceed

in the body of around advice lets the next around advice run, if there is one.
Otherwise, the operation corresponding to the original join point is executed.

Practical AOP languages weave advice declarations into a base program. As-
pectJ, for example, weaves advice declarations in two steps. First, it compiles
class definitions into bytecode as if they are pure Java definitions. It also trans-
forms a body of each advice declaration into a Java method in a bytecode format.
Second, it examines bytecode instructions generated at the first step. For each
sequence of instructions that creates join points at runtime, which is called a join
point shadow, if there is an advice declaration that specifies join points created
from the shadow, it replaces the instructions with a call instruction to a method
translated from the advice body. When the advice has a dynamic pointcut, which
specifies join points by using runtime information, AspectJ inserts a series of in-
structions that evaluate the runtime condition, and then branch to either a call
to the method translated from the advice body, or a call to the original method.

For the example in Listing 1.1, the expression new FileOutputStream(fileName)

is compiled into a sequence of bytecode instructions that creates and initializes
an object, which is a join point shadow. Since the shadow creates constructor-call
join points that are specified by the pointcut of the around advice in Listing 1.2,
the compiler replaces the instructions with a call to a method that is generated
from the body of the around advice, which creates a DupFileOutputStream

object.

4

3 Type-Checking Rules and their Problems

3.1 The Rules

AspectJ compilers type-check around advice on the following two regards: (1)
each advice body should be consistent with a return type of the advice decla-
ration; and (2) the return type of an advice declaration should be consistent
with join point shadows where the advice is woven into. Below we present more
detailed rules.4

The first rule is similar to the rule for a return statement in a method.

Rule 1 (Advice Body) Any return statement in the body of around advice
must have a subtype5 of the return type of the advice declaration.

After checking this rule, we can trust the advice’s return type. An advice
body that does not match the return type like the one shown below will be
rejected.

FileOutputStream around():

call(FileOutputStream.new(String)) {

return "not a stream"; // type error

}

The second rule ensures that around advice will be woven into “right” join
point shadows.

Rule 2 (AspectJ Weaving) The return type of an around advice declaration
must be a subtype of the return type of any join point shadow where the advice
is woven into.

For example, AspectJ allows to weave the around advice in Listing 1.2 into an
expression new FileOutputStream(fileName) because the return type of the
advice (i.e., DupFileOutputStream) is a subtype of the return type of the join
point shadow (i.e., FileOutputStream).

However, AspectJ reports an error when it attempts to weave the following
into new FileOutputStream(fileName).

String around(): // weave error

call(FileOutputStream.new(String)) {

return "not a stream";

}

4 The rules are guessed by the authors from behavior of existing compilers, which are
consistent with the ones presented by De Fraine, et al.[7], except that we omit the
rules for ad-hoc generic typing with Object.

5 In the paper, subtype and supertype relations are reflexive: i.e., for any T, T is a
subtype and supertype of T.

5

This is because, the return type of the advice (i.e., String) is not a subtype of
the return type of the join point shadow (i.e., FileOutputStream).

Note that AspectJ rejects the above advice when it weaves the advice into a
join point shadow, but not when it checks the advice declaration itself. In other
words, AspectJ does not use the pointcut expression when it checks the advice
declaration itself, even if it suggests that the advice will be woven into join points
of type FileOutputStream.

3.2 An Example of the Problem: Replacing with a Sibling

The rules in AspectJ are too restrictive and sometimes prohibit to define useful
advice. For example, assume we want to redirect the output to the console,
instead of duplicating. At first, it would seem easy to define a piece of advice that
returns System.out, which represents a stream to the console, at the creation of
a FileOutputStream object. However, it is impossible to straightly define such
advice in AspectJ.

Listing 1.3 defines four pieces of advice, which try to return System.out

whenever a program is to create a FileOutputStream object.

PrintStream around(): // weave error in AspectJ

call(FileOutputStream.new(String)) {

return System.out; // of type PrintStream

}

OutputStream around(): // weave error in AspectJ

call(FileOutputStream.new(String)) {

return System.out; // of type PrintStream

}

FileOutputStream around():

call(FileOutputStream.new(String)) {

return System.out; // type error

}

Object around(): // compiles, yet produces

call(FileOutputStream.new(String)) {// runtime cast error in

return System.out; // the store method

}

Listing 1.3. Pieces of advice that returns the PrintStream object (i.e., the console)
instead of creating FileOutputStream.

Even though the definitions look reasonable, none of them work because of
the following reasons.

6

– Rule 2 rejects the first and second declarations because the return types
of the advice (i.e., PrintStream and OutputStream) are not a subtype of
the join point shadow’s return type (i.e., FileOutputStream, as shown in
Figure 1).

– Rule 1 reject the third declaration because the type of the return statement
(i.e., PrintStream) is not a subtype of the return type of the declaration
(i.e., FileOutputStream).

– AspectJ compiles the fourth declaration without errors, but the woven pro-
gram yields a runtime cast error at the second line of the store method
(Listing 1.1) because the type of the return value is not a subtype of File-
OutputStream.

Interestingly, if we can edit the body of the method store, the redirection
could be easily achieved by replacing the second line of store (Listing 1.1)

FileOutputStream s = new FileOutputStream(fileName);

with the next one.

OutputStream s = System.out;// of type PrintStream

3.3 Another Example: Wrapping Anonymous Classes

Another example of the problem can be found when we want to wrap handler ob-
jects. Java programs frequently use instances of anonymous class[8, Section 15.9]
as handler objects, i.e., objects that define call-back functions. For example, the
next code fragment creates two button objects in the Swing library and a lis-
tener object, and then registers the listener object with the button objects. The
listener object belongs to an anonymous class that implements the Action-

Listener interface. The parameter type of the addActionListener method is
ActionListener.

JButton b1 = new JButton();

JButton b2 = new JButton();

ActionListener a = new ActionListener () {

void actionPerformed(ActionEvent e) { ... }

};

b1.addActionListener(a);

b2.addActionListener(a);

Now, assume that we want to wrap the listener object with a Wrapper object
whose definition is shown in the first half of Listing 1.4.

Even though we want to define a piece of advice as shown at the last half
of the Listing 1.4, Rule 2 rejects it because the return type of the advice (i.e.,
ActionListener) is not a subtype of the return type of the join point, which is
an anonymous class that implements ActionListener. Since the return type of
the join point is anonymous, there is no way to declare a piece of around advice
to that join point!

7

class Wrapper implements ActionListener {

Wrapper(ActionListener wrappee) { ... }

...

}

ActionListener around(): //weave error in AspectJ

call(ActionListener+.new(..)) {

ActionListener l = proceed();

return new Wrapper(l);

}

Listing 1.4. A wrapper class and an advice declaration that wraps ActionListeners.

program name Javassist ANTLR JHotDraw jEdit Xerces

program size (KLoC) 43 77 71 140 205
number of shadows 862 1,827 3,558 8,524 3,490

supertype(%) 177 (21) 315(17) 576 (16) 2,499(29) 650(19)
subtype(%) 37 (4) 70 (4) 170 (5) 974(11) 156 (4)

unrelated(%) 0 (0) 4 (0) 42 (1) 42 (0) 64 (2)
same(%) 648 (75) 1,438(79) 2,770 (78) 5,009(59) 2,620(75)

Table 1. Classification of join point shadows by the usage of the supplied values in
practical applications.

Note that the advice is applied to the constructions of anonymous class ob-
jects thanks to the plus sign in the pointcut description, which specifies any
subtype of ActionListener.

Again, wrapping can be easily done if we edited the original code fragment
as follows.

ActionListener a = new Wrapper(

new ActionListener () {

void actionPerformed(ActionEvent e) { ... }

}

);

b1.addActionListener(a);

b2.addActionListener(a);

3.4 Relaxation Opportunities

We carried out preliminary assessment to investigate how likely the problem
mentioned above can happen in practical application programs. We counted, in
practical application programs, the number of such join point shadows whose
return value is used merely as its strict supertype of the type of the shadows. As
we see in the examples in Sections 3.2 and 3.3, the problem only happens at such
join point shadows. In other words, if there are only few such join point shadows
in programs, the problem is unlikely to happen. Since the assessment does not

8

consider existence of useful advice in practice, it merely supports chances of
existence of the problem.

We examined five medium-sized Java programs and classified relations of a
static type of a join point shadow in the programs. Classification is based on the
most general type among static types in the operations that use the value from
the shadow. For the ease of examination, we identified the dataflow relations
by writing an aspect in AspectJ that dynamically monitors program executions.
Note that the results are approximation as we used a dynamic monitoring tech-
nique.

The evaluated programs and the results are summarized in Table 1. The
supertype row shows the numbers of shadows whose return values are used only
as strict supertypes of the return type in subsequent computation in the same
method execution. Similarly, the subtype, unrelated, and same rows show the
number of shadows classified by the types in the operations using the returned
values6. The numbers on the supertype row, which are approximately 15–30%
in the table, suggest that there are code fragments in practical applications in
which the problem presented in the previous sections can happen.

3.5 Generality of the Problem

While the examples are about return values from around advice in AspectJ, the
problem is not necessarily limited to those cases.

First, the problem is not limited to return values. Since around advice can
also replace parameter values that are captured by args and target pointcuts,
the same problem can happen at replacing those values by using the proceed

mechanism. For example, if the store method in Listing 1.1 takes FileOut-

putStream rather than a file name string, the following around advice requires
relaxed weaving rules7.

void around(OutputStream s): args(s,*) &&

execution(void store(FileOutputStream,Data)) {

proceed(System.out);

}

In this paper, however, we only consider types about return values, and leave
types of parameter values to future work.

Second, the problem is not limited to AspectJ. Statically typed AOP lan-
guages that support around advice, such as CaesarJ[17] and AspectC++[19],
should also have the same problems.

Third, the problem is not limited to AOP languages. The same problem would
arise with the language mechanisms that can intercept and replace values, such
as method-call interception[13] and type safe update programming[6].

6 The subtype and unrelated relations appear in programs that have downcasting and
more than one interface type, respectively.

7 Interestingly, an AspectJ compiler (ajc version 1.5.3) compiles the example. However,
the generate code does not work as it contains a cast operation to FileOutputStream.

9

4 Type Relaxed Weaving

4.1 Basic Idea

We propose a weaving mechanism, called type relaxed weaving, to address the
problem while preserving type safety. Roughly speaking, it replaces the Rule 2
with the following one.

Rule 3 (Type Relaxed Weaving) When a piece of around advice is woven
into a join point shadow, the return type of the advice must be consistent with
the operations that use the return value from the join point shadow.

We here used ambiguous terms such as “consistent with” and “operations,”
which shall be elaborated in the later sections.

For example, the rule allows the first advice declaration in Listing 1.3 to
be woven into the store method (Listing 1.1). The return type of the ad-
vice (PrintStream) is consistent with the operations that use the return value,
namely the new BufferedOutputStream(s) expression at line 3 in Listing 1.1.

4.2 Design Principles

We assumed the following principles in designing our weaving mechanism.

Preservation of object interfaces: The mechanism should not change the
signatures of methods and fields when weaving advice declarations into a
program. Changing method/field signatures would give further freedom to
advice, but is problematic with unmodifiable libraries and programs that use
the reflection API.

Bytecode-level weaving: The mechanism weaves advice declarations into a
bytecode program, in a similar way that most AspectJ compilers do. The
mechanism, therefore, can merely use type information available in a byte-
code base program. At the same time, the mechanism can generate woven
programs that cannot be generated from Java source code, as we shall discuss
in Section 4.6.

Compatibility with AspectJ: The mechanism should accept a program that
is accepted by existing AspectJ compilers and should yield executable code
that has the same behavior as the one compiled by existing AspectJ compil-
ers.

Independence of advice precedence: Given advice declarations, the mech-
anism judges whether it is type-safe to weave them, regardless of their prece-
dence. This makes the mechanism simpler with more predictable behavior.

4.3 Overview

The type relaxed weaving has the same mechanism as the ones in existing AOP
languages except for the part that type-checks advice to be woven. Our mecha-
nism checks type safety of advice in the following steps.

10

First, as explained in Section 2, the weaver processes each method in the
base program. It looks for advice declarations that are applicable to join point
shadows in the method.

Second, for each join point shadow, it performs dataflow analysis to identify
operations that use a return value from the shadow. The extent of the analysis
is within the method: i.e., it is an intra-procedural dataflow analysis. The next
subsection will discuss our choice of operations.

Finally, it checks whether the return types of around advice applicable to
the shadows are consistent with the operations that use a return value. If there
is a piece of around advice whose return type that is not consistent with an
operation, it rejects the advice as a type error.

Below, we discuss several issues of defining concrete weaving rules.

4.4 Operations that Use Return Values

Basically, operations that use values are determined by the semantics of the Java
bytecode language and the principle of the interface preservation.

Below, we summarize the operations that use a value (denoted as v) returned
from a join point shadow. Since we use a dataflow analysis, v actually denotes
any variable that has a dataflow relation from a join point shadow.

Method or constructor call parameter: A method call o.m(v) uses v as of
the parameter type in the signature of m. Similarly, a constructor call new
C(v) uses v as of the parameter type in the signature of the constructor.

Note that the method and constructor signatures are determined before
weaving. In other words, even if a piece of around advice changes types
of some values, it will not change the selection of overloaded methods and
constructors.

Method call target: A method call v.m() uses v as of the target type in the
signature of m. There are subtle issues of selecting a target type. We will
discuss it in Section 4.5.

Return value from a method: A return statement return v uses v as of the
return type of the method.

Field access target: A field assignment v.f=... or a field reference v.f uses
v as of the class that declares f.

Assigned value to a field: A field assignment o.f = v uses v as of the f’s
type.

Array access target: An array assignment v[i]=... or an array reference
v[i] uses v as an array type. The type of the elements is determined by the
results of a dataflow analysis on the assigned or referenced value. For AspectJ
compatibility, we regard all the reference types (i.e., classes, interfaces and
arrays) as the same type when they appear as an element type of an array.

Exception to throw: A throw statement throw v uses v as one of the types
in the throws clause of the method declaration, or a type in one of catch
clause around the throw statement.

11

Note that the above operations do not include accesses to a local variable.
This gives the mechanism more opportunity to weave advice declarations with
more general types. For example, in Listing 1.1, even when the return value from
new FileOutputStream(fileName) is stored in a variable of type FileOutput-
Stream at line 2, the return value is not considered as used by the assignment.
Only the subsequent operation new BufferedOutputStream(s) at line 3 is re-
garded as the operation that uses the value.

Ignoring types of local variables also fits for current AspectJ compilers, which
support bytecode weaving. In Java bytecode, local variables have no static types
in a sense that can affect behavior of a program; types of local variables are
merely available as hints for debuggers.

4.5 Target Type of a Method Call

When a value is used as a target of a method call, we should examine a type
hierarchy to decide the types that the value is used as. This is because, even
though there is target type information in a Java bytecode instruction, the static
type of the target object can be any subtype of a supertype of the target type,
as long as the supertype declares the method.

For example, assume a method call o.write(...) whose target type is
BufferedOutputStream. Since write is declared in OutputStream (as shown
in Figure 1), it is safe to change the target type of the call to OutputStream.
The static type of o can thus be any subtype of OutputStream.

Therefore, when a value is used as a target of a method call m, we regard the
value is used as a value of the most general type that declares m, rather than the
target type in the signature of m. This will give our weaver a chance to accept
more advice.

However, when there are interface types, we need to consider that a target
object is used as a value of one of several types, rather than a single type.
Consider the interfaces and class declarations followed by a code fragment shown
in Listing 1.5.

interface Runnable { ... }

interface Task { void show();/* displays the task’s status */ }

class Simulator { void show() { ... } }

class BkSimulator extends Simulator

implements Runnable,Task { ... }

// in a method:

BkSimulator o = new BkSimulator();

new Thread(o).start();

...

o.show(); //signature: void BkSimulator.show()

Listing 1.5. A method call with a class and interface types.

12

At the bottom line, we should regard that o is used as a value of either Sim-

ulator, BkSimulator, or Task, regardless of the target type in show’s signature.
Since there is no subtype relation between Simulator and Task, we should at
least consider these two types to maximize weaving opportunity.

Note that covariant return types[8, Section 8.4] in Java, which allows an
overriding method in a subclass to have a more specific return type than the
one in the overridden method, can complicate the safety condition. Our current
approach here is to rely on the types in compiled bytecode, where signatures
of two methods—an overriding method with a covariant return type and the
method to be overridden—are regarded as different (i.e., not overriding).

4.6 Usage as a Value of Multiple Interface Types

Existence of interface types also requires to consider that an object is used as a
value of a subtype of several unrelated types.

In Listing 1.5, the constructor new Thread(o) has a parameter of type
Runnable. Therefore, we should consider that o is used as a value of a subtype
of both Runnable and Task, in order to increase a weaving opportunity.

This means that, when there is a class that implements both Runnable and
Task, we can replace the return value from new BkSimulator() with an object of
such a class even if it is not a subtype of BkSimulator. The following declarations
demonstrate the case.

class RunnableTask implements Runnable,Task { ... }

RunnableTask around(): call(BkSimulator.new()) {

return new RunnableTask();

}

When we weave this advice into Listing 1.5, we also need to change the target
type of the method invocation instruction for the last method call from BkSim-

ulator to Task.

Note that application of the above around advice to Listing 1.5 could generate
woven code that cannot be generated from the Java source language when the
pointcut contains a dynamic condition, such as if(debugging). In this case, the
woven code for the line

BkSimulator o = new BkSimulator();

will become the one like below, if translated back into the source language.

if (debugging) o = new RunnableTask();

else o = new BkSimulator();

Even though it is not a valid source program because we cannot give a static type
for o, the woven code is valid at the bytecode language level. We refer readers
to formalizations of the Java bytecode language[14] for a detailed discussion.

13

4.7 Relaxation within Base Programmer’s Expectation

Even though we might be able to radically relax types as shown in the previous
section, we confine return types so as that the woven program’s behavior stays
within expectation of the base programmers.

Consider the following interface, class and a piece of advice.

interface Presentation { void show(); void stop(); }

class SlideSet implements Runnable,Presentation { ... }

SlideSet around(): call(BkSimulator.new()) {

return new SlideSet();

}

It is safe to apply the above advice to Listing 1.5 because a SlideSet object
can be used as a parameter to the constructor of Thread(Runnable), and can
be used as a target of a method show().

Even if it is safe, weaving it into Listing 1.5 could violate the base program-
mer’s expectation because the show() method specified in the Presentation

interface might accidentally share the same name with the one in the Task in-
terface. Similar to the problem of name collision with multiple inheritance[12], a
class that accidentally has the same name method with another class might not
be semantically compatible.

We therefore allow a piece of around advice whose return value will be used
as a target of a method call only if there exists a common supertype between
the advice’s return type and the target type of the method call that declares
the method. With this rule, the advice that returns RunnableTask (Section 4.6)
can be applied to Listing 1.5 because RunnableTask is subtype of Task, and
the target type of o.show() in Listing 1.5 is BkSimulator, which is subtype of
Task as well. However, the advice that returns SlideSet is not allowed because
there is no common supertype between SlideSet and BkSimulator that defines
show().

Note that the rule is consistent with dynamic pointcuts. As explained in
Section 4.6, around advice is conditionally executed when its pointcut contains
a dynamic condition. If the return type of a piece of around advice satisfies the
above rule, we can always find a target type of a method call even if the return
value is stored into the same variable with the return value from the join point.

4.8 Multiple Advice Applications at a Join Point

When the mechanism checks usage of a return value from a join point, it should
also check the operations in advice bodies that are applied to the same join point.
This is because, when there is more than one piece of advice applied to a join
point, one of the pieces can use a return value from another piece by executing
a proceed operation. Since our principle is not to rely on advice precedence, the
mechanism should take all pieces of advice applied to the same join point into
account.

For example, assume that the following advice is applied to the storemethod
(in Listing 1.1) in conjunction with the first advice declaration in Listing 1.3.

14

FileOutputStream around():

call(FileOutputStream.new(String)) {

FileOutputStream s = proceed();

s.getFD().sync();//uses s as FileOutputStream

return s;

}

Our weaver then has to reject the combination of the above advice and the first
one in Listing 1.3. This is because, when the above advice runs prior to the first
advice in Listing 1.3, the former advice receives a return value from the latter,
and uses the value as a FileOutputStream object by calling the getFD method
(see Figure 1).

4.9 Advice Interference

When there are advice declarations applicable to more than one join point
shadow in a method, it should check consistency among all those shadows in
a method at once. In other words, it is not possible to employ an approach to
safety checking in existing weavers, which check safety for each join point shadow
independently.

The following example demonstrates a case in which two advice declarations
cannot coexist, even though each of them can be safely applied without the
other.

The case consists of two interfaces I and J, two classes C and D that implement
both interfaces, followed by a code fragment that assigns objects in different
classes into one variable.

interface I { C m(); }

interface J { C m(); }

class C implements I,J { C m(){ ... } }

class D implements I,J { C m(){ ... } }

// in a method:

I x;

if (...) x = new C(); else x = new D();

x.m(); // uses x as a value of I or J

Now consider the following class and advice declarations that replace cre-
ations of C and D objects with those of E and F objects, respectively.

class E implements I { C m(){ ... } }

class F implements J { C m(){ ... } }

E around(): call(C.new()) { return new E(); }//CtoE

F around(): call(D.new()) { return new F(); }//DtoF

Application of both advice declarations is not correct because we cannot give
a single target type for x.m(). Applications of either one of above two advice
declarations are, however, safe.

15

5 Formal Correctness of Type Relaxed Weaving

In this section, we formalize a core of the type relaxed weaving to confirm its
type safety. We first set up a simple object-oriented language called Feather-
weight Java for Relaxation (FJR), which is an extension of Featherweight Java
(FJ)[9]. The language models programs after advice is woven, by adding advice
application and proceed to FJ; its type system, which we believe corresponds
to bytecode verification in the Java Virtual Machine, is sound with respect to
operational semantics. We then present a procedure to type-check a woven pro-
gram; it takes an expression (with its type environment) and returns its type (if
it is well typed) and a new expression where type annotation has been changed.
We prove that the type-checking procedure is correct with respect to the typing
rules and that the new expression is “similar” to the original expression before
weaving in a certain sense.

We show only a main part of definitions and the statements of theorems in
this section and refer readers to Appendices for the full definitions and proofs.

5.1 Featherweight Java for Relaxation

Syntax Featherweight Java for Relaxation has, in addition to most of the fea-
tures in FJ, interface types (without interface extension), let expressions, non-
deterministic choice, woven advice, and proceed. However, for simplicity rea-
sons, we remove typecasts and fields from objects, which can be easily restored
without difficulty. Unlike FJ, where every expression is assigned a class name as
its type, FJR has a restricted version of the union type system[10], which allows
more liberal use of values as discussed in Section 4.6.

The syntax rules of FJR are given as follows.

CL ::= class C extends C implements I { M } class
M ::= T m(T x){ return e; } method
IF ::= interface I { S } interface
S ::= T m(T x); signature

a, b ::= T(T x){ return e; } advice
e ::= x | e〈T〉.m(e) | new C() | let x = e in e expression

| (?e:e) | [a](e) | proceed(e)
S, T ::= C | I simple type
U, V ::= T | U ∪ U type

Following the convention of FJ, we use an overline to denote a sequence and
write, for example, x as shorthand for x1,. . . ,xn. The metavariables C and D

range over class names; I and J range over interface names; m ranges over method
names; and x and y range over variables, which include the special variable this.

CL is a class declaration, consisting of its name, a superclass name, interface
names that it implements, and methods M; IF is an interface declaration, con-
sisting of its name and method headers S. In addition to class declarations, FJR
has interface declarations, which are needed to discuss the issues of target types
(Sections 4.5 and 4.6) and advice interference (Section 4.9).

16

The syntax of expressions is extended from that of FJ, which already in-
cludes variables, method invocation, and object instantiation (and also field
access and typecast, which are omitted here). Here, a method invocation ex-
pression e〈T〉.m(e) records the static type T of the receiver explicitly as in the
bytecode instructions invokevirtual and invokeinterface. This information
will be used during type-checking to ensure that types in the woven program are
not very different from the original. We introduce let expressions to illustrate
the cases when a value returned from around advice is used as values of different
types. let is the only binding construct of an expression and the variable x in
let x = e1 in e2 is bound in e2. We also introduce non-deterministic choice
(?e:e) to handle the cases when a variable contains values of different types.
Although a non-deterministic choice is not useful in practical programming, it
is sufficient to express such a case.

The last two forms are related to advice execution. The first form [a](e)

represents an application of a sequence a of pieces of advice to arguments e. In
FJR, a piece of advice a is represented by an anonymous function, which can
call the next advice by proceed—the last form of expressions. Actually, the last
advice in a should be considered the original code of the join point into which
advice is woven. For example, the result of weaving

PrintStream around():

call(FileOutputStream.new()) {

return System.out;

}

into an expression new FileOutputStream() would be expressed by

[PrintStream(){ return System.out; },

FileOutputStream(){ return new FileOutputStream(); }

]()

which will reduce to System.out without calling the original code.

Remark 1. Although this model of advice application may look too simple, we
believe that it is sufficient to show the essence of the type relaxed weaving. We
do not model a weaving algorithm (in particular, how advice is selected) here,
partly because it is basically the same as AspectJ’s. Actually, for type safety,
it does not matter which advice is applied—type-checking will be performed
for the woven code anyway. We should note, however, that this model has one
significant difference from the implementation explained in the next section. This
model does not express the fact that an advice body is shared among joint point
shadows to which the advice is applied. So, a single advice body would have
to be duplicated. As a result, one advice body might be type-checked several
times under different assumptions, depending on joint point shadows to which
this advice is woven into. It allows polymorphic use of a single piece of advice.
We have chosen simplicity over faithfulness here.

We define the set of free variables in an expression by a standard manner.
We will denote a capture-avoiding substitution of expressions e for variables x

17

by [e/x]. We use the notation [[a]/proceed]e to replace proceed(e) in e with
[a](e). More precisely, [[a]/proceed]e is defined by:

[[a]/proceed]x = x

[[a]/proceed](e0〈T〉.m(e)) = ([[a]/proceed]e0)〈T〉.m([[a]/proceed]e)
[[a]/proceed](new C()) = new C()

[[a]/proceed]
=

let x = ([[a]/proceed]e1)
(let x = e1 in e2) in ([[a]/proceed]e2)

[[a]/proceed](?e1:e2) = (?([[a]/proceed]e1):([[a]/proceed]e2))
[[a]/proceed]([b](e)) = [b]([[a]/proceed]e)
[[a]/proceed](proceed(e)) = [a]([[a]/proceed]e)

S and T stand for simple types, i.e., class and interface names, and will be
used for types written down in classes and interfaces. U and V stand for union
types. For example, a local variable of type C ∪ D may point to either an object
of class C or that of D. Union types are used for return types of proceed as well
as local variables.

An FJR program is a pair of a class table CT , which is a mapping from
class/interface names to class and interface declarations, and an expression,
which stands for the body of the main method. We denote the domain of a
mapping by dom(·). We always assume a fixed class table, which is assumed to
satisfy the following sanity conditions:

1. CT (C) = class C · · · for every C ∈ dom(CT);
2. CT (I) = interface I · · · for every I ∈ dom(CT);
3. Object /∈ dom(CT);
4. for every simple type T (except Object) appearing anywhere in CT , we have

T ∈ dom(CT); and
5. there are no cycles formed by extends clauses.

Lookup Functions As in FJ, we use the functions, whose definitions are shown
only in Appendix A, to look up method signatures and bodies in the class table.
mtype(m, T) returns a pair (written S→S0) of the sequence of the argument types
S and the return type S0 of method m in simple type T (or its supertypes). We
also use the function mtypeC(m, C), which also returns the signature of m in C;
unlikemtype, it looks up only superclasses and do not consider interfaces that the
given class implements. mbody(m, C) returns a pair (written x.e) of the formal
parameters x and the body e of method m in class C. Since a method is declared
only in classes, mbody takes only class names as its second argument. We assume
Object has no methods and so none of mtype(m, Object), mtypeC(m, Object) and
mbody(m, Object) is defined. We also use rettype(a) to retrieve the return type
of the advice a.

Type System The subtyping relation is written U <: V and defined by rules
in Figure 2. It is reflexive, transitive, and includes extends and implements

relations, as in Java. The rules S-UnionR1, S-UnionR2 and S-UnionL for

18

union types mean that the union type U1 ∪ U2 is the least upper bound of U1
and U2. It is easy to show that ∪ is associative and commutative in the sense
that U1 ∪ U2 and U2 ∪ U1 are subtypes of each other for any U1 and U2 and so are
(U1 ∪ U2) ∪ U3 and U1 ∪ (U2 ∪ U3).

U <: U (S-Refl)

U1 <: U2 U2 <: U3

U1 <: U3

(S-Trans)

U <: Object (S-Object)

class C extends D implements I { · · · }
C <: D

(S-Extends)

class C extends D implements I { · · · }
C <: Ii

(S-Implements)

U1 <: U1 ∪ U2 (S-UnionR1)

U2 <: U1 ∪ U2 (S-UnionR2)

U1 <: U3 U2 <: U3

U1 ∪ U2 <: U3

(S-UnionL)

Fig. 2. FJR: Subtyping rules.

The type judgment for expressions is of the form Γ ; P ` e : U, read “expression
e is given type U under type environment Γ and the assumption that proceed
has type P.” and that for advice is of the form P ` a OK, read “advice a is well
typed provided that proceed has type P.” A type environment Γ , also written
x:U, is a finite mapping from variables x to types U. A type P of proceed is
either T→U, which means that proceed takes arguments of type T and returns
U, or •, which means that proceed cannot be called (because the expression is
in a method definition).

We show the typing rules for expressions and advice in Figure 3. Most rules
are straightforward. As we have already mentioned, T0 in T-Invk represents the
receiver’s static type; a simple type has to be chosen here. So, if two classes C and
D extend Object and implement no interfaces happen to have a method m of the
same signature, m cannot be invoked on the receiver of type C∪ D. T-Let allows
local variables to have union types, whereas the method typing rule, given below,
allows method parameters to have only simple types. In T-Choice, the choice

19

Γ ;P ` x : Γ (x) (T-Var)

Γ ;P ` e0 : U0 U0 <: T0 mtype(m,T0) = T→T
Γ ;P ` e : U U <: T

Γ ;P ` e0〈T0〉.m(e) : T
(T-Invk)

Γ ;P ` new C() : C (T-New)

Γ ;P ` e1 : U1 Γ,x:U1;P ` e2 : U2

Γ ;P ` let x = e1 in e2 : U2

(T-Let)

Γ ;P ` e1 : U1 Γ ;P ` e2 : U2

Γ ;P ` (?e1:e2) : U1 ∪ U2

(T-Choice)

Γ ;T→U ` e : V V <: T

Γ ;T→U ` proceed(e) : U
(T-Proceed)

S→U0 ` a OK • ` b OK
U0 =

∪
a∈a,b rettype(a) Γ ;P ` e : V V <: S

Γ ;P ` [a,b](e) : U0

(T-Woven)

P = • or S→V x:S;P ` e : U U <: T

P ` T(S x){ return e; } OK
(T-Advice)

Fig. 3. FJR: Typing rules for expressions and advice.

expression is given the union of the types of the two subexpressions since its
value is that of either e1 or e2. The rule T-Proceed is as trivial as T-Var. The
rule T-Woven requires that all pieces of advice be well typed and the arguments
have subtypes of their parameter types S. Since the last advice b represents the
original code, as already discussed, it must not refer to proceed (hence • is used).
The return type of proceed and the type of the whole expression is the union
of the return types of all pieces of advice and the original join point shadow.
The typing rule T-Advice is mostly straightforward: the body must be typed
under the assumption that parameters x have declared types S, which must be
the same as the argument type of proceed (if given), and its type U must be a
subtype of the declared return type T. Note that the return type V of proceed
(if given) is not related to T in this rule, but the combination with T-Woven
will ensure V to be a supertype of T.

The type judgment for methods is of the form M OK IN C, read “method M

is well typed in class C.” The typing rule is given as follows:

20

x:T, this:C ` e : U U <: T0
class C extends D implements I { · · · }

override(m, D, T→T0)

T0 m(T x) { return e; } OK IN C
(T-Method)

The method body e has to be well typed under the type declarations of the
parameters x and the assumption that this has type C. As mentioned above,
the parameter types and return type have to be simple types. The predicate
override, whose definition is shown in Appendix, checks whether M correctly
overrides the method of the same name in the superclass D (if any).

Finally, the type judgment for classes is written CL OK, meaning “class CL is
well typed,” and the typing rule is given as follows:

M OK IN C

∀m, I ∈ I.(mtype(m, I) = T→T0) =⇒ (mtypeC(m, C) = T→T0)

class C extends D implements I { M } OK
(T-Class)

It means that all methods have to be well typed and all methods declared in
I have to be implemented (or inherited) in C with the correct signature. A
program is well typed when all classes in the class table are well typed and the
main expression is well typed under the empty type environment.

Example 1. We show a few examples of typing using interfaces and classes in
Listing 1.5 (and assuming the existence of void). More precisely, suppose the
class table includes the following interfaces and classes

interface Rnbl {} // short for Runnable

interface Tsk { void show(); } // for Tsk

class Thrd extends Object { // for Thread

Rnbl o;

void start() { .. }

}

class Sim extends Object { void show(){ .. } }

class BSim extends Sim implements Rnbl, Tsk { .. }

class RT extends Object implements Rnbl, Tsk { .. }

and let
e

def
= let o = new BSim() in o〈BSim〉.show().

Then, e is typed under the empty type environment:

•; • ` new BSim() : BSim
T-New D

•; • ` e : void
T-Let

where

D def
=

o : BSim; • ` o : BSim
T-Var BSim <: BSim

mtype(show, BSim) = •→void

o : BSim; • ` o〈BSim〉.show() : void
T-Invk

21

Now, we consider

e′
def
= let o = [a,b]() in o〈Bsim〉.show()

obtained by replacing new BSim() in e with advice application [a,b]() where

a
def
= RT(){ return new RT(); }

b
def
= BSim(){ return new BSim(); }.

Now, [a,b]() is typed as follows:

•; •→RT ∪ BSim ` new RT() : RT

•→RT ∪ Bsim ` a OK
T-Advice

•; • ` new BSim() : BSim

• ` b OK
T-Advice

•; • ` [a,b]() : RT ∪ BSim
T-Woven

Note that the return type if the union of RT and BSim. (This advice application,
however, never returns a BSim object.) Unfortunately, e′ is not quite well typed—
the type judgment o : RT ∪ BSim; • ` o.〈BSim〉.show() : void cannot be derived
because the type annotation on the method invocation does not match the type
of o. We need to replace the type annotation with Tsk to make it type-check. In
fact,

e′′
def
= let o = [a,b]() in o〈Tsk〉.show()

is well typed.
•; • ` [a,b]() : RT ∪ BSim D′

•; • ` e′′ : void
T-Let

where

D′ def
=

o : RT ∪ BSim; • ` o : RT ∪ BSim
T-Var RT ∪ BSim <: Tsk

mtype(show, Tsk) = •→void

o : RT ∪ BSim; • ` o〈Tsk〉.show() : void
T-Invk

Notice the use of subtyping RT ∪ BSim <: Tsk. By a similar argument, the
expression

let o = [a,b]() in

let d = new Thrd(o).start() in

o〈Tsk〉.show()

has type void. Note that subtyping RT∪ BSim <: Thrd is used when o is passed
to the constructor of Thrd. So, o is used as both Tsk and Thrd.

Operational Semantics The reduction relation is of the form e −→ e′, read
“expression e reduces to expression e′ in one step.” We write −→∗ for the reflex-
ive and transitive closure of −→. The main reduction rules are shown in Figure 4
and readers are referred to Appendix for the other rules for congruence, that is,
rules that allow a subexpression to reduce. The first rule for method invocations
is essentially the same as that in FJ. The rules for let and choice are straight-
forward. In the last rule R-Advice for advice call, the first advice a0 is called
by replacing parameters with actual arguments and proceed with the remaining
advice.

22

mbody(m,C) = x.e0

new C()〈T〉.m(e) −→ [e/x,new C()/this]e0

(R-Invk)

let x = e1 in e2 −→ [e1/x]e2 (R-Let)

(?e1:e2) −→ ei (R-Choice)

a0 = T(S x){ return e0; }

[a0,a](e) −→ [e/x,[a]/proceed]e0

(R-Advice)

Fig. 4. FJR: Reduction rules.

Properties FJR enjoys the standard type soundness properties consisting of
subject reduction and progress[22]. See Appendix C for proofs.

Theorem 1 (Subject Reduction). If Γ ; P ` e : U and e −→ e′, then there
exists some type U′ such that Γ ; P ` e′ : U′ and U′ <: U.

Theorem 2 (Progress). If •; • ` e : U, then e is either new C() for some C or
there exists some expression e′ such that e −→ e′.

5.2 Type-Checking Procedure

Having set up the language, we present the type-checking procedure TC for
FJR programs and show its correctness. The type-checking procedure takes as
an input an expression after advice has been woven (with types of its free vari-
ables), even though an implementation would defer actual weaving (that is,
bytecode editing) until type-checking has been done. In general, type annota-
tions on method invocations have to be changed in order for the program to
remain well typed after type relaxed weaving. To model this fact, TC returns
another expression with its type. The expression that TC returns is different
from the input only in its type annotations on method invocations. Moreover,
the new type annotations will be supertypes of the original. We will prove that,
if TC succeeds, then the output is well typed with respect to the typing rules
and similar to the input in this sense.

Figures 5 and 6 show the type-checking procedure. It is basically obtained
by reading the typing rules, which are syntax-directed, in a bottom-up manner.
The only interesting case is when the input expression is a method invocation, in
which case type annotation may have to be changed. Given the (new) type U0 of
the receiver and annotation T, the new type annotation S is chosen from common
supertypes, which have the method being invoked, of U0 and T. The returned
expression has S as its type annotation. Note that we leave unspecified how S is
found—finding S is decidable since, given a class table, the set of valid simple

23

types is finite—and which type should be chosen if more than one simple type
satisfies the condition—in fact, any type is appropriate. (So, strictly speaking,
TC is a relation that specifies behavior of sensible type-checking procedures.)

For example, TC(•, •, e′) = (e′′, void) (where

e′ = let o = [a; b]() in o〈BSim〉.show()

e′′ = let o = [a; b]() in o〈Tsk〉.show()

from Example 1).

TC(Γ,P,e) = (e′,U)

TC(Γ,P,x) = (x, Γ (x))

TC(Γ,P,let x = e1 in e2) =
let (e1

′,U1) = TC(Γ,P,e1) in
let (e2

′,U2) = TC((Γ,x:U1),P,e2) in
(let x = e1

′ in e2
′, U2)

TC(Γ,P,e0〈T〉.m(e1, · · · ,en)) =
let (e0

′,U0) = TC(Γ,P,e0) in
let (e1

′,U1) = TC(Γ,P,e1) in
...

let (en
′,Un) = TC(Γ,P,en) in

let T→T0 = mtype(m,T) in

let S be a simple type such that U0 ∪ T <: S and mtype(m,S) = T→T0 in

if U <: T then (e0
′
〈S〉.m(e1

′, · · · ,en
′),T0) else error

TC(Γ,P,new C()) = (new C(),C)

TC(Γ,P,(?e1:e2)) =
let (e1

′,U1) = TC(Γ,P,e1) in
let (e2

′,U2) = TC(Γ,P,e2) in
((?e1

′:e2
′),U1 ∪ U2)

Fig. 5. Type-checking procedure (1)

To state correctness of TC, we introduce two relations e ↪→ e′ and e
trw

↪→ e′

between expressions. The former models the fact that e′ is a result of weaving
advice into e (without type relaxation). The main rule is

b ↪→ b′ e ↪→ e′

[b](e) ↪→ [a,b′](e′)

which allow advice weaving. The other rules, which are shown in Appendix B,
are for congruence. For example, the rule for method invocations is shown below.

24

TC(Γ,S→U,proceed(e1, · · · ,en)) =
let (e1

′,U1) = TC(Γ,S→U,e1) in
...

let (en
′,Un) = TC(Γ,S→U,en) in

if U <: S then (proceed(e1
′, · · · ,en

′),U) else error

TC(Γ,P,[a1, · · · ,an](d1, · · · ,dm)) =
let T1(S x){ return e1; } = a1 in

...

let Tn(S x){ return en; } = an in
let U0 = T1 ∪ · · · ∪ Tn in

let (e1
′,U1) = TC(x:S,S→U0,e1) in

...

let (en−1
′,Un−1) = TC(x:S,S→U0,en−1) in

let (en
′,Un) = TC(x:S, •,en) in

let (d1
′,V1) = TC(Γ,P,d1) in

...
let (dm

′,Vm) = TC(Γ,P,dm) in

let a1
′ = T1(S x){ return e1

′; } in
...

let an
′ = Tn(S x){ return en

′; } in

if V <: S ∧ U <: T then ([a1
′, · · · ,an

′](d1
′, · · · ,dm),U0) else error

Fig. 6. Type-checking procedure (2)

e0 ↪→ e0
′ e ↪→ e′

e0〈T0〉.m(e) ↪→ e0
′
〈T0〉.m(e

′)

(Here, the type annotations on both sides must be the same.) The latter models
type-relaxed weaving, which further allows a type annotation to be replaced
with a supertype. So, the main rules are for method invocations and advice
applications:

e0
trw

↪→ e0
′ e

trw

↪→ e′ T0 <: T0
′ mtype(m, T0

′) defined

e0〈T0〉.m(e)
trw

↪→ e0
′
〈T0′〉.m(e

′)

b
trw

↪→ b′ e
trw

↪→ e′

[b](e)
trw

↪→ [a,b′](e′)

For example, it holds that

let o = [b]() in o〈BSim〉.show()

25

↪→ e′

= let o = [a; b]() in o〈BSim〉.show()

and

let o = [b]() in o〈BSim〉.show()
trw

↪→ e′′

= let o = [a;b]() in o〈Tsk〉.show()

(where a, b, and e′ and e′′ are from Example 1).
Note that neither relation specifies a weaving algorithm—how advice is cho-

sen, in which order pieces of advice are applied, and how the base program is
transformed to [b](e) before applying advice. They are just to model structural
similarity between programs before and after (type-relaxed) weaving.

Now, correctness of the type-checking procedure is stated as follows:

Theorem 3 (Type Relaxed Weaving). If Γ ; P ` e : U and e ↪→ e′ and

TC(Γ, P, e′) = (e′′, U′), then e
trw

↪→ e′′ and Γ ; P ` e′′ : U′.

Proof. See Appendix C.

This theorem means that if (ordinary, type unchanging) weaving followed by
type-checking yields e′′ from a well-typed base program e, then e′′ is also well
typed under the same type assumptions; moreover, changes in type annotations
are only slight.

6 Implementation

We implemented an AspectJ compatible compiler that supports the type relaxed
weaving, called RelaxAJ, which is publicly available8. The implementation is
based on an existing AspectJ compiler (ajc version 1.6.1), and modified ajc’s
weaving algorithm. Since the difference is only in between Rule 2 and Rule 3,
we merely needed to modify a few methods in the original implementation.

The modified compiler works in the following ways. After compiling class
and aspect declarations into bytecode class formats, it visits all methods in all
classes provided. For each method, our weaver first accumulates all pieces of
around advice applicable to any join point shadows within the method. When
there are any piece of advice that violates original compiler’s type-checking rule
(i.e., Rule 2), our weaver performs its own type-checking based on Rule 3.

When it type-checks, the bodies of advice are woven into the bytecode in-
structions same as done by the original weaver. Finally, when the type-checker

8 http://www.graco.c.u-tokyo.ac.jp/ppp/projects/typerelaxedweaving.en

26

identifies changes in target types (as discussed in Section 4.5), it changes the
method invocation instructions and signatures appropriately. It also removes
runtime type-checking (i.e., cast) instructions.

Our type-checker implements the typing rules presented in Section 5. In order
to cope with full-set of Java bytecode instructions, which include branching ones,
we implemented the algorithm as abstract interpretation.

The implementation is approximately 2,200 lines of additional code to the
original AspectJ compiler. The additional type-checking adds relatively small
amount of time to compilation time of a practical application program. When
we compiled JHotDraw version 7.1, which consists of 441 classes or 93,000 lines
of code, with a wrapper inserting aspect that has advice declarations similar
to the one in Listing 1.4, the compilation time increased 2.41 percent (from
6.411 seconds to 6.566 seconds on the Sun HotSpot VM version 1.5.0 executed
by two 2.8 GHz Quad-Core Intel Xeon processors with 4 GB memory, under
Mac OS X version 10.5) from the case compiled by ajc with a dummy advice9.
In this experiment, the advice body was woven to 51 join point shadows. Of
course, the overheads would become larger when a piece of around advice that
requires type relaxed weaving were woven to more methods.

7 Related Work

7.1 StrongAspectJ

StrongAspectJ is an extension to AspectJ that supports generic advice declara-
tions in a type safe manner[7]. As mentioned in the first section, the genericity
offered by StrongAspectJ is similar to, but different from the one offered by the
type relaxed weaving.

Let’s see similarity and difference by using the example in Listing 1.6, which
is taken from (but slightly modified for explanatory purposes) StrongAspectJ’s
paper[7]. In Java, Integer and Float are both subtypes of the Number interface,
which requires the intValue method.

Interestingly, the advice declaration, which is rejected by AspectJ, is accepted
both by StrongAspectJ (modulo slight modifications to the advice declaration)
and the relaxed type weaving. With StrongAspectJ, we can redefine the advice
by using a type variable, so that the type system can check correctness of the
advice body with respect to the type of each join point where the advice is
applied to. With the type relaxed weaving, the advice happens to be accepted
because the return values from the join points are used merely as the Number

objects.

Difference becomes apparent when we modify either the advice or the com-

pute method. If we modify the body of the advice so that it returns, for example,

9 We declared the return type of the advice as Object in order to get the advice
compiled by AspectJ. With this advice, ajc can generate woven code, which cause
runtime cast errors.

27

Integer calcInteger() { return new Integer(...); }

Float calcFloat() { return new Float (...); }

int compute() {

Integer i = calcInteger();

Float f = calcFloat ();

return i.intValue() + f.intValue();

}

Number around():call((Integer||Float) calc*(..)) {

Number n = proceed();

while (n.intValue() > 100)

n = proceed();

return n;

}

Listing 1.6. An around advice declaration that is applied to join points of different
types.

new Double(0), StrongAspectJ cannot accept such a piece of advice. Alterna-
tively, if we modify the compute method so that it calls a method that is not
defined in Integer class on f, the type relaxed weaving cannot accept the advice
any longer.

We believe that the type systems of StrongAspectJ and the type relaxed
weaving complement each other, and are currently designing an AspectJ lan-
guage extension that supports both mechanisms.

7.2 Type Systems for Around Advice

As far as the authors know, all formalizations of around advice are based on
Rule 2; i.e., advice types are checked against types in join points, if they formal-
ized type systems. Wand, Kiczales and Dutchyn formalized behavior of around
advice without types[20]. Clifton and Leavens formalized the proceed mechanism
of around advice and its type safety[3]. Their type system is based on the one
in AspectJ, which is based on Rule 2.

AspectML[5] and Aspectual Caml[16] are AOP extensions to functional lan-
guages. Those languages support polymorphic advice, which can be applied to
join points that have polymorphic types. Although polymorphic types might
give similar genericity, we believe that our work first pointed out the problem in
practice, and formalized in a language with a subtyping relation.

8 Conclusion

This paper presented the type relaxed weaving, a novel weaving mechanism for
around advice in statically typed AOP languages. With the type relaxed weaving,

28

we can define around advice that replaces a value in a join point with the one
of a different type, as long as the usage of the value in subsequent computation
agrees.

Our contributions are: we (1) pointed out that the problem of the type-
checking rules on around advice in existing AOP languages, (2) proposed the
type relaxed weaving, which resolves the problem in a type safe manner, (3)
formalized the core part of the mechanism in order to show type soundness, and
(4) implemented the weaving mechanism as an AspectJ compatible compiler,
which is publicly available.

We are extending our compiler so that it will allow around advice to pro-
vide values of different types to proceed(), as it allows to provide values to
return from the advice. We are also designing a language StrongRelaxAJ, which
is a hybrid of StrongAspectJ and RelaxAJ by taking advantages of both mech-
anisms[1].

References

1. Aotani, T., Toyama, M., Masuhara, H.: StrongRelaxAJ: integrating adaptability
of RelaxAJ and expressiveness of StrongAspectJ. In: Ostermann, K. (ed.) Foun-
dations of Aspect-Oriented Langauges (FOAL2010). pp. 1–4 (Mar 2010), http:
//www.eecs.ucf.edu/FOAL/papers-2010/proceedings.pdf, technical report CS-
TR-10-04, School of Electrical Engineering and Computer Science, University of
Central Florida

2. Bodkin, R.: Performance monitoring with AspectJ: A look inside the Glassbox
inspector with AspectJ and JMX. AOP@Work (Sep 2005), http://www-128.ibm.
com/developerworks/java/library/j-aopwork10/

3. Clifton, C., Leavens, G.T.: MiniMAO1: Investigating the semantics of proceed. Sci-
ence of Computer Programming 63(3), 321–374 (Dec 2006), preprint: Department
of Computer Science, Iowa State University, TR #05-01, January 2005

4. Colyer, A., Clement, A.: Large-scale AOSD for middleware. In: Lieberherr, K.
(ed.) Proceedings of the 3rd International Conference on Aspect-Oriented Software
Development (AOSD’04). pp. 56–65. ACM Press, New York, NY, USA (Mar 2004)

5. Dantas, D.S., Walker, D., Washburn, G., Weirich, S.: AspectML: A polymorphic
aspect-oriented functional programming language. Transactions on Programming
Languages and Systems 30(3), 1–60 (2008), http://www.cs.princeton.edu/sip/
projects/aspectml/

6. Erwig, M., Ren, D.: Type-safe update programming. In: ESOP 2003. Lecture Notes
in Computer Science, vol. 2618, pp. 269–283 (2003)

7. Fraine, B.D., Südholt, M., Jonckers, V.: StrongAspectJ: flexible and safe point-
cut/advice bindings. In: Mezini, M. (ed.) Proceedings of the 7th International Con-
ference on Aspect-Oriented Software Development (AOSD’08). pp. 60–71. ACM
Press, New York, NY, USA (Apr 2008)

8. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification. Pren-
tice Hall, third edn. (Jun 2005)

9. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: a minimal core calculus for
Java and GJ. In: OOPSLA ’99: Proceedings of the 14th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications. pp. 132–
146. ACM, New York, NY, USA (1999)

29

10. Igarashi, A., Nagira, H.: Union types for object-oriented programming. In: SAC ’06:
Proceedings of the 2006 ACM symposium on Applied computing. pp. 1435–1441.
ACM, New York, NY, USA (2006)

11. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold,
W.G.: An overview of AspectJ. In: Knudsen, J.L. (ed.) Proceedings of 15th
European Conference on Object-Oriented Programming (ECOOP 2001). Lec-
ture Notes in Computer Science, vol. 2072, pp. 327–353. Springer-Verlag (Jun
2001), http://www.parc.xerox.com/groups/csl/projects/aspectj/downloads/
ECOOP2001-Overview.pdf

12. Knudsen, J.L.: Name collision in multiple classification hierarchies. In: Proceed-
ings of European Conference on Object-Oriented Programming (ECOOP). Lecture
Notes in Computer Science, vol. 322, pp. 93–109. Springer-Verlag, London, UK
(1988)

13. Lämmel, R.: A semantical approach to method-call interception. In: Kiczales, G.
(ed.) Proceedings of the 1st International Conference on Aspect-Oriented Software
Development (AOSD’02). pp. 41–55. ACM Press (Apr 2002)

14. Leroy, X.: Java bytecode verification: algorithms and formalizations. Journal of
Automated Reasoning 30(3-4), 235–269 (2003)

15. Masuhara, H., Igarashi, A., Toyama, M.: Type relaxed weaving. In: Südholt, M.
(ed.) Proceedings of the 9th International Conference on Aspect-Oriented Software
Development (10). pp. 121–132. ACM Press, New York, NY, USA (18 Mar 2010)

16. Masuhara, H., Tatsuzawa, H., Yonezawa, A.: Aspectual Caml: an aspect-oriented
functional language. In: Pierce, B. (ed.) Proceedings of International Conference
on Functional Programming (ICFP 2005). pp. 320–330 (Sep 2005)

17. Mezini, M., Ostermann, K.: Conquering aspects with Caesar. In: Akşit, M. (ed.)
Proceedings of the 2nd International Conference on Aspect-Oriented Software De-
velopment (AOSD’03). pp. 90–99. ACM Press (Mar 2003)

18. Rashid, A., Chitchyan, R.: Persistence as an aspect. In: Akşit, M. (ed.) Proceedings
of the 2nd International Conference on Aspect-Oriented Software Development
(AOSD’03). pp. 120–129. ACM Press (Mar 2003)

19. Spinczyk, O., Gal, A., Schroder-Preikschat, W.: AspectC++: An aspect-oriented
extension to C++. In: Proceedings of the 40th International Conference on
Technology of Object-Oriented Languages and Systems (TOOLS Pacific 2002).
pp. 18–21. Sydney, Australia (Feb 2002), http://www.aspectc.org/download/

tools2002.ps.gz

20. Wand, M., Kiczales, G., Dutchyn, C.: A semantics for advice and dynamic join
points in aspect-oriented programming. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 26(5), 890–910 (Sep 2004), wkd02.ps, earlier ver-
sions of this paper were presented at the 9th International Workshop on Founda-
tions of Object-Oriented Languages, January 19, 2002, and at the Workshop on
Foundations of Aspect-Oriented Languages (FOAL), April 22, 2002.

21. Wiese, D., Meunier, R., Hohenstein, U.: How to convince industry of AOP. In:
Proceedings of Industry Track at AOSD.07 (Mar 2007), http://aosd.net/2007/
program/industry/

22. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information
and Computation 115(1), 38–94 (Nov 1994)

30

A Complete Definition of FJR

A.1 Syntax

CL ::= class C extends C implements I { M }

M ::= T m(T x){ return e; }

IF ::= interface I { S }

S ::= T m(T x);

a, b ::= T(T x){ return e; }

e ::= x | e〈T〉.m(e) | new C() | let x = e in e

| (?e:e) | proceed(e) | [a](e)
S, T ::= C | I
U, V ::= T | U ∪ U

P ::= • | T→U

A.2 Lookup Functions

mtype(m, T) = T→T0

class C extends D implements I { M }

T0 m(T x){ return e; } ∈ M

mtype(m, C) = T → T0
(MT-Class)

interface I { S } T0 m(T x); ∈ S
mtype(m, I) = T → T0

(MT-Interface)

class C extends D implements I { M } m 6∈ M

mtype(m, D) = T → T0

mtype(m, C) = T → T0
(MT-SuperC)

class C extends D implements I { M } m 6∈ M

mtype(m, Ii) = T → T0

mtype(m, C) = T → T0
(MT-SuperI)

mtypeC(m, C) = T→T0

class C extends D implements I { M }

T0 m(T x){ return e; } ∈ M

mtypeC(m, C) = T → T0
(MTC-Class)

31

class C extends D implements I { M } m 6∈ M

mtypeC(m, D) = T → T0

mtypeC(m, C) = T → T0
(MTC-Super)

mbody(m, C) = x.e

class C extends D implements I { M }

T0 m(T x){ return e; } ∈ M

mbody(m, C) = x.e
(MB-Class)

class C extends D implements I { M } m 6∈ M

mbody(m, D) = x.e

mbody(m, C) = x.e
(MB-Super)

rettype(a) = T

rettype(T(S x){ return e; }) = T

A.3 Subtyping

U <: V

U <: U (S-Refl)

U1 <: U2 U2 <: U3

U1 <: U3
(S-Trans)

U <: Object (S-Object)

class C extends D implements I { · · · }
C <: D

(S-Extends)

class C extends D implements I { · · · }
C <: Ii

(S-Implements)

U1 <: U1 ∪ U2 (S-UnionR1)

U2 <: U1 ∪ U2 (S-UnionR2)

U1 <: U3 U2 <: U3

U1 ∪ U2 <: U3
(S-UnionL)

32

A.4 Typing

Γ ; P ` e : U

Γ ; P ` x : Γ (x) (T-Var)

Γ ; P ` e0 : U0 U0 <: T0 mtype(m, T0) = T → T

Γ ; P ` e : U U <: T

Γ ; P ` e0〈T0〉.m(e) : T
(T-Invk)

Γ ; P ` new C() : C (T-New)

Γ ; P ` e1 : U1 Γ, x:U1; P ` e2 : U2

Γ ; P ` let x = e1 in e2 : U2
(T-Let)

Γ ; P ` e1 : U1 Γ ; P ` e2 : U2

Γ ; P ` (?e1:e2) : U1 ∪ U2
(T-Choice)

Γ ; T→U ` e : V V <: T

Γ ; T→U ` proceed(e) : U
(T-Proceed)

S→U0 ` a OK • ` b OK

U0 =
∪

a∈a,b rettype(a) Γ ; P ` e : V V <: S

Γ ; P ` [a,b](e) : U0
(T-Woven)

P ` a OK

P = • or S→V x:S; P ` e : U U <: T

P ` T(S x){ return e; } OK
(T-Advice)

M OK IN C

x:T, this:C; • ` e : U U <: T0
class C extends D implements I { · · · }

override(m, D, T→T0)

T0 m(T x){ return e; } OK IN C
(T-Method)

(mtype(m, C) = S→S0) =⇒ ((S0,S) = (T0,T))

override(m, C, T→T0)

C OK

M OK IN C

∀m, I ∈ I.(mtype(m, I) = T→T0) =⇒ (mtypeC(m, C) = T→T0)

class C extends D implements I { M } OK
(T-Class)

33

A.5 Operational Semantics

e −→ e′

mbody(m, C) = x.e0

new C()〈T〉.m(e) −→ [e/x, new C()/this]e0
(R-Invk)

let x = e1 in e2 −→ [e1/x]e2 (R-Let)

(?e1:e2) −→ ei (R-Choice)

a0 = T(S x){ return e0; }

[a0,a](e) −→ [e/x, [a]/proceed]e0
(R-Advice)

e0 −→ e0
′

e0〈T〉.m(e) −→ e0
′
〈T〉.m(e)

(RC-InvkRecv)

ei −→ ei
′

e0〈T〉.m(. . . ,ei, . . .) −→ e0〈T〉.m(. . . ,ei
′, . . .)

(RC-InvkArg)

e1 −→ e1
′

let x = e1 in e2 −→ let x = e1
′ in e2

(RC-Let1)

e2 −→ e2
′

let x = e1 in e2 −→ let x = e1 in e2
′ (RC-Let2)

e1 −→ e1
′

(?e1:e2) −→ (?e1
′:e2)

(RC-Choice1)

e2 −→ e2
′

(?e1:e2) −→ (?e1:e2
′)

(RC-Choice2)

ei −→ ei
′

[a](· · · ,ei, · · ·) −→ [a](· · · ,ei′, · · ·)
(RC-WovenArg)

34

B Type-Checking Procedure

TC(Γ, P, e) = (e′, U)

TC(Γ, P, x) = (x, Γ (x))

TC(Γ, P, let x = e1 in e2) =
let (e1

′, U1) = TC(Γ, P, e1) in
let (e2

′, U2) = TC((Γ, x:U1), P, e2) in
(let x = e1

′ in e2
′, U2)

TC(Γ, P, e0〈T〉.m(e1, · · · ,en)) =
let (e0

′, U0) = TC(Γ, P, e0) in
let (e1

′, U1) = TC(Γ, P, e1) in
...

let (en
′, Un) = TC(Γ, P, en) in

let T→T0 = mtype(m, T) in
let S be a simple type such that U0 ∪ T <: S and mtype(m, S) = T→T0 in
if U <: T then (e0

′
〈S〉.m(e1

′, · · · ,en′), T0) else error

TC(Γ, P, new C()) = (new C(), C)

TC(Γ, P, (?e1:e2)) =
let (e1

′, U1) = TC(Γ, P, e1) in
let (e2

′, U2) = TC(Γ, P, e2) in
((?e1

′:e2
′), U1 ∪ U2)

TC(Γ, S→U, proceed(e1, · · · ,en)) =
let (e1

′, U1) = TC(Γ, S→U, e1) in
...

let (en
′, Un) = TC(Γ, S→U, en) in

if U <: S then (proceed(e1
′, · · · ,en′), U) else error

TC(Γ, P, [a1, · · · ,an](d1, · · · ,dm)) =
let T1(S x){ return e1; } = a1 in

...
let Tn(S x){ return en; } = an in
let U0 = T1 ∪ · · · ∪ Tn in
let (e1

′, U1) = TC(x:S, S→U0, e1) in
...

let (en−1
′, Un−1) = TC(x:S, S→U0, en−1) in

let (en
′, Un) = TC(x:S, •, en) in

let (d1
′, V1) = TC(Γ, P, d1) in

35

...
let (dm

′, Vm) = TC(Γ, P, dm) in
let a1

′ = T1(S x){ return e1
′; } in

...
let an

′ = Tn(S x){ return en
′; } in

if V <: S ∧ U <: T then ([a1
′, · · · ,an′](d1

′, · · · ,dm′), U0) else error

e ↪→ e′

x ↪→ x′

e1 ↪→ e1
′ e2 ↪→ e2

′

let x = e1 in e2 ↪→ let x = e1
′ in e2

′

e0 ↪→ e0
′ e ↪→ e′

e0〈T0〉.m(e) ↪→ e0
′
〈T0〉.m(e

′)

new C() ↪→ new C()

e1 ↪→ e1
′ e2 ↪→ e2

′

(?e1:e2) ↪→ (?e1
′:e2

′)

e ↪→ e′

proceed(e) ↪→ proceed(e′)

b ↪→ b′ e ↪→ e′

[b](e) ↪→ [a,b′](e′)

e ↪→ e′

T0(T x){ return e; } ↪→ T0(T x){ return e′; }

e
trw

↪→ e′

x
trw

↪→ x′

e1
trw

↪→ e1
′ e2

trw

↪→ e2
′

let x = e1 in e2
trw

↪→ let x = e1
′ in e2

′

e0
trw

↪→ e0
′ e

trw

↪→ e′ T0 <: T0
′ mtype(m, T0

′) defined

e0〈T0〉.m(e)
trw

↪→ e0
′
〈T0′〉.m(e

′)

36

new C()
trw

↪→ new C()

e1
trw

↪→ e1
′ e2

trw

↪→ e2
′

(?e1:e2)
trw

↪→ (?e1
′:e2

′)

e
trw

↪→ e′

proceed(e)
trw

↪→ proceed(e′)

b
trw

↪→ b′ e
trw

↪→ e′

[b](e)
trw

↪→ [a,b′](e′)

e
trw

↪→ e′

T0(T x){ return e; }
trw

↪→ T0(T x){ return e′; }

C Proofs

C.1 Proof of Theorems 1 and 2

Lemma 1 (Weakening).

1. If Γ ; P ` e : U, then Γ, x : V; P ` e : U for any V and x 6∈ dom(Γ).
2. If Γ ; • ` e : U, then Γ ; S→V ` e : U for any S and V.

Proof. By easy induction on e.

Lemma 2 (Narrowing).

1. If Γ, x : V; P ` e : U and V′ <: V, then there exists U′ such that Γ, x:V′; P `
e : U′ and U′ <: U.

2. If Γ ; S→U1 ` e : U and U2 <: U1, then there exists U′ such that Γ ; S→U2 `
e : U′ and U′ <: U.

Proof. By easy induction on e.

Lemma 3 (Substitution Lemma). If Γ, x:U; P ` e : U0 and Γ ; P ` e : V and
V <: U, then there exists some type V0 such that Γ ; P ` [e/x]e : V0 and V0 <: U0.

Proof. By induction on e with case analysis on the last typing rule used. We
show only interesting cases.

Case T-Invk: We have

e = e0.m(d) Γ, x:U; P ` e0 : U00 U00 <: T

mtype(m, T) = T→T0 Γ, x:U; P ` d : V V <: T

37

for some e0, d, m, T, T, and V and T0 = U0. By the induction hypothesis,
there exist some V00 and V′ such that

Γ ; P ` [e/x]e0 : V00 V00 <: U00
Γ ; P ` [e/x]d : V′ V′ <: V

By S-Trans, V00<: T and V′ <: T. ByT-Invk, we have Γ ; P ` [e/x](e0.m(e)) :
T0.

Case T-Let: We have

e = let y = e1 in e2
Γ, x:U; P ` e1 : Uy Γ, x:U, y:Uy; P ` e1 : U0

By the induction hypothesis, there exists some Uy
′ such that

Γ ; P ` [e/x]e1 : Uy
′ Uy

′ <: Uy.

By Lemma 2,
Γ, x:U, y:Uy

′; P ` e2 : U0
′ U0

′ <: U0

for some U0
′. Again, by the induction hypothesis,

Γ, y:Uy
′; P ` [e/x]e2 : U0

′′ U0
′′ <: U0

′

for some U0
′′. By T-Let and S-Trans,

Γ ; P ` [e/x](let y = e1 in e2) : U0
′′ U0

′′ <: U0.

The other cases are easy.

Lemma 4 (Advice Substitution). If Γ ; S→U0 ` e : U and S→U0 ` a OK

and • ` b OK and U0 =
∪

a∈a,b rettype(a) , then there exists V such that Γ ; • `
[[a,b]/proceed]e : V and V <: U.

Proof. By induction on e with case analysis on the last typing rule used. The
only interesting case is T-Proceed, which we show below.

Case T-Proceed: We have

e = proceed(e) Γ ; S→U0 ` e : V V <: S

By the induction hypothesis, there exists some V′ such that

Γ ; • ` [[a,b]/proceed]e : V′ V′ <: V.

By S-Trans, V′ <: S, and, by T-Woven,

Γ ; • ` [a,b]([[a,b]/proceed]e) : U0

finishing the case.

38

The other cases are easy.

Lemma 5. If mtypeC(m, C) = T→T, then mbody(m, C) = x.e0 for some x and e0
where the lengths of x and T are the same.

Proof. By easy induction on the derivation of mtypeC(m, C) = T→T.

Lemma 6. If mtype(m, C) = T→T, then mtypeC(m, C) = T→T.

Proof. By induction on the derivation of mtype(m, C) = T→T with case anal-
ysis on the last rule used to derive mtype(m, C) = T→T. The only interest-
ing case is when MT-SuperI is used. Then, for some D, I and i, we have
C extends D implements I and mtype(m, Ii) = T→T and m is not present in
C. Since C is OK, by T-Class, it must be the case that mtypeC(m, C) = T→T.

Lemma 7. If mbody(m, C) = x.e0 and mtypeC(m, C) = T→T, then there exist D
and U0 such that C <: D and this:C, x:T; • ` e0 : U0 and U0 <: T.

Proof. By easy induction on the derivation of mbody(m, C) = x.e0.

Lemma 8. If mtype(m, T) = T→T0 and S <: T, then mtype(m, S) = T→T0.

Proof. We first extend the definition of mtype by the following rule so that the
second argument can be a union type:

mtype(m, U1) = T→T0 mtype(m, U2) = T→T0

mtype(m, U1 ∪ U2) = T→T0
(MT-Union)

Note that this extension is conservative: for any m and T, mtype(m, T) remains
the same.

Now, we prove that, if mtype(m, V) = T→T0 and U <: V, then mtype(m, U) =
T→T0, by induction on the derivation of U <: V with case analysis on the last
rule used.

Case S-Refl, S-Trans, S-Object: Trivial.

Case S-Extends: Let U and V be C and D, respectively. The case where C does
not have the definition of m is easy. Otherwise, mtype(m, C) = T→T0 follows
from T-Method (in particular, override(m, D, T→T0)).

Case S-Implements: Similar to the case above.

Case S-UnionR1, S-UnionR2: Trivial.

Case S-UnionL: By the induction hypothesis, mtype(m, Ui) = T→T0 for i =
1, 2. Then, the rule MT-Union finishes the case. ut

Proof (of Theorem 1). By induction on the derivation of e −→ e′ with case
analysis on the last rule used.

39

Case R-Invk: We have

e = new C().m(e) mbody(m, C) = x.e0 e′ = [e/x, new C()/this]e0

for some C, m, e, x, and e0. By T-Invk and T-New, there exists some T0
such that

C <: T0 mtype(m, T0) = T→T Γ ; P ` e : U U <: T.

By Lemmas 8, 6, and 7, there exist D and U0 such that

C <: D this : D, x : T; • ` e0 : U0 U0 <: T.

By Lemmas 1 and 3,

Γ ; P ` [e/x, new C()/this]e0 : U0
′

for some U0
′ <: U0. Finally, S-Trans finishes the case.

Case R-Advice: We have

e = [a0,a](e) a0 = T0(S x){ return e0; }

e′ = [e/x, [a]/proceed]e0

for some a0, a, S, T0, x, and e0. By T-Woven and T-Advice, there exist
a′, b, U0, V, and V0 such that

a = a′, b U0 =
∪

a∈a0,a rettype(a) Γ ; P ` e : V
V <: S x:S; S→U0 ` e0 : V0 V0 <: T0
S→U0 ` a′ OK • ` b OK.

It is easy to show that U0
′ def
=

∪
a∈a rettype(a) <: U0 and, then, by Lemma 2,

x:S; S→U0
′ ` e0 : V0. Similarly, we have S→U0

′ ` a′ OK. Then, by Lemma 4,
there exists some V0

′ such that

x:S; • ` [[a′,b]/proceed]e0 : V0
′ V0

′ <: V0.

Then, by Lemmas 1 and 3, there exists some V0
′′ such that

Γ ; P ` [e/x, [a′,b]/proceed]e0 : V0
′′ V0

′′ <: V0
′.

By S-Trans, V0
′′ <: V0, finishing the case.

Case RC-InvkRecv: We have

e = e0.m(e) e0 −→ e0
′ e′ = e0

′.m(e)

for some e0, e, e0
′ and m. By T-Invk,

Γ ; P ` e0 : U0 U0 <: T0 mtype(m, T0) = T→T

Γ ; P ` e : U U <: T T = U

for some U0, T0, T, U and T. By the induction hypothesis, Γ ; P ` e0
′ : U0

′

and U0
′ <: U0 for some U0

′. Since U0
′ <: T0 by S-Trans, we have Γ ; P `

e0
′.m(e) : T by T-Invk.

40

The other cases are easy.

Proof (of Theorem 2). By induction on e. We show only main cases.

Case e = x: Cannot happen.
Case e = e0.m(e): By T-Invk,

•; • ` e0 : U0 U0 <: T0 mtype(m, T0) = T→T

•; • ` e : U U <: T T = U

for some U0, T0, T, U, and T. By the induction hypothesis, we have either
e0 = new C0() for some C or e0 −→ e0

′ for some e0
′. In the latter case, we

have e0.m(e) −→ e0
′.m(e). In the former case, U0 = C0 and, by Lemmas 6

and 5, mbody(m, C0) = x.e0 for some x and e0 where the lengths of x and T

are the same. Then, e −→ [e/x, new C0()/this]e0, finishing the case.
Case e = [a](e): By T-Woven, a cannot be empty. So, let a1, a′ = a. Then,

by T-Advice, a1 is of the form T(S x){ return e0; } and the lengths of
x and e are the same. Then, e −→ [e/x, [a′]/proceed]]e0.

The other cases are easy.

C.2 Proof of Theorem 3

Theorem 4. If TC(Γ, P, e) = (e′, U), then Γ ; P ` e′ : U.

Proof. By induction on e. We show a few interesting cases below:

Case e = e0〈T0〉.m(e): We have

e′ = e0
′
〈S0〉.m(e

′) TC(Γ, P, e0) = (e0
′, U0) TC(Γ, P, e) = (e′, U)

mtype(m, T0) = T→T mtype(m, S0) = T→T T0 ∪ U0 <: S0 U <: T

for some U0, T, T, U, e0
′, e′, U0, U, and S0. By the induction hypothesis,

Γ ; P ` e0
′ : U0 and Γ ; P ` e′ : U. We have U0 <: S0 since U0 <: T0 ∪ U0, So,

by T-Invk, Γ ; P ` e′ : T, finishing the case.
Case e = [a,b](d): We have

a = T(S x){ return e; } b = T(S x){ return e0; }

e′ = [a′,b′](d′)

a′ = T(S x){ return e′; } b′ = T(S x){ return e0
′; }

U0 = T ∪ T1 ∪ · · · ∪ Tn
TC(x:S, S→U0, e) = (e′, V) V <: T

TC(x:S, •, e0) = (e0
′, V0) V0 <: T

TC(Γ, P, d) = (d′, U) U <: S

for some T, S, x, e, T, e0, a
′, b′, e′, e0

′, d′, U0, V, V0, d
′, and U. By the

induction hypothesis, we have

x:S; S→U0 ` e′ : V x:S; • ` e0
′ : V0 Γ ; P ` d′ : U′.

41

By T-Advice, we have

S→U0 ` a′ OK • ` b′ OK.

Then, by T-Woven, Γ ; P ` e′ : U0, finishing the case.

Theorem 5. If Γ ; P ` e : U and e ↪→ e′ and TC(Γ, P, e′) = (e′′, U′), then

e
trw

↪→ e′′.

Proof. By induction on e. The only interesting case is when e is a method
invocation.

Case e = e0〈T0〉.m(e): We have

Γ ; P ` e0 : U0 U0 <: T0 mtype(m, T0) = T→T

Γ ; P ` e : U U <: T U = T

e′ = e0
′
〈T0〉.m(e

′) e0 ↪→ e0
′ e ↪→ e′

e′′ = e0
′′
〈S0〉.m(e

′′) TC(Γ, P, e0
′) = (e0

′′, U0
′) TC(Γ, P, e′) = (e′′, U′)

T0 ∪ U0
′ <: S0 mtype(m, S0) = T→T U′ <: T

for some U0, T, T, U, e0
′, e′, e0

′′, e′′, U0
′, U′, and S0. By the induction

hypothesis, e0
trw

↪→ e0
′′ and e

trw

↪→ e′′. We have T0 <: S0 from T0 <: T0 ∪ U0
′.

So, e
trw

↪→ e′′, finishing the case.

Proof (Theorem 3). Immediate from Theorems 4 and 5.

42

