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ABSTRACT
We propose union types for statically typed class-based object-
oriented languages as a means to enhance the flexibility of
subtyping. As its name suggests, a union type can be con-
sidered a set union of instances of several types and behaves
as their least common supertype. It also plays the role of
an interface that ‘factors out’ commonality of given types—
fields of the same name and methods with similar signatures.
Union types can be useful for implementing heterogeneous
collections and for grouping independently developed classes
with similar interfaces, which has been considered difficult in
languages like Java. To rigorously show the safety of union
types, we formalize them on top of Featherweight Java and
prove that the type system is sound.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory; D.3.2 [Programming Languages]: Language Clas-
sifications—Object-oriented languages; D.3.3 [Programming
Languages]: Language Constructs and Features—classes
and objects, polymorphism; F.3.3 [Logics and Meaning of
Programs]: Studies of Program Constructs—object-oriented
constructs, type structure

General Terms
Design, Languages, Theory

Keywords
Java, language design, subtyping, type systems, union types

1. INTRODUCTION

Background.The design of good, reusable class libraries is
known to be a very hard problem and, in mainstream object-
oriented languages like Java and C++, inheritance and sub-
typing (and, more recently, generics) have been used as main
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mechanisms to promote code reuse. While inheritance en-
ables one class to reuse implementation (declarations of in-
stance variables and methods) of another class, subtyping
is for substitutability—the property that if an object of one
type can be used at a certain place, then another object of a
subtype can be used at the same place, too. (Substitutabil-
ity may be rephrased as reusability of contexts, in the sense
that if some context is applicable to an object of one type
then the same context is also applicable to any object of its
subtype.) Thus, design concerns about inheritance and sub-
typing relations are somewhat different: it has to be taken
into account, for inheritance, how new classes may reuse ex-
isting implementation and, for subtyping, how objects may
be used in client code.

In the mainstream languages, however, subtyping relation
is mostly based on inheritance relation1. It can happen that
two classes used in similar contexts but with rather different
implementations are placed apart in the class (inheritance)
hierarchy, resulting in no useful supertype of those classes.
Interfaces (as a programming construct) in Java are a so-
lution to this problem: one can define a super-interface of
classes of similar use, regardless of a given inheritance hi-
erarchy, and enjoy benefits of subtyping. However, inter-
faces cannot be added once a class is defined, so library
designers still have to do a lot of planning of their interface
hierarchies before the library is shipped. This problem has
been considered a significant limitation of type systems with
declaration-based subtyping, as in Java.

Our Proposal—Union Types.In this paper, we propose
union types to partially address the problem of the inability
of adding supertypes to existing types (classes and inter-
faces). As its name suggests, a union type denotes a set
union of given some types (viewed as sets of instances that
belong to those types) and behave as a least common super-
type of them. Since union types are composed from existing
types, they give an ability to define a supertype even af-
ter a class hierarchy is fixed. Union types can be used not
only by case analysis as in ML datatypes, but also by direct
member access as ordinary types. In fact, given some types,
their union type can be viewed as an interface that ‘factors
out’ their common features, that is, the fields of the same
name and methods with similar signatures.

We expect that union types can be useful for grouping
independently developed classes with similar interfaces, by
giving their supertype, and for implementing heterogeneous
collections like lists where, say, strings and integers are mixed

1A notable exception is wildcards [13] in Java 5.0.



as elements.
Our contributions in this paper can be summarized as

follows:

• The proposal of union types for class-based object-
oriented languages with a name-based type system;

• A formalization of a core object-oriented language FJ∨
with union types on top of Featherweight Java [7]; and

• A proof of type soundness of the core language.

Organization of The Paper.The rest of the paper is or-
ganized as follows. We first give an overview of union types
and related constructs in Section 2 and then formalize FJ∨
and prove its type soundness in Section 3. We discuss the
interactions of union types with other common features such
as generics and method overloading in Section 4, then dis-
cuss related work in Section 5 and finally give concluding
remarks in Section 6. For brevity, we omit proofs of theo-
rems; they will appear in a full version, available at http:

//www.sato.kuis.kyoto-u.ac.jp/~igarashi/papers/.

2. UNION TYPES, PRIMER
In this section, we informally introduce union types and

develop related constructs. As a first step, we focus only on
core features typically found in class-based object-oriented
languages, and defer the discussion on some other features
in Section 4.2.

A union type can be constructed from any two types A

and B by combining with ∨, written A∨B. We often call A
and B the summands of A∨B. Intuitively, when types A and
B denote some sets of instances, A∨B denotes the set union
of the two sets. Since union types are, unlike class names,
not associated with implementation, they cannot be used to
instantiate objects. So, they are closer to interface types of
Java. We forbid another class (or interface, respectively) to
‘implement’ (or ‘extend’, respectively) union types—in the
sense of Java—so as to ensure exhaustiveness of case analysis
(see below), although there are non-trivial subtypes of union
types other than their summands, as is discussed shortly.

By (naively) viewing subtyping as set inclusion, A∨B is
a supertype of both A and B. Thus, supposing there are
two classes Jpg and Gif implementing image objects, an
assignment below is allowed:

Jpg∨Gif im = new Jpg("portrait.jpg");

Moreover, Jpg∨Gif is a least supertype among supertypes
of A and B in the sense that any common supertype of A and
B is also a supertype of A∨B. So,

Image x = im; // assuming Jpg ad Gif extend Image

is also allowed. The leastness property can be explained
in terms of the ‘types-as-sets’ interpretation above: A∨B
includes only instances that belong to A or B and nothing
else, while other supertypes may include instances belonging
to classes other than A and B. Figure 1 shows an example
of a subtyping hierarchy. C, Di, and Ei are class names and
solid arrows represent inheritance relations, which are also
subtyping relations. For example, D1 extends C and so D1 is
a subtype of C. Dotted arrows represent subtyping relations
induced by union types: D1∨D2 is a supertype of D1 and D2

and also a subtype of C, which is also a common supertype
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Figure 1: Union Types and Subtyping

of D1 and D2, but D3 is not related to D1∨D2. Moreover, the
union type constructor ∨ preserves subtyping relations of its
summands. That is, E1∨E2, a union of subclasses of D1 and
D2, is a subtype of D1∨D2, which is derived by the leastness
condition.

Note that the subtyping relation here is not anti-symmetric
as in usual object-oriented languages. There are two syn-
tactically different types that are subtypes of each other.
For example, A∨B and B∨A are syntactically different and
subtypes of each other. A more interesting example is C∨D
and C when C is a superclass of D. We often call such types
compatible types, which denote the same set of instances,
though they are syntactically different.

We provide two kinds of operations on union types: case
analysis and direct member access. Case analysis is a con-
ditional construct that branches according to the run-time
class of the value of an expression being tested. For example,

case im of (Jpg x) { x.draw(); }
| (Gif y) { y.zoom(2); y.draw(); }

invokes method draw() if the value of im is an instance of Jpg
(or one of its subclasses) or methods zoom() and draw() if it
is of Gif (or one of its subclasses). Here, x and y are bound
to the value of im but their static type information is more
refined than Jpg∨Gif. In this sense, it can be considered
(at least, operationally) a combination of dynamic test of
run-time types (instanceOf) and typecasts. So, it could be
written:

if (im instanceOf Jpg) { Jpg x = (Jpg)im; x.draw(); }
else { Gif y = (Gif)im; y.zoom(2); y.draw(); }

One benefit of providing this combining construct is that
the type system can check the exhaustiveness of branching
conditions against the expression being tested. In fact, we
require that the type of the test expression be a subtype of
the union of the types appearing in the branches (in the ex-
ample above, Jpg and Gif). This requirement will guarantee
that either branch will be taken and its execution succeeds.
On the other hand, the success of typecasts in the second
code will not be guaranteed by standard type systems.

Direct member access allows field access directly on union
types if its summands have fields of the same name. For
example, consider concrete definitions of Jpg and Gif:

class Jpg extends Image {
Integer hsize; Integer ncolors;
void zoom(Integer x) { ... }

}



class Gif extends Image {
Integer hsize; Byte ncolors;
void zoom(Integer x) { ... }

}

Then, directly accessing field hsize on im (of type Jpg∨Gif)
is allowed:

Integer i = im.hsize;

Moreover, even when field types are different, it is allowed
to read from a field of a common name:

Integer∨Byte x = im.ncolors;

We can use union types again to type the result.
We need be a little more careful about method invocation

since methods of the same name may have different signa-
tures. Here, we will allow method invocation only when the
names, the numbers of arguments, and the corresponding
argument types all agree. Hence,

im.zoom(new Integer(100));

will be well typed. When return types are object types (not
void), they can be different as in field access. We could re-
lax the condition on argument types so that it is well typed
as long as each actual argument type is a subtype of both
of the corresponding formal argument types but such relax-
ation seems to have subtle interactions with overloading (see
Section 4.2).

In this way, direct member access provides a much more
concise way to write a simple member access than using case
analysis, when summands have members of common names.
By this mechanism, a union type can be considered a sort of
interface type that ‘factors out’ common members from the
summands. We expect that this mechanism would be useful
when independently developed classes with similar function-
ality are combined. For example, Jpg and Gif might have
been developed separately, there is no class like Image, and
a common superclass of Jpg and Gif might have been only
Object. Even in such a case, instances of these two classes
can be handled together by using Jpg∨Gif and, moreover,
instances of other image formats cannot be mixed (unless
they are subclasses of Jpg or Gif).

We think Java-style interfaces and union types are com-
plementary, rather than conflicting, mechanisms. On the
one hand, explicitly declared interfaces are useful to abstract
out class implementations and also for documentation pur-
poses: an interface gives not only method signatures but also
more semantic (or behavioral) concerns of its implementing
classes, like “method sort() should really do sorting” (if not
enforced by programming languages). On the other hand,
union types are more useful to give a posteriori interfaces
for legacy or third-party classes, over which programmers
do not always have control.

3. FJ∨: FORMAL MODEL OF UNION TYPES
In this section, we formalize union types in a small cal-

culus FJ∨ as an extension of Featherweight Java (FJ) [7],
which is a functional core of class-based object-oriented lan-
guages. Thus, we model only a minimal set of features:
classes, inheritance, fields, virtual method invocation, this,
and, of course, union types. What are not modeled include,
among others, field shadowing, overloading, and super. Since
case analysis can be substituted for typecasts, we have dropped
typecasts in FJ∨. The definition of FJ∨ is summarized in
Figure 2.

3.1 Syntax
The abstract syntax of FJ∨ is as follows:

L ::= class C extends C {T f; K M}

T, S, U ::= C | T∨T
K ::= C(T f){super(f); this.f=f;}

M ::= T m(T x){ return e; }

e ::= x | e.f | e.m(e) | new C(e)

| (case e of (T x) e | (T x) e)

Here, the metavariables C, D, and E range over class names;
f and g range over field names; m ranges over method names;
and x and y range over variables.

We put an over-line for a possibly empty sequence. Fur-
thermore, we abbreviate pairs of sequences in a similar
way, writing “C f” for “C1 f1,. . . ,Cn fn”, where n is the
length of C and f, and “this.f=f;” as shorthand for
“this.f1=f1;. . . ;this.fn=fn;” and so on. Sequences of
type variables, field declarations, variables, and method dec-
larations are assumed to contain no duplicate names. We
write the empty sequence as • and denote concatenation of
sequences using a comma.

A class declaration L consists of its name, its superclass,
field declarations, a constructor, and methods. A type T (S
or U) is either a class name or a union type T1∨T2; only class
names can be used to instantiate objects, so they play the
role of run-time types of objects. As in FJ, a constructor
K is given in a stylized syntax and just takes initial (and fi-
nal) values for the fields and assigns them to corresponding
fields. The body of a method M is a single return statement
since the language is functional. An expression e is either a
variable, field access, method invocation, object creation, or
case analysis. We assume that the set of variables includes
the special variable this, which cannot be used as the name
of a parameter to a method. A case analysis expression
case e0 of (T1 x1) e1 | (T2 x2) e2 first evaluates e0 to
an object new C(...), and execute e1 if the object is a sub-
type of T1 or e2 if the object is not a subtype of T1 but T2,
with xi being bound to the object. In the execution of a well-
typed program, the second subtype check can be omitted,
thanks to the type system that checks the exhaustiveness of
the case analysis.

A class table CT is a mapping from class names to class
declarations. A program is a pair (CT , e) of a class table
and an expression. To lighten the notation in what follows,
we always assume a fixed class table CT . As in FJ, we as-
sume that Object has no members and its definition does
not appear in the class table. We also assume other usual
sanity conditions on CT : CT (C) = class C ... for ev-
ery C ∈ dom(CT ); for every class name C (except Object)
appearing anywhere in CT , we have C ∈ dom(CT ); and
there are no cycles in the transitive closure of extends re-
lation. Given these conditions, we can identify a class ta-
ble with a sequence of class declarations in an obvious way.
Thus, in what follows, we write simply class C ... to mean
CT (C) = class C ....

3.2 Subtyping
The subtype relation S <: T includes the reflexive tran-

sitive closure of inheritance relation as in Java. The last
three rules together mean that a union type T∨U is a least
upper bound of T and U. As mentioned in the last sec-
tion, the subtype relation is not anti-symmetric: for exam-
ple, if class C extends D {...}, then both C∨D <: D and



Syntax:

L ::= class C extends C {T f; K M}

T, S, U ::= C | T∨T
K ::= C(T f){super(f); this.f=f;}

M ::= T m(T x){ return e; }

e ::= x | e.f | e.m(e) | new C(e)

| (case e of (T x) e | (T x) e)
v ::= new C(v)

Subtyping:

T <: T
S <: T T <: U

S <: U

class C extends D {...}

C <: D

S <: S∨T T <: S∨T S <: U T <: U

S∨T <: U

Field lookup:

fields(Object) = •

class C extends D {T f; K M} fields(D) = S g

fields(C) = S g, T f

Field type lookup:

fields(C) = T f

ftype(fi, C) = Ti

ftype(f, T1) = U1 ftype(f, T2) = U2

ftype(f, T1∨T2) = U1∨U2

Method body lookup:

class C extends D {T f; K M}

S0 m(S x){ return e; } ∈ M

mbody(m, C) = x.e

class C extends D {T f; K M} m 6∈ M

mbody(m, D) = x.e

mbody(m, C) = x.e

Method type lookup:

class C extends D {T f; K M}

S0 m(S x){ return e; } ∈ M

mtype(m, C) = S→S0

class C extends D {T f; K M} m 6∈ M

mtype(m, D) = S→S0

mtype(m, C) = S→S0

mtype(m, T1) = S1→U1 mtype(m, T2) = S2→U2 S1
∼= S2

mtype(m, T1∨T2) = S1→U1∨U2

Expression typing:

Γ ` x : Γ(x) (T-Var)

Γ ` e0 : T0 ftype(f, T0) = T

Γ ` e0.fi : T
(T-Field)

Γ ` e0 : T0 mtype(m, T0) = T→T

Γ ` e : S S <: T

Γ ` e0.m(e) : T
(T-Invk)

fields(C) = T f Γ ` e : S S <: T

Γ ` new C(e) : C
(T-New)

Γ ` e0 : T0 T0 <: S1∨S2

Γ, x1:S1 ` e1 : T1 Γ, x2:S2 ` e2 : T2

Γ ` case e0 of (S1 x1) e1 | (S2 x2) e2 : T1∨T2

(T-Case)

Method and class typing:

x : T, this : C ` e0 : S0 S0 <: T0

class C extends D {...}

if mtype(m, D) = U→U0, then T ∼= U and T0 <: U0

T0 m(T x){ return e0; } ok in C

(T-Meth)

K = C(S g, T f){super(g); this.f=f;}

fields(D) = S g M ok in C

class C extends D {T f; K M} ok
(T-Class)

Reduction:

fields(C) = T f

new C(e).fi −→ ei
(R-Field)

mbody(m, C) = x.e0

new C(e).m(d) −→ [d/x, new C(e)/this]e0
(R-Invk)

C <: T1

case new C(d) of (T1 x1)e1 | (T2 x2)e2

−→ [new C(d)/x1]e1

(R-Case1)

C 6<: T1 C <: T2

case new C(d) of (T1 x1)e1 | (T2 x2)e2

−→ [new C(d)/x2]e2

(R-Case2)

Figure 2: Definition of FJ∨



D <: C∨D. The former relation can be derived by:

(1) C <: D since C extends D

(2) D <: D by reflexivity
(3) C∨D <: D by (1), (2), and the last rule.

In what follows, we write S ∼= T if S <: T and T <: S; S <: T

as an abbreviation of S1 <: T1, . . . , Sn <: Tn; and S ∼= T as
an abbreviation of S1

∼= T1, . . . , Sn
∼= Tn.

3.3 Lookup functions
As in FJ, we use auxiliary functions to look up field and

method definitions. They include fields(C) to enumerate
field names of class C with their types, ftype(f, T) to look
up the type of field f that type T has, mbody(m, C) to look
up the body of method m in class C, and mtype(m, T) to look
up the signature of method m that type T has.

On one hand, the definitions of fields(C) and mbody(m, C),
which will be used to define the operational semantics of
FJ∨, are straightforward and essentially the same as those
in FJ: the former collects all the field declarations with their
types from C and its superclasses; and the latter looks for
the definition of m by ascending the inheritance chain and
returns x.e, in which x are the formal parameters and e is
the method body to be evaluated. Note that they take only
class names as an input because there is no instance of a
union type.

On the other hand, ftype(f, T) and mtype(m, T) are key
functions to realize direct member access on union types
in typing. They take types as an argument because the
receiver expression of a field/method access may be of a
union type. There are two rules for ftype(f, T). In the case
where the type of a field f in class C is retrieved, the result of
fields(C) is used. When a field f of an expression of a union
type T1∨T2 is accessed, the types of f for the summands are
retrieved; if both retrievals succeed, their union is the result
type, as described in the last section. For mtype(m, T), there
are three rules. The first two rules, in which T is a class
name, are essentially the same as mbody(m, C) except that
this function returns the argument types S and return type
S0 in the form of S→S0. The last rule is similar to the second
rule of ftype(f, T): it is checked that both summands have
the method m with the compatible argument types and, if
so, the return type is the union of the two return types from
the summands.

As mentioned in the last section, if the restriction on the
argument types is to be relaxed, mtype(m, C1∨ · · · ∨Cn) would
collect all signatures of m from Ci; the typing rule for method
invocations would check if actual argument types match all
the possible formal parameter types.

3.4 Typing
A type judgment for an expression is of the form Γ ` e : T,

read “in the type environment Γ expression e has type T.”
Here, Γ is a type environment, which is a finite mapping from
variables to types, written x:T. We abbreviate a sequence
Γ ` e1 : T1, . . . , Γ ` en : Tn to Γ ` e : T.

Thanks to lookup functions, typing rules are simple and
essentially the same as FJ. For example, in T-Invk, the
method type is retrieved by using the type of the receiver e0,
and it is checked that actual argument types are respectively
subtypes of the corresponding formal. The rule T-Case for
case analysis may be worth explaining: since each branch
covers the case where the value of e0 is an instance of (a

subtype of) Si, the type of the test expression e0 must be
a subtype of the union of S1 and S2. In each branch, xi

is bound to the object after being tested, thus it can be
assumed to have type Si.

A judgment of method typing is of the form M ok in C,
read “method definition M is well formed in class C”, derived
by T-Meth. It is checked that the given method body ex-
pression is well typed under the assumption that formal ar-
guments are of declared types and that this is of C, in which
the method is defined. It also checks that the signature of
an overriding method is compatible with the overridden; as
in Java 5.0, we allow covariant overriding of return types.

Finally, a judgment of class typing is of the form L ok
and derived by T-Class, which checks that field types agree
with the constructor definition and that all methods are well
formed.

3.5 Operational Semantics
The operational semantics is given by the reduction re-

lation of the form e −→ e′, read ”expression e reduces to
expression e′ in one step.” Here, we write [d/x, e/y]e0 for
an expression obtained from e0 by replacing x1 with d1, . . . ,
xn with dn, and y with e. There are four reduction rules,
one for field access, one for method invocation, and two for
case expressions, of which the last two are new. The rule
R-Case1 means that if the first test (whether C is a sub-
type of T) succeeds, the first branch is taken; and the rule
R-Case2 is for the other case. These rules show that the
first branch has a precedence over the second when two types
overlap. Note that the test C <: T2 could be omitted since
the type system guarantees that it succeeds; the inclusion of
this condition makes the type soundness theorem easier to
state. The reduction rules may be applied at any point in an
expression, so we also need the obvious congruence rules (if
e −→ e′ then e.f −→ e′.f, and the like), omitted here. In
what follows, we write −→∗ for the reflexive and transitive
closure of −→.

3.6 Type Soundness
The type system is sound with respect to the operational

semantics, as expected. Type soundness is proved in the
standard manner via subject reduction and progress [14,
7], which are also proved similarly to FJ. (Recall, in the
statement of Theorems 2 and 3, that values are defined by:
v ::= new C(v), where v can be empty.)

Theorem 1 (Subject Reduction). If Γ ` e : T and
e −→ e′, then for some T′ <: T, Γ ` e : T′.

Proof. By induction on the derivation of e −→ e′. Key
lemmas are:

• a lemma that says ftype(·, ·) is covariant in the second
argument, that is, if ftype(f, T) = U and T′<:T then,
there exists U′ such that ftype(f, T′) = U′ and U′<:U;

• a similar lemma for mtype(·, ·); and

• a substitution lemma that says, if Γ, x:T ` e : T and
Γ ` d : S with S <: T, then there exists S0 such that
Γ ` [d/x]e : S0 and S <: T.

They are also proved by straightforward induction.

Theorem 2 (Progress). If ∅ ` e : T and e is not a
value, then there exists e′ such that e −→ e′.



Proof. Easy.

Theorem 3 (Type Soundness). If ∅ ` e : T and e −→∗

e′ with e′ being a normal form, then e′ is a value new C(v)

and C <: T.

Proof. An easy consequence of Theorems 1 and 2.

4. INTERACTIONS WITH OTHER
LANGUAGE FEATURES

We briefly discuss interactions of union types with other
common language features, found in Java. Although, gener-
ics seems fairy easy to combine, field shadowing and over-
loading have some subtleties.

4.1 Generics and Variant Parametric Types
Obviously, union types are useful to represent heteroge-

neous collections like lists where each element is a string or
integer and it is natural to combine them with generics: a
heterogeneous collection is nothing more than a generic col-
lection class instantiated with a union type as the element
type parameter. Here, we will argue that variant paramet-
ric types [8] (a.k.a. wildcards [13] in Java 5.0) give powerful
subtyping.

First, let us briefly review the idea of variant parametric
types. In general, one instantiation of a generic class is nei-
ther a subtype nor a supertype of a different instantiation
of the same class. For example, the fact that String is a
subtype of Object does not mean List<String> is a sub-
type of List<Object> since, in general, list elements may
be updateable. (Covariant) parametric types, which are of
the form C<+T>, allow covariant subtyping in the type ar-
gument position but do not allow any invocations of meth-
ods whose argument types include the type parameter of
the class List: for example, List<String> is a subtype of
List<+Object> but the type system prohibits the invoca-
tion of method setcar(), which takes X—a type parameter
of List, on List<+Object>.

By using this typing mechanism, we can promote, by
subtyping, a type of homogeneous lists of one type of
elements to a type of read-only heterogeneous lists con-
sisting of that element type and another. For example,
List<String> and List<Integer> can both be regarded
as subtypes of List<+(String∨Integer)> since String <:

String∨Integer and Integer <: String∨Integer. Note
that neither List<String> nor List<Integer> should be
a subtype of List<String∨Integer> (without +): if it
were allowed, a list of Strings could be given type
List<String∨Integer>, which allows to write both strings
and integers as elements.

4.2 Field Shadowing and Overloading
Interaction with Java style field shadowing and overload-

ing is more subtle, because there is an inherent conflict be-
tween the idea of direct member access and Java’s strategy
to statically fix the signature of a method or the type of a
field to be accessed.

In Java, a subclass can declare a new field, whose name is
the same as another in a superclass. In that case, the field in
a superclass is hidden by the new field in a subclass and can
be accessed only by using upcasting. For example, consider
the code below:

class Foo { Integer f; ... }

class Bar extends Foo { String f; ... }
Bar bar = ...;

Then, bar.f accesses the field of String declared in Bar

while ((Foo)bar).f accesses that of Integer in Foo. So,
static types determine which field to access at run-time.

The behavior of direct member access, however, depends
on run-time types. For example, let us consider how the
expression ((Bar∨Foo)foo).f (where foo is a variable of
Foo) should behave. This direct member access, considered
merely an abbreviation of

case foo of (Bar x) x.f | (Foo y) y.f

returns a value of different fields depending on the run-time
type of foo. We feel that this semantics is natural even
though it is different from Java’s strategy described above,
because it reflects what programmers write explicitly in their
code—Bar∨Foo can be considered a programmer’s intention
to distinguish two cases where foo is an instance of Bar or
that of Foo. One subtlety of this semantics, though, is that
compatible types are not really compatible: ((Foo)foo).f

and ((Foo∨Bar)foo).f using compatible but syntactically
different types in upcasting both always return an Integer

(recall that the first branch has a precedence)! Another op-
tion to avoid all the issues raised above might be to ‘canon-
icalize’ the static type Bar∨Foo of foo into Foo, which is
a syntactically simplest form among its compatible types,
and regard ((Bar∨Foo)foo).f (and ((Foo∨Bar)foo).f) as
equivalent to ((Foo)foo).f. We think, however, this option
is not very intuitive.

A similar argument applies to overloading in Java, which
determines at compile-time the signature of the method to
be invoked. For example, in the following code

class Foo { void m(Number x){...} }
class Bar extends Foo { void m(Integer x){...} }
Foo foo = ...;
foo.m(new Integer(10));

even when foo is an instance of Bar at run-time, the invoked
method is the one defined in Foo. Similarly to shadowing,
one would expect that, by using a compatible type Bar∨Foo,

((Bar∨Foo)foo).m(new Integer(10));

would invoke m defined in Bar when foo is an instance of Bar.
So, compatible types Foo and Bar∨Foo would make different
behavior. We have found, however, that the problem of
compatible types disappears when direct method invocation
requires all possibly invoked methods to have the compatible
argument types as in FJ∨: under this rule, the above code
will be illegal, as the most specific version of m in Bar and
that of m in Foo have different argument types. So, the
restriction on argument types in direct method invocation
is not just for simplicity, rather to avoid subtle behavior due
to union types.

5. RELATED WORK
The notion of union types in programming languages can

be classified into two categories: tagged (or disjoint) union
types and untagged union types. The former, found for in-
stance in ML’s datatypes or Pascal’s variant records, usually
requires an explicit operation of tagging (or constructor ap-
plications) to form an expression of a union type, while the
latter [1, 10] does not (and uses subtyping and subsumption,



instead). A language with tagged unions is equipped with
a construct for case analysis to use tagged values, while an
untagged union can usually be used with only operations
that are valid for both summands. Our union types can
be considered a hybrid of the two kinds; thanks to the fact
that every object is inherently tagged by the name of the
class from which it was instantiated, explicit tagging is not
needed to construct an expression of a union type and, fur-
thermore, as we have shown, both case analysis and direct
member access are supported. However, in our language,
unlike ML datatypes, forming a union of the same type re-
sults in a compatible type of the original type, so it is not
meaningful to perform case analysis on such a type (the first
branch will always be taken).

More recently, untagged union types are studied in the
context of programming languages for semi-structured data
such as XML [3, 6]. Subtyping supporting “distributivity”
of unions over record field types, exemplified as

{a:S,b:T}∨{a:U,c:V} <: {a:S∨U},

({a:S,b:T} is a type for records that have a field a of type S

and b of T), has inspired us in the development of our direct
member access mechanism. The type system of Xtatic [4],
an extension of C# with mechanisms for native XML pro-
cessing, is equipped with regular expression types [6, 5],
which include the union type constructor. In Xtatic, how-
ever, types for XML documents and those for objects are
separated and so there are not union types for object types.

The mechanism called intertype declarations [12] to add
supertypes to existing classes can be found in the AspectJ
language [9], an aspect-oriented extension of Java. However,
our direct access mechanism, which allows to access mem-
bers of the same name but different types, provides more
than just the ability to add supertypes.

6. CONCLUSION AND FUTURE WORK
We have discussed a possible introduction of union types

for class-based object-oriented languages. Union types can
be used to represent a group of classes by forming their su-
pertype after those classes are defined. A union type allows
direct member access on it by playing a role of an interface
consisting of common features of classes. Also, case expres-
sions provide exhaustive case analysis on the run-time types
of objects; we believe that exhaustive case analysis would
be useful even for a language without union types. We have
also formalized the core of the type system on top of Feath-
erweight Java and proved that the type system is sound.

Although we expect it is useful as it is, the mechanism
of direct member access may be criticized that it heavily
depends on member name equality, which can be purely
coincidental. To remedy the situation, member renaming
operations as found in the recent proposal of traits [11] may
be combined.

We do not discuss implementation issues in this paper
and leave them for future work. Straightforward implemen-
tation would be by erasure [2, 7]: a union type C∨D can be
translated to a common superclass of C and D (or simply to
Object); case and direct member access can be expressed in
terms of instanceOf and downcasts. Efficient implementa-
tion of direct member access is an interesting research topic.
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