
Resource Usage Analysis

Atsushi Igarashi
Department of Graphics and Computer Science

Graduate School of Arts and Sciences
University of Tokyo

igarashi@graco.c.u-tokyo.ac.jp

Naoki Kobayashi
Department of Computer Science

Graduate School of Information Science and
Engineering

Tokyo Institute of Technology

kobayasi@cs.titech.ac.jp

ABSTRACT
It is an important criterion of program correctness that a
program accesses resources in a valid manner. For example,
a memory region that has been allocated should be even-
tually deallocated, and after the deallocation, the region
should no longer be accessed. A file that has been opened
should be eventually closed. So far, most of the methods to
analyze this kind of property have been proposed in rather
specific contexts (like studies of memory management and
verification of usage of lock primitives), and it was not so
clear what is the essence of those methods or how methods
proposed for individual problems are related. To remedy
this situation, we formalize a general problem of analyz-
ing resource usage as a resource usage analysis problem, and
propose a type-based method as a solution to the problem.

1. INTRODUCTION
It is an important criterion of program correctness that a

program accesses resources in a valid manner. For example,
a memory cell that has been allocated should be eventually
deallocated, and after the deallocation, the cell should not
be read or updated. A file that has been opened should be
eventually closed. A lock should be acquired before a shared
resource is accessed. After the lock has been acquired, it
should be eventually released.

A number of program analyses have been proposed to en-
sure such a properly. Type systems for region-based memory
management [1, 3, 25, 28] ensure that deallocated regions
are no longer read or written. Linear type systems [18, 26,
27, 30] ensure that a linear (use-once) value that has been
already accessed is never accessed again. Abadi and Flana-
gan’s type systems for race detection [7, 8] ensure that ap-
propriate locks will be acquired before a reference cell or a
concurrent object is accessed. Freund and Mitchell’s type
system [9] for JVM ensures that every object is initialized
before it is accessed. Bigliardi and Laneve’s type system [2]
for JVM ensures that an object that has been locked will
be eventually unlocked. DeLine and Fähndrich’s type sys-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’021/02, Portland, Oregon, USA
Copyright 2002 ACM ISBN 1-58113-450-9/02/01 ...$5.00.

tem [5] keeps track of the state of each resource in order to
control access to the resource.

The problems attacked in the above-mentioned pieces of
work are similar: There are different types of primitives
to access resources (initialization, read, write, deallocation,
etc.) and we want to ensure that those primitives are ap-
plied in a valid order. In spite of such similarity, however,
most of the solutions (except for DeLine and Fähndrich’s
work [5]) have been proposed for specific problems. As a re-
sult, solutions are often rather ad hoc, and it is not clear how
they can be applied to other similar problems and how solu-
tions for different problems are related. This is in contrast
with standard program analysis problems like flow analysis:
For the flow analysis problem, there is a standard definition
and there are several standard methods, whose properties
(computational cost, precision, etc.) are well studied.

Based on the observation above, our aims are:

1. To formalize a general problem of analyzing how each
resource is accessed as a resource usage analysis prob-
lem (usage analysis problem, in short1), to make it
easy to relate existing methods and to stimulate fur-
ther studies of the problem.

2. To propose a type-based method for usage analysis.
Unlike DeLine and Fähndrich’s type system [5], our
type-based analysis does not need programmers’ type
annotation to guide the analysis. Our analysis auto-
matically gathers information about how resources are
accessed, and checks whether it matches the program-
mer’s intention.

We give an overview of each point below.

1.1 Resource Usage Analysis Problem
We formalize a resource usage analysis problem in a man-

ner similar to a formalization of the flow analysis prob-
lem [23]. Suppose that each expression of a program is an-
notated with a label, and let L be the set of labels. The
standard flow analysis problem for λ-calculus is to obtain
a function flow ∈ L → 2L (2L denotes the powerset of
L) where flow(l) = {l1, . . . , ln} means that an expression
labeled with l evaluates to a value generated by an expres-
sion labeled with one of l1, . . . , ln. (Or, equivalently, the
problem is to obtain a function flow−1 ∈ L → 2L where

1The term “usage analysis” is also used to refer to linearity
analysis [11]. Our resource usage analysis problem can be
considered generalization of the problem of linearity analy-
sis.

flow−1(l) = {l1, . . . , ln} means that only expressions labeled
with l1, . . . , ln can evaluate to the value generated by an ex-
pression labeled with l.) From a flow function, we know
what access may occur to each resource. For example, con-
sider the following fragment ML-like program:

let x = fopen(s)l in . . . fread(M lr) . . . fclose(N lc) . . .

Here, we assume that fopen opens a file of name s and re-
turns a file pointer to access the file, and that fread (fclose,
resp.) takes a file pointer as an input and reads (closes,
resp.) the file. If flow−1(l) = {lr}, then we know that the
file opened at l may be read, but is not closed (since ex-
pression N lc cannot evaluate to the file by the definition of
flow−1).

A flow function does not provide information about the
order of resource accesses. Suppose that flow−1(l) is {lc, lr}
in the above program. From the flow information, we can’t
tell whether the file created at l is closed after it has been
read, or the file is read after it has been closed.

Let us write L∗ for the set of finite sequences of labels.
We formalize usage analysis as a problem of (i) computing a

function use ∈ L → 2L
∗

where l1 · · · ln ∈ use(l) means that
a value generated by an expression labeled with l may be
accessed by primitives labeled with l1, . . . , ln in this order,
and then (ii) checking whether use(l) contains only valid
access sequences. Let us reconsider the above example:

let x = fopenl(s) in . . . freadlr (M) . . . fcloselc(N) . . .

(Here, labels are moved to primitives for creating or access-
ing resources.) If use(l) = {lrlc, lrlrlc}, we know that the
file opened at l may be closed after it is read once or twice,
and the file is never read after being closed. On the other
hand, if use(l) = {lrlc, lclr}, the file may be read after it has
been closed.

Many problems can be considered instances of the usage
analysis problem. In region-based memory management [25,
3, 1, 28], we can regard regions as resources. Suppose that
every primitive for reading a value from a region (writing
a value into a region, deallocating a region, resp.) is anno-
tated with lr (lw, lF , resp.). Then, a region-annotated pro-
gram is correct if use(l) ⊆ (lr + lw)∗lF , where (lr + lw)∗lF
is a regular expression. In linear type systems [27, 26, 18,
30], we can regard values as resources. A linear type sys-
tem is correct if for every label l of a primitive for creating
linear (use-once) values, use(l) contains only sequences of
length 1. The object initialization is correct [9] if for every
label l of an (occurrence of) object creation primitive, every
sequence in use(l) begins with the label of a primitive for
object initialization. Usage of lock primitives is correct if
each occurrence of a label of the lock primitive is followed
by an occurrence of a label of the unlock primitive. The con-
trol flow analysis problem can also be considered an instance
of the usage analysis problem. We can regard functions as
resources, function abstraction as the primitive for creating
a function, and function application as the primitive for ac-
cessing a function. Then, a function created at l may be
called at l′ if use(l) contains l′.

1.2 Type-Based Usage Analysis
We present a type-based resource usage analysis for a call-

by-value, simply-typed λ-calculus extended with primitives
for creating and accessing resources.

The main idea is to augment types with information about
a resource access order. For example, the type of a file is
written as (File, U), where U , called a usage, expresses how
the file is accessed. Its syntax is given by:

U ::= l | U1 ; U2 | U1 & U2 | · · ·
Usage l means that the resource is accessed by a primitive
labeled with l. U1 ; U2 means that the resource is accessed
according to U1 and then accessed according to U2. U1 &U2

means that the resource is accessed according to either U1

or U2. For example, a file that is accessed by a primitive
labeled with l1 and then by a primitive labeled with l2 has
type (File, l1 ; l2).

Based on the extension of types with usages, we extend
ordinary typing rules for the simply-typed λ-calculus. For
example, the ordinary rule for let-expressions is:

Γ ` M : τ Γ, x : τ ` N : σ

Γ ` let x = M in N : σ

It is replaced by the following rule:

Γ ` M : τ ∆, x : τ ` N : σ

Γ;∆ ` let x = M in N : σ

Type environment Γ;∆ indicates that the resources referred
to by free variables are first accessed according to Γ and
then according to ∆, reflecting the evaluation rule that M
is evaluated and then N is evaluated. For example, if we
have y : (File, l1) ` M : bool (which implies that y is a file
accessed at l1 in M) and y : (File, l2), x : bool ` N : bool,
then we get y : (File, l1; l2) ` let x = M in N : bool. The
resulting type environment indicates that y is a file accessed
at l1 and then at l2.

Actually, the type system is a little more complicated

than it might seem. Consider an expression M
4
= let x =

y in (freadlr (y); fwritelw (x)). If we naively apply the
above rule, we get:

y : (File, lw) ` y : (File, lw)
y : (File, lr), x : (File, lw) ` freadlr (y); fwritelw (x) : bool

(y : (File, lw)); (y : (File, lr))(= y : (File, lw; lr)) ` M : bool

The conclusion implies that y is first written at lw and then
read at lr, which is wrong. This wrong reasoning comes
from the fact that the access represented by the type en-
vironment y : (File, lw) occurs not when y is evaluated but
when the body of the let-expression freadlr (y); fwritelw (x)
is evaluated. To solve this problem, we introduce a usage
constructor 2U , which means that the resource is accessed
according to U now (when the expression is evaluated) or
later (when the value of the expression is used). Using the
operator 2, we replace the above inference with:

y : (File, 2lw) ` y : (File, lw)
y : (File, lr), x : (File, lw) ` freadlr (y); fwritelw (x) : bool

y : (File, 2lw; lr) ` M

The premise y : (File, 2lw) ` y : (File, lw) reflects the fact
that the resource y is accessed only when the value of y is
used later (when fwritelw (x) is evaluated). The conclusion

implies that that y may be accessed at lw either immediately
before an access at lr occurs, or later after an access at lr
occurs. (In order to obtain a more accurate usage lr; lw, we
need to keep dependencies between different variables: See
Section 6.)

In order to get accurate information about the access or-
der, we also need to have a rule to remove 2. Suppose that
x : (File, 2l) ` M : τ is derived and that we know that the
value (evaluation result) of M cannot contain a reference to
x. Then, we know that x is accessed at l when M is eval-
uated, not later. To allow such reasoning, we introduce the
following rule:

Γ, x : τ ` M : σ x does not escape from M

Γ, x : τ ` M : σ

Here, is an operator to cancel the 2-operator.
Based on the above idea, we formalize a type system for

usage analysis and prove its correctness. We also develop
a type inference algorithm to infer resource usage informa-
tion automatically so that programmers only have to declare
what access sequences are valid: the type inference algo-
rithm automatically computes the function use, and checks
whether use(l) contains only valid access sequences for each
resource creation point l.

1.3 The Rest of This Paper
Section 2 introduces a target language. Section 3 defines

the problem of resource usage analysis. Sections 4 and 5
present a type-based method for resource usage analysis.
Section 6 discusses extensions of the type-based method.
Section 7 discusses related work and Section 8 concludes.
A proof of the correctness of our type-based analysis and a
detailed type inference algorithm are given in a longer ver-
sion of this paper, available at http://www.kb.cs.titech.

ac.jp/~kobayasi/publications.html.

2. TARGET LANGUAGE
This section introduces a call-by-value λ-calculus ex-

tended with primitives to create and access resources.
We assume that there is a countably infinite set L of la-

bels, ranged over by meta-variable l. We write L∗ for the
set of finite sequences of labels, and write L∗,↓ for the set
L∗ ∪{s ↓ | s ∈ L∗}. The special symbol ‘↓’ is used to denote
the termination of a program. We call an element of L∗,↓ a
trace. We write ε for the empty sequence, and s1s2 for the
concatenation of two traces s1 and s2.

A trace set, denoted by a meta-variable Φ, is a subset of
L∗,↓ that is prefix-closed, i.e, ss′ ∈ Φ implies s ∈ Φ. S]

denotes the set of all prefixes of elements of S, i.e., {s ∈
L∗,↓ | ss′ ∈ S}.

Definition 1 (terms). The syntax of terms is given by:

M ::= true | false | x | λΦx.M | fixΦ(f, x, M)
| if M1 then M2 else M3 | M1@

lM2

| newΦ() | accl
i(M) | let x = M1 in M2

Here, we extended a standard λ-calculus with two con-
structs: newΦ() for creating a new resource and accl

i(M)
for accessing resource M . For simplicity, we consider a sin-
gle kind of resource except for functions (hence the single

primitive for resource creation). Also, we assume that ac-
cess primitives (acc1, . . . , accn) always return true or false.
This is not so restrictive from the viewpoint of usage anal-
ysis: For example, the behavior of a primitive that accesses
a resource and then returns the updated resource can be
simulated by λr.(let x = accl

i(r) in r). fixΦ(f, x, M) de-
notes a recursive function f that satisfies f = λx.M . A let-
expression let x = M1 in M2 is computationally equivalent
to (λΦx.M2)@

lM1, but we include it to make our type-based
analysis in Section 4 more precise (see Section 6). A formal
operational semantics of the language is defined in the next
section.

A label (denoted by l) is attached to each occurrence of a
primitive to access resources and functions. The same label
may be attached to multiple occurrences of a primitive.

A trace set Φ is attached to each occurrence of λ-
abstraction, a recursive function, and the resource creation
primitive. It represents the programmer’s intention on how
the function or resource should be accessed during evalua-
tion. A trace of the form s ↓ is a possible sequence of ac-
cesses performed to a resource by the time when evaluation
terminates, while a trace of the form s(∈ L∗) is a possible
sequence of accesses performed by some time during evalua-

tion. For example, new{l2 ↓,l1l2 ↓}]

() creates a resource that
should be accessed at l1 at most once and then accessed
once at l2 before evaluation of the whole term terminates.
It is important to distinguish between traces ending with ↓
and those without ↓. For example, for a file, the trace set
may contain lR; lW but not lR; lW ↓, since the file should be
closed before the program terminates.

We do not fix a particular way to specify trace sets Φ.
They could be specified in various ways, for example, using
regular expressions, shuffle expressions [10, 16] context-free
grammars, modal logics [6], or usage expressions we intro-
duce in Section 4.

Bound and free variables are defined in a standard man-
ner. We write FV(M) for the set of free variables in M .
When x 6∈ FV(M2), we often write M1; M2 for let x =
M1 in M2.

Example 1. Let init, read, write, and free be primi-
tives to initialize, read, update, and deallocate a resource re-
spectively. (In examples, we often use more readable names
for primitives, rather than acci.) The following program
creates a new resource r, initializes it, and then calls func-
tion f . Inside function f , resource r is read and updated
several times and then deallocated.

let f = fixΦf (f, x, if readlR(x) then freelF (x)
else (writelW (x); f@l1x)) in

let r = newΦr () in (initlI (r); f@l2r)

Here, Φr = (lI(lR + lW)∗lF ↓)], and Φf = L∗,↓ (where
lI(lR + lW)∗lF ↓ is a regular expression). Φr specifies that r
should be initialized first and deallocated at the end. This
kind of access pattern (initialized, accessed, and then deallo-
cated) often occurs to various types of resources (e.g., mem-
ory, files, Java objects [9]). The trace set L∗,↓ for Φf means
that the programmer does not care about how function f is
called.

3. RESOURCE USAGE ANALYSIS PROB-
LEM

The purpose of resource usage analysis is to infer how each
resource is used in a given program, and check whether the
inferred resource usage matches the programmer’s intention
(specified using trace sets). We give below a formal defi-
nition of the resource usage analysis problem, by using an
operational semantics that takes the usage of resources into
account.

3.1 Operational Semantics
We first introduce the notion of heaps to keep track of how

each resource is used during evaluation: Formally, a heap is
a mapping from variables to pairs of a heap value (either a
resource or function) and a trace set.

Definition 2 (heap values, heap). The set of heap
values, ranged over by h, is given by the syntax: h ::= R |
λx.M , where R denotes a resource created by newΦ(). A
heap H is a function from a finite set of variables to pairs
of a heap value and a trace set.

We write {x1 7→Φ1 h1, . . . , xn 7→Φn hn} (n may be 0) for
the heap H such that dom(H) = {x1, . . . , xn} and H(xi) =
(hi, Φi). When dom(H1) ∩ dom(H2) = ∅, we write H1]H2

for the heap H such that dom(H) = dom(H1) ∪ dom(H2)
and H(x) = Hi(x) if x ∈ dom(Hi).

Following [18, 22, 26], program execution is represented
by reduction of pairs of a heap and a term. When a resource
is used at a program point l, the attached traces are “con-
sumed” — the label l at the head of a trace is removed (if
the trace begins with l; the traces not beginning with l are
discarded). We define Φ−l, which represents the trace set
after the use at l, by {s | ls ∈ Φ}. The formal reduction
relation is defined below after a few auxiliary definitions.

Definition 3 (small values, substitution). A
small value (or just value) v is either a variable, true, or
false. We write [v/x] for the standard capture-avoiding
substitution of v for x.

Definition 4 (evaluation contexts). The syntax of
evaluation contexts is given by:

E ::= [] | if E then M1 else M2 | E@lM | v@lE
| accl

i(E) | let x = E in M

We write E [M] for the expression obtained by replacing []
with M in E.

Definition 5. A reduction relation (H, M) ; P , where
P is either Error or a pair (H ′, M ′), is defined as the least
relation closed under th rules below.

z fresh

(H, E [newΦ()]) ; (H] {z 7→Φ R}, E [z])
(R-AlcRes)

z fresh

(H, E [λΦx.M]) ; (H] {z 7→Φ λx.M}, E [z])
(R-AlcLam)

z fresh

(H, E [fixΦ(f, x, M)]) ; (H] {z 7→Φ λx.[z/f]M}, E [z])
(R-AlcFix)

b = true or false Φ−l 6= ∅
(H] {x 7→Φ R}, E [accl

i(x)]) ; (H] {x 7→Φ−l R}, E [b])
(R-Acc)

Φ−l = ∅
(H] {x 7→Φ R}, E [accl

i(x)]) ; Error
(R-AccErr)

Φ−l 6= ∅
(H] {x 7→Φ λy.M}, E [x@lv])

; (H] {x 7→Φ−l

λy.M}, E [[v/y]M])

(R-App)

Φ−l = ∅
(H] {x 7→Φ λy.M}, x@lv) ; Error

(R-AppErr)

(H, E [if true then M1 else M2]) ; (H, E [M1]) (R-IfT)

(H, E [if false then M1 else M2]) ; (H, E [M2]) (R-IfF)

We write ;∗ for the reflexive transitive closure of ;.

Most of the rules are straightforward. In rules R-Acc
and R-App, the attached trace set must include a trace be-
ginning with l (represented by Φ−l 6= ∅). On the other
hand, if no such traces are included, a usage error is sig-
naled (R-AccErr and R-AppErr). Since we do not care
about the result of resource access here, it is left unspecified
which boolean value is returned in R-Acc. When an or-
dinary type error like application of a non-functional value
occurs, the reduction will get stuck.

Example 2. Let M be the following program, obtained
by removing initlI (r) from the program in Example 1:

let f = fixΦf (f, x, if readlR(x) then freelF (x)
else (writelW (x); f@l1x)) in

let r = newΦr () in f@l2r

The evaluation of M fails because r is read before it is ini-
tialized.

({}, M)

;∗ ({x1 7→L∗,↓
λx.if readR(x) then · · · else · · ·,

x2 7→Φr R}, x1@
l2x2)

; ({x1 7→L∗,↓
λx.(· · ·), x2 7→(lI (lR+lW)∗lF ↓)] R},

if readlR(x2) then · · · else · · ·)
; Error

3.2 Resource Usage Analysis
Now, we define the problem of resource usage analysis.

Intuitively, M is resource-safe if evaluation of M does not
cause any usage errors and if all the resources are used up
when the evaluation terminates.

Definition 6. M is resource-safe iff (1) ({}, M) 6;∗

Error and (2) if ({}, M) ;∗ (H, v), then for any x ∈
dom(H), H(x) = (h, Φ) and ↓ ∈ Φ. The resource usage
analysis problem is, given a program M , to check whether
M is resource-safe.

Since the problem is undecidable, a resource usage analysis
should be sound but need not be complete: If the answer is
yes, the program should indeed be resource-safe, but even if
the answer is no, the program may be resource-safe.

Example 3. The program M in Example 1 is resource-
safe.

Example 4. Let M be the following program, obtained
from the program in Example 1 by replacing freelF (x) in
the definition of f with true:

let f = fixΦf (f, x, if readlR(x) then true
else (writelW (x); f@l1x)) in

let r = newΦr () in (initlI (r); f@l2r)

It is evaluated as follows:

({}, M)

;∗ ({x1 7→L∗,↓
λx.(· · ·), x2 7→{(lR+lW)∗lF ↓}] R},

if true then true else (writelW (x2); x1@
l1x2))

; ({x1 7→L∗,↓
λx.(· · ·), x2 7→{(lR+lW)∗lF ↓}] R}, true)

In the final state of the execution, the trace set associated
to x2 indicates that the resource still needs to be accessed at
lF before the execution terminates. Since the term cannot
be reduced further, the program M is not resource-safe (the
second condition of Definition 6 is violated).

Remark 1. Alternatively, we can formalize usage anal-
ysis as a problem of giving not only an “yes”/“no” answer
but also a trace set (consisting of possible access sequences)
for each resource, as explained in Section 1. Our type-based
analysis presented in Sections 4 and 5 can solve this problem
too.

4. A TYPE SYSTEM FOR RESOURCE US-
AGE ANALYSIS

In this section, we present a type system that guarantees
that every well-typed (closed) program is resource-safe. As
mentioned in Section 1, a main idea is to augment the type
of a resource with a usage, which expresses how the resource
may be accessed. Note that programmers need not explic-
itly declare any usage in their programs: the type inference
algorithm described in the next section can automatically
recover usage information from (untyped) terms.

4.1 Usages, Types

Definition 7 (usages). The set U of usages, ranged
over by U , is defined by:

U ::= 0 | α | l | U1 & U2 | U1 ; U2 | U1 ⊗ U2 | µα.U
| 2U | U | U1 ¯ U2 | U1 . U2

We assume that the unary usage constructors 2 and
bind tighter than the binary constructors (&, ;,⊗, . . .), so
that 2l1 ; l2 means (2l1) ; l2.

0 is the usage of a resource that cannot be accessed at
all. α denotes a usage variable (which is bound by µα.).
Usages l, U1 ; U2, and U1 & U2 have been explained in Sec-
tion 1. U1 ⊗ U2 is the usage of a resource that can be ac-
cessed according to U1 and U2 in an interleaved manner. So,
(l1 ; l2)⊗ l3 is equivalent to (l3; l1; l2)&(l1; l3; l2)&(l1; l2; l3).
µα.U denotes a recursive usage such that α = U . For exam-
ple, µα.(0 & (l; α)) means that the resource is accessed at l
an arbitrary number of times. As mentioned in Section 1,
2U means that the resource may be accessed now or later
according to U . So, a resource of usage 2l1; l2 may be ac-
cessed either at l1 and then at l2, or at l2 and then at l1.
U means that the access represented by U must occur now.

So, for example, (2l1; l2; 2l3) is equivalent to l1 ⊗ (l2; l3).
Usage U1 ¯ U2 means that the access represented by U2

occurs for each single access represented by U1. For exam-
ple, (l1; l2)¯ U is equivalent to U ; U . Usage U1 . U2 means
that for each single access l represented by U1, the access
represented by l; U2 happens. For example, (l1; l2) . U is
equivalent to l1; U ; l2; U . The precise meaning of each usage
is defined in Subsection 4.2.

Probably, we do not need some of the usage constructors
(like ¯ and .) to express the final result of resource usage
inference, but we need them to define the type system and
the type inference algorithm.

Definition 8 (types). The set of types, ranged over by
τ , is defined by:

τ ::= bool | (τ1 → τ2, U) | (R, U)

(τ1 → τ2, U) is the type of a function that is accessed (i.e.,
called) according to U . For example, (bool → bool, l1; l2)
is the type of a boolean function that is called at l1 first and
then called at l2. (This kind of information is, for example,
useful to determine when function closures should be deal-
located.) (R, U) is the type of a resource that is accessed
according to U .

The outermost usage of τ , written Use(τ), is defined by:
Use(bool) = 0, Use(τ1 → τ2, U) = U , and Use(R, U) = U .

4.2 Semantics of Usages
We define the meaning of usages using a labeled transition

semantics. A usage denotes a set of traces, obtained from
possible transition sequences. We also define a subusage re-
lation, which induces a subtyping relation, using the labeled
transition system and the usual notion of simulation.

We first define auxiliary relations. We write U1 ¹ U2 when
U2 is obtained from U1 by unfolding some recursive usages
(µα.U) and removing some branches from choices (U & U ′).

Definition 9. A relation ¹ is the least reflexive and
transitive relation on usages that satisfies the rules in Fig-
ure 1.

For example, l1; (l2 & l3) ¹ l1; l2.

Definition 10. Unary relations ·↓ and ·⇓ are the least
relations on usages that satisfies the following conditions:

0↓

U↓ ⇒ ((2U)↓ ∧ (U)↓ ∧ (U ¯ U ′)↓

∧(U ′ ¯ U)
↓ ∧ (U . U ′)↓)

(U1
↓ ∧ U2

↓) ⇒ ((U1 ⊗ U2)
↓ ∧ (U1 ; U2)

↓ ∧ (U1 & U2)
↓)

([µα.U/α]U)↓ ⇒ (µα.U)↓

0⇓

(2U)⇓

U↓ ⇒ (U)⇓

U⇓ ⇒ ((U ¯ U ′)⇓ ∧ (U ′ ¯ U)
⇓ ∧ (U . U ′)⇓)

(U1
⇓ ∧ U2

⇓) ⇒ ((U1 ⊗ U2)
⇓ ∧ (U1 ; U2)

⇓ ∧ (U1 & U2)
⇓)

([µα.U/α]U)⇓ ⇒ (µα.U)⇓

Intuitively, U↓ means that the resource is no longer accessed
before evaluation of the whole term terminates. U⇓ means
that the resource is not accessed for now. (In other words

all labels are “boxed.”) We write U¹↓ if U ¹ U ′ and U ′↓

for some U ′. Similarly, we write U¹⇓ if U ¹ U ′ and U ′⇓ for
some U ′.

U1 & U2 ¹ U1

U1 & U2 ¹ U2

µα.U ¹ [µα.U/α]U

U1 ¹ U ′1 U2 ¹ U ′2
U1 ; U2 ¹ U ′1 ; U ′2

U1 ¹ U ′1 U2 ¹ U ′2
U1 ⊗ U2 ¹ U ′1 ⊗ U ′2

U ¹ U ′

2U ¹ 2U ′

U ¹ U ′

U ¹ U ′

U1 ¹ U ′1 U2 ¹ U ′2
U1 ¯ U2 ¹ U ′1 ¯ U ′2

U1 ¹ U ′1 U2 ¹ U ′2
U1 . U2 ¹ U ′1 . U ′2

Figure 1: Relation U ¹ U ′

We write 2L for the set {2l | l ∈ L}. We call an element
of L ∪ 2L an extended label, and use a meta-variable L for
it. When L is an extended label, 2L and L is defined by:

2L =

�
2L if L ∈ L
L if L ∈ 2L

L =

�
L if L ∈ L
l if L = 2l

Let S be a set of extended labels. We write 2S and S for
the sets {2L | L ∈ S} and { L | L ∈ S} respectively.

Now we define a transition relation U
L−→ U ′. Intuitively,

it implies that a resource of usage U can be first accessed at
L and then accessed according to U ′.

Definition 11. A transition relation U
L−→ U ′ on usages

is the least relation closed under the rules in Figure 2.

Example 5. 2l1; l2 has two transition sequences:

2l1; l2
2l1−→ 0; l2

l2−→ 0;0 and 2l1; l2
l2−→ 2l1;0

2l1−→ 0;0 but

l1; l2 has only the transition sequence: l1; l2
l1−→ 0; l2

l2−→
0;0. (Note the righthand premise of rule (UR-SeqR).)

The set of traces denoted by a usage U , written [[U]], is
defined as follows.

Definition 12. Let U be a usage. [[U]] denotes the set:

{(L1) · · · (Ln) | ∃U1, . . . , Un.(U
L1−→ U1 · · ·Un−1

Ln−→ Un)}
∪{(L1) · · · (Ln) ↓ |

∃U1, . . . , Un.((U
L1−→ U1 · · ·Un−1

Ln−→ Un) ∧ Un
¹↓)}

Here, n can be 0 (so ε ∈ [[U]] for any U).

It is trivial by definition that [[U]] is a trace set (i.e., prefix-
closed).

Example 6.

[[0]] = {ε, ↓}, [[µα.α]] = {ε}
[[2(l1; l2); l3]] = {l1l2l3 ↓, l1l3l2 ↓, l3l1l2 ↓}]

[[µα.(0 & (l; α))]] = {↓, l ↓, ll ↓, lll ↓, . . .}]

4.3 Subtyping
We define subusage and subtype relations U1 ≤ U2 and

τ1 ≤ τ2 below. Intuitively, U1 ≤ U2 means that U1 rep-
resents a more general usage than U2, so that a resource of
usage U1 may be used as that of usage U2. Similarly, τ1 ≤ τ2

means that a value of type τ1 may be used as a value of type
τ2.

We define the subusage relation to be closed under usage
contexts. Formally, a usage context, written C, is an expres-
sion obtained from a usage by replacing one occurrence of
a free usage variable with []. Suppose that the set of free
usage variables in U are disjoint from the set of bound us-
age variables in C. We write C[U] for the usage obtained by
replacing [] with U . For example, if C = µα.([] ; α), then
C[U] = µα.(U ; α).

Definition 13. Subusage relation ≤ is the largest binary
relation such that for all U1, U2 ∈ U , if U1 ≤ U2, then the
following conditions are satisfied:

1. C[U1] ≤ C[U2] for any usage context C;

2. If U2
L−→ U ′2, then U1

L′−→ U ′1 and U ′1 ≤ U ′2 for some
U ′1 and L′ with L′ = L or L′ = 2L; and

3. If U2
¹↓, then U1

¹↓.

We write U1
∼= U2 if and only if U1 ≤ U2 and U2 ≤ U1.

Definition 14. Subtype relation ≤ is the least binary re-
lation on types that satisfies the following rules:

bool ≤ bool (Sub-Bool)

U ≤ U ′

(τ1 → τ2, U) ≤ (τ1 → τ2, U
′)

(Sub-Fun)

U ≤ U ′

(R, U) ≤ (R, U ′)
(Sub-Res)

Remark 2. Actually, we could relax the above subusage
and subtype relations. For the subtype relation, for exam-
ple, we can replace rule (Sub-Fun) with the following rule.

τ ′1 ≤ τ1 τ2 ≤ τ ′2 U ≤ U ′

(τ1 → τ2, U) ≤ (τ ′1 → τ ′2, U
′)

4.4 Type environments
A type environment is a mapping from a finite set of vari-

ables to types. We use meta-variables Γ and ∆ for type
environments. We write ∅ for the type environment whose
domain is empty. When x 6∈ dom(Γ), we write Γ, x : τ for
the type environment ∆ such that dom(∆) = dom(Γ)∪{x},
∆(x) = τ , and ∆(y) = Γ(y) for y ∈ dom(Γ).

We define several operations and relations on types and
type environments.

l
l−→ 0 (UR-Zero)

U1
L−→ U ′1

U1 ⊗ U2
L−→ U ′1 ⊗ U2

(UR-ParL)

U2
L−→ U ′2

U1 ⊗ U2
L−→ U1 ⊗ U ′2

(UR-ParR)

U1
L−→ U ′1

U1 ; U2
L−→ U ′1 ; U2

(UR-SeqL)

U2
L−→ U ′2 U1

⇓

U1 ; U2
L−→ U1 ; U ′2

(UR-SeqR)

U
L−→ U ′

2U
2L−→ 2U ′

(UR-Box)

U
L−→ U ′

U
L−→ U ′

(UR-Unbox)

U1
l−→ U ′1 U2

L−→ U ′2

U1 ¯ U2
L−→ U ′2 ; (U ′1 ¯ U2)

(UR-Mult1)

U1
2l−→ U ′1 2U2

L−→ U ′2

U1 ¯ U2
L−→ U ′2 ; (U ′1 ¯ U2)

(UR-Mult2)

U1
l−→ U ′1

U1 . U2
l−→ U2 ; (U ′1 . U2)

(UR-SMult1)

U1
2l−→ U ′1

U1 . U2
2l−→ 2U2 ; (U ′1 . U2)

(UR-SMult2)

U ¹ U ′′ U ′′
L−→ U ′

U
L−→ U ′

(UR-PCong)

Figure 2: Usage Reduction Rules

Definition 15. Let C be a usage context. Suppose that
the set of free usage variables appearing in τ or Γ is disjoint
from the set of bound usage variables in C. We define C[τ]
and C[Γ] by:

C[bool] = bool
C[(τ1 → τ2, U)] = (τ1 → τ2, C[U])

C[(R, U)] = (R, C[U])
dom(C[Γ]) = dom(Γ)

C[Γ](x) = C[Γ(x)]

Let op be a binary usage constructor ; or & . It is
extended to operations on types and type environments by:

bool opbool = bool
(τ1 → τ2, U1)op (τ1 → τ2, U2) = (τ1 → τ2, U1 opU2)

(R, U1)op (R, U2) = (R, U1 opU2)
dom(Γ1 opΓ2) = dom(Γ1) ∪ dom(Γ2)

(Γ1 opΓ2)(x) =

8>><>>:
Γ1(x)opΓ2(x)

if x ∈ dom(Γ1) ∩ dom(Γ2)
Γ1(x) if x ∈ dom(Γ1)\dom(Γ2)
Γ2(x) if x ∈ dom(Γ2)\dom(Γ1)

The type environment xΓ is defined by

xΓ =

�
Γ if x 6∈ dom(Γ)
Γ′′, x : τx if Γ = Γ′′, x : τx and τx 6= bool

Note that if Γ(x) = bool, then xΓ is undefined.

Example 7. Let Γ be x : (R, U) and ∆ be x : (R, U ′), y :
bool. Then, 2Γ = x : 2(R, U) = x : (R, 2U) and Γ;∆ =
x : (R, U); (R, U ′), y : bool = x : (R, U ; U ′), y : bool.

We write Γ1 ≤ Γ2 when dom(Γ1) ⊇ dom(Γ2), Γ1(x) ≤
Γ2(x) for all x ∈ dom(Γ2), and Use(Γ1(x)) ≤ 0 for all x ∈
dom(Γ1)\dom(Γ2).

4.5 Typing
A type judgment is of the form Γ ` M : τ . It carries

not only ordinary type information but information about
how resources are used. For example, x : (R, l1; 2l2) ` M :
(R, l2) implies that if x is a resource that can be accessed

at l1 and then at l2, then M is evaluated to a resource that
can be accessed at l2. It further implies that the access at l1
occurs during evaluation of M , while the access at l2 occurs
either during evaluation of M or when the value of M is
used (because l1 is not boxed but l2 is boxed). For example,

if M = let y = accl1
i (x) in x, this type judgment holds.

(Actually, annotation on escape information is necessary:
See Example 8 below.)

As mentioned in Section 1, an escape analysis [4, 12] is
useful to refine the accuracy of our type-based usage analy-
sis. To make our type system simple and clarify its essence,
we assume that a kind of escape analysis has been already
performed and that a program is annotated with the result
of the escape analysis. We extend the syntax of terms by
introducing a term of the form M{x}, which means that x
does not escape from M , in the sense that a heap value re-
ferred to by x is not contained in (unreachable from) the
value of M . A simplest escape analysis would be to com-
pare the type of M and that of x, as in variants of linear
type system [27, 29]: For example if the type of M is bool
or if the type of M is a resource type but the type of x is a
function type, x cannot escape from M (in the above sense).

Typing rules are shown in Figure 3. In rule (T-Var), the
2-operator is applied to the type of x in the type environ-
ment, because x is used only later, not when x is evaluated.

In rules (T-New), (T-Abs), and (T-Fix), the premise
[[U]] ⊆ Φ checks that resources or functions created here are
accessed according to Φ (which represents the programmer’s
intention). In rule (T-Abs), the lefthand premise Γ, x : τ1 `
M : τ2 means that the resources referred to by free variables
in λΦx.M are accessed according to Γ each time the function
is called. Since the function itself is called according to U ,
we multiply Γ by U to obtain a type environment expressing
the total access.2 Finally, since the resources are accessed
only later when the function is called, 2 is applied.

Rule (T-Fix) is similar to (T-Abs), except that the us-
age describing how the function is called is more complex.

2Similar calculation is performed in linear type systems [18,
14, 13].

c = true or false

∅ ` c : bool
(T-Const)

x : 2τ ` x : τ (T-Var)

[[U]] ⊆ Φ

∅ ` newΦ() : (R, U)
(T-New)

Γ, x : τ1 ` M : τ2 [[U]] ⊆ Φ

2(U ¯ Γ) ` λΦx.M : (τ1 → τ2, U)
(T-Abs)

Γ, f : (τ1 → τ2, U1), x : τ1 ` M : τ2

[[U2 . (µα.U1 . α)]] ⊆ Φ α fresh

2(U2 ¯ (µα.(Γ⊗ (U1 ¯ α))))
` fixΦ(f, x, M) : (τ1 → τ2, U2)

(T-Fix)

Γ1 ` M1 : (τ1 → τ2, l) Γ2 ` M2 : τ1

Γ1; Γ2 ` M1@
lM2 : τ2

(T-App)

Γ ` M : (R, l)

Γ ` accl
i(M) : bool

(T-Acc)

Γ1 ` M1 : bool Γ2 ` M2 : τ Γ3 ` M3 : τ

Γ1; (Γ2 & Γ3) ` if M1 then M2 else M3 : τ
(T-If)

Γ1 ` M1 : τ1 Γ2, x : τ1 ` M2 : τ2

Γ1; Γ2 ` let x = M1 in M2 : τ2
(T-Let)

Γ ` M : τ

xΓ ` M{x} : τ
(T-Now)

Γ′ ` M : τ ′ Γ ≤ Γ′ τ ′ ≤ τ

Γ ` M : τ
(T-Sub)

Figure 3: Typing Rules

The type of fixΦ(f, x, M) implies that the function is called
according to U2 from the outside. Upon each call, M is
evaluated and the function is internally called according to
U1, and for each internal call, the function is again called
according to U1. Therefore, the usage of the function in
total is represented by U2 . (µα.U1 . α). As for usage of
the resources referred to by the free variables of the func-
tion, upon each call, M is evaluated and the resources are
accessed according to Γ. Moreover, during the evaluation,
internal calls occur and for each internal call, the resources
are again accessed according to Γ. The usage in total is
therefore represented by U2 ¯ (µα.(Γ⊗ (U1 ¯ α))) and 2 is
applied to this, since the resources are accessed only later,
not when the term fixΦ(f, x, M) is evaluated.

In rule (T-App), the premises imply that resources are
accessed according to Γ1 and Γ2 in M1 and M2 respectively.
Because M1 is evaluated first, the usage of resources in total
is represented by Γ1; Γ2. Because the function M1 is called
at l, the usage of M1 must be l. Similarly, in rule (T-Acc),
the usage of M must be l because it is accessed at l.3

In rule (T-If), after M1 is evaluated, either M2 or M3

is evaluated. Thus, the usage of resources in total is repre-
sented by Γ1; (Γ2&Γ3). In rule (T-Now), M{x} asserts that
x does not escape from M . So, the access represented by
τ should happen now, when M is evaluated. The operator

is applied to reflect this fact. We exclude the case where
τ1 = bool, since in that case escape information is useless.

Example 8. A derivation for the type judgment

x : (R, l1; 2l2) ` let y = accl1
i (x){x} in x : (R, l2)

is shown in Figure 4.

4.6 Type Soundness
The above type system is sound in the sense that every

closed well-typed expression of type τ where Use(τ) ≤ 0
is resource-safe, provided that the escape analysis is sound.
The condition Use(τ) ≤ 0 means that resources contained
in the result of the evaluation may no longer be accessed.

3Actually, because the value of accl
i(M) cannot contain ref-

erences to resources, it is safe to apply to Γ in the conclu-
sion.

In order to make explicit the assumption on the escape
analysis, we extend the operational semantics of the target
language to deal with terms of the form M{x}. First, we
extend the syntax of evaluation contexts by:

E ::= · · · | E{x}

We add the following reduction rule:

x 6∈ Reach(v, H)

(H, E [v{x}]) ; (H, E [v])
(R-ECheck)

Here, Reach(v, H) is the least set that satisfies the following
conditions:

x ∈ Reach(x, H)
(y ∈ Reach(v, H) ∧ y ∈ dom(H)) ⇒

FV(H(y)) ⊆ Reach(v, H)

Intuitively, Reach(v, H) is the set of variables (i.e., heap
locations) reachable from v.

Rule (R-ECheck) makes sure that if the escape analysis
were wrong, evaluation would get stuck. Now soundness of
our type system is stated as follows.

Theorem 1 (type soundness). If ∅ ` M : τ and
Use(τ) ≤ 0, then M is resource-safe.

Proof Sketch. We use a technique similar to the one
used in Kobayashi’s quasi-linear type system [18]. We intro-
duce another operational semantics to the target language—
the semantics takes into account not only how but also where
in the expression each heap value is used during evaluation.
This alternative semantics is shown to be equivalent to the
standard semantics in a certain sense and the type system
is shown to be sound with respect to the alternative se-
mantics. Interested readers are referred to a longer version
of the paper available at http://www.kb.cs.titech.ac.jp/
~kobayasi/publications.html for details.

5. A TYPE INFERENCE ALGORITHM
Let M be a closed term. By the type soundness theorem

(Theorem 1), in order to verify that all resources are used

x : (R, 2l1) ` x : (R, l1)
(T-Var)

x : (R, 2l1) ` accl1
i (x) : bool

(T-Acc)

x : (R, 2l1) ` accl1
i (x){x} : bool

(T-Now)

x : (R, l1) ` accl1
i (x){x} : bool

(T-Sub)
x : (R, 2l2) ` x : (R, l2)

(T-Var)

x : (R, 2l2), y : bool ` x : (R, l2)
(T-Sub)

x : (R, l1; 2l2) ` let y = accl1
i (x){x} in x : (R, l2)

(T-Let)

Figure 4: An Example of Type Derivation

correctly in M , it suffices to verify that ∅ ` M : τ holds for
some type τ with Use(τ) ≤ 0. In this section, we describe
an algorithm to check it.

For simplicity, we assume the following conditions.

• Escape analysis has been already performed, and an
input term is annotated with the result of the escape
analysis.

• The standard type (the part of a type obtained by re-
moving usages) of each term has been already obtained
by the usual type inference. We write ρN for the stan-
dard type of each occurrence of a term N .

• Given a usage U and a set Φ of traces, there is an al-
gorithm that verifies [[U]] ⊆ Φ. This algorithm should
be sound but may not be complete; in fact, depending
on U and how Φ is specified, the problem can become
undecidable.

Because we do not expect a complete algorithm in the third
assumption, our algorithm described below is sound but in-
complete.

Our algorithm proceeds as follows, in a manner similar to
an ordinary type inference algorithm [17, 19] for the simply-
typed λ-calculus.

Step 1 Construct a template of a derivation tree for ∅ `
M :τ , using usage variables to denote unknown usages.

Step 2 Extract constraints on the usage variables from the
template.

Step 3 Solve constraints on usage variables.

5.1 Step 1: Constructing a template of a type
derivation tree

First, we obtain syntax-directed typing rules equivalent to
the typing rules given in Section 4, so that there is exactly
one rule that matches each term. It is obtained by com-
bining each rule with (T-Sub) and removing (T-Sub). For
example, (T-App) is replaced by the following rule:

Γ1 ` M1 : (τ1 → τ2, l) Γ2 ` M2 : τ1

Γ ≤ Γ1; Γ2 τ2 ≤ τ ′2
Γ ` M1@

lM2 : τ ′2
(T-App’)

For each subterm N of an input term M , we prepare:

(i) a type τN such that all the usages in τN are fresh usage
variables, and except for the usages, τN is identical to
ρN .

(ii) a type environment ΓN such that dom(ΓN) = FV(N)
and for each x ∈ dom(ΓN), ΓN (x) is identical to τx ex-
cept for their outermost usages. The outermost usage
of ΓN (x) (i.e., Use(ΓN (x))) is a fresh usage variable.

We can construct a template of a type derivation tree, by
labeling each node with a judgment ΓN ` N : τN . For
example, consider a term f@lx where the standard type of
f is R → bool. The template is:

f : ((R, α1) → bool, α3) ` f : ((R, α1) → bool, α2)
x : (R, α5) ` x : (R, α4)

f : ((R, α1) → bool, α6), x : (R, α7) ` f@lx : bool

5.2 Step 2: Extracting constraints
In order to make the template a valid type derivation tree,

it suffices to instantiate usage variables so that the side con-
ditions of a syntax-directed typing rule are satisfied at each
derivation step. The side conditions are expressed as con-
straints on types and usages. For example, for the node
where the rule (T-App’) is applied, the side conditions can
be expressed by:

{Use(ΓM1@lM2
(x)) ≤ Use(ΓM1(x); ΓM2(x))

| x ∈ dom(ΓM1@lM2
)}

∪{domty(τM1) = τM2 , τM1M2 ≤ codty(τM1)}
Here, domty and codty is defined by: domty(τ1 → τ2, U) =
τ1 and codty(τ1 → τ2, U) = τ2.

Let CS be the set of constraints obtained by gathering the
side conditions for every node of the template, plus the con-
straint Use(τM) ≤ 0. Then, a substitution θ for usage vari-
ables satisfies CS if and only if the derivation tree obtained
by applying θ to the template is a valid type derivation tree.
Therefore, the problem of deciding whether ∅ ` M : bool
holds is reduced to the problem of deciding whether CS is
satisfiable.

We can reduce the constraints on types and obtain the
following set of constraints on usages:

{α1 ≤ U1, . . . , αn ≤ Un} ∪ {[[U ′1]] ⊆ Φ1, . . . , [[U
′
m]] ⊆ Φm}

We can assume without loss of generality that α1, . . . , αn

are distinct usage variables, because α ≤ U1 ∧ α ≤ U2 holds
if and only if α ≤ U1 & U2 holds.

5.3 Step 3: Solving constraints
Given the set of constraints {α1 ≤ U1, . . . , αn ≤ Un} ∪

{[[U ′1]] ⊆ Φ1, . . . , [[U
′
m]] ⊆ Φm}, we can eliminate the first

set of constraints by repeatedly applying the transformation:
CS∪{α ≤ U} =⇒ [µα.U/α]CS . Then, we check whether the
remaining set of constraints is satisfied (using the algorithm
stated in the third assumption).

5.4 Properties of the Algorithm
The above algorithm is relatively sound and complete with

respect to an algorithm to judge [[U]] ⊆ Φ: The former is
sound (complete, resp.) if the latter is sound (complete,
resp.). Note that in the step 3 above, we are using the fact
that µα.U is the least solution of α ≤ U in the sense that
U ′ ≤ [U ′/α]U implies [[µα.U]] ⊆ [[U ′]].

Suppose that the size of the standard types ρN of sub-
terms is bound by a constant. Then, computational cost
of the above algorithm, excluding the cost for checking the
validity of constraints of the form [[U]] ⊆ Φ, is quadratic
in the size n of an input term. Note that the size of each
constraint set C(N) in Step 2 is O(n). So, the size of the set
CS of all constraints is O(n2). It is reduced to constraints
on usages in O(n2) steps and the size of the resulting con-
straints in Step 2 is also O(n2). Therefore, the total cost
of the algorithm is O(n2). Actually, we expect that we can
remove the assumption that the size of standard types is
bound, by performing inference of standard types and that
of usages simultaneously, in a manner similar to [19].

We assumed above that a whole program is given as an
input. It is not difficult to adapt our algorithm to perform
a modular analysis: The first and second steps of extract-
ing and reducing constraints can be applied to open terms.
The third step can also be partially performed, because con-
straints on a usage variable α can be solved when we know
that no constraint on α is imposed by the outside of the
program being analyzed.

5.5 Examples
We give examples of our analysis. We omit annotations

on escape information below, but assume that terms of type
bool are appropriately annotated with escape information
(as in (acclI

1 (r)){r}, (f@l2r){r}).

Example 9. Let us consider the program in Example 1.
Let the types of f and r in writelI (x); f@l2r be ((R, αx) →
bool, αf) and (R, αr). Then, we get the following con-
straints on usage variables αx, αr, and αf :

{αx ≤ lR; (lF & (lW ; αx)), αr ≤ lI ; αx, αf ≤ l2}
By solving this, we know that the usages of r and f in
the whole program are lI ; µαx.(lR; (lF & (lW ; αx))) and l2 .
µα.((0 & l1) . α). The usage of r implies that r is first ini-
tialized, read and written several times, and then deallocated.

Example 10. Let us consider the following program:

let f = fixΦf (f, x, if readlR(x) then true
else (pushlP ush(x); f@l1x;poplP op(x))) in

let r = newΦr () in f@l2r

The usage of r, inferred in a manner similar to the above
example, is µα.(lR; (0 & (lPush; α; lPop))). It implies that r
is accessed in a stack-like manner: Each access push is fol-
lowed by an access pop. This kind of access pattern appears
in stacks, JVM lock primitives [2], memory management
with reference counting [29] (counter increment corresponds
to push and decrement to pop).

Example 11. Let us consider the following program:

let f = fixΦf (f, g, g@l1true; f@l2g)
let r = newΦr () in f@l3λΦg x.readlr (r)

It first creates a new resource r, and passes to f a func-
tion to access the resource. f calls the function repeatedly,
forever. Let the types of f and r in f@l3λΦg x.readlr (r) be
((bool → bool, αg) → bool, αf) and (R, αr). Then, we get
the following constraints on αg and αr:

{αg ≤ l1; αg, αr ≤ 2(αg ¯ lr)}.
From this, we get:

αg = µα.(l1; α), αr = (µα.(l1; α))¯ lr(= µα.(lr; α))

So, we know that r is accessed at lr infinitely many times.
(As a by-product, we also know that the program never ter-
minates, because no trace in [[αr]] contains ↓.)

6. EXTENSIONS
Polymorphism and subtyping As in other type-based
analysis, polymorphism on types and usages improves the
accuracy of our analysis. Consider the following program:

let f = λΦx.(accl1
1 (x); x) in (accl2

2 (f@l4y);accl3
3 (f@l5z))

There are two calls of f . The return value of the first call is
used at l2 and that of the second call is used at l3. So,
the best type we can assign to f is ((R, l1; (l2 & l3)) →
(R, l2 & l3), l4; l5), and the type of y is (R, l1; (l2 & l3)).
If we introduce polymorphism, we can give f a type
∀α.((R, l1; α) → (R, α), l4; l5), and we can assign a more ac-
curate type (R, l1; l2) to y. Similarly, our analysis becomes
more precise if we relax the subtype relation (see Remark 2).

Dependencies between different variables Our type-
based analysis is imprecise when there is an alias. For ex-
ample, consider the following program:

(let y = x in (accl1
1 (x);accl2

2 (y))){x}

The type inferred for x is (R, (2l2; l1)) (which is equiv-
alent to (R, l2 ⊗ l1)). So, we lose information that x
is actually used at l1 and then at l2. The problem is
that a type environment is just a binding of variables to
types and it does not keep track of the order of accesses
through different variables. To solve the problem, we can
extend type environments, following our generic type sys-
tem for the π-calculus [15]. For example, the type envi-

ronment of the expression accl1
1 (x);accl2

2 (y) can be repre-
sented as x : (R, l1); y : (R, l2), which means that x is ac-
cessed at l1, and then y is accessed at l2. Then, we can
obtain the type environment of the whole expression by:
[x/y](x : (R, l1); y : (R, l2)) = x : (R, l1; l2).

Combination with region inference Regions and ef-
fects [3, 25] are also useful to improve the accuracy of

the analysis. Consider a term (λ{l3}y.accl1
1 (x))@l3accl2

2 (x).
The best type we can assign to x is (R, 2l1; l2), al-
though the term is computationally equivalent to let y =
accl2

2 (x) in accl1
1 (x). The problem is that rule (T-Abs)

loses information that free variables in λΦx.M are accessed
only after the function is applied.

We can better handle this problem using region and ef-
fect systems [3, 25]. Let us introduce a region to express
a set of resources, and let r be the region of the resource
x above. Then, we can express the type of λ{l3}y.accl1

1 (x)

as bool
rl1−→ bool, where the latent effect rl1 means that

a resource in region r is accessed at l1 when the function

is invoked. Using this precise information, we can obtain
rl2 ; rl1 as the effect of the whole expression.

A problem of the above method is that since the effect
rl2 ; rl1 tells only that some resource in region r is accessed
at l2 and then some resource in region r is accessed at l1,
we don’t know whether x is indeed accessed at l1 and l2
if r represents multiple resources. Multiple resources are
indeed aliased to the same region, for example, when they
are passed to the same function:

let x = new() in let y = new() in (f(x), f(y))

A common solution to this problem is to use region poly-
morphism, existential types, etc. [5, 25, 28], at the cost of
complication of type systems.

We are currently studying a method to combine our analy-
sis with region/effect systems to take the best of both worlds.
The resulting analysis would no longer require a separate es-
cape analysis, because region/effect information subsumes
escape information.

Recursive data structures It is not difficult to extend
our type-based analysis to deal with recursive data struc-
tures like lists. For example, we can write (R, U) list for
the type of a list of resources used according to U . (Note
that in DeLine and Fähndrich’s type system [5], existential
types are required to express similar information.) The rules
for constructing and destructing lists can be given as:

Γ1 ` M1 : τ Γ2 ` M2 : τ list

Γ1; Γ2 ` M1 :: M2 : τ list

Γ1 ` M1 : τ list
Γ2 ` M2 : τ ′ Γ3, x : τ, y : τ list ` M3 : τ ′

Γ1; (Γ2 & Γ3) ` case M1 of nil ⇒ M2 | x :: y ⇒ M3 : τ ′

If we are also interested in how cons cells are accessed, we
can further extend the list type to ((R, U1) list, U2), which
means that each cons cell is accessed according to U2.

7. RELATED WORK
The goal of the present work is close to that of DeLine

and Fähndrich’s Vault programming language [5]. Vault’s
type system keeps track of the state (called a key) of a re-
source. The state of a resource determines what operations
can be performed on the resource, and the state changes af-
ter operations are performed. Therefore, keys in their type
system roughly correspond to usages in our type-based usage
analysis. A main difference is that our analysis automati-
cally gather information on resource usage, while their type
system requires programmers’ explicit type annotations (in-
cluding keys) to guide an analysis. In fact, Vault’s type sys-
tem seems rather complicated (it requires existential types,
etc.), and unsuitable for type inference. On the other hand,
annotation of trace sets (Φ) in our framework is only used to
declare valid access sequences. This declaration is necessary
because the valid access sequences vary depending on the
type of each resource. Typically, declaration of a trace set
needs to be done only once for each kind of resource. For
example, the following program defines new ro and new rw
as functions to create a read-only file and a read-write file
respectively:

let new ro = λx.new(l∗RlC ↓)]

() in

let new rw = λx.new((lR+lW)∗lC ↓)]

() in · · ·

Here, we assume that the primitives for reading, writing,
and closing a file are annotated with lR, lW , and lC , respec-
tively. Another difference is that resources can have only
finite states in Vault, while we can express possibly infinite
states (recall Example 10).

Technical ideas of our type-based analysis are similar to
the quasi-linear type system [18] for memory management
and type systems for concurrent processes (especially, those
for deadlock-free processes) [15, 20, 21, 24]. The quasi-linear
type system distinguishes between candidates for the last ac-
cess (labeled with 1) to a heap value and other accesses (la-
beled with δ or ω), and guarantees that heap values judged
to be quasi-linear are never accessed after they are accessed
by an operation labeled with 1. Similar typing rules are
used to keep track of the access order (although the details
are different). The idea of usage expressions was borrowed
from type systems for concurrent processes [15, 20, 21, 24].
In those type systems, usage expressions express how each
communication channel is used.

As mentioned in Section 1, many pieces of previous work
on memory management, safe locking, etc. are related with
our resource usage analysis problem. We remark on some of
them below; Detailed comparison of our type-based analysis
with previous work is left for future work.

The problem of linearity analysis [11, 26, 27, 30] can be
viewed as an instance of the resource usage analysis problem:
By removing information on label names and access order
from usage information, we get linearity information. Our
type-based analysis subsumes the linear type system of [13].

Among previous work on region-based memory manage-
ment, most closely related would be Walker et al’s work [28,
29]. Given programs explicitly annotated with region op-
erations, their type system checks the safety of the region
operations through a type system. (On the other hand, most
of other work on region-based memory management [1, 3,
25] inserts region operations automatically.) However, un-
like in our type-based usage analysis, programs have to be
explicitly annotated with type information that guides the
program analysis in their type system.

Freund and Mitchell [9] proposed a type system for Java
bytecode, which guarantees that every object is initialized
before being used. Although the problem of checking this
property is an instance of the usage analysis problem, our
type-based analysis presented in Section 4 is not powerful
enough to guarantee the same property. The main difficulty
is that in typical Java bytecode, a pointer to an uninitialized
object is duplicated into two pointers, one of which is used
to initialize the object, and then the other is used to access
the object. To deal with this, our analysis must be extended
to keep track of dependencies between different variables, as
mentioned in Section 6.

8. CONCLUSION
We have formalized a resource usage analysis problem as

generalization of various program analysis problems con-
cerning resource access order. Our intention is to provide
a uniform view for various problems attacked individually
so far, and to stimulate development of general methods to
solve those problems. As a starting point towards devel-
opment of general methods for resource usage analysis, we
have also presented a type-based method.

A lot of work is left for future work. In order to deal
with various kinds of resources and programming styles, it is

probably necessary to extend our type-based method as dis-
cussed in Section 6. In fact, our current type-based method
does not subsume many solutions proposed for individual
problems [9, 28]. It is also left for future work to choose
a language appropriate to specify valid trace sets (Φ), and
design a practically good algorithm to check that inferred
usages conform to the specification (i.e., [[U]] ⊆ Φ). As a
specification language for trace sets, we are currently plan-
ning to use shuffle expressions [10, 16] or context-free gram-
mars. (Note that regular expressions are a little too weak
to express access patterns like that in Example 10.)

We used the call-by-value simply-typed λ-calculus as a
target language of our type-based analysis. It would be in-
teresting to develop a method for usage analysis for other
languages such as imperative languages, low-level languages
(like assembly languages and bytecode languages), and lazy
functional languages. A rather different method may be
necessary to analyze those languages.

Acknowledgment
We would like to thank Haruo Hosoya, Tatsuro Sekiguchi,
and Eijiro Sumii for discussions and comments.

9. REFERENCES
[1] A. Aiken, M. Fähndrich, and R. Levien. Improving

region-based analysis of higher-order languages. In
Proc. of PLDI, pages 174–185, 1995.

[2] G. Bigliardi and C. Laneve. A type system for JVM
threads. In Proc. of 3rd ACM SIGPLAN Workshop on
Types in Compilation (TIC2000), 2000.

[3] L. Birkedal, M. Tofte, and M. Vejlstrup. From region
inference to von neumann machines via region
representation inference. In Proc. of POPL, pages
171–183, 1996.

[4] B. Blanchet. Escape analysis: Correctness, proof,
implementation and experimental results. In Proc. of
POPL, pages 25–37, 1998.

[5] R. DeLine and M. Fähndrich. Enforcing high-level
protocols in low-level software. In Proc. of PLDI,
pages 59–69, 2001.

[6] E. A. Emerson. Temporal and modal logic. In J. V.
Leeuwen, editor, Handbook of Theoretical Computer
Science Volume B, chapter 16, pages 995–1072. The
MIT press/Elsevier, 1990.

[7] C. Flanagan and M. Abadi. Object types against
races. In CONCUR’99, LNCS 1664, pages 288–303.
Springer-Verlag, 1999.

[8] C. Flanagan and M. Abadi. Types for safe locking. In
Proc. of ESOP 1999, LNCS 1576, pages 91–108, 1999.

[9] S. N. Freund and J. C. Mitchell. The type system for
object initialization in the Java bytecode language.
ACM Trans. Prog. Lang. Syst., 21(6):1196–1250, 1999.

[10] J. Gischer. Shuffle languages, Petri nets, and
context-sensitive grammars. Comm. ACM,
24(9):597–605, 1981.

[11] J. Gustavsson and J. Svenningsson. A usage analysis
with bounded usage polymorphism and subtyping. In
Proceedings of IFL’00, Implementation of Functional
Languages, LNCS 2011, pages 140–157, 2000.

[12] J. Hannan. A type-based analysis for stack allocation
in functional languages. In Proceedings of SAS’95,
LNCS 983, pages 172–188, 1995.

[13] A. Igarashi and N. Kobayashi. Garbage collection
based on a linear type system. In Proc. of 3rd ACM
SIGPLAN Workshop on Types in Compilation
(TIC2000), 2000.

[14] A. Igarashi and N. Kobayashi. Type reconstruction for
linear pi-calculus with I/O subtyping. Info. Comput.,
161:1–44, 2000.

[15] A. Igarashi and N. Kobayashi. A generic type system
for the pi-calculus. In Proc. of POPL, pages 128–141,
2001.

[16] J. Jȩdrzejowicz and A. Szepietowski. Shuffle languages
are in P. Theor. Comput. Sci., 250(1-2):31–53, 2001.

[17] P. C. Kanellakis, H. G. Mairson, and J. C. Mitchell.
Unification and ML Type Reconstruction. In J.-L.
Lassez and G. D. Plotkin, editors, Computational
Logic: Essays in Honor of Alan Robinson, pages
444–478. The MIT Press, 1991.

[18] N. Kobayashi. Quasi-linear types. In Proc. of POPL,
pages 29–42, 1999.

[19] N. Kobayashi. Type-based useless variable
elimination. In Proc. of PEPM, pages 84–93, 2000.

[20] N. Kobayashi. Type systems for concurrent processes:
From deadlock-freedom to livelock-freedom,
time-boundedness. In Proc. of IFIP International
Conference on Theoretical Computer Science
(TCS2000), LNCS 1872, pages 365–389, 2000.

[21] N. Kobayashi, E. Sumii, and S. Saito. An
implicitly-typed deadlock-free process calculus. In
Proc. of CONCUR2000, LNCS 1877, pages 489–503.
Springer-Verlag, 2000.

[22] G. Morrisett, M. Felleisen, and R. Harper. Abstract
models of memory management. In Proc. of
Functional Programming Languages and Computer
Architecture, pages 66–76, 1995.

[23] F. Nielson, H. R. Nielson, and C. Hankin. Principles
of Program Analysis. Springer-Verlag, 1999.

[24] E. Sumii and N. Kobayashi. A generalized
deadlock-free process calculus. In Proc. of Workshop
on High-Level Concurrent Language (HLCL’98),
ENTCS 16(3), pages 55–77, 1998.

[25] M. Tofte and J.-P. Talpin. Implementation of the
call-by-value lambda-calculus using a stack of regions.
In Proc. of POPL, pages 188–201, 1994.

[26] D. N. Turner, P. Wadler, and C. Mossin. Once upon a
type. In Proceedings of Functional Programming
Languages and Computer Architecture, pages 1–11,
1995.

[27] P. Wadler. Linear types can change the world! In
Programming Concepts and Methods. North Holland,
1990.

[28] D. Walker, K. Crary, and J. G. Morrisett. Typed
memory management via static capabilities. ACM
Trans. Prog. Lang. Syst., 22(4):701–771, 2000.

[29] D. Walker and K. Watkins. On linear types and
regions. In Proc. of ICFP, 2001.

[30] K. Wansbrough and S. L. P. Jones. Once upon a
polymorphic type. In Proc. of POPL, pages 15–28,
1999.

