
Variant Parametric Types:
A Flexible Subtyping Scheme for Generics

ATSUSHI IGARASHI

Kyoto University

and

MIRKO VIROLI

Alma Mater Studiorum – Università di Bologna

We develop the mechanism of variant parametric types, as a means to enhance synergy between

parametric and inclusion polymorphism in object-oriented programming languages. Variant para-

metric types are used to control both subtyping between different instantiations of one generic
class and the accessibility of their fields and methods. On one hand, one parametric class can be

used to derive covariant types, contravariant types, and bivariant types (generally called variant

parametric types), by attaching a variance annotation to a type argument. On the other hand,
the type system prohibits certain method/field accesses according to variance annotations, when

those accesses may otherwise make the program unsafe. By exploiting variant parametric types,

a programmer can write generic code abstractions working on a wide range of parametric types
in a safe way. For instance, a method that only reads the elements of a container of numbers can

be easily modified so as to accept containers of integers, floating point numbers, or any subtype
of the number type.

Technical subtleties in typing for the proposed mechanism are addressed in terms of an intuitive

correspondence between variant parametric types and bounded existential types. Then, for a
rigorous argument of correctness of the proposed typing rules, we extend Featherweight GJ—an

existing formal core calculus for Java with generics—with variant parametric types and prove type

soundness.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions

and Theory; D.3.2 [Programming Languages]: Language Classifications—Object-oriented lan-
guages; D.3.3 [Programming Languages]: Language Constructs and Features—Classes and

objects; Polymorphism; F.3.3 [Logics and Meaning of Programs]: Studies of Program Con-

structs—Object-oriented constructs; Type structure

General Terms: Design, Languages, Theory

Additional Key Words and Phrases: generic classes, Java, language design, language semantics,
subtyping, variance

This is a revised and extended version of the paper titled “On Variance-Based Subtyping for Para-

metric Types” in Proceedings of the 16th European Conference on Object-Oriented Programming

(ECOOP2002), Springer LNCS vol. 2374, pages 441–469, 2002. This work was supported in part
by Grant-in-Aid for Scientific Research for Young Scientists (B) No. 13780203 and by Grant-in-

Aid for Scientific Research on Priority Areas Research No. 13224013, both from MEXT of Japan
(Igarashi), and from the Italian PRIN 2004 Project “Extensible Object Systems” (Viroli).
Authors’ addresses: A. Igarashi, Graduate School of Informatics, Kyoto University, Yoshida-

Honmachi, Sakyo-ku, Kyoto 606-8501, Japan; email: igarashi@kuis.kyoto-u.ac.jp; M. Viroli, DEIS,

Università di Bologna, via Venezia 52, 47023 Cesena (FC), Italy; email: mirko.viroli@unibo.it.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1–51.

2 · A. Igarashi and M. Viroli.

1. INTRODUCTION

1.1 Background

The recent development of high-level constructs for object-oriented languages is
witnessing renewed interest in the design, implementation, and applications of para-
metric polymorphism—also known as generics. Such an interest has been growing
mostly due to the emergence and development of the Java programming language.
Initially, Java’s designers decided to avoid generic features, and to provide pro-
grammers only with inclusion (or subtyping) polymorphism, supported by inher-
itance. However, as Java was used to build large-scale applications, it became
clear that the introduction of parametric polymorphism would have significantly
enhanced programmers’ productivity, as well as the readability, maintainability,
and safety of programs. Since then, a number of extensions were proposed ([Oder-
sky and Wadler 1997; Bracha et al. 1998; Cartwright and Steele Jr. 1998; Vi-
roli and Natali 2000; Viroli 2003; Myers et al. 1997; Agesen et al. 1997] to cite
some): Sun Microsystems announced a call for proposals for adding generics to the
Java programming language [Sun Microsystems 1998], and finally, Bracha, Oder-
sky, Stoutamire, and Wadler’s GJ [Bracha et al. 1998] was chosen as the refer-
ence implementation technique for the recent release of Java with generics (JDK
5.0, http://www.java.sun.com). Other than Java, more recently an extension
of Microsoft’s .NET Common Language Runtime (CLR) with generics has been
studied [Syme and Kennedy 2001].

Given this growing interest in generics, we believe that studying its language
constructs will play a key role in increasing the expressiveness of mainstream pro-
gramming languages such as Java and C#. In this article, we explore a technique
to enhance the synergy between parametric and inclusion polymorphism, with the
goal of increasing expressiveness and reuse in object-oriented languages supporting
generics.

1.2 Previous Approaches to Subtyping for Generic Types

In most of current mainstream object-oriented languages—such as Java, C++,
and C#—inclusion polymorphism is supported only through inheritance: class C is
considered a subtype of class D if and only if C is declared to be a subclass of D. Ex-
tensions of these languages with generics usually adopt a subtyping scheme called
pointwise subtyping, which is a straightforward extension of the monomorphic set-
ting above: for instance, provided that class Stack<X> is a subclass of Vector<X>
(where X is a type parameter) a parametric type Stack<String> is a subtype of
Vector<String>; similarly for any type argument. Pointwise subtyping, however,
never allows two instantiations of one generic class to be in the subtyping rela-
tion. For example, Vector<Integer> and Vector<Number> are not related with
pointwise subtyping.

Historically, most of well-known attempts to introduce another subtyping scheme
for generics were based on the notion of variance, which is used to define a subtype
relation between different instantiations of the same generic class. Basically, a
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 3

generic class C<X> is said to be covariant with respect to X if S <: T implies C<S> <:
C<T> (where <: denotes the subtyping relation), and conversely, C<X> is said to be
contravariant with respect to X, if S <: T implies C<T> <: C<S>. Also, C<X> is said
to be invariant when C<S> <: C<T> holds only if S = T. A familiar example of
covariant parametric types is array types in Java, in which, String[] is a subtype
of Object[] since String is a subtype of Object. Naive introduction of covariant
subtyping, however, makes the type system unsound. For example, given a variable
v of type Object[], it may be unsafe to update an element of v with a new Object,
because v may actually point to an array of strings—but side-effecting features are
not the only source of unsoundness, even purely functional GJ would be unsafe if
covariant subtyping was allowed. As a result, Java arrays require every assignment
to an array to be checked at run-time: if an incompatible value is to be assigned,
an exception will be thrown.

There have been a number of proposals [Cook 1989; America and van der Linden
1990; Bracha and Griswold 1993; Bracha 1996] for a sound type system for generics
with variance, and most of them take a similar approach: in short, covariance and
contravariance can be permitted under certain constraints on the occurrences of
type variable X within C<X>’s signature. For example, for a generic class C<X> to
be covariant, X must not appear in an argument type or in a type of a writable
instance variable and so on. Conversely, in order for C<X> to be contravariant, X
must not appear in a return type or in a type of a readable instance variable. Those
restrictions are often understood in connection with readability and writability of
instance variables. For example, consider a generic collection class whose element
type is abstracted as a type parameter; typically, such a class can be covariant if it
provides methods only to read elements, while it can be contravariant if it provides
methods only to write elements.

This approach, which works in principle, actually turns out to pose some diffi-
culty in practice. Since variance can be obtained by prohibiting the declaration of
possibly dangerous operations, programmers will face a tradeoff between a rich set
of subtypes thanks to variance and a rich set of methods in a class. Even worse,
this scheme for variance would decrease reusability: one may be forced to declare
three very similar classes (or interfaces) for any kind of collection—an invariant
one with methods for both reading and writing elements, a covariant one obtained
by dropping methods for reading, and a contravariant one obtained by dropping
methods for writing.

1.3 Our Approach

Our approach here is to let programmers defer the decision about which variance is
desirable until a class is employed, rather than when it is declared. To put it more
concretely, for any type argument T, a parametric class C<X> may be used to derive
the type C<T>, which is invariant as usual, but also the types C<+T> and C<-T>,
which are respectively covariant and contravariant; in exchange for variance, certain
(potentially unsafe) member accesses through C<+T> and C<-T> are forbidden. In
the case of collection classes above, only methods to read elements are accessible via
covariant types and only methods to write elements are accessible via contravariant
ones. In other words, our approach amounts to restrict accessibility—rather than
definability—of members of a class by implicit interfaces automatically derived

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 · A. Igarashi and M. Viroli.

by the annotations + and -. As a result, it is expected that class designers are
released from the burden of taking variance into account and, moreover, class reuse
is promoted since one class can be used to derive read-only covariant and write-only
contravariant interfaces.

The idea of annotating type arguments for covariance has emerged in the study of
structural virtual types [Thorup and Torgersen 1999], where a possible application
of the idea to generic classes is pointed out. However, a rigorous treatment of
the problem—including the study of contravariance, the integration with other
language features such as inheritance, and the development of a type system—was
still lacking, so it remained unclear how this approach to variance would successfully
work in a full-blown language design.

1.4 Contributions

We develop the idea above into the mechanism of variant parametric types1 for
possible application to widely disseminated, modern object-oriented languages such
as Java and C#. Our contributions are summarized as follows:

—We propose a more general subtyping scheme for variance than what has been
proposed in the literature: in particular, in the attempt of integrating covari-
ance and contravariance we find it useful to add bivariance—the property that
two different instantiations are in a subtyping relation regardless of their type
arguments, denoted by annotation symbol *.

—We demonstrate the usefulness of variant parametric types by means of examples.
Most notably, they are used to extend the set of acceptable arguments to a
method, when it uses arguments in certain disciplined manners. Furthermore,
we show that variance is effective also for nested parametric types, such as vectors
of vectors.

—We point out an intuitive correspondence between variant parametric types and
bounded existential types [Mitchell and Plotkin 1988; Cardelli and Wegner 1985]
and give a rationale of design decisions on typing, in terms of the correspondence.
In fact, although variant parametric types are fairly easy to understand in most
basic uses, they introduce some surprising subtlety, especially when they are
nested. Notice that previous work on variance [Thorup and Torgersen 1999; Cook
1989; America and van der Linden 1990; Bracha and Griswold 1993; Bracha 1996]
does not address the interaction with nested parametric types in a satisfactory
manner—even though this case often arise in practice—making the whole safety
argument unclear.

—Basing on Featherweight GJ—a generic version of Featherweight Java [Igarashi
et al. 2001a]—we define a formal core language of variance with its syntax, type
system, and operational semantics, and prove type soundness.

For the sake of concreteness, we mostly use Java-like notations for the discussion
but believe that the idea itself can be applied, possibly with a few adaptations,

1The phrase “variant parametric types” may be confused with “variant types,” which usually
refers to disjoint (or tagged) union types, such as datatypes in ML and Haskell, or variant records

in Pascal. We use “variant” for a different meaning, that is, generalization of the four words:
invariant, covariant, contravariant, and bivariant.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 5

to other class-based object-oriented languages with nominal type systems as in
Java, Eiffel, or C#. Compared to the result presented in the early version of this
article [Igarashi and Viroli 2002], we have extended the core calculus with generic
methods and provided a type soundness proof for the extended calculus and more
detailed comparisons with other related language mechanisms.

At the time of writing, the mechanism proposed in this article is developed into
wildcard types [Torgersen et al. 2004], shipped with JDK 5.0, an official release of the
Java programming language by Sun Microsystems—a few syntactic and semantic
differences with respect to our proposal are described in Section 6.

1.5 Outline of the Article

The remainder of the article is organized as follows. In Section 2, the classical
approach to variance for parametric classes is briefly outlined. Section 3 informally
presents the language construct of variant parametric types, addresses its design
issues, and demonstrates the applicability and usefulness through examples. Sec-
tion 4 elaborates the interpretation of variant parametric types as a form of bounded
existential types, gives a rationale of the basic design, and discusses subtleties of
typing. Section 5 presents the core calculus for variant parametric types and proves
the soundness of its type system. Section 6 discusses related work and Section 7
presents concluding remarks and perspectives on future work.

2. CLASSICAL APPROACH TO VARIANCE FOR PARAMETRIC CLASSES

Historically, one main approach to flexible inclusion polymorphism for generics
was through the mechanism of variance for classes, which, in spite of several at-
tempts [Meyer 1986; America and van der Linden 1990; Cook 1989; Bracha and
Griswold 1993; Bracha 1996; Cartwright and Steele Jr. 1998], was not really
adopted in widely disseminated object-oriented languages, such as Java and C++.
In this section, we review the approach and discuss its limitations.

As mentioned above, a generic class C<X> is said to be covariant in the type
parameter X when the subtype relation C<S> <: C<T> holds if S <: T. Conversely,
C<X> is said to be contravariant in X when C<S> <: C<T> holds if T <: S. General
notions of bivariance and invariance can be defined as well. C<X> is said to be
bivariant in X when C<S> <: C<T> for any S and T. C<X> is said to be invariant in
X when C<S> <: C<T> holds only when S = T. Since variance is a property of each
type parameter of a generic class, all these definitions can be easily extended to
generic classes with more than one type parameter.

In principle, a generic class can be assigned any variance property by the type
system but some of them could be unsafe, as array types in Java demonstrate. Java
arrays can be considered a generic class from which the element type is abstracted
out as a type parameter—e.g., types Object[] and String[] could be seen as
types Array<Object> and Array<String> where Array is a special system class.
The Java type system associates to the array types the covariance property—e.g.,
String[] is a subtype of Object[]. However, since arrays provide the operation to
update their content, even a well-typed program can lead to a run-time exception,
as the following Java code shows:

Object[] o = new String[]{"1","2","3"};

o[0] = new Integer(1); // Throws a java.lang.ArrayStoreException

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 · A. Igarashi and M. Viroli.

The first statement is permitted because of covariance. The second is also statically
accepted, because Integer is a subtype of Object. When the code is executed,
however, an exception java.lang.ArrayStoreException is thrown: the bytecode
interpreter tries to insert an Integer instance to where a String instance is actually
expected. Moreover, the need for run-time checks to intercept wrong insertions of
elements considerably slows down the performance of Java arrays.

The problem of understanding when covariance, contravariance and bivariance
can be used for a generic class in a safe way has received some interest. Previous
work [Cook 1989; America and van der Linden 1990; Bracha and Griswold 1993;
Bracha 1996] proposed to pose restrictions on how a type variable can appear in
a class definition, according to its variance. Those restrictions are derived from
Liskov’s substitution principle [Liskov 1988]—for a type S to be safely considered
a subtype of T, an instance of S can be passed to where an instance of type T is
expected without incurring additional run-time errors. When a class is covariant
in the type parameter X, for instance, X should not appear as type of a public (and
writable) field or as an argument type of any public method. Conversely, in the
contravariant case, X should not appear as type of a public (and readable) field or
as return type of any public method. For example, the following class (written in
a GJ-like language [Bracha et al. 1998])

class Pair<X extends Object, Y extends Object> extends Object {

private X fst;

private Y snd;

Pair(X fst,Y snd){ this.fst=fst; this.snd=snd; }

void setFst(X fst){ this.fst=fst; }

Y getSnd(){ return snd; }

}

can be safely considered covariant in type variable Y and contravariant in type
variable X, since Y appears only as the return type in getSnd() and X appears only
as the argument type in setFst() (except private fields and constructors). In some
existing proposals—such as Strongtalk [Bracha and Griswold 1993; Bracha 1996]
and the NextGen compiler for generics in Java [Cartwright and Steele Jr. 1998]—
one has to declare desirable variance to guide typechecking by the compiler, by
putting + (for covariance) or - (for contravariance) before the formal type variables.
Following this notation the first line of the declaration above would be:

class Pair<-X extends Object, +Y extends Object> extends Object{

It is easy to see that any type Pair<S,T> can be safely considered a subtype of
Pair<String,Number> when S is a supertype of String and T is a subtype of
Number, as the following code reveals.

Number getAndSet(Pair<String,Number> c, String s){

c.setFst(s);

return c.getSnd();

}

...

Number n = getAndSet(new Pair<Object,Integer>(null, new Integer(1)),"1");

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 7

In fact, the invocation of getAndSet() causes the string "1" to be safely passed
to setFst(), which expected an Object, and an Integer object to be returned by
getSnd(), whose return type is Number.

However, it is now commonly recognized—see e.g., Day et al. [1995]—that the
applicability of this mechanism seems not so wide as expected, since type variables
typically occur in such positions that forbid both covariance and contravariance.
Consider collection classes, the standard application of generics, and their typical
signature schema with methods for getting and setting elements, as is exemplified
in the following class Vector<X>, which can be neither covariant nor contravariant:

class Vector<X> {

private X[] ar;

Vector(int size){ ar=new X[size]; }

int size(){ return ar.length; }

// Reading elements disallows contravariance

X getElementAt(int i){ return ar[i]; }

// Writing elements disallows covariance

void setElementAt(X t,int i){ ar[i]=t; }

}

Typically, the type variable occurs as a method return type when the method is
used to extract some element of the collection, while the type variable occurs as
a method argument type when the method is used to insert new elements into
the collection. So, a generic collection class can be considered covariant only if it
represents read-only collections, and contravariant only if it represents write-only
collections. Bivariance is even more useless since it would be safely applied only to
collections whose content is neither readable nor writable.

One possible solution to this problem is to split the class for vectors into two
classes: a read-only (hence covariant) vector class ROVector<+X> and an (invariant)
subclass Vector<X> with operations to write.

class ROVector<+X> {

protected X[] ar;

ROVector(int size){ ar=new X[size]; }

int size(){ return ar.length; }

X getElementAt(int i){ return ar[i]; }

}

class Vector<X> extends ROVector<X> {

Vector(int size){ super(size); }

void setElementAt(X t,int i){ ar[i]=t; }

}

In this way, for instance, the type ROVector<Number> is not only a safe supertype
of ROVector<Integer> and ROVector<Float>, but also of Vector<Integer> and
Vector<Float>. One of the consequences of the observation above is that class
designers have to be responsible for the tradeoff between variance and available
functionality of classes together with their subclassing hierarchy.

Unfortunately, this approach—which casts a heavy burden on class designers—
does not scale up very well in practice. In order to deal with contravariance (and
bivariance) as well, a diamond structure of classes (or interfaces, if coded in Java)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 · A. Igarashi and M. Viroli.

would be required: Vector<X> can be defined by extending the covariant class (in-
terface) ROVector<+X> and the contravariant one WOVector<-X> (which provides
only the writing functionality), both extending a common base NORWVector. In par-
ticular, as the number of type parameters increases, the number of classes/interfaces
may exponentially increase, e.g. coding a pair class with two type parameters would
require a diamond structure of 16 classes. It is worth noting that all these issues
apply not only to collection classes, but also in general to classes dealing with the
production/consumption of data, such as stream classes. That is, covariance (con-
travariance) with respect to a certain type argument is safe if there are no methods
consuming (producing, resp.) objects whose static types are the corresponding type
parameter.

A solution to the applicability limitations of the classical approach is hinted in
the work on structural virtual types [Thorup and Torgersen 1999]. The idea is to
let a programmer specify whether type arguments are invariant or covariant when a
class is employed rather than when a class is defined. For covariance, the symbol + is
inserted before the actual type argument—for example, Vector< +Object> behaves
similarly to the structural virtual type Vector[X<:Object] and prohibits write
access to the vector of that type. With this syntax, where variance annotations are
moved from parametric class definitions to parametric types, the choice of a variance
property can be substantially deferred. At least, two main advantages appear to
arise from this approach: the applicability of the mechanism is widened, since
covariant (and contravariant) types can be derived from any class—independently
of how type parameters occur in the signature—and the designers of libraries are
released from the burden of making decisions about the tradeoff mentioned above.
So, in this article we generalize this idea by investigating the inclusion of covariance,
contravariance, and bivariance and develop the mechanism of variant parametric
types in a full-fledged language design.

3. VARIANT PARAMETRIC TYPES

This section introduces the basic design of variant parametric types, including sub-
typing and rules of access restriction due to variance, along with examples based
on Vector<X> from the last section. Although most of the examples are concerned
with only vectors or vectors of vectors, they can be easily generalized to other kinds
of collections, found in e.g. the Java Collection Framework, or even stream classes.
Those use cases are indeed found in the JDK 5.0 API as will be mentioned below.
(See also Section 6 for applications other than collections.)

Variant parametric types are a generalization of standard parametric (or generic)
types (such as Vector<String> and Pair<String,Integer>) where each type
parameter may be associated with a variance annotation, either +, -, or *, re-
spectively referred to as the covariance, contravariance, or bivariance annotation
symbol. A variance annotation symbol, which precedes a type parameter as in
Vector<+String>, introduces the corresponding variance to the argument posi-
tion: for example, Vector<+String> is a subtype of Vector<+Object>. Vari-
ant parametric types can be arbitrarily nested: a type parameter of a variant
parametric type can be a variant parametric type, as in Vector<+Vector<*X>>.
A parametric type where no (outermost) type argument has a variance annota-
tion is called instance type, or sometimes invariant type. Vector<String> and
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 9

Pair<Vector<+String>,Integer> are examples of instance types. Thus, objects
are instantiated by an expression of the form new C<T1,...,Tn>(...) and instance
types play the role of run-time types of objects. Note that each type argument Ti

needs not be an instance type—for example, new Vector<Vector<+Number>>(...)
is permitted. Thus, implementations of generics that reify information on type pa-
rameters so as to have an explicit representation of parametric types at run-time—
such as the type-passing compilation of LM [Viroli and Natali 2000; Viroli 2003],
the code-expansion one of NextGen [Cartwright and Steele Jr. 1998], or the hybrid
one proposed for generics in C# [Syme and Kennedy 2001]—would have to carry
explicit information on variance, too.

Unlike the classical variance described in the previous section, programmers can
derive covariant, contravariant, and bivariant types from one generic class. Safety
is achieved by restricting accesses to fields and methods, instead of constraining
their declarations. As a running example for our discussion on design issues, we
consider the class Vector reported in the previous section, along with the following
three simple methods fillFrom(), fillTo(), and sameSize().

class Vector<X extends Object>{

...

// gets elements from v

void fillFrom(Vector<+X> v, int start){

for (int i=0; i<v.size() && i+start<this.size(); i++)

this.setElementAt(v.getElementAt(i),i+start);

}

// puts elements into v

void fillTo(Vector<-X> v, int start){

for (int i=0; i<this.size() && i+start<v.size(); i++)

v.setElementAt(this.getElementAt(i),i+start);

}

// checks if v has the same size

boolean sameSize(Vector<*X> v){

return this.size()==v.size();

}

}

The intuitive idea is that, in each case, the argument v can be safely given a variant
parametric type (Vector<+X>, Vector<-X>, and Vector<*X>, respectively)—rather
than the usual invariant type Vector<X>—since safety is guaranteed by the fact
that only a subset of Vector’s methods is applied to v. In the case of method
fillFrom(), for instance, v can be safely given the covariant type Vector<+X>
for only getElementAt() is invoked on it: the type system would instead forbid
accessing the method setElementAt(). The other cases are handled similarly, as
explained below in detail.

3.1 Subtyping

A simple interpretation of a variant parametric type is given as a set of objects,
instantiated from instance types. A type C<T> can be interpreted as the set of
all objects of the form new C<T>(...); a type C<+T> can be interpreted as the
set of all objects of the form new C<S>(...) where S is a subtype of T; a type
C<-T> can be interpreted as the set of all objects of the form new C<S>(...) where

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 · A. Igarashi and M. Viroli.

S is a supertype of T; and a type C<*T> can be interpreted as the set of all ob-
jects of the form new C<S>(...) (for any S). Therefore, Vector<+Integer> <:
Vector<+Number> directly follows from inclusion of the sets they denote. More-
over, it is easy to derive subtyping between types that differ only in variance
annotations: Vector<Integer> <: Vector<+Integer> and Vector<Integer> <:
Vector<-Integer> hold, and similarly Vector<+Integer> <: Vector<*Integer>
and Vector<-Integer> <: Vector<*Integer>. In summary, Figure 1 shows the
subtyping relation for the class Vector and type arguments Object, Number, and
Integer (under the usual subtyping relation: Integer <: Number <: Object). In
general, a variant parametric type can be used as a common supertype for many
different instantiations of the same generic class.

Consider the examples of methods fillFrom(), fillTo(), and sameSize(), and
the following definitions (where we further suppose Float <: Number):

Vector<Number> v = new Vector<Number>(30);

Vector<Integer> vi = new Vector<Integer>(10);

Vector<Number> vn = new Vector<Number>(10);

Vector<Float> vf = new Vector<Float>(10);

Vector<Object> vo = new Vector<Object>(10);

Since Vector<Number>, Vector<Integer>, and Vector<Float> are subtypes of the
type Vector<+Number>, we are allowed to store numbers taken from either vn, vi,
and vf into v by method fillFrom():

v.fillFrom(vi,0); // Vector<Integer> <: Vector<+Number>

v.fillFrom(vn,10); // Vector<Number> <: Vector<+Number>

v.fillFrom(vf,20); // Vector<Float> <: Vector<+Number>

Here, notice that the applicability of method fillFrom() is clearly widened, as a
larger set of vectors can be passed to it in a uniform way thanks to the covariant ar-
gument type Vector<+X>. Dually, because Vector<Number> and Vector<Object>
are subtypes of Vector<-Number>, we can use fillTo() to store the numbers of v
in both the vector vn of numbers and the vector vo of objects:

v.fillTo(vn,0); // Vector<Number> <: Vector<-Number>

v.fillTo(vo,0); // Vector<Object> <: Vector<-Number>

In this case, the applicability of the method is widened, too, by using the con-
travariant type Vector<-X> as argument type. Finally, by virtue of the bivariant
type Vector<*X> we are allowed to check whether any two vectors have the same
size through method sameSize():

v.sameSize(vn) // Vector<Number> <: Vector<*Number>

v.sameSize(vo) // Vector<Object> <: Vector<*Object> <: Vector<*Number>

v.sameSize(vi) // Vector<Integer> <: Vector<*Integer> <: Vector<*Number>

vf.sameSize(vi) // Vector<Integer> <: Vector<*Number> <: Vector<*Float>

In general, subtyping for variant parametric types is defined as follows. We use
the metavariable v for variance annotations and use o to mean empty (i.e., invariant)
variance annotation. Suppose C is a generic class that takes n type arguments, and
S and T (possibly with subscripts) are types.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 11

Vector<Object>

Vector<-Object>

Vector<+Object>

Vector<*Object>

Vector<Number>

Vector<-Number>

Vector<+Number>

Vector<*Number>

Vector<Integer>

Vector<-Integer>

Vector<+Integer>

Vector<*Integer>

Vector<*>

Fig. 1. Subtyping graph of variant parametric types

—The following subtype relation holds that involves variant parametric types dif-
fering just in the variance annotation symbol on one type parameter:

C< . . . ,v1T, . . . > <: C< . . . ,v2T, . . . > if v1 ≤ v2

where o ≤ + ≤ * and o ≤ - ≤ *. (Strictly speaking, the ellipses are abused to
mean that the ones before/after v1T and v2T denote the same sequence of types.)

—The following relations hold that involve variant parametric types differing in the
instantiation of just one type parameter:

C< . . . , S, . . . > <: C< . . . , T, . . . > if S <: T and T <: S
C< . . . ,+S, . . . > <: C< . . . ,+T, . . . > if S <: T
C< . . . ,-S, . . . > <: C< . . . ,-T, . . . > if T <: S
C< . . . ,*S, . . . > <: C< . . . ,*T, . . . > for any S and T

Note that the subtyping relation is not anti-symmetric due to the last rule:
Vector<*Object> and Vector<*Integer> are subtypes of each other but not
(syntactically) equal.

—Other cases of subtyping between different instantiations of the same generic
class can be obtained by the above ones through transitivity. For example, the
relation Pair<String,String> <: Pair<+Object,-String> can be inferred from

Pair<String,String> <: Pair<String,-String>

Pair<String,-String> <: Pair<+String,-String>

Pair<+String,-String> <: Pair<+Object,-String>.

In what follows, the type argument following * is often omitted by simply writing
e.g. Vector<*> (denoted by the dotted oval in Figure 1): whatever comes after *
does not have impact on subtyping, due to bivariance, and similarly for member
access restriction as discussed below. In fact, this is also the syntax we propose for
an actual language extension featuring variant parametric types. (However, we still
use the notation *T when the type system is introduced in Section 5: its syntactic
uniformity makes it easy to formalize typing rules.)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 · A. Igarashi and M. Viroli.

We conclude this discussion by considering inheritance-based subtyping and its
relationship with variance. Subtyping between variant parametric types obtained
from different generic classes can be understood by combining the above interpre-
tation of “types as sets of instances” and usual pointwise subtyping. Suppose the
following subclass of Pair:

class Twin<X> extends Pair<X,X> { ... }

As Twin<T> is a subtype of Pair<T,T> by pointwise subtyping, the type Pair<T,T>
now includes not only the set of instances of the form new Pair<T,T>(...), but
also those of the form new Twin<T>(...). Similarly, the type Pair<+S,+T> includes
instances of the form new Twin<U>(...) when U is a subtype of both S and T,
because Twin<U> is a subtype of Pair<U,U> which is a subtype of Pair<+S,+T>:
hence Twin<+U> <: Pair<+S,+T> when U <: S and U <: T. From the discussion above,
it may seem straightforward to define a subtyping relation involving subclassing
but, as we will see in Section 4, its actual definition is more involved than it first
appears, especially when parametric types are nested.

3.2 Restrictions on Member Access

As already mentioned, certain access restrictions according to variance annotations
have to be imposed on variant parametric types. Here, we will describe the handling
of access restriction for simple cases, through the simple interpretation of variant
parametric types given above.

We begin with covariant types. Consider the type Vector<+Number>, which de-
notes the set of instances of the form new Vector<T>(...) where T is a subclass of
Number. Since element types can be any subtype of Number, we cannot safely insert
anything through the type Vector<+Number>, and assignments to fields must there-
fore be prohibited when their types are exactly the type parameter (which stands for
the element type). For much the same reason, a method with an argument type be-
ing the type parameter (such as setElementAt()) cannot be invoked. On the other
hand, even if the exact element type of instances in Vector<+Number> is unknown,
elements obtained through Vector<+Number> (e.g. by method getElementAt())
can be safely given type Number, because an upper bound of the element types is
known to be Number. As a result, Vector<+Number> behaves as a type for vec-
tors without operations accepting elements. In other words, if a vector is used
in a read-only manner, its type can be covariant rather than invariant. In fact,
in fillFrom(), the argument v is used only to invoke method getElementAt()
to retrieve elements of type X and thus it can be safely given type Vector<+X>,
making the method applicability wider. In the java.util.Collection interface of
the Java API, the method addAll() follows the same pattern as our fillFrom()
example, so argument type can safely be made covariant.

Conversely, contravariant types are write-only. Since the type Vector<-Number>
denotes the set of instances of the form new Vector<T>(...) where T is a supertype
of Number, it is safe to assign any numbers (subtypes of Number) to elements through
this type. However, accessing elements by field access or getElementAt() results
in an unknown element type and so it is prohibited. This is exemplified instead
by method fillTo(), where argument v can be safely given the contravariant
type Vector<-X> for only setElementAt() is invoked on it (with argument X).
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 13

Similarly to fillTo(), contravariance can be used e.g. in the static method fill()
of class java.util.Collections, which inserts an element in all the positions of
a (contravariant) collection passed as an argument.

Finally, bivariant types prohibit both producing and consuming elements. Since
Vector<*> is a supertype of Vector<+Number> and Vector<-Number>, only oper-
ations that are applicable to both subtypes can be allowed for Vector<*>. For
class Vector, only method size()—whose signature does not include the type
variable—can be applied, as happens in method sameSize().

Actually, some expressions are rejected due to member access restrictions, even
though, in theory, they could be safely executed. If the type structure over which
type variables range has the “top” type (for example, Object is a supertype of
any reference type in Java), it is possible to allow getElementAt() to be invoked
on Vector<-T> or Vector<*>, giving the top type to the result. Conversely, if
there exists the “bottom” type and a value that belongs to it (for example, the
type of null is a subtype of any reference type in Java), method setElementAt()
could be invoked on Vector<+T> or Vector<*> passing that value as an argument.
Similarly, if C is a final class, it could be allowed to invoke setElementAt() on
Vector<+C> because the set it denotes is the same as Vector<C>. Nevertheless, we
believe it is more sensible to disallow all those cases so that restrictions on member
access caused by variance annotations correspond to the idea of read-only/write-
only collection classes—much the same as is expected for the classical approach of
variance, discussed in the previous section.

Moreover, at first glance the annotated type parameter +Object can be substi-
tuted for the bivariance symbol *, since both Vector<+Object> and Vector<*>
denote the same set of instances, namely, all vectors. However, we believe it is
better to preserve bivariant types. Firstly, by the help of *, subtyping can be un-
derstood in a more syntactic, structural manner, without thinking of the set of
instances each type denotes. Secondly, * is a concise way to signify “not being
accessed,” whereas +Object means “being read only as objects.” Indeed, bivari-
ance turns out to be particularly useful in types with more than one parameter, as
shown in the next subsection. In particular, we believe that allowing exceptional
subtyping rules such as Vector<-T> <: Vector<+Object> for any T would make the
mechanism of variant parametric types harder to understand.

In summary, attaching a variance annotation to an instance type virtually yields
an abstract class that provide only safe methods and fields above that instance type
(in the subtype hierarchy). This cannot be easily achieved in existing class-based
languages or by programming idioms like writing wrapper classes to hide unsafe
operations.

3.3 Nested Parametric Types

So far, we have discussed only simple cases, where type arguments with variance
annotations are non-parametric types. We could explain more complicated cases
that involve nested types but it would get harder to think of the set of instances
denoted by such types. So, we will defer a more refined view of variant parametric
types to Section 4, where we give an informal correspondence to bounded existen-
tial types [Cardelli and Wegner 1985]. However, the informal discussion given in
this section is indeed enough to understand many practical cases, including some

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 · A. Igarashi and M. Viroli.

interesting cases where variant parametric types occur inside another parameteri-
zation.

We introduce examples to describe interesting patterns of variant annotations
that occur when nested collections are used. Consider the following new methods
added to class Vector:

class Vector<X extends Object>{

...

void fillFromVector(Vector<+Vector<+X>> vv, int pos){

for (int i=0; i<vv.size(); i++){

Vector<+X> v = vv.getElementAt(i);

if (pos+v.size() >= this.size()) break;

this.fillFrom(v,pos);

pos += v.size();

}

}

void fillToVector(Vector<+Vector<-X>> vv){

int pos=0;

for (int i=0; i<vv.size(); i++){

Vector<-X> v = vv.getElementAt(i);

for (int j=0; j<v.size(); j++){

v.setElementAt(this.getElementAt(pos++));

if (pos >= this.size()) return;

}

}

}

void fillFromFirst(Vector<+Pair<+X,*>> vp,int start){

for (int i=0; i<vp.size() && i+start<this.size(); i++)

this.setElementAt(vp.getElementAt(i).getFst(),i+start);

}

}

The method fillFromVector() takes a vector of vectors vv and puts its inner-
level elements into the vector on which it is invoked. For instance, invoking
it on a vector ["1","2","3","4","5"] with [["A","B"],["C"]] and 1 as
arguments, the first vector would change to ["1","A","B","C","5"]. Here, vv
is given type Vector<+Vector<+X>> since the outer vector is accessed only by
getElementAt() and so are inner vectors extracted from vv. This type accepts
indeed a large set of arguments: when X is instantiated to Number, for example,
subtypes of Vector<+Vector<+Number>> include Vector<Vector<Integer>>,
Vector<Vector<Float>>, Vector<Vector<+Number>>, and even type
Vector<SubVector<Float>> where SubVector<X> extends Vector<X>. Thus, the
following code will be permitted:

Vector<Vector<Integer>> vvi = new Vector<Vector<Integer>>(1);

vvi.setElementAt(vi,0);

Vector<Vector<Float>> vvf = new Vector<Vector<Float>>(1);

vvf.setElementAt(vf,0);

vn.fillFromVector(vvi,0);

// Permitted for Vector<Vector<Integer>> <: Vector<+Vector<+Number>>

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 15

vn.fillFromVector(vvf,10);

// Permitted for Vector<Vector<Float>> <: Vector<+Vector<+Number>>

The method fillToVector() realizes a dual case: it inserts elements of the
receiver vector into a vector of vectors provided as its argument. For instance,
invoking it on the vector ["1","2","3"] with the vector [["A","B"], ["C","D"]]
as argument would change the latter to [["1","2"],["3","D"]]. The outer vector
is just used to access inner vectors through the method getElementAt()—hence it
can be safely declared covariant—while the inner vectors are only updated through
the method setElementAt()—so they can be safely declared contravariant. Thus,
the formal argument vv can be safely given type Vector<+Vector<-X>>. Similarly
to fillFromVector(), when X is instantiated to Number, we can apply this method
to Vector<Vector<Number>>, Vector<Vector<Objects>> and so on.

Finally, consider method fillFromFirst(), which copies first elements of pairs in
a given vector to the receiver: it shows that bivariance appears particularly useful in
those cases where a generic class involves more than one type parameter. Similarly
to fillFromVector() before, + can be attached to X and Pair. Moreover, since
method fillFromFirst() neither read nor write the second element in each pair,
the annotation symbol * can be used in place of it. As a result, it is permitted to
invoke fillFromFirst() on pairs of vectors where second elements of pairs are ar-
bitrary, such as Vector<Pair<Integer,String>>, Vector<Pair<Float,Float>>,
and Vector<Pair<Number,Object>>. This example suggests an interesting appli-
cation of bivariance as a mechanism providing “don’t care” type arguments.

Even though more complex, these patterns of nesting do occur in the Java
Collection Framework. First, class java.util.Map.Entry, modelling entries in
maps such as hashtables, can come with two type parameters K and V, one for
keys and one for values. Then, an iterator over such entries can be given type
Iterator<+Map.Entry<+K,+V>>—see e.g. the implementation of method putAll
in class java.util.HashMap.

4. CORRESPONDENCE TO EXISTENTIAL TYPES

In this section, we investigate an informal correspondence of variant parametric
types to (bounded) existential types [Mitchell and Plotkin 1988; Cardelli and Weg-
ner 1985; Nordström et al. 1990], which are a type-theoretic basis of (partially)
abstract data types (ADTs). Existential types are also used in some work on ob-
ject encoding [Bruce et al. 1999; Pierce and Turner 1994; Abadi et al. 1996; Bruce
1994; Compagnoni and Pierce 1996], in which types of object states are hidden by
using existential types. Here, we use existential types to hide (part of) the inter-
face of objects. Beginning with a review of the standard formulation of (bounded)
existential types, we give, by means of examples, a rationale of the type system for
variant parametric types, based on the informal correspondence. The formal type
system of the core language is formally defined in the next section.

4.1 Existential Types à la Mitchell and Plotkin

An (unbounded) existential type is syntactically a type of the form ∃X.T, with the
existential quantifier on a type variable X. By regarding the identity of X as some-
thing unknown, as in existential formulas in predicate logic, existential types can

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 · A. Igarashi and M. Viroli.

be used for some sort of information hiding—the encapsulation of implementation
by abstract data types. In this scenario, a signature of an ADT can be represented
by an existential type where T is the type for a set of operations on the ADT and X
stands for the abstract type. For example, a signature of (purely functional) Stack
would be represented as

StackType = ∃X.{empty:X, push:(int×X)→X, pop:X→(int×X)},

where {...} is a record type, A×B stands for the type of pairs of A and B, and A→B
for the type of functions from A to B.

A value of an existential type ∃X.T is constructed by a pair of a type U and a
value v of [U/X]T: the type T where U is substituted for the type variable X. Such
a pair is often written pack [U,v] as ∃X.T and U is sometimes called a witness
type, since it witnesses the existence of X. From the ADT point of view, this pair
is considered an ADT package, which is usually given by a concrete representation
of the abstract type and an implementation of operations assuming the concrete
type. So, if integer lists are to be used for implementing the stack above, one can
use a record of functions

r = { empty = nil,

push(int x, intlist l) = cons(x,l),

pop(intlist l) = (car(l), cdr(l)) }

of type

{ empty: intlist,

push: (int × intlist) → intlist,

pop: intlist → (int × intlist) }

to build the following ADT package:

stack = pack [intlist, r] as StackType.

Note that the type of r is the same as the one obtained by substituting intlist for
X in {empty:X, ...} of StackType. The type annotation following as is needed
since it depends on programmers’ intention which part of the signature is to be
abstracted away: for example, ∃X.{empty:intlist, ...} could be given from the
same witness type and implementation.

In the original formulation, a value of an existential type can be used by an
expression of the form open p as [X,x] in b. It unpacks a package p, binds the
type variable X and the value variable x to the witness type and the implementation,
respectively, and executes b. So, one can create an empty stack, push two integers,
and pop one, by

open stack as [ST, s] in

ST x = s.empty;

x = s.push(1, x);

x = s.push(2, x);

return fst(s.pop(x));

Since the scope of ST is limited within the part after in, it does not make sense
to export an expression of type ST (or type that includes ST) outside. Thus, an
expression
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 17

open stack as [ST, s] in

return s.empty;

would not be typed. As a result, the leakage of a concrete representation of a stack
is prohibited.

Bounded existential types introduced by Cardelli and Wegner [1985] allow exis-
tential type variables to have upper bounds: an example is ∃X<:S.T, which means
T where X is some subtype of S. Bounded existential types correspond to partially
abstract types: ADTs where partial information of the implementation type is
available. For example, when one wants to allow abstract stacks to be regarded as
integer bags, their signature can be represented by ∃X<:intbag.{empty:X, ...}.
As before, a package is given by a pair of a concrete type and an implementa-
tion, but now, the concrete type has to be a subtype of intbag. Here, we assume
intlist is a subtype of intbag and so packing r above as

stack’ = pack [intlist, r] as ∃X<:intbag.{empty:X, ...}

will be permitted. Bounded existential types can be used by open as before; in b,
we can use the information X<:S, allowing a value of the abstract type X to be used
as S. Thus, any stack is exported outside as an intbag. For example,

open stack’ as [ST, s] in

return s.empty;

will be accepted as it returns intbag. However, it is not allowed to invoke push
with an intbag since intbag<:X—which is the opposite of the assumption—does
not hold.

The argument above can be summarized by the following informal typing rules:

` U <: S ` v ∈ [U/X]T
` (pack [U,v] as ∃X<:S.T) ∈ ∃X<:S.T

(Pack)

` p ∈ ∃X<:S.T X<:S, x:T ` b ∈ U X 6∈ FV (U)
open p as [X,x] in b ∈ U

(Unpack)

Note that the side condition requires X not to be a free variable of U; otherwise the
hidden type X would escape the abstraction as discussed above.

Furthermore, we can define subtyping between bounded existential types as fol-
lows.

` S1 <: S2 X<:S1 ` T1 <: T2

` ∃X<:S1.T1 <: ∃X<:S2.T2

This subtyping rule allows to relax the upper bound of the existential type variable
and to promote the type of the implementation. For example, the following subtype
relations would hold:

∃X<:intbag.{empty:X, push:..., pop:...}

<: ∃X<:Top.{empty:X, push:..., pop:...}

∃X<:intbag.{empty:X, push: ..., pop: ...}

<: ∃X<:intbag.{empty:X, push:...}

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 · A. Igarashi and M. Viroli.

Remark. Here, one may notice that this rule is known as one for the full variant
of System F≤, in which subtyping is undecidable [Pierce 1994]. Accordingly, even
though variant parametric types are rather restricted forms of bounded existen-
tial types, the decidability of subtyping of variant parametric types as defined in
Section 5 is an open problem.

4.2 Interpreting Variant Parametric Types as Existential Types

Variant parametric types can be explained in terms of existential types above. Ac-
cording to the naive interpretation that C<+T> is the set of objects of the from
new C<S>(...) where S <: T, a covariant type C<+T> would correspond to the
bounded existential type ∃X<:T.C<X>. As we discuss further below, hiding (partial)
information of the type argument will make it impossible to call certain methods,
thus realizing access restriction. Contravariant types will require slight generaliza-
tion: the type C<-T> would correspond to the bounded existential type ∃X:>T.C<X>,
where the abstract type X has a lower bound rather than an upper bound. A
bivariant type C<*T>—abbreviated to C<*>—would simply correspond to the un-
bounded existential type ∃X.C<X>. This idea extends naturally to a parametric
type with more than one parameter. D<+S,T> would correspond to ∃X<:S.D<X,T>
and D<+S,-T> to ∃X<:S.∃Y:>T.D<X,Y>. For nested parametric types, the existen-
tial quantifier will appear in bounds: for example, Vector<+Vector<+Nm>> would
correspond to ∃X<:(∃Y<:Nm.Vector<Y>).Vector<X> since Vector<+T> would be
∃X<:T.Vector<X> and here T is again a type of the form Vector<+T′>. (In what
follows, Number is often abbreviated to Nm for conciseness.)

Bearing the informal correspondence above in mind, we can justify the design
decisions made in Section 3 and explain them in more details.

Remark. In Mitchell-Plotkin’s formalization, a value of an existential type is a
pair of a type and a value whereas the naive interpretation gives only a set of
values, namely instances, to a type. However, by ignoring the witness type part, an
existential type ∃X<:T.C<X> denotes a collection of values of the type C<U> for some
(unknown) U such that U is subtype of T—which is closer to the naive interpretation
of ours and the “classical” interpretation of the existential quantifier.

4.2.1 Interpretation of Variance-Based Subtyping. Covariant and contravariant
subtyping are directly attributed to the subtyping rule for existential types above.
C<+S> <: C<+T> when S <: T corresponds to ∃X<:S.C<X> <: ∃X<:T.C<X> assuming
S <: T, and similarly for contravariant types. Subtyping that changes variance
annotations (C<+T> <: C<*T> and C<-T> <: C<*T>) can be considered as subtyp-
ing between bounded and unbounded existential types: ∃X<:S.C<X> <: ∃X.C<X>
(and ∃X:>S.C<X> <: ∃X.C<X>) could be allowed since it is just a special kind
of relaxing the bounds from S to nothing. Finally, subtyping C<T> <: C<+T> or
C<T> <: C<-T> that introduces a co- or contra-variant annotation can be explained
in terms of (implicit) packing operation: when a type of an expression is changed
from C<T> to C<+T>, the expression is packed with the witness type T, yielding
∃X<:T.C<X>. For example, when v of Vector<Integer> is passed to where an
argument of Vector<+Nm> is expected, it would be represented as:

pack [Integer,v] as ∃X<:Nm.Vector<X>
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 19

The discussion above can easily extend to a class with more than one type param-
eter.

4.2.2 Interpretation of Access Restriction Rules. We exploit the connection also
to give correct typing rules for field access and method invocation. Since a variant
parametric type corresponds to an existential type, an expression of a variant para-
metric type, at least conceptually, has to be opened first. For example, suppose x is
given type C<+T> and consider an expression x.m(e). Then, this expression would
correspond to open x as [X,y] in y.m(e), which first opens x and then invokes
the method. In the body of open, the type variable X is assumed to have an upper
bound T and y to have type C<X>; since y is an instance type, the standard typing
rules can be applied to y.m(e). Finally, the type of the whole open expression will
be calculated from the type S of its body y.m(e). Since S may include X, it may
be the case that S itself cannot be the type of the whole expression (recall the side
condition of the rule Unpack). Thus, we have to find an X-free supertype of S. As
we will discuss in detail below, there are some subtleties about this calculation.

We will explain typing method invocations in more detail, using a parametric
class Pair:

class Pair<X extends Object, Y extends Object> {

X fst; Y snd;

Pair(X fst,Y snd){ this.fst=fst; this.snd=snd; }

void setFst(X x){ this.fst=x; }

void setSnd(Y y){ this.snd=y; }

void copyFst(Pair<X,*> p) { setFst(p.getFst()); }

...

}

Furthermore, we assume x is given type Pair<+Nm,-Nm>, which corresponds to
∃X<:Nm.∃Y:>Nm.Pair<X,Y>. Then, for example, x.setFst(e) corresponds to open
x as [Z,W,y] in y.setFst(e).2 Inside open, y stands for the object of type
Pair<Z,W> under the assumptions Z<:Nm and W:>Nm; method/field types can be
easily obtained by simply replacing the type parameters of a class with the actual
type arguments. For example, the argument type of setFst() is Z, that of setSnd()
is W. Now, it turns out that open x as [Z,W,y] in y.setFst(e) cannot be well
typed for any expression e—the argument type of setFst() is Z, which is assumed
to be an unknown subtype of Nm, but the type of e cannot be a subtype of Z. On the
other hand, setSnd() can be invoked with an argument of type Nm (or its subtype)
because, if T is a subtype of Nm, it is the case that T <: Nm <: W. This is why + results
in protecting some fields from being written, while - allows writing.

A more complex case, where an argument type includes type parameters of the
class inside angle brackets, as in copyFst(), can also be explained in the same way.
Suppose x is Pair<+Nm,-Nm> as before and, for example, consider the expression
x.copyFst(new Pair<Integer,Float>(...)) Then, just as before, the argument
type of copyFst() would be Pair<Z,*> in which Z is assumed to be a subtype of

2We often abbreviate a sequence of open as one that binds multiple type variables at once.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 · A. Igarashi and M. Viroli.

Nm. Thus, this expression is not allowed because Pair<Integer,Float> is not a
subtype of Pair<Z,*>. In fact, it should not be allowed because x may be bound
to an instance of Pair<Float,Object> and executing the expression above will
assign an Integer to the field for Float. This example shows that a method
argument type cannot be obtained by naively substituting for X the type argument
+Nm together with a variance annotation; in this case, naive substitution would lead
to a wrong argument type Pair<+Nm,*>, a supertype of Pair<Integer,Float>. In
the next section, where the type system is formalized, we formalize the operation
open to obtain an instance type and type bounds from a variant parametric type.

Now, we turn our attention to how the return type of a method is calculated.
Suppose the class Pair has some more methods as shown below.

class Pair<X extends Object, Y extends Object> {

...

X getFst(){ return this.fst; }

Y getSnd(){ return this.snd; }

Pair<Y,X> reverse() {

return new Pair<Y,X>(this.getSnd(), this.getFst());

}

Pair<+Y,X> reverse2() {

return new Pair<Y,X>(this.getSnd(), this.getFst());

}

Pair<Pair<X,Y>, Pair<X,Y>> dup () {

return new Pair<Pair<X,Y>,Pair<X,Y>>(this, this);

}

}

By the same argument, when a receiver is of type Pair<+Nm,-Nm>, the result type
of getFst() is Z, that of getSnd() is W, that of reverse() is Pair<W,Z>, and that
of dup() is Pair<Pair<Z,W>,Pair<Z,W>>, under the assumption Z<:Nm and W:>Nm.

As briefly mentioned above, when the method return type T includes a type
variable Z introduced by open, a Z-free supertype of T has to be obtained in some
way. For example, a Z-free subtype of Z can be obtained from its upper bound Nm,
and so the type of x.getFst() will be Nm, as expected. On the other hand, it may
not be possible to obtain such a supertype, and in that case, the expression will not
be typed. For example, x.getSnd() is not typeable because the return type W has
only a lower bound and no supertype without W. This is why - results in protecting
some fields from being read, while + allows reading.

Similarly, the return type of x.reverse() will be Pair<-Nm,+Nm>, since the
return type obtained from Pair<Z,W> is Pair<W,Z>, which can be promoted to a
supertype Pair<-Nm,+Nm> by exploiting the fact that Z is a subtype of Nm and W is a
supertype of Nm. When a variance annotation is attached to the method definition
as in reverse2(), we have to take care of them by calculating the upper bound of
the annotation in the definition and one from the bound of the type variable. So,
the return type of x.reverse2() will be Pair<*,+Nm> (* is the upper bound of -
and +).

4.2.3 Subtleties in Obtaining Return Types. It looks as if the type arguments
and variances +Nm and -Nm were respectively substituted for X and Y (with a
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 21

twist on variance annotations), but this naive view is not correct as we will see
in the next example x.dup(). The return type of this method invocation is
Pair<Pair<Z,W>,Pair<Z,W>>. The type itself cannot be the return type as Z and W
would otherwise escape their scope introduced by open. Therefore, we need a super-
type of Pair<Pair<Z,W>,Pair<Z,W>> without Z and W. However, the type we ob-
tain by the naive substitution—that is, Pair<Pair<+Nm,-Nm>,Pair<+Nm,-Nm>>—is
not a supertype of Pair<Pair<Z,W>,Pair<Z,W>>! This is because the two inner oc-
currences of Pair are invariant. So, as long as Pair<Z,W> and Pair<+Nm,-Nm> are
different, those two types are not in the subtype relation. If it were a supertype,
another pair could be assigned to the outer pair, making the two first elements
of the inner pairs have different types. A correct supertype is a covariant type
Pair<+Pair<+Nm,-Nm>,+Pair<+Nm,-Nm>>, obtained by attaching + to everywhere
the type argument is changed by promotion. In summary, given a type that con-
tains (bounded) type variables, we need to find a supertype that does not contain
those type variables, but naive substitution of an actual type argument with its
variance does not always work to obtain such a type.

In fact, there is yet another subtlety in calculating a return type: given a type and
type variables with bounds, there may be two (or more) incomparable supertypes
without those type variables in general. For example, suppose the class Vector has
method m() returning Vector<Vector<-X>>.

Vector<Vector<-X>> m() { ... }

and consider x.m() where x is of type Vector<+Nm>. In the same manner as before
we first obtain Vector<Vector<-X>> under X<:Nm as its return type, of which we
have to find a supertype (without X). In this case, both C<+C<*>> and C<-C<-Nm>>
are supertypes of C<C<-X>> but neither is a supertype of the other. This phe-
nomenon is unpleasant from the point of view of a bottom-up typecheck algorithm.
Since it depends on the context of the method invocation which return type is the
expected one, a naive typecheck algorithm would have to try both cases, hampering
efficient and modular typechecking.

We avoid this combinatorial explosion problem by mechanically choosing one
particular supertype from possible ones, although some programs that look reason-
able in terms of the correspondence developed here may be rejected. The strategy
we adopted is actually the same as what we have seen: the bounds with vari-
ance annotations are substituted for the type variables but + will be attached
everywhere substitution causes any changes. In the example above, we obtain
Vector<+Vector<*>> since an X-free supertype of Vector<-X> is Vector<*> and
then + is attached before Vector<*>. Thus, unfortunately, the context like

Vector<-Vector<-Nm>> v = x.m();

that expects Vector<-Vector<-Nm>> is rejected even though it would be safe to
execute. We believe our decision is practical because (1) it is easy to understand for
those who do not (want to) understand the underlying correspondence to existential
types; and (2) the strategy always works and yields a supertype, even if type
variables appear in deeper positions. For example, C1<C2<C3<X,Y>>> with X<:S and
Y:>T has C1<+C2<+C3<+S,-T>>> as a supertype without X and Y; C1<-C2<C3<X,Y>>>
with X<:S and Y:>T has C1<*>, which is equivalent to C1<*C2<+C3<+S,-T>>>, as a

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 · A. Igarashi and M. Viroli.

supertype without X and Y (recall that * is an upper bound of + and -); and so
on. In the next section, we will formalize this operation for obtaining an abstract-
type-free supertype as the operation called close. A similar operation is found in
a type system for bounded existential types with minimal typing property [Ghelli
and Pierce 1998], where it was introduced to omit a type annotation for the open
expression.

4.2.4 Variance and Inheritance-Based Subtyping. The operations of open and
close are also used for deriving inheritance-based subtyping of variant parametric
types. Suppose we declare two subclasses of Pair.

class Twin<X extends Object> extends Pair<X,X> { ... }

class PP<X extends Object, Y extends Object>

extends Pair<Pair<X,Y>, Pair<X,Y>> { ... }

As in GJ, inheritance-based subtyping for instance types is simple. A supertype
is obtained by substituting the type arguments for type variables in the type after
extends: for example,

Twin<Integer> <: Pair<Integer,Integer>

and

PP<Integer,String> <: Pair<Pair<Integer,String>,Pair<Integer,String>>.

Subtyping for non-instance types involves open and close, similarly to
field and method accesses. For example, Twin<+Nm> is a subtype of
Pair<+Nm,+Nm> because the open operation on Twin<+Nm> introduces Twin<Z>
with Z<:Nm, a supertype of Twin<Z> is Pair<Z,Z>—obtained by substitu-
tion of Z for X—and it closes to Pair<+Nm,+Nm>. Similarly, a supertype of
PP<+Nm,-Nm> is Pair<+Pair<+Nm,-Nm>,+Pair<+Nm,-Nm>>, obtained by closing
Pair<Pair<Z,W>,Pair<Z,W>> (note that + before the inner occurrences of Pair).

5. CORE CALCULUS FOR VARIANT PARAMETRIC TYPES

In this section, we introduce a calculus for class-based object-oriented languages
with variant parametric types to prove that the core type system is sound. Our
calculus is considered an extension of Featherweight GJ (FGJ for short) by Igarashi
et al. [2001a], originally proposed to formally investigate properties of the type sys-
tem and compilation scheme of GJ [Bracha et al. 1998]. Like FGJ, our extended
calculus is functional and supports only minimal features including top-level para-
metric classes with variant parametric types, fields, parametric methods, F-bounded
polymorphism, object instantiation, recursion through this, and typecasts.

5.1 Syntax

The metavariables A, B, C, D, and E range over class names; S, T, U, and V range over
types; X, Y, and Z range over type variables; N, P, and Q range over variant parametric
types; L ranges over class declarations; M ranges over method declarations; v and
w range over variance annotations; f and g range over field names; m ranges over
method names; x ranges over variables; and e and d range over expressions. The
abstract syntax of types, class declarations, method declarations, and expressions
is given in Figure 2.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 23

N ::= C<vT> variant parametric types

T ::= X | N types

v ::= o | + | - | * variance annotations

L ::= class C<X / N> / D<S> { T f; M } class definitions

M ::= <Y / P> T m(T x){ return e; } method definitions

e ::= x variables

| e.f field access
| e.<T>m(e) parametric method invocation

| new C<T>(e) object instantiation
| (T)e typecast

Fig. 2. Syntax.

We write f as shorthand for a possibly empty sequence f1, . . . , fn (and similarly
for C, x, e, etc.) and write M as shorthand for M1 · · · Mn (with no commas). We
write • for the empty sequence and denote concatenation of sequences using a
comma. The length of a sequence x is written |x|. We abbreviate operations on
pairs of sequences in the obvious way, writing “C f” as shorthand for “C1 f1, . . . ,
Cn fn” and “C f;” as shorthand for “C1 f1; · · · Cn fn;”, “<X / N>” as shorthand
for “<X1 / N1, . . . , Xn / Nn>”, and “C<vT>” for “C<v1T1, . . . ,vnTn>”. Sequences of
field declarations, parameter names, type variables, and method declarations are
assumed to contain no duplicate names. The empty brackets <> are often omitted
for conciseness. We write m 6∈ M to mean that a method of the name m is not
included in M. As mentioned in Section 3, we introduce the variance annotation o
for invariance and a partial order ≤ on variance annotations is defined: formally,
≤ is the least partial order satisfying o ≤ + ≤ * and o ≤ - ≤ *. We write v1∨v2 for
the least upper bound of v1 and v2. If every vi is o in a variant parametric type
C<vT>, we call it an instance type and abbreviate it to C<T>.

According to the grammar in Figure 2, a class declaration L consists of its name
(C), type parameters (X) with their (upper) bounds (N), fields (T f), and (paramet-
ric) methods (M)3; moreover, every class must explicitly declare its supertype D<S>
with / (read extends) even if it is Object. Note that only an instance type is
allowed as a supertype, just as in object instantiation. Since our language supports
F-bounded polymorphism [Canning et al. 1989], the bounds N of type variables X
can contain X in them. A method definition can be parameterized by type variables
Y with bounds P. A method body just returns an expression, which is either a
variable x, field access e.f, (polymorphic) method invocation e.<T>m(e), object
instantiation new C<T>(e), or typecasts (T)e. As we have already mentioned, the
type used for an instantiation must be an instance type, hence C<T>. For the sake
of generality, we allow the target type T of a typecast expression (T)e to be any
type, including a type variable. Thus, we will need an implementation technique

3We assume that each class has a trivial constructor that takes the initial (and also final) values
of each fields of the class and assigns them to the corresponding fields. In FGJ, such constructors

have to be declared explicitly, in order to retain compatibility with GJ. We omit them because
they play no other significant roles.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 · A. Igarashi and M. Viroli.

where instantiation of type parameters are kept at run-time, such as the framework
of LM [Viroli and Natali 2000; Viroli 2003] or generics for C# [Syme and Kennedy
2001]. Should it be implemented with the type-erasure technique as in GJ, T has to
be a non-variable type and a special care will be needed for downcasts (see Bracha
et al. [1998] for more details). We treat this in method bodies as a variable, rather
than a keyword, and so require no special syntax. As we will see later, the typing
rules prohibit this from appearing as a method parameter name.

A class table CT is a mapping from class names C to class declarations L; a
program is a pair (CT , e) of a class table and an expression. Object is treated
specially in every program: the definition of Object class never appears in the
class table and the auxiliary functions to look up field and method declarations in
the class table are equipped with special cases for Object that return the empty
sequence of fields and the empty set of methods. (As we will see later, method
lookup functions take a pair of class and method names as arguments; the case
for Object is just undefined.) To lighten the notation in what follows, we always
assume a fixed class table CT .

The given class table is assumed to satisfy some sanity conditions: (1) CT (C) =
class C ... for every C ∈ dom(CT); (2) Object /∈ dom(CT); (3) for every class
name C (except Object) appearing anywhere in CT , we have C ∈ dom(CT); and
(4) there are no cycles in the transitive closure of the relation between class names
obtained from / clauses in CT . By the condition (1), we can identify a class table
with a sequence of class declarations in an obvious way; so, in the rules below, we
just write class C ... to state CT (C) = class C ..., for conciseness.

5.2 Type System

For the typing and reduction rules, we need a few auxiliary definitions, which are
shown in Figure 3, to look up the field or method types and the method body of
an instance type. As we discussed in the previous section, we never attempt to ask
the field or method types of non-instance types. In these rules, we often use an
informal notation “...” to avoid introducing extra metavariables not used in any
interesting way: for example, with class C<X / N> / D<S> {... M}, we assume
field types and names are not significant and all methods are represented by M.
Similarly for {S f; ...} (methods are uninteresting) and {...} (the whole body
is uninteresting).

The fields of an instance type C<T>, written fields(C<T>), are a sequence S f of
corresponding types and field names. In what follows, we use the notation [T/X]
for a substitution of Ti for Xi. The type of the method invocation m at an instance
type C<T>, written mtype(m, C<T>), returns a signature of the form <Y / P>U→U0

where Y, P, U, U0 are type parameters, their upper bounds, argument types, and a
result type, respectively. Here, Y are bound in P, U and U0 and we allow implicit
α-conversions on type parameters in a signature.

The body of the method invocation m with type arguments V at an instance
type C<T>, written mbody(m<V>, C<T>), is a pair, written x.e, of a sequence of
parameters x and an expression e. (Note that the functions mtype(m, C<T>) and
mbody(m<V>, C<T>) are both partial functions: since Object is assumed to have no
methods, both mtype(m, Object) and mbody(m<V>, Object) are undefined.)

A type environment ∆ is a finite mapping from type variables to pairs of a
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 25

Field lookup:

fields(Object) = • (F-Object)

class C<X / N> / D<U> {S f; ...} fields([T/X]D<U>) = V g

fields(C<T>) = V g, [T/X]S f
(F-Class)

Method type lookup:

class C<X / N> / D<S> {... M} <Y / P> U0 m(U x){ return e; } ∈ M

mtype(m, C<T>) = [T/X](<Y / P>U→U0)
(MT-Class)

class C<X / N> / D<S> {... M} m 6∈ M

mtype(m, [T/X]D<S>) = <Y / P>U→U0

mtype(m, C<T>) = <Y / P>U→U0
(MT-Super)

Method body lookup:

class C<X / N> / D<S> {... M} <Y / P>U0 m(U x){ return e0; } ∈ M

mbody(m<V>, C<T>) = x.[V/Y][T/X]e0
(MB-Class)

class C<X / N> / D<S> {... M} m 6∈ M

mbody(m<V>, [T/X]D<S>) = x.e0

mbody(m<V>, C<T>) = x.e0
(MB-Super)

Fig. 3. Field/Method Look-up Functions.

variance annotation except o (that is, either +, -, or *) and a type. We write
dom(∆) for the domain of ∆. When X 6∈ dom(∆), we write ∆, X : (v, T) for the
type environment ∆′ such that dom(∆′) = dom(∆) ∪ {X} and ∆′(X) = (v, T) and
∆′(Y) = ∆(Y) if X 6= Y. We often write X<:T for X : (+, T) and X:>T for X : (-, T).
When ∆(X) = (v, N) for any X ∈ dom(∆) (i.e., all the bounds are nonvariable types),
we say ∆ has non-variable bounds.

The type system consists of seven forms of judgments: (1) ∆ ` N ⇑∆′
C<T> for

opening a variant parametric type to an instance type; (2) S ⇓∆ T for closing a type
with some free type variables constrained in ∆ to a variant parametric type without
them; (3) ∆ ` S <: T for subtyping; (4) ∆ ` T ok for type well-formedness; (5)
∆; Γ ` e ∈ T for typing, where Γ, called an environment , is a finite mapping from
variables to types, written x:T; (6) M ok in C<X / N> for typing methods; and (7)
L ok for typing classes. We abbreviate a sequence of judgments, writing Γ ` S <: T
as shorthand for Γ ` S1 <: T1, . . . ,Γ ` Sn <: Tn and Γ ` T ok as shorthand for
Γ ` T1 ok, . . . ,Γ ` Tn ok and ∆;Γ ` e ∈ T as shorthand for ∆; Γ ` e1 ∈ T1, . . . ,
∆; Γ ` en ∈ Tn.

Open and Close. As already mentioned, variant parametric types are essentially
bounded existential types in disguise. So any operations on values of variant para-
metric types have to “open” the existential type first and the type of the result has
to be “closed” in case it involves the abstract type variables. A judgment of the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 · A. Igarashi and M. Viroli.

Open:

∆ ` T ⇑∅ T (O-Refl)

∆ ` S ⇑∆1 T ∆, ∆1 ` T ⇑∆2 U

∆ ` S ⇑∆1,∆2 U
(O-Trans)

X fresh for ∆, C<v1T1,vT,v2T2> v 6= o

∆ ` C<v1T1,vT,v2T2> ⇑X:(v,T) C<v1T1,oX,v2T2>
(O-Class)

Close:

∆(X) = (+, T)

X ⇓∆ T
(C-Prom)

X 6∈ dom(∆)

X ⇓∆ X
(C-TVar)

(wi, Ti
′) =

8<:
(vi, Ti) if Ti ⇓∆ Ti

(vi∨+, Ui) if Ti ⇓∆ Ui and Ti 6= Ui

(vi∨vi
′, Ui) if Ti = X and ∆(X) = (vi

′, Ui)

C<vT> ⇓∆ C<wT′>
(C-Class)

Fig. 4. Open and Close.

open operation ∆ ` N ⇑∆′
P is read “under ∆, N is opened to P constrained by ∆′”

and that of the close operation N ⇓∆ P is read “N with abstract types in ∆ closes
to P.” The rules to derive those judgments are shown in Figure 4.

The open operation introduces fresh type variables to represent abstract
types and replace type arguments with the type variables: for example,
List<+Integer> is opened to List<X> with the constraint X<:Integer, written
` List<+Integer> ⇑X<:Integer List<X>.

The close operation computes a minimal supertype without mentioning the ab-
stract types. The first rule means that, if X’s upper bound is known, X can be
promoted to its bound. (When ∆(X) = (-, T), on the other hand, it cannot be
promoted since an upper bound is unknown.) The second rule means that a type
variable not bound in ∆ remains the same. The third rule is explained as follows.
Basically, in order to close C<vT>, the type arguments T have to be closed first. If Ti

closes to itself—that is, none of the abstract types occurs in Ti—the type argument
and its variance annotation remain the same; on the other hand, when Ti closes to
a proper supertype Ui (i.e. Ti 6= Ui), the resulting type must be covariant in that
argument, thus the least upper bound of + and vi is attached. For example, we can
derive

X ⇓X<:Integer Integer
List<X> ⇓X<:Integer List<+Integer>

List<List<X>> ⇓X<:Integer List<+List<+Integer>>
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 27

Subtyping:

∆ ` T <: T (S-Refl)

∆ ` S <: T ∆ ` T <: U

∆ ` S <: U
(S-Trans)

∆(X) = (+, T)

∆ ` X <: T
(S-UBound)

∆(X) = (-, T)

∆ ` T <: X
(S-LBound)

class C<X / N> / D<S> { . . . } ∆ ` C<vT> ⇑∆′
C<U> ([U/X]D<S>) ⇓∆′ T

∆ ` C<vT> <: T
(S-Class)

v ≤ w if wi ≤ -, then ∆ ` Ti <: Si if wi ≤ +, then ∆ ` Si <: Ti

∆ ` C<vS> <: C<wT>
(S-Var)

Well-formed Types:

∆ ` Object ok (WF-Object)

X ∈ dom(∆)

∆ ` X ok
(WF-TVar)

class C<X / N> / D<S> { . . . } ∆ ` T ok ∆ ` T <: [T/X]N

∆ ` C<vT> ok
(WF-Class)

Fig. 5. Subtyping and Well-formed Types.

but cannot derive

List<List<X>> ⇓X<:Integer List<List<+Integer>>.

An exception is the case in which a type argument is a type variable and bounded
by - or *; the type variable itself does not close to anything but the whole type
can close by substituting its bound for the type variable. The least upper bound
of variance annotations is attached because the resulting type must have both of
their properties. For example, we can derive

List<X> ⇓X:>Integer List<-Integer>
List<+X> ⇓X:>Integer List<*Integer>.

Subtyping. A judgment for subtyping ∆ ` S <: T is read “S is a subtype of T
under ∆.” As usual, the subtyping relation is reflexive and transitive (S-Refl and
S-Trans). When an upper or lower bound of a type variable is recorded in ∆, the
type variable is a subtype or supertype of the bound, respectively (S-UBound and
S-LBound). The rule S-Class takes care of inheritance-based pointwise subtyp-
ing, described in the previous section. When C<X> is declared to extend another

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 · A. Igarashi and M. Viroli.

type D<S>, any (invariant) instantiation C<T> is a subtype of D<[T/X]S>. A super-
type of a non-instance type is obtained by opening it and closing the supertype of
the opened type. For example, under the class declaration

class PP<X / Object, Y / Object> / Pair<Pair<X,Y>,Pair<X,Y>> {...}

we can derive

` PP<+Nm,-Nm> <: Pair<+Pair<+Nm,-Nm>,+Pair<+Nm,-Nm>>

because

` PP<+Nm,-Nm> ⇑Z<:Nm,W:>Nm PP<Z,W>
and

[Z/X, W/Y](Pair<Pair<X,Y>,Pair<X,Y>>)
⇓Z<:Nm,W:>Nm Pair<+Pair<+Nm,-Nm>,+Pair<+Nm,-Nm>>

Finally, the rule S-Var deals with variance. The first conditional premise means
that, if a variance annotation vi for Xi is either contravariant or invariant, the
corresponding type arguments Si and Ti must satisfy ∆ ` Ti <: Si; similarly for the
second one.

Type Well-formedness. A judgment for type well-formedness is of the form ∆ `
T ok, read “T is a well-formed type under ∆”. The rules for type well-formedness
are straightforward: (1) Object is always well formed; (2) a type variable is well
formed if it is in the domain of ∆; and (3) a variant parametric type C<vT> is
well-formed if the type arguments T are lower than their bounds, respectively. Note
that variance annotations can be any.

Typing. The typing rules for expressions are syntax directed, with one rule for
each form of expression (except for casts), and shown in Figure 6. In what fol-
lows, we use bound∆(T) defined by: bound∆(X) = bound∆(S) if ∆(X) = (+, S) and
bound∆(N) = N. Key rules are T-Field and T-Method. (In fact, other rules
are essentially the same as ones in Featherweight GJ.) When a field or method is
accessed, the receiver type is opened and the result type is closed. The typing rule
for method invocations checks that the actual type arguments V satisfy the bounds
P and that the type of each actual parameter is a subtype of the corresponding for-
mal. Since the opened receiver type C<T> and its method type may include abstract
types recorded in ∆′, type arguments and argument types are compared under the
type environment ∆,∆′. The result type is obtained by removing abstract types in
∆′ with the close operation. The rule T-SCast is called stupid cast rule; although
stupid casts are disallowed in Java proper, it is needed to prove type soundness via
subject reduction—see Igarashi et al. [2001a] for more details.

A judgment M ok in C<X / N> for typing methods means that method M is well-
typed if it appears in class C<X / N>. It requires the auxiliary predicate override to
check correct method overriding. override(m, N, <Y / P>T→T0) holds if and only if
either (1) a method with the same name m is not defined in the superclass N; or
(2) it is defined and has the same signature modulo α-conversion. (It would be
safe to extend the rule so that the result type can be overridden covariantly, as
allowed in GJ). The method body should be given a subtype of the declared result
type under the assumption that the formal parameters are given the declared types
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 29

Expression Typing:

∆; Γ ` x ∈ Γ(x) (T-Var)

∆; Γ ` e0 ∈ T0 ∆ ` bound∆(T0) ⇑∆′
C<U> fields(C<U>) = S f Si ⇓∆′ T

∆; Γ ` e0.fi ∈ T
(T-Field)

∆; Γ ` e0 ∈ T0 ∆ ` bound∆(T0) ⇑∆′
C<T>

mtype(m, C<T>) = <Y / P>U→U0 {Y} ∩ dom(∆′) = ∅
∆ ` V ok ∆, ∆′ ` V <: [V/Y]P

∆; Γ ` e ∈ S ∆, ∆′ ` S <: [V/Y]U [V/Y]U0 ⇓∆′ T

∆; Γ ` e0.<V>m(e) ∈ T
(T-Invk)

∆ ` C<T> ok fields(C<T>) = U f ∆; Γ ` e ∈ S ∆ ` S <: U

∆;Γ ` new C<T>(e) ∈ C<T>
(T-New)

∆; Γ ` e0 ∈ T0 ∆ ` T ok
∆ ` bound∆(T0) <: bound∆(T) or ∆ ` bound∆(T) <: bound∆(T0)

∆; Γ ` (T)e0 ∈ T
(T-Cast)

∆; Γ ` e0 ∈ T0 ∆ ` T ok
∆ ` bound∆(T0) 6<: bound∆(T) ∆ ` bound∆(T) 6<: bound∆(T0)

∆; Γ ` (T)e0 ∈ T
(T-SCast)

Method Typing:

mtype(m, N) = <Z / Q>U→U0 implies [Y/Z](Q, U, U0) = P, T, T0

override(m, N, <Y / P>T→T0)

∆ = X<:N, Y<:P ∆ ` P, T, T0 ok

∆; x : T, this : C<X> ` e0 ∈ S0 ∆ ` S0 <: T0

class C<X / N> / D<S> {...} override(m, D<S>, <Y / P>T→T0)

<Y / P> T0 m(T x){ return e0; } ok in C<X / N>
(T-Method)

Class Typing:

X<:N ` N, D<S>, T ok M ok in C<X / N>

class C<X / N> / D<S> {T f; M} ok
(T-Class)

Fig. 6. Typing Rules.

and this is given type C<X>. The environment prohibits this from occurring as
a parameter name since name duplication in the domain of an environment is not
allowed. Finally, a class declaration is well typed (L ok) if all the methods are well
typed.

5.3 Operational Semantics

The reduction relation is of the form e −→ e′, read “expression e reduces to expres-
sion e′ in one step.” We write −→∗ for the reflexive and transitive closure of −→.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 · A. Igarashi and M. Viroli.

Reduction Rules:

fields(C<T>) = U f

new C<T>(e).fi −→ ei
(R-Field)

mbody(m<V>, C<T>) = x.e0

new C<T>(e).<V>m(d) −→ [d/x, new C<T>(e)/this]e0
(R-Invk)

∅ ` C<T> <: T

(T)new C<T>(e) −→ new C<T>(e)
(R-Cast)

e0 −→ e0
′

e0.f −→ e0
′.f

(RC-Field)

e0 −→ e0
′

e0.<V>m(e) −→ e0
′.<V>m(e)

(RC-Inv-Recv)

ei −→ ei
′

e0.<V>m(. . . ,ei, . . .) −→ e0.<V>m(. . . ,ei
′, . . .)

(RC-Inv-Arg)

ei −→ ei
′

new C<T>(. . . ,ei, . . .) −→ new C<T>(. . . ,ei
′, . . .)

(RC-New-Arg)

e0 −→ e0
′

(T)e0 −→ (T)e0
′ (RC-Cast)

Fig. 7. Reduction Rules.

The reduction rules, which are essentially the same as the ones in Featherweight
GJ, are given in Figure 7. There are three computation rules, one for field access,
one for method invocation, and one for typecasts. Field access new C<T>(e).fi

looks up and obtains field names f of C<T> with fields(C<T>); then it reduces to
the constructor argument ei of the corresponding position. Method invocation
new C<T>(e).<V>m(d) first looks up mbody(m<V>, C<T>) and obtains a pair of a se-
quence of formal arguments x and the method body; then, it reduces to the method
body in which x are replaced with the actual arguments d and this with the re-
ceiver new C<T>(e). We write [d/x, e/y]e0 to stand for replacing x1 by d1, . . . , xn

by dn, and y by e in the expression e0. The expression (T)new C<T>(e) reduces to
the subject new C<T>(e) of typecast if the test succeeds; if not, the evaluation gets
stuck, denoting a run-time error (that is, the situation where an exception would
be thrown). The reduction rules may be applied at any point in an expression, so
we also need the obvious congruence rules (if e −→ e′ then e.f −→ e′.f, and the
like), which also appear in Figure 7.

5.4 Properties

Type soundness (Theorem 5.4.7) is shown through subject reduction and progress
properties [Wright and Felleisen 1994]. To state type soundness, we require the
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 31

notion of values, defined by: v ::= new C<T>(v1, . . . , vn) (n may be 0).

Theorem 5.4.1 (Subject Reduction). If ∆; Γ ` e ∈ T where ∆ has non-
variable bounds and e −→ e′, then ∆; Γ ` e′ ∈ S and ∆ ` S <: T for some S.

Proof. By induction on the derivation of e −→ e′ with a case analysis on the
last reduction rule used. The basic structure is similar to the one for Featherweight
GJ [Igarashi et al. 2001a].

Here, we show main cases and only state required lemmas; their detailed proofs
are shown in Appendix A.

Case R-Field. e = new C<T>(e).fi fields(C<T>) = T f e′ = ei

By the rules T-Field, T-New, and O-Refl, we have

∆; Γ ` new C<T>(e) ∈ C<T> ∆ ` C<T> ⇑∅ C<T>
∆; Γ ` e ∈ S ∆ ` S <: U Ui ⇓∅ Ui(= T).

In particular, ∆; Γ ` ei ∈ Si finishes the case.

Case R-Invk. e = new C<T>(e).<V>m(d)
mbody(m<V>, C<T>) = x.e0

e′ = [d/x, new C<T>(e)/this]e0

By the rules T-Invk, T-New, and O-Refl, we have

∆; Γ ` new C<T>(e) ∈ C<T> ∆ ` C<T> ⇑∅ C<T>
mtype(m, C<T>) = <Y / P>U→U0 ∆ ` V ok ∆ ` V <: [V/Y]P
∆; Γ ` d ∈ S ∆ ` S <: [V/Y]U
[V/Y]U0 ⇓∅ [V/Y]U0(= T) ∆ ` C<T> ok

Then, we must show that ∆; Γ ` [d/x, new C<T>(e)/this]e0 ∈ T0 for some T0

such that ∆ ` T0 <: T. Main lemmas required are shown below: (1) one to ensure
the type of the method body to be executed matches the one obtained by mtype
(Lemma 5.4.2); and (2) one to ensure substitution preserves typing (Lemma 5.4.3).
(In order to show Lemma 5.4.2, we also need preservation of typing and subtyping
under type substitution, shown in Appendix. So, readers familiar with proofs of
subject reduction for typed lambda-calculi like F≤ [Cardelli et al. 1994] will notice
many similarities.)

Lemma 5.4.2. If mtype(m, C<T>) = <Y / P>U→U0 and mbody(m<V>, C<T>) =
x.e0 with ∆ ` C<T> ok and ∆ ` V ok and ∆ ` V <: [V/Y]P, then there exist
some N and S such that ∆ ` C<T> <: N and ∆ ` N ok and ∆ ` S <: [V/Y]U0 and
∆; x : [V/Y]U, this : N ` e0 ∈ S.

Lemma 5.4.3 (Term Substitution Preserves Typing). For any ∆ that
has non-variable bounds, if ∆; Γ, x : T ` e ∈ T0 and ∆; Γ ` d ∈ S where ∆ ` S <: T,
then ∆; Γ ` [d/x]e ∈ S0 for some S0 such that ∆ ` S0 <: T0.

Then, by Lemma 5.4.2, ∆; x : [V/Y]U, this : N ` e0 ∈ S0 for some N and S0 such
that ∆ ` C<T> <: N where ∆ ` N ok, and ∆ ` S0 <: [V/Y]U0 where ∆ ` S0 ok. Then,
by Weakening (Lemma A.1) and 5.4.3, ∆; Γ ` [d/x, new C<T>(e)/this]e0 ∈ T0 for
some T0 such that ∆ ` T0 <: S0. By the rule S-Trans, we have ∆ ` T0 <: T,
finishing the case.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 · A. Igarashi and M. Viroli.

For RC-Field and RC-Invk, we need to show that, if the type of the receiver
changes to a subtype, the result of field/method type look-up is “compatible” with
the original result in the following sense.

Lemma 5.4.4. If ∆ has non-variable bounds and ∆ ` bound∆(T) ⇑∆1 C<T> and
fields(C<T>) = U f and Ui ⇓∆1 U0, then for any S such that ∆ ` S <: T and ∆ ` S ok,
it holds that ∆ ` bound∆(S) ⇑∆2 D<S> and fields(D<S>) = . . . , V f and Vi ⇓∆2 V0

and ∆ ` V0 <: U0 for some ∆2, f, D<S>, V, and V0.

Lemma 5.4.5. If ∆ has non-variable bounds and ∆ ` T ok and ∆ `
bound∆(T) ⇑∆1 C<T> and mtype(m, C<T>) = <Y / P>U→U0 and ∆ ` V, W ok and
∆,∆1 ` V <: [V/Y]P and ∆,∆1 ` W <: [V/Y]U and [V/Y]U0 ⇓∆1 V0, then for any
S such that ∆ ` S <: T and ∆ ` S ok, we have ∆ ` bound∆(S) ⇑∆2 D<S> and
mtype(m, D<S>) = <Y / P′>U′→U_′0 and ∆,∆2 ` V <: [V/Y]P′ and ∆,∆2 ` W <:
[V/Y]U′ and [V/Y]U0 ⇓∆2 V0

′ and ∆ ` V0
′ <: V0.

Given these lemmas, the following two cases are easy.
Case RC-Field. e = e0.fi e′ = e0

′.fi e0 −→ e0
′

By the rule T-Field, we have

∆; Γ ` e0 ∈ T0 ∆ ` bound∆(T0) ⇑∆′
C<T>

fields(C<T>) = S f Si ⇓∆′ T

By the induction hypothesis, ∆; Γ ` e0
′ ∈ T0

′ for some T0
′ such that ∆ ` T0

′ <: T0.
By Lemma 5.4.4, ∆ ` bound∆(T0

′) ⇑∆′′
D<U>, fields(D<U>) = . . . , V f, and Vi ⇓∆′′

Vi
′ and ∆ ` Vi

′ <: T. Therefore, by the rule T-Field, ∆; Γ ` e0
′.f ∈ Vi

′, finishing
the case.
Case RC-Inv-Recv. e = e0.<V>m(e) e′ = e0

′.<V>m(e) e0 −→ e0
′

By the rule T-Invk, we have

∆; Γ ` e0 ∈ T0 ∆ ` bound∆(T0) ⇑∆′
C<T>

mtype(m, C<T>) = <Y / P>U→U0

∆ ` V ok ∆ ` V <: [V/Y]P ∆ ` e ∈ S
∆,∆′ ` S <: [V/Y]U [V/Y]U0 ⇓∆′ T.

By the induction hypothesis, ∆; Γ ` e0
′ ∈ T0

′ for some T0
′ such that ∆ ` T0

′ <: T0.
By Lemma 5.4.5,

∆ ` bound∆(T′0) ⇑∆′′
D<W> mtype(m, D<W>) = <Y / P′>U′→U0

′

∆ ` V <: [V/Y]P′ ∆,∆′′ ` S <: [V/Y]U′

[V/Y]U0
′ ⇓∆′′ T′ ∆ ` T′ <: T.

Then, by the rule T-Invk, ∆; Γ ` e0
′.<V>m(e) ∈ T′, finishing the case.

Case R-Cast, RC-Cast, RC-Inv-Arg, RC-New-Arg. Easy.

Theorem 5.4.6 (Progress). Suppose e is a well-typed expression.

(1) If e has new C<T>(e).f as a subexpression, then fields(C<T>) = U f and f =
fi.

(2) If e has new C<T>(e).<V>m(d) as a subexpression, then mbody(m<V>, C<T>) =
x.e0 and |x| = |d|.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 33

Proof. Immediate from the typing rules for object instantiation, field access,
and method invocation.

Theorem 5.4.7 (Type Soundness). If ∅; ∅ ` e ∈ T and e −→∗ e′ being a
normal form, then e′ is either a value v such that ∅; ∅ ` v ∈ S and ∅ ` S <: T for
some S, or an expression that includes (T)new C<T>(e) where ∅ ` C<T> 6<: T.

Proof. Follows from Theorems 5.4.1 and 5.4.6.

6. RELATED LANGUAGE MECHANISMS

Parametric Classes and Variance. There have been several languages, such
as Eiffel [Meyer 1986; 1992], POOL [America and van der Linden 1990],
Strongtalk [Bracha and Griswold 1993; Bracha 1996] and NextGen [Cartwright and
Steele Jr. 1998], that support variance for parametric classes. Their approaches
are different from ours in that, in those languages, variance is a property of classes,
rather than types—variance annotations are attached to the declaration of a type
parameter so that a designer of a class can express his/her intent about all the para-
metric types derived from that class. Then, the system can statically check whether
the variance declaration is correct: for example, if X is declared to be covariant in
a parametric class C<X> but used in a method argument type or (writable) field
type, the compiler will reject the class. Thus, in order to enhance reusability with
variance, library designers must take great care to structure the API, which can be
a daunting task. Day et al. [1995] even argued that this restriction was too severe
and, after all, they have decided to drop variance from the their language Theta.
On the contrary, in our system, users of a parametric class can choose appropri-
ate variance: a class C<X>, for example, can have arbitrary occurrences of X and
induces four different types C<T>, C<+T>, C<-T>, and C<*T> with one concrete type
argument T. We believe that moving annotations to the use site provides much
more flexibility.

In an early design of Eiffel, every parametric type was unsoundly assumed to
be covariant. To remedy the problem, Cook [1989] proposed to infer, rather than
declare, variance annotations on each type parameters of a given class. For example,
if X in the class C<X> appears only in a method return type, the type C<T> is
automatically regarded as covariant, and similarly for contravariant. This proposal
is not adopted in the current design of Eiffel, in which every parametric class is
regarded as invariant [Interactive Software Engineering 2001].

Theoretical foundations of this classical approach to variance have been consid-
ered in the context of typed λ-calculi [Cardelli 1990; Duggan and Compagnoni 1999;
Steffen 1998], where type operators (functions from types to types) are equipped
with a variance property, often called polarity. (Other pieces of work [Barthe and
van Raamsdonk 2000; Barthe and Frade 1999] consider ML-like datatypes with sub-
typing and covariant type operators; they also fall into this category.) The resulting
type system is rather complicated and its meta-theory is hard to investigate. On
the other hand, the theoretical basis of variant parametric types is bounded exis-
tential types, whose properties are fairly well studied—at least for types with upper
bounds.

Parametric Methods. One may wonder if parametric methods with bounded
polymorphism can be used for the examples shown in Section 3; indeed, some

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

34 · A. Igarashi and M. Viroli.

of them can be easily handled with parametric methods. For instance, the method
fillFrom() can be implemented as follows:

class Vector<X extends Object>{

...

<Y extends X> void fillFrom(Vector<Y> v, int start){

for (int i=0; i<v.size() && i+start<size(); i++)

setElementAt(v.getElementAt(i), i+start);

}

}

...

Vector<Number> vn = new Vector<Number>(20);

Vector<Integer> vi = new Vector<Integer>(10);

Vector<Float> vf = new Vector<Float>(10);

vn.<Integer>fillFrom(vi,0);

vn.<Float>fillFrom(vf,10);

Here, the definition of fillFrom() is parameterized by a type variable Y, bounded
by an upper bound X, and the actual type arguments are explicitly given (inside
<>) at method invocations. Similarly, fillTo() can be expressed by using a lower
bound of a type parameter:

class Vector<X extends Object>{

...

<Y super X> void fillTo(Vector<Y> v, int start){

for (int i=0; i<size() && i+start<v.size(); i++)

v.setElementAt(getElementAt(i),i+start);

}

}

Here, the keyword super means that the type parameter Y must be a supertype
of X. In general, it seems that a method taking arguments of variant parametric
types can be easily rewritten in terms of parametric methods. Moreover, even
those examples of combining parametric methods and variant parametric types, in
principle, could be written only with parametric methods (with lower bounds). For
example, a method to copy elements of a list to another list can be written as a
parametric method with three type parameters:

<E, E1 super E, E2 extends E> void copy(List<E1> dest, List<E2> src){...}

rather than one with one type parameter and variant parametric types:

<E> void copy(List<-E> dest, List<+E> src){...}

Although it looks as if variant parametric types can be dispensed with by using
parametric methods, we believe they are complementary machinery.

On one hand, variant parametric types provide a means to specify a set of different
instantiations of the same generic classes in a succinct way. One problem of heavy
use of parametric methods is that the signatures of those methods tend to be longer
and harder to understand. Another, probably more important problem is about
actual type arguments at call sites: it is daunting for programmers to explicitly write
them and it is hard to design a both effective and efficient type inference algorithm.
Another merit of variant parametric types is that they allow to mix different kinds
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 35

of elements in one data structure: for example, using Vector<+Vector<+Number>>
for fields allows to store vectors of integers, vectors of floating numbers, etc., in one
(outer) vector.

On the other hand, parametric methods can express type dependency among
method arguments and results, as in the two methods below:

// swapping pos-th element in v1 and v2

<X> void swapElementAt(Vector<X> v1, Vector<X> v2, int pos){...}

// a database-like join operation on tables v1 and v2.

<X,Y,Z> Vector<Pair<X,Z>> join(Vector<Pair<X,Y>> v1,

Vector<Pair<Y,Z>> v2){...}

The type variable X in the method swapElementAt() expresses dependency between
input vectors—it enforces the two vectors v1 and v2 to carry the same type of
elements. X, Y, and Z in method join() are used to express dependency among
the inputs and outputs. In both cases, such dependencies cannot be expressed by
variant parametric types.

We should note also that simulating contravariance with parametric methods
requires type parameters with lower bounds. However, they are found in very few
languages (a recent exception is Scala [Odersky et al. 2004]) and their theory has
not been well investigated so far. One may argue that the features provided by
the methods fillTo() and fillFrom() are much the same, so one can easily find
the covariant version of any method that uses contravariance, and then implement
it using a parametric method only with upper bounds. However, this will force to
program in a particular style: that is, for instance, programmers always have to
write methods in such a way that they always consume elements. We believe that
hampering that freedom would lead to poor programming practice.

Also, we believe that a language with generics should enjoy the combination
of both constructs so as to achieve even more power and expressiveness. Let us
show an example combining nested parametric types, bivariance, and parametric
methods:

<X> Vector<X> unzipleft(Vector<+Pair<+X,*>> vp){

Vector<X> v = new Vector<X>(vp.size());

for (int i=0; i<vp.size(); i++)

v.addElementAt(vp.getElementAt(i).getFst(),i);

return v;

}

Method unzipleft() creates a Vector<X> element by unzipping a given list of
pairs and taking the first element of each pair. While the type parameter X keeps
track of dependency between input and output types, variance contributes to widen
the range of acceptable arguments, i.e., (1) second elements can be anything (hence
*); (2) first elements can be any subtype of the expected type X; and (3) pairs can
be those from a subclass of Pair.

Virtual Types. As we have already mentioned, the idea of variant parametric
types has emerged from structural virtual types proposed by Thorup and Torg-
ersen [1999]. In a language with virtual types [Madsen and Møller-Pedersen 1989;
Thorup 1997], a type can be declared as a member of a class, just as well as fields

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

36 · A. Igarashi and M. Viroli.

and methods, and the virtual type member can be overridden in subclasses. For
example, a generic bag class Bag has a virtual type member ElmTy, which is bound
to Object; specific bags can be obtained by declaring a subclass of Bag, overriding
ElmTy by their concrete element types.

Since the original proposals of virtual types were unsafe and required run-time
checks, Torgersen [1998] developed a safe type system for virtual types by exploiting
two kinds of type binding: open and final. An open type member is overridable
but the identity of the type member is made abstract, prohibiting unsafe accesses
such as putting elements into a bag whose element type is unknown; a final type
member cannot be overridden in subclasses but the identity of the type member is
manifest, making concrete bags. In a pseudo Java-like language with virtual types,
a generic bag class and concrete bag classes can be written as follows.

class Bag {

type ElmTy <: Object; // open binding

ElmTy get() { ... }

void put(ElmTy e) { ... }

// No element can be put into a Bag.

}

class StringBag extends Bag {

type ElmTy == String; // final binding

// Strings can be put into a String Bag.

}

class IntegerBag extends Bag { type ElmTy == Integer; }

One criticism on this approach was that concrete bags were often obtained only
by overriding the type member, making many small subclasses of a bag. Struc-
tural virtual types are proposed to remedy this problem: type bindings can be
described in a type expression and a number of concrete types are derived from
one class. For example, a programmer can instantiate Bag[ElmTy==Integer] to
make an integer bag, where the [] clause describes a type binding. In addi-
tion, Bag[ElmTy==Integer] <: Bag[ElmTy<:Object] and Bag[ElmTy==String] <:
Bag[ElmTy<:Object] hold as is expected.

In Thorup and Torgersen [1999], it is briefly (and informally) discussed how
structural virtual types can be imported to parametric classes, the idea on which
our development is based. The above programming is achieved by making ElmTy a
type parameter to the class Bag, rather than a member of a class.

class Bag<ElmTy extends Object> extends Object {

ElmTy get() { ... }

void put(ElmTy e) { ... }

}

Then, an integer bag is obtained by new Bag<Integer>() and Bag<Integer> <:
Bag<+Object> holds. In other words, the type Bag<Integer> corresponds to
Bag[ElmTy==Integer] and Bag<+Object> to Bag[ElmTy<:Object]. This similarity
is not just superficial: as in Igarashi and Pierce [2002], programming with virtual
types is shown to be simulated (to some degree) by exploiting bounded and mani-
fest existential types [Harper and Lillibridge 1994; Leroy 1994], on which our formal
type system is also partly based.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 37

Thus, variant parametric types can be considered a generalization of the idea
above with contravariance and bivariance. Other differences are as follows. On one
hand, virtual types seem more suitable for programming with extensible mutually
recursive classes/interfaces [Bruce et al. 1998; Thorup and Torgersen 1999; Bruce
and Vanderwaart 1999]. On the other hand, our system allows a (partially) instan-
tiated parametric class to be extended: as we have already discussed, a programmer
can declare a subclass PP<X,Y> that inherits from Pair<Pair<X,Y>,Pair<X,Y>>.
It is not very clear (at least, from Thorup and Torgersen [1999]) how to encode
such programming in structural virtual types.

Existential Types in Object-Oriented Languages. Aside from object encoding, the
idea of existential types can actually be seen in several mechanisms for object-
oriented languages, often in disguised (and limited) form. We will discuss such
examples here. Note that, however, just like our interpretation of variant parametric
types, those existential types we will mention do not come with witness types and
are close to the classical interpretation of the quantifier, mentioned before.

In the language LOOM [Bruce et al. 1997], subtyping is dropped in favor of
matching [Bruce 1994; Bruce et al. 1995], thus losing subsumption. To recover
the flexibility of subsumption to some degree, the notion of “hash” types #T is
introduced, which stand for the set of types that match T. As is pointed out in Bruce
et al. [1997], #T is considered a “match-bounded” existential type ∃X<#T.X, where
X<#T stands for “X matches T.”

Raw types [Bracha et al. 1998] of GJ are also close to bounded existential
types [Igarashi et al. 2001b]. In GJ, the class Vector<X>, for example, induces
the raw type Vector as well as parametric types including Vector<Integer> and
Vector<String>. The raw type Vector is typically used by legacy classes written
in monomorphic Java, making it smooth to import old Java code into GJ. Vector
is considered a supertype of every parametric type Vector<T> and behaves like
∃X<:Object.Vector<X> in the sense that reading elements gives Object and writ-
ing elements would not always be safe. One significant difference is that certain
unsafe operations including writing elements into a raw vector are permitted only
with a compiler warning.

Explicit Use of Existential Types. It would also be interesting to evaluate the
full power of existential types in object-oriented programming. In fact, by using
unpacking appropriately, more expressions are typeable. For example, suppose x is
given type ∃X.Vector<X> and a programmer wants to get an element from x and
put it back to (another position) of x. Actually, the expression

open x as [Y,y] in y.setElementAt(y.getElementAt(0), 1)

would be well-typed (if y is read-only) since inside open, the elements are all given
an identical type Y. On the other hand, in our language,

x.setElementAt(x.getElementAt(0),1)

is not typeable since this expression would correspond to

open x as [Y,y] in

y.setElementAt(open x as [Z,z] in z.getElementAt(0), 1)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

38 · A. Igarashi and M. Viroli.

which introduces two opens, and Y and Z are distinguished. Although there is an
advantage when using existential types explicitly, we think that allowing program-
mers to directly insert open operations may make programming more cumbersome.

Wildcards in Java 5.0. Based on our proposal here, the latest release of the
Java Programming Language (shipped with JDK 5.0) is extended with the typ-
ing mechanism called wildcards [Torgersen et al. 2004] as well as generics. Wild-
cards are types of the form C<? extends T>, C<? super T>, or C<?>. Each of
them corresponds to C<+T>, C<-T>, or C<*>, respectively, and obey (almost) the
same subtyping rules and access restriction we have described. One notable differ-
ence is that one can read elements from Vector<? super T> and even Vector<?>
to give type Object. Similarly, it is permitted to put null as an element of
Vector<? extends T>. So, access restriction and variance do not exactly match.
As a byproduct, Vector<? extends Object> and Vector<?> are compatible types
(one type is a subtype of the other and implicit casts are allowed in both directions),
so are Vector<? super Object> and Vector<Object>.

In the course of the development, it turns out that naive combination of variance
and parametric methods (as is formalized in this article) has practical limitations.
Suppose there is a (static) method

<X> Set<X> unmodifiableSet(Set<X> set) {...}

that constructs a read-only view of a given set. This method, however, cannot be
applied to Set<?> in our language because the actual type argument for X would
have to be the unknown element type, which cannot be expressed in the language.
Writing this method as

Set<?> unmodifiableSet(Set<?> set) {...}

does not solve the problem. It can take any sets, including Set<?>, but the result
type is always Set<?> and the element type infomation of the input is lost.

Torgersen et al. observed that it was actually safe to invoke unmodifiableSet()
on Set<?> and so simply allowed such invocations. As for specifying actual type
arguments, the unknown element type of Set<?> does not have to be written down
in a program, because Java allows actual type arguments to be omitted! Thus,
invocation of unmodifiableSet() is written just as:

Set<?> set = ...;

set = unmodifiableSet(set);

Then, a natural question is “what is really the omitted type argument?” One
possible answer, which again uses the correspondence to existential types, is that
the type argument is the hidden abstract type X of ∃X.Set<X>. So, it can be
interpreted as

∃X.Set<X> set = ...;

set =

open set as [Y,x] in <Y>unmodifiableSet(x);

Since types hidden under ? is “captured” by a formal type argument of a poly-
morphic method, this mechanism is called wildcard capture. The calculus we have
presented in the previous section cannot directly express wildcard capture. Extend-
ing the calculus to deal with wildcard capture will be interesting future work.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 39

It is also reported that wildcard capture has contributed to give more appropriate
interfaces to library methods. Collections.shuffle(), which takes a list and
shuffles its elements, is given the following signature in the GJ library:

<X> void shuffle(List<X> list)

which allows arbitrary lists to be shuffled. From the users’ point of view, however,
a more concise one

void shuffle(List<?> list)

is arguably desirable because it does not have a type argument, which in fact does
not contribute to the result type. Wildcard capture makes it possible to switch
from the former to the latter—the class will have the former as a private method
and the latter as a “bridge” method, which only calls the former by using wildcard
capture.

We close this section by showing some interesting use of wildcards in Java library
classes, developed by Sun Microsystems. All the method signature can be found in
JDK5.0.

The class Collections consists of static methods that operate on or return
collections. It includes a static method sort() of the following signature

<T implements Comparable<? super T>> void sort(List<T> list)

for list sorting. Here, the type variable T representing the element type is given the
bound Comparable<? super T> where Comparable is defined as:

interface Comparable<T>{

public int compareTo(T o);

}

Thus, roughly speaking, this signature of sort() allows sorting of a list of objects
comparable to themselves. For example, it is used as follows:

class Elm implements Comparable<Elm> {

int compareTo(Elm x) { ... }

}

List<Elm> v = ...;

Collection.<Elm>sort(v)

// OK -- Elm <: Comparable<Elm> <: Comparable<? super Elm>

It is quite beneficial to use the contravariant type Comparable<? super T>, instead
of Comparable<T>, especially when element types have subtypes: it also allows a
vector of subtype of Elm to be sorted, thanks to contravariance.

class MyElm extends Elm {

...

// int compareTo(Elm x); is inherited

}

List<MyElm> v = ...;

Collection.<MyElm>sort(v);

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

40 · A. Igarashi and M. Viroli.

Note that it holds that

MyElm <: Elm <: Comparable<Elm> <: Comparable<? super MyElm>.

The invocation of sort() above would not be allowed without using “? super,”
since MyElm is not a subtype of Comparable<MyElm>.

Another interesting example is found outside the collection framework. The class
Class<X> represents the class of classes and interfaces. It is parameterized so that
it is statically expressible in the type system which class is represented: an instance
of the type Class<C> keeps information on the class C. It includes the following
two methods

public X newInstance()

and

public Class<? super X> getSuperClass()

Method newInstance() creates a new object of class X by invoking the con-
structor without arguments (raising an exception if this is not defined). Method
getSuperClass() returns the Class representation of the receiver’s superclass:
since the resulting type is a supertype of T, the method return value can be given
the contravariant type Class<? super X>.

7. CONCLUSION AND FUTURE WORK

In this article, we have presented the language construct of variant parametric
types as an extension of class-based object-oriented languages supporting generics.
Variant parametric types promote inclusion polymorphism for generic types, by
providing a uniform view over different instantiations of a generic class. With
variant parametric types, unlike most of previous work on variance for generics in
object-oriented languages, decision on which variance is desirable is deferred until a
type is derived from a generic class. Thereby, reusability and scalability have been
significantly enhanced.

Variant parametric types generally make it possible to widen the applicability
of methods when arguments are used in certain limited ways in the method body.
Furthermore, bivariance—which has not been taken into account in previous work—
seems to be fairly useful for parametric types with more than one type parameter
since the bivariance annotation can represent “don’t care” when used in a method
signature.

The present idea is adapted to the latest release of the Java programming lan-
guage, and have been implemented (but in a different guise, namely wildcards).
Those types are indeed intensively used in library classes, witnessing the usefulness
of variant parametric types.

We have also pointed out how variant parametric types can be subtle, especially
when parametric types are nested. A key idea in the development of the type system
is to exploit similarity between variant parametric types and bounded existential
types. For a rigorous argument of safety of the type system, we have developed
a core calculus of variant parametric types, based on Featherweight GJ [Igarashi
et al. 2001a], and have proved type soundness.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 41

Implementation issues are not addressed in this article and left for future work.
It is worth noting, however, that existing implementation techniques seem to allow
extensions to variant parametric types in a straightforward manner. For instance,
the type-erasure technique—which is one of the basic approaches to implement-
ing generics, used in both GJ [Bracha et al. 1998], and the .NET CLR [Syme and
Kennedy 2001]—can be directly exploited for dealing with variant parametric types,
for variance annotations can be simply erased in the translated code as well as type
arguments4. In fact, the latest Java compiler, based on GJ, is implemented by using
this technique. Other advanced implementation techniques where type arguments
are maintained at run-time, such as LM translator [Viroli and Natali 2000; Viroli
2003], can be extended to variance as well. In this case, variant parametric types
can be supported by simply implementing subtyping in which variance is taken
into account. Since the current design allows run-time type arguments to be vari-
ant parametric types, it will be important to estimate extra overhead to manage
information on variance annotations. One of the basic implementation issues would
be the development of an efficient algorithm for subtyping variant parametric types.
For example, the approaches presented in Raynaund and Thierry [2001] and Palacz
and Vitek [2003] may be worth investigating.

Unlike the core calculus presented here, Java 5.0 allows programmers to omit
actual type arguments of parametric methods and the compiler infers appropriate
type arguments. As in Featherweight GJ, we have side-stepped this issue by making
type arguments explicit and regarding the calculus as an intermediate language after
the type inference stage. Still, type inference in the presence of variant parametric
types should be investigated. It seems that it is harder than type inference without
variant parametric types5—in short, variance-based subtyping yields more type
arguments that make a given method invocation typeable, but it is less likely that
there is a best one among them.

Other future work includes further evaluation of the expressiveness of variant
parametric type through large-scale applications.

APPENDIX

A. PROOFS OF LEMMAS REQUIRED FOR THEOREM 5.4.1

In the following proofs, the underlying class table is assumed to be ok.

Lemma A.1 (Weakening). Suppose ∆, X<:N ` N ok and ∆ ` U ok.

(1) If ∆ ` S <: T, then ∆, X<:N ` S <: T.
(2) If ∆ ` S ok, then ∆, X<:N ` S ok.
(3) If ∆; Γ ` e ∈ T, then ∆; Γ, x : U ` e ∈ T and ∆, X<:N; Γ ` e ∈ T.

Proof. By straightforward induction on the derivation of ∆ ` S <: T and ∆ `
S ok and ∆;Γ ` e ∈ T, respectively.

Lemma A.2 (Narrowing).

4The language has to be somewhat constrained due to the lack of run-time type arguments,

though: for example, the target of typecasts cannot be a type variable and so on.
5Personal communication with Gilad Bracha, Erik Ernst, Martin Odersky, Mads Torgersen, and
other people involved in the implementation of Sun Microsystems’ prototype.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

42 · A. Igarashi and M. Viroli.

(1) If ∆, X<:S ` T1 <: T2 and ∆ ` U <: S, then ∆, X<:U ` T1 <: T2.

(2) If ∆, X:>S ` T1 <: T2 and ∆ ` S <: U, then ∆, X:>U ` T1 <: T2.

(3) If ∆, X : (*, S) ` T1 <: T2, then ∆, X : (v, U) ` T1 <: T2.

Proof. By induction on derivation of ∆, X<:S ` T1 <: T2 and ∆, X:>S ` T1 <: T2

and ∆, X : (*, S) ` T1 <: T2, respectively.

The following lemmas (Lemmas A.3–A.5, and A.10) state that type substitution
preserves derivability of judgments about typing.

Lemma A.3.

(1) If ∆1 ` S <: [S/X]N and ∆1 ` S ok and ∆1, X<:N,∆2 ` C<vT> ⇑∆′
C<wU> with

none of X appearing in ∆1 and none of type variables in dom(∆′) appearing in
S, then ∆1, [S/X]∆2 ` [S/X]C<vT> ⇑[S/X]∆′

[S/X]C<wU>.

(2) If S ⇓∆ T where dom(∆) and X are distinct, then [S/X]S ⇓[S/X]∆ [S/X]T,

(3) [S/X]fields(C<T>) = fields([S/X]C<T>), and

(4) [S/X]mtype(m, C<T>) = mtype(m, [S/X]C<T>).

Proof. By straightforward induction on the derivation of ∆1, X<:N,∆2 `
C<vT> ⇑∆′

C<wU> and S ⇓∆ C<T> and fields(C<T>) and mtype(m, C<T>), respec-
tively.

Lemma A.4 (Type Substitution Preserves Subtyping). If
∆1, X<:N,∆2 ` S <: T and ∆1 ` U <: [U/X]N with ∆1 ` U ok and none of X
appearing in ∆1, then ∆1, [U/X]∆2 ` [U/X]S <: [U/X]T.

Proof. By induction on the derivation of ∆1, X<:N,∆2 ` S <: T.

Case S-Refl, S-Trans, S-Var. Easy.

Case S-Class. Easily follows from Lemma A.3 (1) and (2).

Case S-UBound. S = X T = (∆1, X<:N,∆2)(X)

The case where X ∈ dom(∆1)∪dom(∆2) is immediate. On the other hand, if X = Xi,
then, by assumption, we have ∆1 ` Ui <: [U/X]Ni. Finally, Lemma A.1 finishes the
case.

Case S-LBound. Immediately follows from the fact that X ∈ dom(∆1) ∪
dom(∆2).

Lemma A.5 (Type Substitution Preserves Type Well-Formedness).
If ∆1, X<:N,∆2 ` T ok and ∆1 ` U <: [U/X]N with ∆1 ` U ok and none of X appearing
in ∆1, then ∆1, [U/X]∆2 ` [U/X]T ok.

Proof. By induction on the derivation of ∆1, X<:N, ∆2 ` T ok, with a case
analysis on the last rule used.

Case WF-Object. Trivial.

Case WF-Var. T = X X ∈ dom(∆1, X<:N, ∆2)

The case X ∈ Xi follows from ∆1 ` U ok and Lemma A.1; otherwise immediate.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 43

Case WF-Class. T = C<T> ∆1, X<:N, ∆2 ` T ok
∆1, X<:N, ∆2 ` T <: [T/Y]P
class C<Y / P> / D<S> {...}

By the induction hypothesis, ∆1, [U/X]∆2 ` [U/X]T ok. On the other hand, by
Lemma A.4, ∆1, [U/X]∆2 ` [U/X]T <: [U/X][T/Y]P. Since Y<:P ` P by the rule
T-Class, P does not include any of X as a free variable. Thus, [U/X][T/Y]P =
[[U/X]T/Y]P, and finally, we have ∆1, [U/X]∆2 ` C<[U/X]T> ok by WF-Class.

Lemma A.6. Suppose ∆ has non-variable bounds and is of the form
∆1, X<:N,∆2. If ∆ ` T ok and ∆1 ` U <: [U/X]N with ∆1 ` U ok and none of X ap-
pearing in ∆1. Then, ∆1, [U/X]∆2 ` bound∆1, [U/X]∆2

([U/X]T) <: [U/X](bound∆(T)).

Proof. The case where T is a nonvariable type is trivial. The case where T
is a type variable X and X ∈ dom(∆1) ∪ dom(∆2) is also easy. Finally, if T is a
type variable Xi, then bound∆1, [U/X]∆2

([U/X]T) = Ui and [U/X](bound∆1,X<:N,∆2
(T)) =

[U/X]Ni; the assumption ∆1 ` U <: [U/X]N and Lemma A.1 finish the proof.

To prove that type substitution preserves typing (Lemma A.10), we require sev-
eral more auxiliary lemmas including Lemmas 5.4.4 and 5.4.5, already discussed in
Section 5.

Lemma A.7 (Close Yields a Supertype w/o Local Type Variables).
If ∆,∆′ ` S ok and S ⇓∆′ T, then ∆,∆′ ` S <: T and ∆ ` T ok.

Proof. By structural induction on S.

Lemma A.8. Suppose ∆,∆1 ` C<S> ok and C<S> ⇓∆1 T and ∆ ` T ⇑∆2 C<U>
and ∆3 ` S0 ok where dom(∆i) (i = 1, 2, 3) are distinct from each other.

(1) If [U/X]S0 ⇓∆2 S0
′ and X do not appear in ∆1 or ∆2, then [S/X]S0 ⇓∆1 S0

′.
(2) If ∆,∆2 ` U0 <: [U/X]S0 and ∆ ` U0 ok with X not appearing in ∆ or ∆1 or

∆2, then ∆,∆1 ` U0 <: [S/X]S0.

Proof. By inspection of the derivations C<S> ⇓∆1 T and ∆ ` T ⇑∆2 C<U>, for
each Si, one of the following properties holds:

(1) Si ⇓∆1 Si and Ui is equal to Si,
(2) Si ⇓∆1 Si

′ (so ∆,∆1 ` Si <: Si
′ by Lemma A.7) and Si 6= Si

′ and Ui is a type
variable Y and ∆2(Y) = (+, Si

′), or
(3) Si is a type variable Z and ∆1(Z) = (+, V) and Ui is a type variable Y and

∆2(Y) = (+, V).

Now, the first part is easily shown by induction on S0. For the second part,
from the inspection above, there exist ∆′,∆′

1, Y, T, S
′′ such that ∆1 = ∆′,∆′

1 and
∆2 = ∆′, Y<:T and S = [S′′/Y]U and ∆,∆1 ` S′′ <: T. (Take all Si and Si

′ where the
second case applies as S′′ and T, respectively.) Then, it follows from Lemma A.4
that ∆,∆′,∆′

1 ` [S′′/Y]U0 <: [S′′/Y][U/X]S0. Since Y do not apper in U0 or S0, we
have [S′/Y]U0 = U0 and [S′′/Y][U/X]S0 = [S/X]S0, finishing the proof.

Lemma A.9.

(1) If S ⇓∆′,X:(v,T) S′′ and ∆ ` T ok where dom(∆′, X : (v, T)) are fresh w.r.t. ∆,
then [T/X]S ⇓∆′ S′ and ∆ ` S′ <: S′′.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

44 · A. Igarashi and M. Viroli.

(2) If ∆ ` T <: U and S ⇓∆′,X<:U S′′ where dom(∆′, X<:U) are fresh for ∆, then
S ⇓∆′,X<:T S′ and ∆ ` S′ <: S′′.

(3) If ∆ ` U <: T and S ⇓∆′,X:>U S′′ where dom(∆′, X:>U) are fresh for ∆, then
S ⇓∆′,X:>T S′ and ∆ ` S′ <: S′′.

(4) If S ⇓∆′,X:(*,U) S
′′ where dom(∆′)∪{X} are fresh for ∆, then S ⇓∆′,X:(v,T) S

′ and
∆ ` S′ <: S′′.

Proof. By structural induction on S.

Now, we prove Lemmas 5.4.4 and 5.4.5.

Proof of Lemma 5.4.4. By induction on the derivation ∆ ` S <: T with the
case analysis on the last rule used.

Case S-Refl. Trivial.

Case S-UBound. Trivial because bound∆(S) = bound∆(T).

Case S-LBound. Cannot happen.

Case S-Trans. Easy.

Case S-Class. class D<X / N> / C<S′> {...}
S = D<vW> ∆ ` S ⇑∆2 D<W′> [W′/X]C<S′> ⇓∆2 T

It follows that we can take U0 as V0 from Lemma A.8(1) applied to the fact that,
fields(D<W′>) = fields(C<[W′/X]S′>), T g for some T and g and C<[W′/X]S′> ⇓∆2 T and
∆ ` T ⇑∆1 C<T>.

Case S-Var. S = C<vS′> T = C<wT′> v ≤ w
if wi ≤ -, then ∆ ` Ti

′ <: Si
′ if wi ≤ +, then ∆ ` Si

′ <: Ti
′

We show only the case where viSi
′ and wiTi

′ are identical for all but one i. The
proof easily extends to general cases.

Subcase. wi = o

Follows from the fact that vi = o and ∆ ` Ti
′ <: Si

′ and ∆ ` Si
′ <: Ti

′.

Subcase. wi = +

We have, ∆ ` Si
′ <: Ti

′ and vi must be either + or o. If vi is +, then we have
∆ ` S ⇑∆′

1,X<:Si
′
C<T> where ∆′

1, X<:Ti
′ = ∆1. By Lemma A.9(2), Ui ⇓∆′

1,X<:Si
′ Vi

′

and ∆ ` Vi
′ <: Ui

′. The other case for vi = o is similar (use Lemma A.9).

Subcase. wi = - or wi = *

Similar.

Proof of Lemma 5.4.5. By induction on the derivation of ∆ ` S <: T with the
case analysis on the last rule used.

Case S-Refl. Trivial.

Case S-UBound. Trivial because bound∆(S) = bound∆(T).

Case S-LBound. Cannot happen.

Case S-Trans. Easy.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 45

Case S-Class. class D<X / N> / C<S′> {...}
S = D<vW> ∆ ` S ⇑∆2 D<W′> [W′/X]C<S′> ⇓∆2 T

By T-Class and T-Method, mtype(D<W′>) = mtype(C<[W′/X]S′>). Thus, the
conclusion follows from Lemma A.8 and the fact that C<[W′/X]S′> ⇓∆2 T and
∆ ` T ⇑∆1 C<T>.

Case S-Var. S = C<vS′> T = C<wT′> v ≤ w
if wi ≤ -, then ∆ ` Ti

′ <: Si
′

if wi ≤ +, then ∆ ` Si
′ <: Ti

′

We show only the case where viSi
′ and wiTi

′ are identical for all but one i. The
proof easily extends to general cases.

Subcase. wi = o

Follows from the fact that vi = o and ∆ ` Ti
′ <: Si

′ and ∆ ` Si
′ <: Ti

′.

Subcase. wi = +

We have ∆ ` Si
′ <: Ti

′ and vi must be either + or o. If vi is +, then it follows
from Lemma A.2that ∆,∆2 ` V <: [V/Y]P′ and ∆,∆2 ` W <: [V/Y]U′ and we have
∆ ` S ⇑∆′

1,X<:Si
′
C<T> where ∆′

1, X<:Ti
′ = ∆1. By Lemma A.9(2), [V/Y]U0 ⇓∆′

1,X<:Si
′

V0
′ and ∆ ` V0

′ <: V0. The other case for vi = o is similar (use Lemmas A.4 and
A.9(1) instead of LemmasA.2 and A.9(2), respectively).

Subcase. wi = - or wi = *

Similar.

Lemma A.10 (Type Substitution Preserves Typing). If both ∆1 and ∆2

have non-variable bounds and ∆1, X<:N, ∆2; Γ ` e ∈ T and ∆1 ` U <: [U/X]N where
∆1 ` U ok and none of X appears in ∆1, then ∆1, [U/X]∆2; [U/X]Γ ` [U/X]e ∈ S for
some S such that ∆1, [U/X]∆2 ` S <: [U/X]T.

Proof. By induction on the derivation of ∆1, X<:N,∆2; Γ ` e ∈ T with a case
analysis on the last rule used. In what follows, let ∆ = ∆1, X<:N,∆2.

Case T-Var. Trivial.

Case T-Field. e = e0.fi ∆; Γ ` e0 ∈ T0

∆ ` bound∆(T0) ⇑∆′
C<T> fields(C<T>) = U f Ui ⇓∆′ T

By the induction hypothesis, ∆1, [U/X]∆2; [U/X]Γ ` [U/X]e0 ∈ S0 and
∆1, [U/X]∆2 ` S0 <: [U/X]T0 for some S0. By Lemma A.6,

∆1, [U/X]∆2 ` bound∆1, [U/X]∆2
([U/X]T0) <: [U/X](bound∆1, X<:N, ∆2

(T0)).

Then, by S-Trans,

∆1, [U/X]∆2 ` bound∆1, [U/X]∆2
(S0) <: [U/X](bound∆1, X<:N, ∆2

(T0)).

By Lemma 5.4.4, ∆1, [U/X]∆2 ` bound∆(S0) ⇑∆′′
D<S> and fields(D<S>) = S f, . . .,

and Si ⇓∆′′ T′ and ∆1, [U/X]∆2 ` T′ <: [U/X]T. Thus, by the rule T-Field,
∆1, [U/X]∆2; [U/X]Γ ` [U/X]e0.fi ∈ T′.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

46 · A. Igarashi and M. Viroli.

Case T-Invk. e = e0.<V>m(e) ∆; Γ ` e0 ∈ T0

∆ ` bound∆(T0) ⇑∆′
C<T> mtype(m, C<T>) = <Y / P>W→W0

{Y} ∩ dom(∆′) = ∅ ∆ ` V ok
∆,∆′ ` V <: [V/Y]P ∆; Γ ` e ∈ S
∆,∆′ ` S <: [V/Y]W [V/Y]W0 ⇓∆′ T

By the induction hypothesis,

∆1, [U/X]∆2; [U/X]Γ ` [U/X]e0 ∈ S0

∆1, [U/X]∆2 ` S0 <: [U/X]T0

and
∆1, [U/X]∆2; [U/X]Γ ` [U/X]e ∈ S′

∆1, [U/X]∆2 ` S′ <: [U/X]S

for some S0 and S′. By Lemmas A.6, A.5, A.4 and A.3, it is easy to show

∆1, [U/X]∆2 ` bound∆1, [U/X]∆2
(S0) <: [U/X](bound∆(T0))

and

∆1, [U/X]∆2 ` [U/X]V ok

and
∆1, [U/X](∆2,∆′) ` [U/X]V <: [U/X][V/Y]P
∆1, [U/X]∆2 ` [U/X]S <: [U/X][V/Y]W

and
mtype(m, [U/X]C<T>) = <Y / [U/X]P>[U/X]W→[U/X]W0

[U/X][V/Y]W0 ⇓[U/X]∆′ [U/X]T

respectively.
Then, by Lemma 5.4.5 and the fact that [U/X][V/Y]T = [[U/X]V/Y]([U/X]T) for any

T, we have

∆1, [U/X]∆2 ` bound∆1, [U/X]∆2
(S0) ⇑∆′′

D<T′>
mtype(m, D<T′>) = <Y / P′>W′→W0

′

∆1, ([U/X]∆2),∆′′ ` [U/X]V <: [[U/X]V/Y]P
∆1, ([U/X]∆2),∆′′ ` [U/X]S <: [[U/X]V/Y]W′

[[U/X]V/Y]W0
′ ⇓∆′′ T′

∆1, [U/X]∆2 ` T′ <: [U/X]T.

By Lemma A.1 and the rule S-Trans,

∆1, [U/X]∆2,∆′′ ` S′ <: [[U/X]V/Y]W′

and, by the rule T-Invk,

∆1, [U/X]∆2 ` [U/X]e0.<V>m(e) ∈ T′

as required.
Case T-New, T-Cast, T-SCast. Easy.

Now that Lemma A.10 is proved, we are ready to show Lemmas 5.4.2 and 5.4.3.

Proof of Lemma 5.4.2. By induction on the derivation of
mbody(m<V>, C<T>) = x.e0.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 47

Case MB-Class. class C<X / N> / D<S> {... M}
<Y / P′> U0

′ m(U′ x){ return e0
′; } ∈ M

Then, mtype(m, C<T>) = <Y / ([T/X]P′)>([T/X]U′)→([T/X]U0
′), that is, P = [T/X]P′

and U = [T/X]U′ and U0 = [T/X]U0
′ and e0 = [V/Y][T/X]e0

′. Now, let Γ = x :
U′, this : C<X> and ∆′ = X<:N, Y<:P. By the rules T-Class and T-Method, we
have ∆′; Γ ` e0

′ ∈ S0 and ∆′ ` S0 <: U0
′ for some S0. Since ∆ ` C<T> ok, we have

∆ ` T <: [T/X]N by the rule WF-Class. By Lemmas A.1, A.4, and A.10,

∆ ` [V/Y][T/X]S0 <: [V/Y][T/X]U0
′

and

∆; x : [V/Y][T/X]U′, this : C<T> ` [V/Y][T/X]e0 ∈ S0
′

where

∆ ` S0
′ <: [V/Y][T/X]S0.

Letting N = C<T> and S = S0
′ finishes the case. (Note that, without loss of gener-

ality, we can assume [V/Y][T/X] = [T/X][V/Y].)
Case MB-Super. class C<X / N> / D<S> {... M} m 6∈ M

Immediate from the induction hypothesis and the fact that ∆ ` C<T> <: [T/X]D<S>.

Proof of Lemma 5.4.3. By induction on the derivation of ∆; Γ, x : T ` e ∈ T
with a case analysis on the last rule used.
Case T-Var. e = x

The case where x ∈ dom(Γ) is immediate, since [d/x]x = x. On the other hand, if
x = xi and T = Ti, then ∆; Γ ` di ∈ Si finishing the case.
Case T-Field. e = e0.fi ∆; Γ, x : T ` e0 ∈ T0

∆ ` bound∆(T0) ⇑∆′
C<U> fields(C<U>) = S f

Si ⇓∆′ T

By the induction hypothesis, ∆; Γ ` [d/x]e0 ∈ S0 for some S0 such that ∆ ` S0 <: T0.
By Lemma 5.4.4, ∆ ` bound∆(S0) ⇑∆′

D<V>, fields(D<V>) = W f, . . ., and Wi ⇓∆′′ Wi
′

and ∆ ` Wi
′ <: T. Therefore, by the rule T-Field, ∆; Γ ` [d/x]e0.fi ∈ Wi

′.
Case T-Invk. e = e0.<V>m(e) ∆; Γ, x : T ` e0 ∈ T0

∆ ` bound∆(T0) ⇑∆′
C<T> mtype(m, C<T>) = <Y / P>U→U0

{Y} ∩ dom(∆′) = ∅ ∆ ` V ok
∆,∆′ ` V <: [V/Y]P ∆Γ, x : T ` e ∈ S
∆,∆′ ` S <: [V/Y]U [V/Y]U0 ⇓∆′ T

By the induction hypothesis, ∆; Γ ` [d/x]e0 ∈ T0
′ for some T0

′ such that
∆ ` T0

′ <: T0 and ∆;Γ ` [d/x]e ∈ S′ for some S′ such that ∆ ` S′ <: S. By
Lemma 5.4.5, we have

∆ ` bound∆(T0
′) ⇑∆′′

D<T′> mtype(m, D<T′>) = <Y / P′>U′→U0
′

∆,∆′′ ` V <: [V/Y]P′ ∆,∆′′ ` S′ <: [V/Y]U′

[V/Y]S0
′ ⇓∆′′ T′ ∆ ` T′ <: T

Therefore, by the rule T-Invk, ∆; Γ ` [d/x]e ∈ T′, finishing the case.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

48 · A. Igarashi and M. Viroli.

Case T-New, T-Cast, T-SCast. Easy.

ACKNOWLEDGMENTS

We thank anonymous reviewers for useful comments, Gilad Bracha and Benjamin
Pierce for helping us clarify about related work, and David Griswold and people
involved in the development of the prototype compiler at Sun Microsystems for
having discussion with us.

REFERENCES

Abadi, M., Cardelli, L., and Viswanathan, R. 1996. An interpretation of objects and ob-
ject types. In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL’96). ACM Press, St. Petersburg Beach, FL, 396–409.

Agesen, O., Freund, S. N., and Mitchell, J. C. 1997. Adding type parameterization to the Java
language. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA’97). ACM Press, Atlanta, GA, 49–65.

America, P. and van der Linden, F. 1990. A parallel object-oriented language with inheritance
and subtyping. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications/European Conference on Object-Oriented

Programming(OOPSLA/ECOOP’90). ACM Press, Ottawa, Canada, 161–168.

Barthe, G. and Frade, M. J. 1999. Constructor subtyping. In Proceedings of the 8th Euro-

pean Symposium on Programming (ESOP’99). Lecture Notes on Computer Science, vol. 1576.
Springer-Verlag, Amsterdam, Netherlands, 109–127.

Barthe, G. and van Raamsdonk, F. 2000. Constructor subtyping in the calculus of inductive

constructions. In Proceedings of the 3rd International Conference on Foundations of Software
Science and Computation Structures (FoSSaCS2000). Lecture Notes on Computer Science, vol.

1784. Springer-Verlag, Berlin, Germany, 17–34.

Bracha, G. 1996. The Strongtalk type system for Smalltalk. In Proceedings of the OOPSLA’96
Workshop on Extending the Smalltalk Language. San Jose, CA. Also available electronically

through http://bracha.org/nwst.html.

Bracha, G. and Griswold, D. 1993. Strongtalk: Typechecking Smalltalk in a production envi-

ronment. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA’93). ACM Press, Washington, DC, 215–230.

Bracha, G., Odersky, M., Stoutamire, D., and Wadler, P. 1998. Making the future safe for

the past: Adding genericity to the Java programming language. In Proceedings of the ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA’98). ACM Press, Vancouver, BC, 183–200.

Bruce, K. B. 1994. A paradigmatic object-oriented programming language: Design, static typing

and semantics. J. Funct. Program. 4, 2 (Apr.), 127–206. Preliminary version in POPL 1993,
under the title “Safe type checking in a statically typed object-oriented programming language”.

Bruce, K. B., Cardelli, L., and Pierce, B. C. 1999. Comparing object encodings. Inf. Com-
put. 155, 108–133. A special issue with papers from Theoretical Aspects of Computer Software

(TACS), September, 1997.

Bruce, K. B., Odersky, M., and Wadler, P. 1998. A statically safe alternative to virtual
types. In Proceedings of the 12th European Conference on Object-Oriented Programming

(ECOOP’98). Lecture Notes on Computer Science, vol. 1445. Springer-Verlag, Brussels, Bel-
gium, 523–549.

Bruce, K. B., Petersen, L., and Fiech, A. 1997. Subtyping is not a good “match” for

object-oriented languages. In Proceedings of the 11th European Conference on Object-Oriented
Programming (ECOOP’97). Lecture Notes on Computer Science, vol. 1241. Springer-Verlag,
Jyväskylä, Finland, 104–127.

Bruce, K. B., Schuett, A., and van Gent, R. 1995. PolyTOIL: A type-safe polymorphic
object-oriented language. In Proceedings of the 9th European Conference on Object-Oriented

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 49

Programming (ECOOP’95), W. Olthoff, Ed. Lecture Notes on Computer Science, vol. 952.

Springer-Verlag, Aarhus, Denmark, 27–51.

Bruce, K. B. and Vanderwaart, J. C. 1999. Semantics-driven language design: Statically type-
safe virtual types in object-oriented languages. In Proceedings of the 15th Conference on

the Mathematical Foundations of Programming Semantics (MFPS XV). Electronic Notes in

Theoretical Computer Science, vol. 20. Elsevier, New Orleans, LA. Available through http://

www.elsevier.nl/locate/entcs/volume20.html.

Canning, P., Cook, W., Hill, W., Olthoff, W., and Mitchell, J. 1989. F-bounded quantifi-

cation for object-oriented programming. In Proceedings of the ACM Conference on Functional

Programming and Computer Architecture (FPCA’89). ACM Press, London, England, 273–280.

Cardelli, L. 1990. Notes about Fω
<:. Unpublished manuscript.

Cardelli, L., Martini, S., Mitchell, J. C., and Scedrov, A. 1994. An extension of system F
with subtyping. Inf. Comput. 109, 1–2, 4–56. Preliminary version in Proceedings of Theoretical

Aspects of Computer Software (TACS’91), LNCS 526, Sendai, Japan, 750–770.

Cardelli, L. and Wegner, P. 1985. On understanding types, data abstraction, and polymor-

phism. ACM Computing Surveys 17, 4 (Dec.), 471–522.

Cartwright, R. and Steele Jr., G. L. 1998. Compatible genericity with run-time types for
the Java programming language. In Proceedings of the ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA’98). ACM Press,

Vancouver, BC, 201–215.

Compagnoni, A. B. and Pierce, B. C. 1996. Higher-order intersection types and multiple inher-
itance. Math. Struct. Comput. Sci. 6, 469–501.

Cook, W. 1989. A proposal for making Eiffel type-safe. In Proceedings of the 3rd European

Conference on Object-Oriented Programming (ECOOP’89). Cambridge University Press, Not-

tingham, England, 57–70.

Day, M., Gruber, R., Liskov, B., and Myers, A. C. 1995. Subtypes vs. where clauses: Con-
straining parametric polymorphism. In Proceedings of the ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’95). ACM

Press, Austin, TX, 156–168.

Duggan, D. and Compagnoni, A. 1999. Subtyping for object type constructors. In Informal
Proceedings of the 6th International Workshop on Foundations of Object-Oriented Languages

(FOOL6). San Antonio, TX. Available through http://www.cis.upenn.edu/~bcpierce/FOOL/

FOOL6.html.

Ghelli, G. and Pierce, B. 1998. Bounded existentials and minimal typing. Theor. Comput.
Sci. 193, 75–96.

Harper, R. and Lillibridge, M. 1994. A type-theoretic approach to higher-order modules with

sharing. In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL’94). ACM Press, Portland, OR, 123–137.

Igarashi, A. and Pierce, B. C. 2002. Foundations for virtual types. Inf. Comput. 175, 1 (May),
34–49. An earlier version appeared in Proc. of the 13th ECOOP, Springer LNCS 1628, pages

161–185, 1999.

Igarashi, A., Pierce, B. C., and Wadler, P. 2001a. Featherweight Java: A minimal core calcu-

lus for Java and GJ. ACM Trans. Program. Lang. Syst. 23, 3 (May), 396–450. A preliminary
summary appeared in Proceedings of the ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA’99), ACM SIGPLAN Notices,

volume 34, number 10, pages 132–146, Denver, CO, October 1999.

Igarashi, A., Pierce, B. C., and Wadler, P. 2001b. A recipe for raw types. In Informal
Proceedings of the 8th International Workshop on Foundations of Object-Oriented Languages

(FOOL8). London, England. Available through http://www.cis.upenn.edu/~bcpierce/FOOL/

FOOL8.html.

Igarashi, A. and Viroli, M. 2002. On variance-based subtyping for parametric types. In Pro-
ceedings of the 16th European Conference on Object-Oriented Programming (ECOOP2002),

B. Magnusson, Ed. Lecture Notes on Computer Science, vol. 2374. Springer-Verlag, Málaga,

Spain, 441–469.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

50 · A. Igarashi and M. Viroli.

Interactive Software Engineering. 2001. An Eiffel tutorial. Available through http://www.

eiffel.com/doc/online/eiffel50/intro/language/tutorial-00.ht%ml.

Leroy, X. 1994. Manifest types, modules and separate compilation. In Proceedings of the 21st

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’94).
ACM Press, Portland, OR, 109–122.

Liskov, B. 1988. Data abstraction and hierarchy. ACM SIGPLAN Notices 23, 5 (May), 17–34.

Madsen, O. L. and Møller-Pedersen, B. 1989. Virtual classes: A powerful mechanism in

object-oriented programming. In Proceedings of the ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA’89). ACM Press,
New Orleans, LA, 397–406.

Meyer, B. 1986. Genericity versus inheritance. In Proceedings of the ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’86). ACM

Press, Portland, OR, 391–405.

Meyer, B. 1992. Eiffel: The Language. Prentice Hall, Upper Saddle River, NJ.

Mitchell, J. C. and Plotkin, G. D. 1988. Abstract types have existential types. ACM Trans.

Program. Lang. Syst. 10, 3, 470–502. Preliminary version appeared in Proc. of the 12th ACM
POPL, 1985.

Myers, A. C., Bank, J. A., and Liskov, B. 1997. Parameterized types for Java. In Proceedings
of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL’97). ACM Press, Paris, France, 132–145.

Nordström, B., Petersson, K., and Smith, J. M. 1990. Programming in Martin-Löf ’s Type
Theory. Oxford University Press, Oxford, UK. Out of print. An electronic version is available

at http://www.cs.chalmers.se/Cs/Research/Logic/book.

Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., Mihaylov,

N., Schinz, M., Stenman, E., and Zenger, M. 2004. An overview of the Scala programming

language. Tech. Rep. IC/2004/64, École Polytechnique Fédérale de Lausanne, Switzerland.

Odersky, M. and Wadler, P. 1997. Pizza into Java: Translating theory into practice. In

Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’97). ACM Press, Paris, France, 146–159.

Palacz, K. and Vitek, J. 2003. Subtype tests in real time. In Proceedings of the 17th European
Conference on Object-Oriented Programming (ECOOP2003), L. Cardelli, Ed. Lecture Notes

on Computer Science, vol. 2743. Springer-Verlag, Darmstadt, Germany, 378–404.

Pierce, B. C. 1994. Bounded quantification is undecidable. Inf. Comput. 112, 1 (July), 131–165.
Also in Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects of Object-Oriented

Programming: Types, Semantics, and Language Design (MIT Press, 1994). Preliminary version

in POPL ’92.

Pierce, B. C. and Turner, D. N. 1994. Simple type-theoretic foundations for object-oriented

programming. J. Funct. Program. 4, 2 (Apr.), 207–247.

Raynaund, O. and Thierry, E. 2001. A quasi optimal bit-vector encoding of tree hierarchies:

Application to efficient type inclusion tests. In Proceedings of the 15th European Conference on
Object-Oriented Programming (ECOOP2001). Lecture Notes on Computer Science, vol. 2072.

Springer-Verlag, Budapest, Hungary, 165–180.

Steffen, M. 1998. Polarized higher-order subtyping. Ph.D. thesis, Universität Erlangen-

Nürnberg.

Sun Microsystems. 1998. Adding generic types to the Java programming language. Java Speci-
fication Request JSR-000014, http://jcp.org/jsr/detail/014.jsp.

Syme, D. and Kennedy, A. 2001. Design and implementation of generics for the .NET Common
Language Runtime. In Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI’01). ACM Press, Snowbird, UT. Related information

is available through http://research.microsoft.com/projects/clrgen/.

Thorup, K. K. 1997. Genericity in Java with virtual types. In Proceedings of the 11th Euro-

pean Conference on Object-Oriented Programming (ECOOP’97). Lecture Notes on Computer
Science, vol. 1241. Springer-Verlag, Jyväskylä, Finland, 444–471.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Variant Parametric Types · 51

Thorup, K. K. and Torgersen, M. 1999. Unifying genericity: Combining the benefits of virtual

types and parameterized classes. In Proceedings of the 13th European Conference on Object-
Oriented Programming (ECOOP’99). Lecture Notes on Computer Science, vol. 1628. Springer-

Verlag, Lisbon, Portugal, 186–204.

Torgersen, M. 1998. Virtual types are statically safe. In Informal Proceedings of the 5th

International Workshop on Foundations of Object-Oriented Languages(FOOL5). San Diego,
CA. Available through http://www.cis.upenn.edu/~bcpierce/FOOL/FOOL5.html.

Torgersen, M., Hansen, C. P., Ernst, E., von der Ahé, P., Bracha, G., and Gafter, N. 2004.

Adding wildcards to the Java programming language. In Proceedings of the ACM Symposium
on Applied Computing (SAC’04). ACM Press, Nicosia, Cyprus, 1289–1296.

Viroli, M. 2003. A type-passing approach for the implementation of parametric methods in Java.

Comput. J. 46, 3, 263–294.

Viroli, M. and Natali, A. 2000. Parametric polymorphism in Java: an approach to translation
based on reflective features. In Proceedings of the ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA’00). ACM Press,

Minneapolis, MN, 146–165.

Wright, A. K. and Felleisen, M. 1994. A syntactic approach to type soundness. Inf. Com-
put. 115, 1 (Nov.), 38–94.

Received August 2003; revised May 2004; revised November 2004; accepted November 2004

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

