
Foundations for Virtual Types

Atsushi Igarashi Benjamin C. Pierce

Department of Computer & Information Science

University of Pennsylvania

200 South 33rd St.

Philadelphia, PA 19104, USA

figarasha,bcpierceg@saul.cis.upenn.edu

February 10, 2000

Abstract

Virtual types have been proposed as a notation for generic programming in object-oriented

languages|an alternative to the more familiar mechanism of parametric classes. The tradeo�s

between the two mechanisms are a matter of current debate: for many examples, both appear to

o�er convenient (indeed almost interchangeable) solutions; in other situations, one or the other

seems to be more satisfactory. However, it has proved di�cult to draw rigorous comparisons

between the two approaches, partly because current proposals for virtual types vary considerably

in their details, and partly because the proposals themselves are described rather informally,

usually in the complicating context of full-scale language designs.

Work on the foundations of object-oriented languages has already established a clear connec-

tion between parametric classes and the polymorphic functions found in familiar typed lambda-

calculi. Our aim here is to explore a similar connection between virtual types and dependent

records.

We present, by means of examples, a straightforward model of objects with embedded type

�elds in a typed lambda-calculus with subtyping, type operators, �xed points, dependent func-

tions, and dependent records with both \bounded" and \manifest" type �elds (this combination

of features can be viewed as a measure of the inherent complexity of virtual types). Using this

model, we then discuss some of the major di�erences between previous proposals and show

why some can be checked statically while others require run-time checks. We also investigate

how the partial \duality" of virtual types and parametric classes can be understood in terms of

translations between universal and (dependent) existential types.

1 Introduction

Language support for generic programming plays an important role in the development of reusable

libraries. In object-oriented languages, two di�erent approaches to genericity have been consid-

ered. The more familiar one|based closely on the classical parametric polymorphism of functional

languages such as ML and Haskell|can be found, for example, in the template mechanism of

C++ [31] and the parametric classes in a number of proposed extensions to Java [25, 24, 2, 3, 13,

etc.]. An alternative approach, commonly called virtual types (or virtual classes), allows classes

1



2

and objects to contain types as members, along with the usual �elds and methods.

1

Virtual types

were originally developed in Beta [22] and have recently been proposed for Java [32].

The static typing of virtual types is not yet clearly understood. Indeed, early proposals were

statically unsafe, requiring extra runtime checks; more recent work has produced several proposals

for type-safe variants [34, 5]. These proposals vary substantially in their details, and have generally

been presented in rather informal terms|and in the complicating context of full-scale language

designs|making them di�cult to evaluate and compare.

Our goal in this paper is to establish a rigorous setting in which to understand and discuss the

basic mechanisms of virtual types. Following a long line of past work on foundations for object-

oriented programming (see [4] for history and citations), we model objects and classes with virtual

types as a particular style of programming in a fairly standard typed lambda-calculus. On this

basis, we examine (1) the type-theoretic features that seem to be required for modeling virtual

types, (2) the similarities and di�erences between existing proposals, and (3) the type-theoretic

intuitions behind the much-discussed \overlap" between virtual types and parametric classes in

practice.

The rest of the paper is organized as follows. Section 2 reviews the idea of virtual types by

means of a standard example, the animal/cow class hierarchy of Shang [30]. Section 3 sketches the

main features of the typed lambda-calculus that forms the setting for our model. Section 4 develops

the encoding of the Animal/Cow example in detail. Section 5 discusses the relation between virtual

types and parametric classes as mechanisms for generic programming. Section 6 reviews previous

work on virtual types in the light of our model. Section 7 sketches some directions for future work.

Our presentation is self-contained, but somewhat technical at times. Familiarity with past

work on modeling objects in typed lambda-calculi (e.g., [28], [18], [4], or Chapter 18 of [1]) will

help the reader interested in following in detail. Another useful source of background is Harper and

Lillibridge [17, 20] and Leroy's [19] papers on modeling module systems using dependent records

with \manifest" bindings.

2 Virtual Types

We begin by reviewing the notion of virtual types through an example. This example, used through-

out the paper, is a variant of the animal/cow example of Shang [30]. (Our notation is Java-like,

but does not exactly correspond to any of the existing proposals for virtual types in Java.)

We begin by de�ning a generic class of animals, along with its interface.

interface AnimalI {

type FoodType <

:

Food;

void eat (FoodType f);

void eatALot (FoodType f); }

virtual class Animal implements AnimalI {

virtual type FoodType <

:

Food;

virtual void eat (FoodType f);

void eatALot (FoodType f) {

eat(f);

eat(f); }}

1

Referring to this approach with the phrase \virtual types" is somewhat confusing, since|as we will see|these

type members may or may not be \virtual" in the sense of virtual or abstract methods. But the terminology is

standard.



3

Every animal has methods eat and eatALot, both accepting some food as an argument. The

body of the eat method, which is speci�c to particular kinds of animals, is omitted; the virtual

marker defers the responsibility of providing an implementation to subclasses. (We use the C++

keyword virtual in preference to Java's abstract to avoid terminological confusion: locutions like

\abstract type" already have a well-established meaning.) The calls to eat from the body of the

eatALot method will call whatever body is provided by the subclass.

Similarly, the class Animal defers specifying exactly what kind of food a given kind of animal

likes to eat. The virtual member FoodType acts as placeholder for this type, allowing it to be

mentioned in the types of eat and eatALot, just as the declaration of eat provides a placeholder

for its eventual implementation, allowing it to be referred to from the body of eatALot. Classes

with virtual members (either types or methods) cannot be instantiated, since they are incomplete:

they can only be subclassed.

The interface AnimalI speci�es that every animal object has three members: a type FoodType

and methods eat and eatALot. The FoodTypemember of every animal is known to be some kind of

Food (FoodType<

:

Food), but, since di�erent animals eat di�erent kinds of food, the exact identity

of this type is not visible. It follows immediately that it is not possible to feed an animal without

knowing what kind of animal it is: if a is an object of type AnimalI, then a's eatmethod requires an

argument of type a.FoodType; but there is no way to obtain a value of this type (except, perhaps,

by building a nutrient-free empty value using new).

Speci�c kinds of animals are modeled by classes inheriting from Animal. For example, here is

a Cow class and its interface:

interface CowI extends AnimalI {

type FoodType $ Grass; }

class Cow extends Animal implements CowI {

final type FoodType $ Grass;

void eat (FoodType f) { ... }}

In Cow, the virtual method eat is given a concrete implementation (shown as \..."). Similarly,

the virtual type member FoodType is given a concrete value, Grass. The annotation final on

the FoodType member means that it cannot be rede�ned by subclasses: every subclass of Cow is

guaranteed to have Grass as its FoodType. The interface CowI re
ects the fact that FoodType is

�nal: in e�ect, it tells the world that every cow eats food whose type is equal to Grass. Thus,

given an object a of type CowI, we may validly obtain some grass from any source and pass it to

the eat or eatALot methods.

Virtual types are also useful in more standard examples of generic programming. For example, a

generic Bag class can be de�ned with a virtual type ElementType. Then classes NatBag, StringBag,

etc. can be de�ned by inheriting from Bag and giving ElementType a final binding to Nat or

String. Other examples of generic programming with virtual types can be found in [22, 32].

3 Summary of Type System

It is well understood [28, 6, etc.] how parametric classes|classes abstracted on type parameters|

can be understood as polymorphic functions in a typed lambda-calculus. By analogy, objects with

type members should clearly be modeled as some kind of records with type �elds. Fortunately,

such records have been studied extensively in the type-theory literature (e.g. [9]). Indeed, even

the constraints on type members appearing in the interfaces AnimalI (FoodType<

:

Food) and CowI



4

(FoodType$Grass) correspond to well-known constructions in the typed lambda-calculi used by

Harper and Lillibridge [17, 20] and Leroy [19] to model module systems. Records with type �elds

constrained by <

:

are a generalization of partially abstract types [12]; records with type �elds

constrained by $ correspond to translucent or manifest sums.

The typed lambda-calculus sketched in this section is based directly on these intuitions. In

essence, it can be described as System F

!

�

(the omega-order polymorphic lambda-calculus with

subtyping [8, 10, 26, 14]) plus dependent records with both \bounded" [12] and \manifest" [17, 20,

19] type �elds, plus dependent functions. We begin by brie
y reviewing the features of System F

!

�

(Sections 3.1 and 3.2); we then concentrate on explaining records with type �elds (Section 3.3) and

dependent functions (Section 3.4), which are less familiar.

3.1 Functions, polymorphism, and parameterized types

The core of the system is Girard's System F

!

[16]. This calculus can be viewed as a simple

functional programming language with three distinct forms of abstraction: (1) ordinary functions

(i.e., terms abstracted over terms); (2) polymorphic functions (i.e., terms abstracted over types);

and (3) parametric types (i.e., types abstracted over types). We write all three forms with similar

concrete syntax. For example,

plustwo = �[x:Nat] succ(succ(x));

is an ordinary function that adds two to its argument. Similarly,

id = �[X:*] �[x:X] x;

is the polymorphic identity function, and

double = �[X:*] �[f:X!X] �[x:X] f(f(x));

is a polymorphic function that accepts a type X, a function f (of type X!X), and an argument x

(of type X), and applies f twice to x. (The annotation X:* indicates that X is a type parameter.)

Thus,

plusfour = double Nat plustwo;

is a fancy way of writing the function that adds four to its (numeric) argument.

Parametric types are written in a similar style. For example,

Pair = �[A:*] �[B:*] {|fst:A, snd:B|};

is a convenient abbreviation for the parametric type of pairs, and

PairNatNat = Pair Nat Nat;

is the concrete type of pairs of numbers. The usual (polymorphic) operations on pairs can be

de�ned as follows:

fst = �[A:*] �[B:*] �[p: Pair A B] p.fst;

snd = �[A:*] �[B:*] �[p: Pair A B] p.snd;

pair = �[A:*] �[B:*] �[a:A] �[b:B] ({fst=a, snd=b} :: Pair A B);

The types of these operations are:

fst : 8[A:*] 8[B:*] Pair A B ! A

snd : 8[A:*] 8[B:*] Pair A B ! B

pair : 8[A:*] 8[B:*] A ! B ! Pair A B



5

(In the following, we will often display de�ned terms together with their types.) Note that the

de�nition of pair uses an explicit coercion (:: Pair A B) to control how its type is printed by

the typechecker. Leaving it o� results in a de�nition with exactly the same behavior

pair = �[A:*] �[B:*] �[a:A] �[b:B] {fst=a, snd=b};

pair : 8[A:*] 8[B:*] A ! B ! {|fst:A, snd:B|}

(since we have de�ned Pair A B to be interchangeable with {|fst:A,snd:B|}), but less intuitive

for the reader.

To ensure their well-formedness, types and type operators are assigned kinds, K, which have

the form * or K!K. Type expressions of kind * (pronounced \type") are ordinary types; type

expressions of kind *!* are functions from types to types; etc.

It is sometimes useful to write higher-order type operators|that is, type operators whose

arguments are type operators. For example,

BothBool = �[F:*!*!*] F Bool Bool;

is higher-order type operator that, when applied to any operator O, yields the type O Bool Bool.

Thus:

mypair = pair Bool Bool true false :: BothBool Pair;

A more natural example of higher-order type operators will be seen later in the Object type

constructor: its argument I is itself an operator abstracted over the \self type" Rep.

For constructing objects, we shall also need a �xed-point constructor. If t is a function from T

to T, then fix T t is its �xed point. (Writing T explicitly simpli�es the typechecking of fix in the

presence of dependent types.)

� ` t : T!T

� ` fix T t : T

(T-Fix)

For example, here is how fix is used to construct a factorial function:

fact = fix (Nat!Nat) �[f:Nat!Nat] �[n:Nat]

if eq n 0 then 1 else times n (f (pred n)) :: Nat ! Nat;

3.2 Subtyping

Next, we add the familiar notion of subtyping. For example, subtyping of function types is con-

travariant on the left and covariant on the right:

� ` T

1

<

:

S

1

� ` S

2

<

:

T

2

� ` S

1

!S

2

<

:

T

1

!T

2

(S-Arrow)

We use bounded universal quanti�ers �a la F

�

[11], with the usual subtyping rule:

� ` S

2

<

:

S

1

�; X<

:

S

2

` T

1

<

:

T

2

� ` 8[X<

:

S

1

]T

1

<

:

8[X<

:

S

2

]T

2

(S-All)

The subtype relation has a maximal element, called Top. Constraining a type variable to be a

subtype of Top is actually no constraint at all, so we can recover unbounded quanti�cation from



6

bounded, writing �[X<

:

Top]t in place of �[X:*]t. (We will continue to write �[X:*]t in what

follows, for readability.)

Subtyping is extended pointwise to type operators: �[X:K]S is a subtype of �[X:K]T if S is a

subtype of T under all legal substitutions for X.

�; X:K ` S <

:

T

� ` �[X:K]S <

:

�[X:K]T

(S-Abs)

For example, �[T:*] Top!T is a subtype of �[T:*] Nat!T since Nat is a subtype of Top.

3.3 Records with Type Fields

To support records with type �elds, a bit of machinery is required. First, we must deal with

the fact that later �elds in a record may refer to earlier �elds by name|e.g., the type of the

eat �eld must refer to the FoodType �eld. (Thus, in particular, the order of �elds is signi�cant

in dependent records.) Second, we must be able to deal with record-projection expressions like

a.FoodType appearing in the types of values (e.g., a.eat). The second requirement in particular

goes somewhat beyond what can be expressed using ordinary existential types, taking us into the

realm of dependent records.

In general, a dependent record has the form {�

i

i21���n

}, where each �

i

is a �eld of one of two

forms: either a term �eld x

i

=t

i

or a type �eld X

i

=T

i

. The name x

i

or X

i

is not only used to project

a record from outside but also is a binder whose scope is the rest of the �elds in the record.

2

For

example, in the record value r = {X=Nat,x=�[y:X]y+1}, X in the second �eld is bound by the �rst

occurrence of X.

A record type has the form {|B

i

i21���n

|}, where B

i

is a binding of one of three forms: a term binding

x:T, a bounded type binding X<

:

T, or a manifest type binding X$T. (In examples, we will also use

type bindings of the form X:* as an abbreviation for X<

:

Top.) For example, the record r above

has type {|X$Nat,x:X!X|}. A less informative type also possessed by r is {|X<

:

Top,x:X!X|},

which hides the representation of X and corresponds to the usual existential type 9X.X!X. In

order to remind us of a connection to existential types, we sometimes write 9 before a �eld name

in records or record types, like {|9X<

:

Top,x:X!X|}, although 9 itself doesn't have a signi�cant

meaning. Formally, the typing rule for record introduction is:

�; B

1

; : : : ; B

j�1

` �

j

: B

j

j21���n

� ` {|B

i

i21���n

|} : *

� ` {�

i

i21���n

} : {|B

i

i21���n

|}

(T-Rcd)

Each �eld de�nition �

i

must satisfy the corresponding binding B

i

under a context augmented with

the information of the preceding �elds (�; B

1

; : : : ; B

i�1

). Term �elds x

i

=t

i

satisfy bindings of the

form x

i

:T

i

; type �elds X

i

=T

i

satisfy manifest type bindings X

i

$T

i

. (Note that we cannot directly

derive a record type with a bounded type binding using the rule T-Rcd . For example, the type

given to r above is {|9X$Nat,x:X!X|}. If we want to hide the identity of X and give r the abstract

type {|9X:*,x:X!X|}, we must use the usual subsumption rule plus the record subtyping rules

discussed below.)

2

Strictly speaking, these two mechanisms should be kept separate. In Harper and Lillibridge's system [17, 20],

each �eld actually has two names: an external name, which can be used for projections, and an internal name, which

binds the subsequent occurrences in the record. The simpli�ed syntax presented here corresponds to the special case

where the external and internal names are identical.)



7

The rule for record projections is basically the same as the standard record elimination rule: if

a �eld x of t has binding x:T, then t.l has type T. If T depends on other �elds|that is, if the

name X

i

(or x

i

) occurs free in T|then the corresponding record projection t.X

i

(or t.x

i

, resp.)

should be substituted for X

i

(or x

i

, resp.) to prevent the �eld name from escaping its scope.

3

� ` t : {|B

i

i21���n

|} B

j

=x:T

� ` t.x : fBV(B

i

) 7! t.BV(B

i

)

i21���j�1

gT

(T-Dot)

We write BV(B) for the bound variable of the binding B; that is, BV(x:T) = x, BV(X$T) = X, and

BV(X<

:

T) = X. We also write fX 7! Tg for capture-avoiding substitution of T for X.

The subtyping rule for record types is:

` �; B

1

; : : : ; B

n+k

ok ` �; B

0

1

; : : : ; B

0

n

ok �; B

1

; : : : ; B

j�1

` B

j

<

:

B

0

j

j21���n

� ` {|B

i

i21���n+k

|} <

:

{|B

0

i

i21���n

|}

(S-Rcd)

As usual for ordinary (non-dependent) records, \width subtyping" is allowed: extra �elds (the

n+1-st to n+k-th �elds) can be dropped. Also, corresponding bindings B

i

and B

0

i

are compared

using a sub-binding relation. When both are term bindings|i.e., B

i

and B

0

i

are of the form x:S and

x:T|S should be a subtype of T. This captures ordinary \depth subtyping." For type bindings,

we have (X$T) <

:

(X<

:

S) <

:

(X<

:

U) if T <

:

S <

:

U; the �rst clause ((X$T) <

:

(X<

:

S)) allows the

exact identity of a type �eld to be replaced with an upper bound; the second ((X<

:

S) <

:

(X<

:

U)),

corresponding to subtyping of bounded existential types, allows us to loosen the bound of X. For

example, we can derive {|9X$Nat,x:X!X|} <

:

{|9X:*,x:X!X|}. (As usual, this rule leads to an

undecidable subtyping relation [27, 20].)

3.4 Dependent Functions

For the encoding of classes, we will need to be able to give quite precise types to functions, showing

the dependency of the type of the result on the value of the argument.

In outline, the intuition is this. Suppose we write a function

cl = �[self:{|9T:*, x:T, f:T!T|}]

{T=self.T, x=self.f(self.x), f=self.f};

whose argument is a record containing a type, a value (of that type), and a function (on that type),

and whose result is a record with a similar shape, but where the value �eld is calculated by applying

the argument's function �eld to the argument's value �eld. The type of this function

cl : �[self: {|9T:*,x:T,f:T!T|}] {|9T$self.T, x:T, f:T!T|}

expresses the fact that the T �eld of the result is identical to the T �eld of the argument. Next,

suppose we create a record containing these three items

r1 = {T=Nat, x=3, f=plusfour} :: {|9T:*, x:T, f:T!T|};

r1 : {|9T:*, x:T, f:T!T|}

3

Experts will note that we give a somewhat simpler version of this rule than Harper and Lillibridge [17, 20] or

Leroy's [19] formulations. The reason we can do this is that we are not|at this stage|considering computational

e�ects such as references or exceptions. If any \e�ectful" constructs are added to the system, our T-Dot rule needs

to be re�ned to ensure soundness. This can be done in di�erent ways, but the basic intuition is that a dependent

projection t:l

j

should be allowed only if the expression t is pure. Similar comments apply to rule T-App below.



8

and use the function cl to obtain another record of the same shape:

r2 = cl r1;

r2 : {|9T$r1.T, x:T, f:T!T|}

Notice that, because of the dependent typing of cl, the type of r2 exposes the fact that it was

built from r1|in particular, that their type components are equal. Hence, it is legal to project the

function �eld from r2 and apply it to the value �eld from r1:

i = r2.f r1.x;

i : r2.T

In the absence of dependent functions, the best type we could have given to cl would be:

cl : {|9T:*,x:T,f:T!T|} ! {|9T:*, x:T, f:T!T|}

If we build r2 from r1 using this less re�ned type for cl,

r2 = cl r1;

r2 : {|9T:*, x:T, f:T!T|}

we obtain no information about the relation between r1's T �eld and r2's, and the application

r2.f r1.x is not allowed.

In general, a function �[x:S]t has type �[x:S]T, where x is allowed to appear in T. (When x

does not appear in T, we write �[x:S]T as S!T, recovering the usual notation for function types

as a special case of dependent function types.) The rules for function abstraction and application

are generalized accordingly:

` �; x:S ok �; x:S ` t : T

� ` �[x:S]t : �[x:S]T

(T-Abs)

� ` t : �[x:S]T � ` s : S

� ` t s : fx 7! sgT

(T-App)

4 Encoding Virtual Types

With the formalities of our typed lambda-calculus now in hand, we can proceed to the technical

heart of the paper: a straightforward encoding of the animal example from Section 2 in terms of

records with type �elds. For the sake of concreteness, we extend the familiar existential encoding

of objects [28, 18].

To avoid introducing additional complexities in the type theory, we give an encoding of purely

functional objects; for example, we assume that an animal's eat method returns a new, satiated

animal rather than side-e�ecting the internals of the receiving animal.



9

4.1 Interfaces

To get warmed up, let's begin with an example that does not involve virtual types: one-dimensional

point objects with methods get to retrieve a current coordinate, set to move to a new coordinate,

and bump to move a little from the present position.

In the simple existential encoding, the interface of an object is represented as a type operator

of the form �[Rep:*]{|m

i

:T

i

i21���n

|}, where the bound variable Rep stands for the hidden type of

the object's internal state, and where each T

i

is the type of the corresponding method m

i

. Each

method takes the internal state of the object as an explicit argument and, if appropriate, returns

a new internal state as its result. For example, the interface PointI of point objects is represented

as

PointI = �[Rep:*] {|get:Rep!Nat, set:Rep!Nat!Rep, bump:Rep!Rep|};

PointI : * ! *

Interfaces for objects with virtual types may include not only methods but also type �elds,

which declare the bounds of the virtual types. The interface AnimalI is represented as

AnimalI = �[Rep:*]{|9FT<

:

Food, eat:Rep!FT!Rep, eatALot:Rep!FT!Rep|};

The binding FT<

:

Food is a direct transliteration of the constraint on FT in Section 2. Similarly, the

interface CowI is represented as

CowI = �[Rep:*]{|9FT$Grass, eat:Rep!FT!Rep, eatALot:Rep!FT!Rep|};

where the binding of FT is now manifest. Note that CowI is a subtype of AnimalI; this will later

allow Cow objects to be regarded as animals.

4.2 Objects

Intuitively, an object with interface I comprises some hidden internal state, some methods (de-

scribed by I) that can manipulate that state, and some mechanism for hiding the type of the state

from outside view. In the simple existential encoding, an existential quanti�er is used to achieve

this hiding (it can also be done with recursive types), so the type of our point objects is:

Point = {|9Rep:*, state: Rep,

meth: {|get:Rep!Nat, set:Rep!Nat!Rep, bump:Rep!Rep|}|};

More generally, the type of objects with interface I is a record type including a representation

type Rep, a method vector �eld containing a record of type I Rep, and a state �eld of type Rep.

We can capture this structure uniformly by de�ning a (higher-order) type operator Object that

takes I as a parameter:

Object = �[I:*!*]{|9Rep:*, meth:I Rep, state:Rep|};

Object : (*!*) ! *

The type Point is now expressed concisely as:

Point = Object PointI;

A point object|i.e., an element of type Point|can be constructed \from scratch" as follows

(we will see how to create points from classes in Section 4.3):



10

PointR = {|x:Nat|};

point = {9Rep=PointR,

meth= fix (PointI Rep) �[self:PointI Rep]

{get= �[s:Rep]s.x, set= �[s:Rep]�[n:Nat]{x=n},

bump= �[s:Rep] self.set s (plus 1 (self.get s))},

state= {x=0}} :: Point;

PointR is the concrete representation type of the internal state. The method get just returns

the x �eld of state, while set returns a new state with the x �eld set to its second argument,

n. The method bump is de�ned in terms of the other methods get and set. In order to access

other methods, the record of methods is abstracted on a parameter self of type PointI Rep; the

�xed-point operator is used to \tie the knot," making self refer to the record itself.

Invocation of the get method of a Point object requires simply extracting the get �eld of the

object's methods and applying it to the state �eld:

x = point.meth.get point.state :: Nat;

More generally, we can write

get = �[p:Point] p.meth.get p.state :: Point ! Nat;

for the function that \sends the get message" to an arbitrary point object p.

To send the set and bump messages to point objects, we need to do a little more work: the

implementations of these methods return updated copies of just the internal representation, which

must then be repackaged with the original methods into complete objects:

bump = �[p:Point]{9Rep=p.Rep, meth= p.meth,

state= p.meth.bump p.state} :: Point ! Point;

The fact that the repackaging of the new representation into a new object is done by the caller

rather than by the method itself is an artifact of our choice of the \pure existential" encoding of

objects. Alternatively, we could make the method itself do the repacking, at the cost of making

the object's type recursive (and adding recursive types to the metalanguage). The tradeo�s are

discussed in [4].

The construction of a Cow object is similar. The only signi�cant di�erence is that the record of

methods includes a type �eld FT, which should be given a concrete de�nition of food for a cow. Fur-

thermore, methods taking arguments of FT can do grass-speci�c operation (such as enoughGrass)

to the argument. Choosing the simple representation

CowR = {|hungry:Bool|};

for the internal state of cows, we can de�ne an element of the type Object CowI as follows:

cow = {9Rep=CowR,

meth= fix (CowI Rep) �[self:CowI Rep]

{9FT=Grass,

eat=�[s:Rep]�[f:FT]

if enoughGrass f then {hungry=false} else s,

eatALot=�[s:Rep]�[f:FT](self.eat (self.eat s f) f)},

state= {hungry=true}} :: Object CowI;

Like the bump method of point objects, the eatALot method of cows is de�ned by invoking the eat

method via the self parameter.

Since we know FT is equal to Grass (by the de�nition of CowI), we can feed grass to our cow:



11

feed = �[c:Object CowI] �[g:Grass]

{9Rep=c.Rep, meth=c.meth, state=c.meth.eatALot c.state g}

:: Object CowI ! Grass ! Object CowI;

satisfiedCow = feed cow grass :: Object CowI;

4.3 Classes

So far, virtual types have presented no special di�culties: the encodings of points and cows have

been essentially identical. For encoding classes, however, the virtual types lead to some extra

complications.

A class is a data structure providing implementations for a collection of methods and abstracted

on a self-parameter. Concretely, a class whose instances are objects with interface I is represented

as a function taking self as an argument and returning a record of methods of type I R, where

R is the representation type of the state. For example, a class of point objects can be de�ned as

follows:

pointClass = �[self: PointI PointR]

{get=�[s:PointR]s.x, set=�[s:PointR]�[n:Nat]{x=n},

bump=�[s:PointR]self.set s (plus 1 (self.get s))}

:: PointI PointR!PointI PointR;

To build a point object from the point class, we choose some particular representation (some element

of type PointR) and calculate its record of methods by taking the �xed point of the class:

point = {9Rep=PointR, meth=fix (PointI Rep) pointClass, state={x=0}}

:: Object PointI;

The fact that the methods of pointClass are abstracted on self allows us to de�ne new

subclasses of pointClass that inherit some of its behavior. For example, here is a class of colored

point objects:

CPointI = �[Rep:*] {|get:Rep!Nat, set:Rep!Nat!Rep,

bump:Rep!Rep, color:Rep!Color|};

cpointClass = �[self: CPointI PointR]

let super = pointClass self in

{get=super.get, set=super.set, bump=super.bump,

color=�[s:PointR] red}

:: CPointI PointR ! CPointI PointR;

cpoint = {9Rep=PointR, meth=fix (CPointI Rep) cpointClass,

state={x=0}} :: Object CPointI;

The superclass's method suite super is obtained by application of pointClass to (cpointClass's)

self. Note that, for brevity, we choose the same representation type for both pointClass and

cpointClass; it is easy to generalize this so that cpointClass can add new instance variables

(such as a color �eld), but the extra mechanism would make the examples harder to read.

When virtual types are involved, we need to be a little more precise about the typing of classes.

Here, for example, is the de�nition of a generic animalClass. (Again, for brevity we use the same

representation type (AnimalR) for both animalClass and cowClass.)

AnimalR = {|hungry:Bool|};

animalClass = �[self:AnimalI AnimalR]

{9FT=self.FT, eat=self.eat,



12

eatALot=�[s:AnimalR]�[f:FT]self.eat (self.eat s f) f}

:: �[self: AnimalI AnimalR]

{|9FT$self.FT, eat: AnimalR!FT!AnimalR,

eatALot: AnimalR!FT!AnimalR|};

This de�nition involves a few subtle points. First, since the type FT and the method eat are virtual,

their concrete de�nitions cannot be provided. Instead of concrete de�nitions, the corresponding

�elds of self are used. Second, type of animalClass is not AnimalI AnimalR!AnimalI AnimalR,

but a dependent function type (a more re�ned subtype of AnimalI AnimalR!AnimalI AnimalR).

This typing is essential when we derive cowClass from animalClass, as we will see below.

In the de�nition of cowClass, the FT and eat �elds are �lled with their concrete de�nitions

and the eatALot method is inherited from animalClass. Since cowClass's self is passed to

animalClass, self.eat in method eatALot refer to the eat method of cowClass (not the virtual

eat method of animalClass.) Now, since FT is not derived from self, the type of cowClass is just

a (non-dependent) function type.

cowClass = �[self:CowI CowR]

let super = animalClass self in

{9FT=Grass,

eat=�[s:CowR]�[f:FT]

if enoughGrass f then {hungry=false} else s,

eatALot=super.eatALot}

:: CowI CowR ! CowI CowR;

The dependent function type of animalClass is critical for cowClass to be well-typed: if

animalClass had only type AnimalI AnimalR!AnimalI AnimalR, cowClass would be ill-typed

since super.eatALot has type CowR!FT!CowR where FT <

:

Food, which is not a subtype of

CowR!Grass!CowR. Thanks to the dependent function type of cowClass, the projection super.eatALot

has type CowR!self.FT!CowR, which is exactly equal to CowR!Grass!CowR.

Finally, a cow object can be created by instantiating cowClass in the usual way:

cow = {9Rep=CowR, meth=fix (CowI Rep) cowClass,

state={hungry=true}} :: Object CowI;

5 Generic Programming with Virtual Types

The \overlap" between virtual types and parametric classes as alternative mechanisms for achieving

similar kinds of genericity has been remarked by several authors [5, 33, etc.]. To build a generic Bag

class, for example, one can proceed in two ways. On one hand, we can make the type of the bag's

elements a (virtual) �eld of the Bag class and obtain concrete instances by subclassing the generic

Bag class, overriding the member type �eld with the actual member type. On the other hand, we

can make the element type a parameter to the class de�nition, essentially making the class into

a polymorphic function, and obtain concrete instances by instantiating this polymorphic function

with the actual member type. In this section, we �rst compare these two styles by means of a

fully worked example, then comment on the general case. The overlap between the styles can be

viewed, in terms of our encoding, as a corollary of the inter-de�nability of universal and existential

polymorphism in the presence of dependent records.

Generic programming was one of the �rst applications of virtual types. The typical pattern

proceeds in two steps: (1) a generic class with a virtual type is de�ned, with generic implementations

of its operations in terms of the virtual type; (2) this class is then specialized, overriding the virtual



13

type to some concrete instance. For example, suppose we want to program with homogeneous

collections (bags) of objects of some type T. We start by building a generic Bag class with a virtual

type E (which stands for type of elements) and implementations of the bag methods (put, get,

etc.). Since the representation type of state of bags is parameterized by E, the interface of bags

takes a type operator Rep of kind *!*, and the type of the state is actually represented as Rep E.

BagI = �[Rep:*!*] {|9E:*, put:(Rep E)!E!(Rep E), get:(Rep E)!E|};

Choosing lists of elements as our internal representation,

BagR = �[E:*] {|elts:List(E)|};

we can de�ne a generic bag class as follows:

bagClass = �[self:BagI BagR]

{9E=self.E,

put=�[s:BagR E]�[e:E]({elts= cons E e s.elts} ::BagR E),

get=�[s:BagR E] car E s.elts}

:: �[self:BagI BagR]

{|9E$self.E, put:BagR E!E!BagR E, get:BagR E!E|};

The next step is to make a subclass with a concrete de�nition for the element type. The class

natBagClass is de�ned by giving the concrete value Nat to the virtual type E and by inheriting all

methods from bagClass.

NatBagI = �[Rep:*!*]{|9E$Nat,

put:(Rep E)!E!(Rep E), get:(Rep E)!E|};

natBagClass = �[self:NatBagI BagR]

let super = bagClass self in

{9E=Nat, put= super.put, get= super.get}

:: NatBagI BagR ! NatBagI BagR;

The interfaces and classes here are fairly similar to the examples we saw in Section 4 (modulo the

fact that the representation type here is a type operator); the construction of bag objects, however,

requires a little explanation.

NatBag = {|9Rep:*!*, 9meth:NatBagI Rep, state:Rep meth.E|};

natBag = {9Rep=BagR, meth=fix (NatBagI Rep) natBagClass,

state= {elts= (nil Nat)}} :: NatBag;

The �rst observation is that the hidden state type is now a type operator. (Intuitively, we \see"

that the representation of the object may involve the virtual type �eld E, but that is all we are

allowed to know about the representation.) The second is that the order of the state �eld and the

meth �eld is essential, since the type of the state depends both on Rep and on the E component of

the meth. The code for invoking operations on bag objects is adjusted accordingly:

sendget = �[b:NatBag] b.meth.get b.state :: NatBag!Nat;

sendput = �[b:NatBag] �[e:Nat]

{9Rep=b.Rep, meth= b.meth,

state= b.meth.put b.state e} :: NatBag!Nat!NatBag;

By contrast, let's look at how bags can be modeled in terms of parametric classes. Instead of

the element type being a member of the bag class, it will be a parameter to the class. Similarly,

the interface BagI is parameterized by E:



14

Table 1: Encoding of universal types in terms of existential types

8 9+�

type 8[X<

:

S] T �[x:{|9X<

:

S|}] (TfX 7! x.Xg)

abstraction �[X<

:

S] t �[x:{|9X<

:

S|}] (tfX 7! x.Xg)

application t T t {9X=T}

BagI = �[E:*] �[Rep:*] {|put:Rep!E!Rep, get:Rep!E|};

bagClass = �[E:*] �[self:BagI E (BagR E)]

{put= �[s:BagR E] �[e:E] {elts= cons E e s.elts},

get= �[s:BagR E] car E s.elts}

:: 8[E:*]BagI E (BagR E)!BagI E (BagR E);

Note that bagClass has a polymorphic function type. (Also, note that Rep has kind * now, not

*!*, since it is being supplied from the outside and there is no need to apply it to anything in this

de�nition.)

The concrete instance natBagClass is now de�ned by instantiating bagClass with the type

parameter Nat.

NatBagI = �[Rep:*]{|put:Rep!Nat!Rep, get:Rep!Nat|};

natBagClass = bagClass Nat;

A bag object is de�ned by instantiating the class in the usual way. (Here there are no subtle

dependencies between the type of the meth and state �elds.)

NatBag = {|9Rep:*, meth:NatBagI Rep, state:Rep|};

natBag = {9Rep=BagR Nat,

meth=fix (NatBagI Rep) natBagClass,

state= {elts= (nil Nat)}} :: NatBag;

sendget = �[b:NatBag] b.meth.get b.state :: NatBag!Nat;

sendput = �[b:NatBag] �[e:Nat]

{9Rep=b.Rep, meth= b.meth,

state= b.meth.put b.state e} :: NatBag!Nat!NatBag;

These examples illustrate the basic di�erence between virtual types and parametric classes

as mechanisms for generic programming. A parametric class is instantiated by type application,

taking the element type directly as an argument. With virtual types, on the other hand, type

parameterization is realized by a dependent function whose argument has a type �eld in it. Since

the get �eld depends on self.E, it will have type (List Nat)!Nat when the E �eld of the supplied

self record has been set to Nat.

This correspondence can be viewed as an instance of a more general observation: polymor-

phic functions can be encoded in terms of dependent functions on dependent records. A poly-

morphic abstraction �[X<

:

S]t of type 8[X<

:

S]T can be represented as the dependent function

�[x:{|9X<

:

S|}](tfX 7! x.Xg) of type �[x:{|9X<

:

S|}](TfX 7! x.Xg); it takes an argument {|9X$U|}

where U is some subtype of S and behaves as a term of type TfX 7! {|9X$U|}.Xg, which is equal to

the type TfX 7! Ug of the corresponding polymorphic application (�[X<

:

S]t) U. Table 1 summa-

rizes this encoding. For comparison, Table 2 is the well-known encoding of (ordinary) existential

types in terms of universal types.



15

Table 2: Encoding of existential types in terms of universal types

9 8

type {|9X<

:

S, T|} 8[Y:*] (8[X<

:

S]T!Y)!Y

packing {9X=U, t} �[Y:*] �[f:8[X<

:

S]T!Y] f U t

unpacking let {9X,y} = s in (t::R) s R (�[X<

:

S] �[y:X] t)

6 Comparisons

Virtual types (called virtual classes in the original proposal) were �rst introduced in Beta [23] by

Madsen and M�ller-Pedersen [22] as a mechanism to achieve genericity in object-oriented languages.

Later, Thorup [32] introduced virtual types as an extension for Java. In all of this work, virtual

types in classes are in fact not actually virtual in our sense: the interface of animal objects,

according to the Beta view, would better be modeled by

AnimalI = �[Rep:*]{|9FT$Food, eat:Rep!FT!Rep, eatALot:Rep!FT!Rep|};

where FT is declared equal to Food. However, they also allow type �elds to be specialized, so that

CowI = �[Rep:*]{|9FT$Grass, eat:Rep!FT!Rep, eatALot:Rep!FT!Rep|};

as before. Finally, they regard cows as animals, i.e., CowI <

:

AnimalI and Object CowI <

:

Object AnimalI. Taken together, these properties (speci�cally, the inclusion CowI <

:

AnimalI)

yield a statically unsafe type system: we can take a cow, regard it as an animal, and feed it some

meat (which has type Meat, a subtype of Food, and hence an acceptable argument to an Animal's

eat method).

Various approaches have been used to remedy this unsoundness. In Beta and in Thorup's

proposed Java extension, run-time checks are added to methods like eat to make sure that their

arguments are actually acceptable. Beta also provides a keyword final that prevents type �elds

from being specialized in subclasses. In [21], it is observed that run-time checks can be omitted in

the case where a type binding is marked final.

Torgersen [34] proposed a statically typesafe variant of virtual types, focusing on the same

distinction as we have made between virtual type bindings (which may be specialized in subclasses,

but which, unlike Beta, block instantiation of the classes containing them) and �nal ones (which

allow instantiation but block further specialization in subclasses). Our model of objects with virtual

types corresponds closely to his proposal.

A possible criticism of Torgersen's idea is that, in general, it may lead to duplication of the

class hierarchy. For one thing, if the class Animal contains virtual types but no virtual methods

(i.e., if eat is given a concrete generic implementation), then we may want to instantiate the class

Animal itself. This requires making an explicit subclass (let's call it @Animal) of Animal in which

FT is equal to Food.

Animal

(FT<:Food)

@Animal

(FT$Food)

<

:

?

?

__?

?

Cow

(FT$Grass)

<

:

�

�

??

�

�



16

Also, rather than making Cow a leaf of the subclass hierarchy, we may wish to allow further spe-

cialization in subclasses. In this case, we should change the constraint on FT to <

:

Grass, make Cow

a virtual class, and introduce another leaf class @Cow in which FT$Grass.

Animal

(FT<:Food)

@Animal

(FT$Food)

<

:

?

?

__?

?

Cow

(FT<:Grass)

<

:

�

�

??

�

�

@Cow

(FT$Grass)

<

:

?

?

__?

?

BrownCow

(FT<:BrownGrass)

<

:

�

�

??

�

�

@BrownCow

(FT$BrownGrass)

<

:

?

?

__?

?

Fortunately, the @-variants can be derived mechanically from the other classes, as Torgersen himself

pointed out in his original paper. More recently, Bruce, Odersky and Wadler [5] have proposed an-

other statically safe variant of virtual types, which can be viewed as making this idea explicit. (They

do not present their proposal in this light, but we �nd this to be a helpful way of understanding

what they did.) In their system, virtual types are always introduced with <

:

constraints (they write

\FT as Food"); for each class C, the \exact" class @C is automatically provided.

4

The new operator

generates instances of exact classes, so that the expression new Cow() yields an object of type @Cow,

which can be regarded as a Cow by forgetting its \exactness," and further regarded as an Animal

(but not an @Animal) by ordinary subtyping. A later proposal by Thorup and Torgersen [33] can be

viewed as a re�nement of this idea; by exposing virtual type bindings as a part of type expressions

(writing Animal[FT<

:

Food], for example, to mean \Animal where FT is bounded by Food"), they

allow �ner control over bindings. For example, not only can the binding of FT be exact (by writing

Animal[FT$Food]), but Food can be overriden by Grass (writing Animal[FT<

:

Grass]) without

declaring a new subclass; moreover, this control is available on a per-binding basis, while Bruce,

Odersky, and Wadler's @ variant makes all the �elds exact.

Bruce, Odersky, and Wadler also pointed out that virtual types have an advantage over para-

metric classes in de�ning mutually recursive classes such as alternating lists or the Subject/Observer

pattern [15]. In the Subject/Observer pattern, a group of objects (called subjects) has a reference to

another group of objects (called observers) and reports their own behavior to observers, which will

send back messages to subjects according to the reported behavior. Typically, a subject is realized

by a class which has a virtual type bound to corresponding observers and vice versa. Then, generic

subject (resp., observer) classes are extended to more speci�c classes, for example, window subject

(resp., window observer) class by overriding virtual types with window observer (resp., window

subject) and by implementing speci�c behavior of them. In [5], they used an extension of inner

classes of Java to de�ne mutually recursive classes so that extensions (window subject/observer)

had to be de�ned simultaneously. Since our meta-language does not include recursive types, we

have not been able to experiment with these examples in our framework.

4

Note that their type system does not allow for @ types to have non-trivial subtypes while @Animal here has

many subtypes, which can be obtained by adding extra �elds to @Animal. Their restriction on subtyping of @ types

will make more sense when binary methods or mutually recursive classes are involved (as in most of their examples),

since types of objects instantiated from such classes would be expressed with (mutually) recursive types that do not

have any non-trivial subtypes.



17

Recently, Bruce and Vanderwaart [7] also used virtual types as a convenient device to de�ne

mutually recursive object types \incrementally"|like extending an interface of Java, object types

can be extended by adding speci�cations of new methods. Since their language can de�ne object

types separately from classes, a subject class and its corresponding observer class do not have to be

de�ned simultaneously: virtual types will refer not to class names, but to object types. R�emy and

Vouillon [29] showed that programming with virtual types can be expressed in terms of parametric

classes with mutually recursive types. Since their language has not only a separate notion of object

types but also type reconstruction, programmers do not even need to write object types. As we

discussed in Section 5, it is not so surprising that classes involving virtual types can be expressed

in terms of parametric classes: an animal class would be just a parametric class which has a FT

as a type parameter and there is no generic animal object type. However, they did not take into

account the type abstraction nature of virtual types. As for object types, our dependent record

formulation seems to be essential, especially in order for cows to be animals.

7 Conclusions and Future Work

We have presented a straightforward encoding of objects with virtual types in a typed lambda-

calculus. In our model, objects are expressed as dependent records with manifest and/or bounded

type �elds; classes are modeled as dependent functions. In this setting, the overlap between para-

metric classes and virtual types can be viewed as a consequence of the encodability of universal

polymorphism in terms of existential polymorphism with dependent functions. We are working to

extend this encoding in two main directions:

� Imperative variants of the encoding, where methods like eat work by side-e�ecting mutable

instance variables.

� Recursive and mutually recursive classes involving virtual types, such as the well-known

subject-observer example.

The second of these seems relatively straightforward. The �rst, somewhat surprisingly does not|

the technicalities of the underlying type theory required to achieve soundness when imperative

features are combined with dependent types become astonishingly subtle.

Another natural question is whether other type-theoretic encodings of simple objects|for exam-

ple, the standard recursive-records encoding [4]|could be used instead of the existential encoding

presented here. Surprisingly, we have not been able to extend a naive recursive-records encoding to

include virtual types. Intuitively, the problem is that Animal in this encoding would be a recursive

type whose body is a dependent record type with an FT �eld. But now every unfolding of the

recursive type produces a di�erent FT �eld, whose (abstract) type is incomparable with all the

others.

At the end of the day, we must admit to being somewhat discouraged as to the tractability

of virtual types compared to simpler competing mechanisms. In particular, the complexity of the

type theory in which our encodings have been presented is daunting. Though each of its individual

features|dependent functions, dependent records, bounded quaniti�cation, manifest existentials|

is well studied, their combination goes well beyond the scope of current theoretical tools. Indeed, a

detailed presentation of the system in an earlier version of this paper was discovered to be unsound

quite late in the game. The problem was only a technical one|we have no reason to suspect that

this combination of features is inherently unsound|but it underscores the point that a full proof

of soundness for virtual types, at least as we have formulated them, is not currently feasible. (Of



18

course, it is possible that the type theory in which we are working here is not the simplest possible

for the task. All of the features described in Section 3|in particular, both dependent records and

dependent functions|are used by our encoding, but it is possible that a di�erent encoding could

get by with less. Alternatively, it is possible that a high-level language with virtual types could be

designed to use more restricted forms of dependency.)

Acknowledgments

This work was supported by Indiana University, the University of Pennsylvania, and the National

Science Foundation under grant CCR-9701826, Principled Foundations for Programming with Ob-

jects. Igarashi is a research fellow of the Japan Society for the Promotion of Science.

Discussions with Kim Bruce, Bob Harper, Didier R�emy, and Philip Wadler deepened our under-

standing of this material. Comments from the FOOL, ECOOP and Information and Computation

referees helped us improve the �nal presentation.

References

[1] Mart��n Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2] Ole Agesen, Stephen N. Freund, and John C. Mitchell. Adding type parameterization to the Java

language. In Object-Oriented Programming: Systems, Languages, and Applications (OOPSLA), pages

49{65, Atlanta, GA, October 1997.

[3] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the future safe for the

past: Adding genericity to the Java programming language. In Craig Chambers, editor, Object-Oriented

Programming: Systems, Languages, and Applications (OOPSLA), ACM SIGPLAN Notices volume 33

number 10, pages 183{200, Vancouver, BC, October 1998.

[4] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encodings. Information and

Computation, 1998. To appear in a special issue with papers from Theoretical Aspects of Computer

Software (TACS), September, 1997. An earlier version appeared as an invited lecture in the Third

International Workshop on Foundations of Object Oriented Languages (FOOL 3), July 1996.

[5] Kim B. Bruce, Martin Odersky, and Philip Wadler. A statically safe alternative to virtual types. In

Proceedings of the European Conference on Object-Oriented Programming (ECOOP), volume 1445 of

Lecture Notes in Computer Science, pages 523{549, Brussels, Belgium, July 1998. Springer-Verlag.

[6] Kim B. Bruce, Angela Schuett, and Robert van Gent. PolyTOIL: A type-safe polymorphic object-

oriented language. In W. Oltho�, editor, Proceedings of ECOOP '95, LNCS 952, pages 27{51, Aarhus,

Denmark, August 1995. Springer-Verlag.

[7] Kim B. Bruce and Joseph C. Vanderwaart. Semantics-driven language design: Statically type-safe vir-

tual types in object-oriented languages. In Proceedings of the Fifteenth Conference on the Mathematical

Foundations of Programming Semantics (MFPS XV), volume 20 of Electronic Notes in Theoretical Com-

puter Science, New Orleans, LA, April 1999. Elsevier. Available through http://www.elsevier.nl/

locate/entcs/volume20.html.

[8] Luca Cardelli. Notes about F

!

<:

. Unpublished manuscript, October 1990.

[9] Luca Cardelli. Typeful programming. In E. J. Neuhold and M. Paul, editors, Formal Description of

Programming Concepts. Springer-Verlag, 1991. An earlier version appeared as DEC Systems Research

Center Research Report #45, February 1989.

[10] Luca Cardelli and Giuseppe Longo. A semantic basis for Quest. Journal of Functional Programming,

1(4):417{458, October 1991. Preliminary version in ACM Conference on Lisp and Functional Program-

ming, June 1990. Also available as DEC SRC Research Report 55, Feb. 1990.



19

[11] Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. An extension of system F with

subtyping. Information and Computation, 109(1{2):4{56, 1994. A preliminary version appeared in

TACS '91 (Sendai, Japan, pp. 750{770).

[12] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism. Com-

puting Surveys, 17(4):471{522, December 1985.

[13] Robert Cartwright and Guy L. Steele Jr. Compatible genericity with run-time types for the Java

programming language. In Craig Chambers, editor, Object-Oriented Programming: Systems, Languages,

and Applications (OOPSLA), SIGPLAN Notices volume 33 number 10, pages 201{215, Vancouver, BC,

October 1998. ACM.

[14] Adriana B. Compagnoni. Decidability of higher-order subtyping with intersection types. In Computer

Science Logic, September 1994. Kazimierz, Poland. Springer Lecture Notes in Computer Science 933,

June 1995. Also available as University of Edinburgh, LFCS technical report ECS-LFCS-94-281, titled

\Subtyping in F

!

^

is decidable".

[15] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison Wesley, Massachusetts, 1994.

[16] Jean-Yves Girard. Interpr�etation fonctionelle et �elimination des coupures de l'arithm�etique d'ordre

sup�erieur. PhD thesis, Universit�e Paris VII, 1972. A summary appeared in the Proceedings of the

Second Scandinavian Logic Symposium (J.E. Fenstad, editor), North-Holland, 1971 (pp. 63{92).

[17] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules with sharing.

In Proceedings of the Twenty-First ACM Symposium on Principles of Programming Languages (POPL),

Portland, Oregon, pages 123{137, Portland, OR, January 1994.

[18] Martin Hofmann and Benjamin Pierce. A unifying type-theoretic framework for objects. Journal of

Functional Programming, 5(4):593{635, October 1995. Previous versions appeared in the Symposium

on Theoretical Aspects of Computer Science, 1994, (pages 251{262) and, under the title \An Abstract

View of Objects and Subtyping (Preliminary Report)," as University of Edinburgh, LFCS technical

report ECS-LFCS-92-226, 1992.

[19] Xavier Leroy. Manifest types, modules and separate compilation. In Conference record of POPL '94:

21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 109{122,

Portland, OR, January 1994.

[20] Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Systems. PhD thesis,

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, May 1997.

[21] Ole Lehrmann Madsen, Boris Magnusson, and Birger M�ller-Pedersen. Strong typing of object-oriented

languages revisited. In Proceedings of the Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA) and European Conference on Object-Oriented Programming

(ECOOP), pages 140{150, Ottawa, ON Canada, October 1990. ACM Press, New York, NY , USA.

Published as SIGPLAN Notices, volume 25, number 10.

[22] Ole Lehrmann Madsen and Birger M�ller-Pedersen. Virtual classes: A powerful mechanism in object-

oriented programming. In Object-Oriented Programming: Systems, Languages, and Applications (OOP-

SLA), pages 397{406, New Orleans, LA, 1989.

[23] Ole Lehrmann Madsen, Birger M�ller-Pedersen, and Kristen Nygaard. Object-Oriented Programming

in the Beta Programming Language. Addison-Wesley, 1993.

[24] Andrew C. Myers, Joseph A. Bank, and Barbara Liskov. Parameterized types for Java. In ACM

Symposium on Principles of Programming Languages (POPL), pages 132{145, Paris, France, January

1997.

[25] Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into practice. In ACM Sympo-

sium on Principles of Programming Languages (POPL), pages 146{159, Paris, France, January 1997.



20

[26] Benjamin Pierce and Martin Ste�en. Higher-order subtyping. In IFIP Working Conference on Pro-

gramming Concepts, Methods and Calculi (PROCOMET), 1994. Full version in Theoretical Computer

Science, vol. 176, no. 1{2, pp. 235{282, 1997 (corrigendum in TCS vol. 184 (1997), p. 247).

[27] Benjamin C. Pierce. Bounded quanti�cation is undecidable. Information and Computation, 112(1):131{

165, July 1994. Also in Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects of Object-

Oriented Programming: Types, Semantics, and Language Design (MIT Press, 1994). A preliminary

version appeared in POPL '92.

[28] Benjamin C. Pierce and David N. Turner. Simple type-theoretic foundations for object-oriented pro-

gramming. Journal of Functional Programming, 4(2):207{247, April 1994. A preliminary version ap-

peared in Principles of Programming Languages, 1993, and as University of Edinburgh technical report

ECS-LFCS-92-225, under the title \Object-Oriented Programming Without Recursive Types".

[29] Didier R�emy and J�erôme Vouillon. On the (un)reality of virtual types, November 1998. manuscript.

[30] David Shang. Are cows animals? Object Currents 1, 1996. http://www.sigs.com/objectcurrents/.

[31] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley Longman, Reading, MA, third

edition, 1997.

[32] Kresten Krab Thorup. Genericity in Java with virtual types. In Proceedings of the European Conference

on Object-Oriented Programming (ECOOP), volume 1241 of Lecture Notes in Computer Science, pages

444{471, Jyv�askyl�a, Finland, June 1997. Springer-Verlag.

[33] Kresten Krab Thorup and Mads Torgersen. Unifying genericity: Combining the bene�ts of virtual

types and parameterized classes. In Rachid Guerraoui, editor, Proceedings of the European Conference

on Object-Oriented Programming (ECOOP), volume 1628 of Lecture Notes in Computer Science, pages

186{204, Lisbon, Portugal, June 1999. Springer-Verlag.

[34] Mads Torgersen. Virtual types are statically safe. In Proceedings of the 5th Workshop on Foundations

of Object-Oriented Languages (FOOL), San Diego, CA, January 1998.


