Type Systems for Object—Oriented
Languages

APLAS2005 Tutorial

Atsushi Igarashi
(Kyoto University)
igarashi@kuis.kyoto—u.acjp_
http://www.sato.kuis.kyoto—u.ac jp/ igarashi/

Type Systems for an Object—Oriented
Language

APLAS2005 Tutorial

Atsushi Igarashi
(Kyoto University)
igarashi@kuis.kyoto—u.acjp_
http://www.sato.kuis.kyoto—u.ac jp/ igarashi/

What is This Tutorial About?

» Evolution of Java's type system
» Simple type system before Java 5.0
» Generics and Parametric Types

» Wildcards
* How types contribute safety and reusability

» Not about:
» Comparison of different languages and their
type systems

Overview

* Part I: What's Java?
> Model of (untyped) Java objects

> Simple type system for Java (~JDK1.4)
» Class names as types
* Inheritance—based subtyping

» Part II: Generics for more reusable classes
» Parametric types

» Part III: Wildcards
» Variance—based subtyping for parametric

types part of JDK5.0

Part |

What's Java?

Overview of Part |

» What are Java objects?
» Classes and inheritance for reusing
Implementation
* What is a Java type system for?
* Simple Java type system
» Class names as types
» Subtyping based on inheritance

What are Objects in Java?

Just a particular kind of data structure consisting

of ...
» Internal state, called fields
» A set of procedures, called methods

* Primitive operations:

* Object creation
» Reading field values / writing to fields
* [nvocation of a method of another object, or the

object itself

Example: (One dim.) point object

» State: coordinate value x
» Method get (): returns the value of x
> Method set(y):setsxtoy

» Method bump () : increments x by one, by
» Invoking get () on self,

* Adding one to the value
» Invoking set () on self

get ()

Example: (One dim.) point object

State: coordinate value x
> Method get (): returns the value of x
> Method set(y):setsxtoy

» Method bump () : increments x by one, by
» Invoking get () on self,

* Adding one to the value
» Invoking set () on self

[7]

get ()

Example: (One dim.) point object

» State: coordinate value x
» Method get (): returns the value of x
> Method set(y):setsxtoy

» Method bump () : increments x by one, by
» Invoking get () on self,

* Adding one to the value
» Invoking set () on self

Example: (One dim.) point object

» State: coordinate value x
» Method get (): returns the value of x
> Method set(y):setsxtoy

» Method bump () : increments x by one, by
» Invoking get () on self,

* Adding one to the value
» Invoking set () on self

done!

Example: (One dim.) point object

» State: coordinate value x
» Method get (): returns the value of x
> Method set(y):setsxtoy

» Method bump () : increments x by one, by
» Invoking get () on self,

* Adding one to the value
» Invoking set () on self

bump (

Example: (One dim.) point object

» State: coordinate value x
» Method get (): returns the value of x
> Method set(y):setsxtoy

» Method bump () : increments x by one, by
» Invoking get () on self,

* Adding one to the value
» Invoking set () on self

et ()

bump (

Example: (One dim.) point object

» State: coordinate value x
» Method get (): returns the value of x
> Method set(y):setsxtoy

» Method bump () : increments x by one, by
» Invoking get () on self,

* Adding one to the value
» Invoking set () on self

bump (-

Example: (One dim.) point object

» State: coordinate value x
» Method get (): returns the value of x
> Method set(y):setsxtoy

» Method bump () : increments x by one, by
» Invoking get () on self,

> Adding one to the value
» Invoking set () on self

bump (

Example: (One dim.) point object

» State: coordinate value x
» Method get (): returns the value of x
> Method set(y):setsxtoy

» Method bump () : increments x by one, by
» Invoking get () on self,

* Adding one to the value
» Invoking set () on self

done!

Classes as Factories of Objects

» Description of common structure of objects
> Field declarations
> Method definitions

» Code to initialize objects
> Constructor(s)

» Objects are instantiated from a class C by

an expression new C(...)

Example: Class for Point Objects

class Point {
field x;

Point (initx) { x = initx; } // constructor def.

method get() { return x; }
method set(newx) { x = newx; return; }
method bump () { this.set(this.get()+1l), return; }
method copy x(p) { this.set(p.get());, return; }
}
print (new Point(5) .get()); // 5
var p = new Point(3);
p.bump () ; print(p.get()); // 4
var p = new Point (0);
p.copy x(new Point(2)); print(p.get()); // 2

Reusing Object Implementation by
Inheritance

New class definition by “extension”

* Inheriting all definitions from another class
» Adding new fields and methods, and

> Overriding (some of) inherited methods

» Late binding of “this”
» The meaning of this in methods is determined

* only when an object is instantiated
* not when a class is defined

Example: Colored Points

subclass superclass
class extends {
field col; // additional field
ColorPoint (init x){ x = init x; col = Blue; }

// method get() { return x; }
// method bump() { this.set(this.get()+1l); return; }

// additional/overriding methods
method get col() { return col; }
method set col(new col){ col = new col; return; }
method set (new x) {
x=new x; this.set col(Red); return; }

}

var p = new ColorPoint(3); p.bump(); // callsset()

print(p.get()) // 4
print(p.get col()) // Red

Run—Time Test on an Object s Class

Java is equipped with constructs to check the
class of an object
» @ 1nstanceOf C

» returns true when e evaluates to an
instance of C (or its subclass)
» returns false otherwise
» (C)e
» does nothing when e evaluates to an
instance of C (or its subclass)
» throws ClassCastException otherwise

What are Objects in Java?

Just a particular kind of data structure consisting

of ...
» Internal state, called fields
» A set of procedures, called methods
> Name of a class from which it is instantiated
* Sometimes called an object’'s run—time type

What is a Type System?

Mechanism to detect possibility of certain kinds of
errors before a program runs by analyzing its
abstract syntax tree

» Types:

» Approximation of “what a program (fragment)
does” with enough information to detect the
errors

* Typing rules:

* Rules to compute such approximation from a
given program fragment

*» Type soundness property:

» “Typing rules give correct approximation of the
behavior of a program”

What We Are To Detect and Not To

» Errors to be detected:
* Invocation of non—existing methods
» NoSuchMethodError, ..
* Errors not to be detected:
» Division by zero
s ArithmeticException
* Failure of run—time type tests
*» ClassCastException

-

Type Information Required to Prevent
NoSuchMethodError

“Interface” information of objects

* The names of methods that an object owns
» What each method takes as arguments

* What each method returns

e.g.
» Interface of Point objects

{get: O—int, set: (int)—void, bump:)—void, ..}

* Interface of ColorPoint objects
{get: O—int, set: (int)—void, bump: ()—void,
get_col:)—int, set_col: (col)—void, ...}

Java’s Typing Principle (1)
Class Names as Types

Class name as a concice representation for
Interface information
* Objects from the same class have the same

Interface
* Method names are manifest in a class definition

* Argument and return types are given by
programmers

Point with Type Annotations

class Point {
int x;
Point (int initx) { x = initx; }
int get() { return x; }
void set(int newx) { x = newx; return; }
void bump () { this.set(this.get()+1l),; return; }
void copy x(Point p){ this.set(p.get());, return;}

* Point i1s a recursively defined interface:
Point =
{get:)—int, set: (int)—void,
bump: ()—void, copy x: Point—void}

Inheritance Requires Substitutability

» ColorPoint must be substitutable for Point,
because:
» bump () Is typechecked under the assumption that this
is of type Point (once and for all)
» At run—time, this can be either Point or ColorPoint

» Subtyping relation: C <: D
» “C is substitutable D”

» Subsumption typing rule:
» [f @ is of type C, then e is also of type D

Q: When is one type a subtype of another?

Java's Typing Principle (2)
Inheritance as Subtyping

C <: D iff class C (indirectly) extends class D
» The interface of C always includes that of D
» D inherits all methods from C

* One subtlety: method overriding

*» Java's rule:
* The argument/return types of an overriding
method must be the same as the overridden

* Subtyping could be defined independently of
Inheritance
» ¢.f. Objective CGaml

Some Typing Rules

» Object instantiation: new C (e)
» If e's type is a subtype of the constructor

argument type,
» Then new C (e) is of type C

» Method invocation expression: el .m(e2)
» If el’s type includes m:(T1) — T2 and
e2’s type is a subtype of T1,
» Then el .m(e2) is of type T2
» Method definition In C: T m(T' x){ body }

*» Typecheck the body under the assumption
»x Is of type T' and this is of type C

Type Soundness Property

“If typechecking succeeds,
NoSuchMethodError cannot be thrown”

* Subject Reduction Property:
> The type of an expression is preserved by one
step of execution
* Progress Property:
* If typechecking succeeds,
NoSuchMethodError cannot be immediately

thrown

» Several formal proofs for various subsets of

Java have been given in the literature
[DrossopoulouEisenbach97, IgarashiPierceWadler99, etc.]

Typing Rule for Typecasts (C) e

» The whole expression can be given type C,

whatever the type of e is
» In Java, actually, e's type must be either a subtype
or supertype of C (unless C is an interface type)
* Otherwise, typecasts will always falil

Type Soundness Theorem, Revised

“If typechecking succeeds,
NoSuchMethodError cannot be thrown,
but ClassCastException may be thrown”

> So, the (ab)use of typecasts decreases program
reliability

Summary of Part I

* Informal model of untyped Java objects

* Object = fields (internal state) + methods + class name
» Classes and implementation reuse by inheritance

*» Simple type system
» To prevent nonexistent fields/methods from being

accessed
» Class name as a representation of type information
» Inheritance requires substitutability (subtyping) to be
taken into account
* Inheritance as subtyping

Part II

From Java to Generic Java

Overview of Part II

* Programming generic data structure by using a
Java idiom

* Problems in the Java idiom

* Generics

» Implementation of Java Generics

* Other issues in Java Generics

Programming Generic Data Structrue In
Java

*» Class for list structure
» Methods: 1length (), append (), map ()

» Various element types
» List of strings, list of integers, ...

Definitions Specialized for Specific
Elements ...

class StrList {
String head; StrList tail;
StrList (String h, StrList t) { head=h; tail=t; }
int length() {
if (tail==null) return 1;
else return tail.length() + 1;

}
StrList ss=new StrlList(“a”,new StrList(“b”,null));

int i = ss.length();
String s = ss.head;

... Are Not Easy to Maintain

A number of very similar class definitions
> Code modification is cumbersome, or even
error—prone

y ‘6 . . e)y
Java's generic idiom

Unifies specialized definitions into one class
» Use of Object, a top type, as an element type
class List {
Object head; List tail;
List (Object h, List t) { head=h; tail=t; }
int length() { ... }

}
List ss = new List(Va”,new List(“"'b” ,null));
List is = new List(il, new List (12, null));

// subsumption
int 1 = ss.length() + is.length() ;

// So far, so good, ...

Oops!

Why?

» The declared type of head is Object

» Assignment of an Object to a String variable

not allowed
> (The opposite direction is OK)
*» Loss of type information in list construction

> Workaround by typecasts
String s = (String)ss.head;

» They should succeed (if you are careful enough), but
* The type system cannot guarantee their
successes

* The run—time system incurs some overhead

Comparisons of the Two Approaches

* Element—specific classes

* Low reusability
* Mostly duplicated code

> No worry about ClassCastException

*» Java idiom

» High reusability
* One definition fits all

> Reduced safety / efficiency
* Due to typecasts

Any way to take best of both worlds?

Introduction of Generic Classes

Classes in which some type information is abstracted by
type parameters
» cf. C++ templates, ML polymorphic functions
* Viewed as a function from types to specialized classes
» new List<String>(...)

» Type parameters are used as types In their scopes

class List<X> {
X head;

}

new List<String>(%“a”,
new List<String>(“b”,null))

Parametric Types

Generic class name + actual type arguments, such
as List<String>
» Representing the interface of the class in which X is
instantiated with String
» The field head of List<String> is of String
» Class names by themselves are not types
class List<X> {
X head; List<X> tail;
List(X h, List<X> t) { head=h; tail=t; }
int length() { ... }

}
List<String> ss= new List<String>(“a”,...);

String s = ss.head; // OK!

More Generally, ...

> Generic classes with multiple type parameters
class Pair<X,¥> {

X fst; Y snd;
}
Pair<String,Integer> p = ...;
Integer 1 = p.snd;

> Nested parametric types

List<List<String>> ss=...;

int 1 = ss.length()+ss.head.length()
+ss.head.head.length(() ;

List<Pair<String,Integer>> ps=...;

Other Features of Java Generics (1):
Parameterized Methods

* Implementing the map function for lists

class Fun<X,Y> { /* functions from Xto Y */}
class List<X> {
<Y> List<Y¥> map (Fun<X,Y¥> f) {

} o}
List<String> 1 = ...;

Fun<String,Integer> f1 = ...;
Fun<String,String> £f2 = .. .;
List<Integer> 11 = 1l.<Integer>map(fl)
List<String> 12 = 1l.<String>map (£f2) ;

Other Features of Java Generics (2):
Method Type Argument Inference

» Automatic synthesis of type arguments from
types of value arguments

class C {
<Y> Y choose(Y y1, Y y2) {

if ... return yl;, else return y2;
}
}
Cc=.; Integer i = ..; Float £ = . ;
Number n = c. choose(1,£f) ;

// Y is implicitly instantiated to Number

Other Features of Java Generics (3):
Bounded quantification

* The upperbound of the range of a type variable
» Object when omitted

class NumList<X extends Number> {
X head; NumList<X> tail;
Byte byteHead () {
return this.head.byteValue() ;

// AAANAAANAANAANAN

// subsumption using X <: Number

} o}
NumList<Integer> il = . ;

NumList<String> sl = ..; // typing error!

> Recursive bounds (F-bounded quantification)

interface Comparable<X> { boolean cmp (X that) ;}
class CmpList<X extends Comparable<X>> {
X hd; CmpList<X> tl1;
void sort() { .. this.hd.cmp(this.tl.hd) .. }
}
class A implements Comparable<A> ({
boolean cmp (A that) { .. }}
CmpList<A> al = ..;, al.sort();

Implementation of Java Generics

By so—called “erasure” translation
* One generic class to one class file
s class CKX> {...}=class C { ... }

» Type parameter X = Object
* Typecasts are inserted where type mismatch occurs

class List<X> { class List {
X head; Object head;
List<X> tail; List tail;
} }
List<String> ss = List 1ls = new List(...);

new List<String>(...) String s = (String)ls.head;
String s = ss.head;

What's the Point?
Or, didn't you say typecasts are unsafe?

» Safety by automating the generic idiom
* Typechecking with parametric types
* Mechanical translation by erasure, which inserts
typecasts

* proven to succeed
» [Igarashi, Pierce, Wadler; OOPSLA99]

» Compatibility with the idiom
» (Library) classes written with the generic idiom and
ones with generics result in the same bytecode
» Old applications run without recompiling

Legacy

application e
(compiled)

Generic

Same bytecodel
library classes Y

Restriction due to Erasure Translation(1) :
Type Abstraction only for Object Types

class List<X> {
X car; List cdr;

}
List<Integer> il = ..;

List<int> sl = ..; // typing error!

> In Java 5.0, int and Integer are
automatically converted to each other, though

Restriction (2): Typecasts

class List<X> { .. }
class MyList<X> extends List<X> { .. }

Object o; List<String> ss;
(List<String>)o // compile-time error!
(MyList<String>)ss // OK!

» Both new List<String> () and

new List<Integer> () are tagged only with List

(w/o type argument information)
» 0 may be new List<Integer>()

* False positive must be excluded

Summary of Part II

*» Generic classes for generic data structure
*» Reusability by parameterization
» Safety by refined type information
» Implementation by the erasure translation
» Automated idiomatic programming
» Typecasts that eventually succeed
» Somewhat unnatural restrictions
> Could be avoided by “type—passing”
implementation [NextGen, LM]

Part IlI

Even More Reusability
by
Wildcards

Overview of Part III

» Interaction between parametric types and
subtyping
» Subtyping schemes for parametric types
» Subtyping based on inheritance
* Subtyping based on variance
» Safety issues
» Introduction of wildcards

Inheritance—based Subtyping

Instantiating the inheritance relation (“extends”
clause) by type arguments
class MyList<X> extends List<X> { .. }

List<String> ss = new MyList<String>(..);

// MyList<T> <: List<T> forany T

Variance—based Subtyping

Subtyping between parametric types from the
same class
» [nvariant subtyping rule
s C<S> <: C<KT>ifS=T
» Covariant subtyping rule
s CLS><K: CT>ifS <: T
» e.g, List<String> <: List<Object} type safe-
*» Contravariant subtyping rule
» C<KS><: C<T>IfT <: S
* e.g, List<Object> <: List<String>

Java Array Types T[]

+ A kind of parametric types (~Array<T>)
» Covariant subtyping permitted
String[] ss = ...;

Object[] os = ss; // covariant subtyping
os[0] = new Integer(10) ;
int i = ss[0].length(); // NoSuchMethodError!?

* Run—time check for safety
» Exception for illegal assignments
» Again, to prevent NoSuchMethodError

os[0]=new Integer(10); // ArrayStoreException!

Variance vs Safety

* More subtypes for more reusability
» String[] can be passed to a method that takes

Object|[]

* Run—time checks to prevent
NoSuchMethoError

Java Arrays Can Be Made Safe!

» Covariant subtyping for array types is always safe if

you never assigh anything
» Trade—off between covariance and assignments

> Let programmers choose!
» T[]: invariant but both reading and assigments permitted

» T[+]: covariant but assignments prohibited
String[] ss = ...;
Object[+] os = ss; // covariant subtyping
os[0] = new Integer(10); // typing error!
String[] ss = ...;
Object[] os = ss; // typing error!

Introduction to Wildcards

Invariant types: List<T>
* Object instantiation, any method invocation permitted
Covariant types: List<? extends T>

® €.8., List<? extends String> <: List<? extends Object>

» Invocation of methods to, e.g., assigh new elements
prohibited

Contravariant types: List<? super T>
* e.g., List<? super Object> <: List<? super String>
» The types of read elements are Object
List<?>
» No assignments allowed, elements are read as Object
» length () can be still invoked
» All kinds of types above are subtypes

List<?>

List<? super Int>

List<? extends Num>
1

List<? super Num>

List<? extends Int>

List<Int> List<Num>

Collection<xX>

.

List<X> Set<<X>

Collection<+Num>

Collection<+Int>
Set<+Num>

A

List<+Num>

Collection<Num>

List<+Int> Set<+Int>

11 '
Collection<Int> List<Num> Set<Num>

List<Int> Set<Int>

Intuition behind Wildcards

» List<?>
* |ist of something you don't know
» List<? extends Number>
» List of some Numbers (maybe Integers or Floats)
> The element is not exactly known but reading elements
yields Numbers (by subsumption)
» Assignment is prohibited since its element type is

unknown
» Only null can be assigned

» c.f. Existential types
o dX.List<<X>

» X< :Number.List<X>

Applications of Wildcards

» Parameter of a covariant type
*» Declaration of read—only use

> More applicability of the method

class List<X> {
List<X> append(List<? extends X> 1) {
if (tail == null) return this;
else return
new List<X>(l.head, this.append(l.tail));

} o}
List<Number> ns = ...;
List<Integer> is = ...;
List<Number> ns2 = ns.append(is) ;

// argument type: List<? extends Number>

interface Collection<X> {
<Y> Y choose(Y y1, Y y2) {..}
}
class Set<X> implements Collection<X> {..}
class List<X> implements Collection<X>{..}

// without wildcards
Object x = choose(intSet, stringList);

// with wildcards
Collection<? extends Object> x =
choose (intSet, stringLlist) ;

<Y> Set<¥> unmodifiableSet (Set<¥> s) {..}

Set<Integer> sl;
Set<Integer> s2 = unmodifiableSet(sl) ;

// here, Y is instantiated with Integer

Set<? extends Integer> s3;
Set<? extends Integer> s4 = unmodifiableSet(s3);

// Q: What is Y instantiated with?
// A: The unknown type “? !

Summary of Part III

» Wildcards and subtyping for parametric types

* More reusability for methods using parameters in
a limited way

* Yet safe: Tradeoff between subtyping and
access restriction

Conclusion:
Safety and Reusability by Improving Type
Systems

* Simple Type System
» Towards no NoSuchMethodError
» Typecasts and covariant array types
» Loopholes to allow “useful” programs
* Their abuse may reduce both safety and
efficiency
> Generic Classes
» Reusability by type parameterization
» Refined type information by parametric types
» Wildcards
* Flexible subtyping for parametric types

Departure from
the “Class Names as Types~ Principle

» Parametric types
» Type = class name + type arguments
> Run—time types = class name (+ type arguments)
» Wildcards
» Type = class name + type arguments (possibly
with “? super T etc.)

* Run—time types C types
» Only invariant types can be a target of “new’

Types = Interface Information

References

* @G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler.
GJ: Extending the Java Programming Language with
type parameters.
http://homepages.inf.ed.ac.uk/wadler/gj/Documents/

» A.lIgarashi, B. C. Pierce, and P.Wadler. Featherweight
Java: A Core Calculus for Java and GJ. ACM TOPLAS,
2001.

» A. Igarashi and M. Viroli. Variant Parametric Types: A
Flexible Subtyping Scheme for Generics. ACM TOPLAS.
To appear.

> M. Torgersen et al. Adding Wildcards to the Java
Programming Language. In Proc. Of ACM SAC2004.
http://bracha.org/selected—pubs.html

» [NextGen] Robert Cartwright and Guy L. Steele
Jr. Compatibe Genericity with Run—Time Types
for Java. In Proc. OOPSLA'98

» [LM] Mirko Viroli and Antonio Natali. Parametric
Polymorphism in Java: An Approach to
Translation based on Reflective Features. In
Proc. OOPSLA2000

* S. Drossopoulou and S. Eisenbach. Java is Type
Safe — Probably. In Proc. ECOOP'97

