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What is This Tutorial About?

Evolution of Java's type system 
Simple type system before Java 5.0
Generics and Parametric Types
Wildcards

How types contribute safety and reusability

Not about:
Comparison of different languages and their 
type systems



Overview

Part I: What's Java?
Model of (untyped) Java objects 
Simple type system for Java (～JDK1.4)

Class names as types
Inheritance-based subtyping

Part II: Generics for more reusable classes
Parametric types

Part III: Wildcards
Variance-based subtyping for parametric 
types

}
part of JDK5.0



Part I

What's Java?



Overview of Part I

What are Java objects?
Classes and inheritance for reusing 
implementation
What is a Java type system for?
Simple Java type system

Class names as types
Subtyping based on inheritance



What are Objects in Java?

Just a particular kind of data structure consisting 
of ...
Internal state, called fields
A set of procedures, called methods

Primitive operations:
Object creation
Reading field values / writing to fields
Invocation of a method of another object, or the 
object itself

...



Example:　（One dim.） point object

State: coordinate value x
Method get(): returns the value of x
Method set(y): sets x to y
Method bump(): increments x by one, by

Invoking get() on self,
Adding one to the value
Invoking set() on self

３ get()
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Classes as Factories of Objects

Description of common structure of objects
Field declarations
Method definitions

Code to initialize objects
Constructor(s)

Objects are instantiated  from a class C by 
an expression new C(…)



Example: Class for Point Objects

class Point {
  field x;
  Point(initx) { x = initx; } // constructor def.
  method get() { return x; }
  method set(newx) { x = newx; return; }
  method bump() { this.set(this.get()+1); return; }
  method copy_x(p) { this.set(p.get()); return; }
}
print(new Point(5).get());  // 5
var p = new Point(3);
p.bump(); print(p.get()); // 4
var p = new Point(0);
p.copy_x(new Point(2)); print(p.get()); // 2



Reusing Object Implementation by 
Inheritance

New class definition by “extension”
Inheriting all definitions from another class
Adding new fields and methods, and
Overriding (some of) inherited methods

Late binding of “this”
The meaning of this in methods is determined

only when an object is instantiated 
not when a class is defined



Example: Colored Points

class ColorPoint extends Point {
  field col;  // additional field
　　ColorPoint(init_x){ x = init_x; col = Blue; }
  // method get() { return x; }
  // method bump() { this.set(this.get()+1); return; }
  // additional/overriding methods
  method get_col() { return col; }
  method set_col(new_col){ col = new_col; return; }
  method set(new_x){
    x=new_x; this.set_col(Red); return; }
}
var p = new ColorPoint(3);  p.bump(); // calls set() 
print(p.get())     // 4
print(p.get_col()) // Red

subclass superclass



Run-Time Test on an Object' s Class

Java is equipped with constructs to check the 
class of an object
e instanceOf C 

returns true when e evaluates to an 
instance of C (or its subclass)
returns false otherwise

(C)e
does nothing  when  e evaluates to an 
instance of C (or its subclass)
throws ClassCastException otherwise



What are Objects in Java?

Just a particular kind of data structure consisting 
of ...
Internal state, called fields
A set of procedures, called methods
Name of a class from which it is instantiated

Sometimes called an object's run-time type



What is a Type System?

Mechanism to detect possibility of certain kinds of 
errors before a program runs by analyzing its 
abstract syntax tree
Types: 

Approximation of “what a program (fragment) 
does” with enough information to detect the 
errors

Typing rules: 
Rules to compute such approximation from a 
given program fragment

Type soundness property:
“Typing rules give correct approximation of the 
behavior of a program”



What We Are To Detect and Not To

Errors to be detected:
Invocation of non-existing methods

NoSuchMethodError, ...

Errors not to be detected:
Division by zero

ArithmeticException
Failure of run-time type tests

ClassCastException
...



Type Information Required to Prevent 
NoSuchMethodError
“Interface” information of objects

The names of methods that an object owns
What each method takes as arguments
What each method returns

e.g.,
Interface of Point objects
{get: ()→int, set: (int)→void, bump: ()→void, ...}

Interface of ColorPoint objects
{get: ()→int, set: (int)→void, bump: ()→void,   
 get_col: ()→int, set_col: (col)→void, ...}



Java's Typing Principle (1)
Class Names as Types

Class name as a concice representation for 
interface information
Objects from the same class have the same 
interface
Method names are manifest in a class definition
Argument and return types are given by 
programmers



Point with Type Annotations

Point is a recursively defined interface:
Point = 
{get: ()→int,      set: (int)→void, 
 bump: ()→void, copy_x: Point→void}

class Point {
  int x;
  Point(int initx) { x = initx; }
  int get() { return x; }
  void set(int newx) { x = newx; return; }
  void bump() { this.set(this.get()+1); return; }
  void copy_x(Point p){ this.set(p.get()); return;}
}



Inheritance Requires Substitutability

ColorPoint must be substitutable for Point, 
because:

bump() is typechecked under the assumption that this 
is of type Point (once and for all)
At run-time, this can be either Point or ColorPoint

Subtyping relation: C <: D
“C is substitutable D”
Subsumption typing rule:

If e is of type C, then e is also of type D

Q: When is one type a subtype of another?



Java's Typing Principle (2)
Inheritance as Subtyping

C <: D iff class C (indirectly) extends class D
The interface of C always includes that of D
D inherits all methods from C

One subtlety: method overriding
Java's rule: 

The argument/return types of an overriding 
method must be the same as the overridden

Subtyping could be defined independently of 
inheritance

c.f. Objective Caml



Some Typing Rules

Object instantiation: new C(e)
If e's type is a subtype of the constructor 
argument type, 
Then new C(e) is of type C

Method invocation expression: e1.m(e2)
If e1's type includes m:(T1) → T2 and 
   e2's type is a subtype of T1, 
Then e1.m(e2) is of type T2

Method definition in C: T m(T' x){ body }
Typecheck the body under the assumption
x is of type T' and this is of type C



Type Soundness Property

“If typechecking succeeds, 
NoSuchMethodError cannot be thrown”

Subject Reduction Property:
The type of an expression is preserved by one 
step of execution

Progress Property:
If typechecking succeeds, 
NoSuchMethodError cannot be immediately 
thrown 

Several formal proofs for various subsets of 
Java have been given in the literature 
[DrossopoulouEisenbach97, IgarashiPierceWadler99, etc.]



Typing Rule for Typecasts (C)e

The whole expression can be given type C, 
whatever the type of e is

In Java, actually, e's type must be either a subtype 
or supertype of C (unless C is an interface type)

Otherwise, typecasts will always fail



Type Soundness Theorem, Revised

“If typechecking succeeds, 
NoSuchMethodError cannot be thrown, 
but ClassCastException may be thrown”

So, the (ab)use of typecasts decreases program 
reliability



Summary of Part I

Informal model of untyped Java objects
Object ＝ fields (internal state) + methods + class name
Classes and implementation reuse by inheritance

Simple type system
To prevent nonexistent fields/methods from being 
accessed

Class name as a representation of type information
Inheritance requires substitutability (subtyping) to be 
taken into account
Inheritance as subtyping



Part II

From Java to Generic Java



Overview of Part II

Programming generic data structure by using a 
Java idiom
Problems in the Java idiom
Generics
Implementation of Java Generics
Other issues in Java Generics



Programming Generic Data Structrue in 
Java

Class for list structure
Methods: length(), append(), map()

Various element types
List of strings, list of integers, ...



Definitions Specialized for Specific 
Elements ...

class StrList {
  String head;  StrList tail;
  StrList(String h, StrList t) { head=h; tail=t; }
  int length() {
    if (tail==null) return 1;
    else return tail.length() + 1;
  }
  ...
}
StrList ss=new StrList(“a”,new StrList(“b”,null));
int i = ss.length();
String s = ss.head;



... Are Not Easy to Maintain

A number of very similar class definitions
Code modification is cumbersome, or even 
error-prone



Java's “generic idiom”

Unifies specialized definitions into one class
Use of Object, a top type, as an element type

class List {
  Object head;  List tail;
  List(Object h, List t) { head=h; tail=t; }
  int length() { ... }
  ...
}
List ss　=　new List(“a”,new List(“b”,null));
List is　=　new List(i1, new List(i2, null));
　　// subsumption
int i = ss.length() + is.length();
　　// So far, so good, ...



String s = ss.head;
List.java:xx:incompatible types
found:   java.lang.Object
required:java.lang.String
    String s = ss.head;
                 ^
1 error

Oops!



Why?

The declared type of head is Object
Assignment of an Object to a String variable 
not allowed

(The opposite direction is OK)
Loss of type information in list construction

➔ Workaround by typecasts

They should succeed (if you are careful enough), but
The type system cannot guarantee their 
successes
The run-time system incurs some overhead

String s = (String)ss.head;



Comparisons of the Two Approaches

Element-specific classes
Low reusability

Mostly duplicated code
No worry about ClassCastException

Java idiom
High reusability

One definition fits all
Reduced safety / efficiency

Due to typecasts

Any way to take best of both worlds?



Introduction of Generic Classes

Classes in which some type information is abstracted by 
type parameters 
cf. C++ templates, ML polymorphic functions
Viewed as a function from types to specialized classes

new List<String>(...)
Type parameters are used as types in their scopes
class List<X> {
  X head; ...
}
...   new List<String>(“a”,
        new List<String>(“b”,null)) ...



Generic class name + actual type arguments, such 
as List<String>

Representing the interface of the class in which X is 
instantiated with String

The field head of List<String> is of String
Class names by themselves are not  types

class List<X> {
  X head;  List<X> tail;
  List(X h, List<X> t) { head=h; tail=t; }
  int length() { ... }
  ...
}
List<String> ss= new List<String>(“a”,...);
String s = ss.head;  // OK!

Parametric Types



More Generally, ...

Generic classes with multiple type parameters

Nested parametric types

List<List<String>> ss=...;
int i = ss.length()+ss.head.length() 
          +ss.head.head.length();
List<Pair<String,Integer>> ps=...;

class Pair<X,Y> {
  X fst;  Y snd;  ...
}
Pair<String,Integer> p = ...;
Integer i = p.snd;



Other Features of Java Generics (1):
Parameterized Methods

Implementing the map function for lists

class Fun<X,Y> { /* functions from  X to  Y */} 
class List<X> { ...
  <Y> List<Y> map(Fun<X,Y> f) {
     ...
} }
List<String> l = ...;
Fun<String,Integer> f1 = ...;
Fun<String,String> f2 = ...;
List<Integer> l1 = l.<Integer>map(f1);
List<String> l2 = l.<String>map(f2);



Other Features of Java Generics (2):
Method Type Argument Inference

Automatic synthesis of type arguments from 
types of value arguments
class C {
　　<Y> Y choose(Y y1, Y y2) {
    if ... return y1; else return y2;
　　}
}
C c = …;  Integer i = …; Float f = …;
Number n = c.<Number>choose(i,f); 
 // Y is implicitly instantiated to Number



Other Features of Java Generics (3):
Bounded quantification

The upperbound of the range of a type variable
Object when omitted

class NumList<X extends Number> {
  X head;  NumList<X> tail;
  Byte byteHead() {
    return this.head.byteValue();
    //     ^^^^^^^^^  
    //     subsumption using X <: Number
} }
NumList<Integer> il = …;
NumList<String> sl = …;  // typing error!



Recursive bounds (F-bounded quantification)

interface Comparable<X> { boolean cmp(X that);}
class CmpList<X extends Comparable<X>> {
  X hd;  CmpList<X> tl;
　　void sort() { … this.hd.cmp(this.tl.hd) … }
}
class A implements Comparable<A> {
  boolean cmp(A that) { … }}
CmpList<A> al = …;  al.sort();   



Implementation of Java Generics

By so-called “erasure” translation
One generic class to one class file
class C<X> {...} ⇒ class C { ... }

Type parameter X ⇒ Object 
Typecasts are inserted where type mismatch occurs 

class List {
  Object head;
　　List tail;
  　...
}
List ls = new List(...);
String s = (String)ls.head; 

class List<X> {
  X head;
　　List<X> tail;
  　...
}
List<String> ss = 
 new List<String>(...);
String s = ss.head; 

⇒



What's the Point? 
Or, didn't you say typecasts are unsafe?

Safety by automating the generic idiom
Typechecking with parametric types
Mechanical translation by erasure, which inserts 
typecasts

proven to succeed
[Igarashi, Pierce, Wadler; OOPSLA99] 

Compatibility with the idiom
(Library) classes written with the generic idiom and 
ones with generics result in the same bytecode

Old applications run without recompiling

Legacy 
application
(compiled)

Non-generic 
library classes

Generic 
library classes

Same bytecode!



Restriction due to Erasure Translation(1)： 
Type Abstraction only for Object Types

In Java 5.0,　int and Integer are 
automatically converted to each other, though

class List<X> {
  X car;  List cdr;
}
List<Integer> il = …;
List<int> sl = …;  // typing error!



Restriction (2)： Typecasts

Both new List<String>() and 
new List<Integer>() are tagged only with List 
(w/o type argument information)

o may be new List<Integer>()
False positive must be excluded 

class List<X> { … }
class MyList<X> extends List<X> { … }
Object o;  List<String> ss;
(List<String>)o     // compile-time error!
(MyList<String>)ss  // OK!



Summary of Part II

Generic classes for generic data structure
Reusability by parameterization
Safety by refined type information

Implementation by the erasure translation
Automated idiomatic programming
Typecasts that eventually succeed
Somewhat unnatural restrictions

Could be avoided by “type-passing” 
implementation [NextGen, LM]



Part III

Even More Reusability
by

Wildcards



Overview of Part III

Interaction between parametric types and 
subtyping

Subtyping schemes for parametric types
Subtyping based on inheritance
Subtyping based on variance

Safety issues
Introduction of wildcards



Inheritance-based Subtyping

Instantiating the inheritance relation (“extends” 
clause) by type arguments
class MyList<X> extends List<X> { … }
List<String> ss = new MyList<String>(…);

// MyList<T> <: List<T> for any T



Variance-based Subtyping 

Subtyping between parametric types from the 
same class
Invariant subtyping rule

C<S> <: C<T> if S = T
Covariant subtyping rule

C<S> <: C<T> if S <: T
e.g., List<String> <: List<Object>

Contravariant subtyping rule
C<S> <: C<T> if T <: S
e.g., List<Object> <: List<String>

}type safe?



Java Array Types T[]

A kind of parametric types (～Array<T>)
Covariant subtyping permitted

Run-time check for safety
Exception for illegal assignments
Again, to prevent NoSuchMethodError

String[] ss = ...;
Object[] os = ss; // covariant subtyping
os[0] = new Integer(10);
int i = ss[0].length(); // NoSuchMethodError!?

os[0]=new Integer(10);　　// ArrayStoreException!



Variance vs Safety

More subtypes for more reusability
String[] can be passed to a method that takes 
Object[]

Run-time checks to prevent 
NoSuchMethoError



Java Arrays Can Be Made Safe!

Covariant subtyping for array types is always safe if 
you never assign anything
Trade-off between covariance and assignments

➔ Let programmers choose!
T[]: invariant but both reading and assigments permitted
T[+]: covariant but assignments prohibited

String[] ss = ...;
Object[+] os = ss; // covariant subtyping
os[0] = new Integer(10); // typing error!
String[] ss = ...;
Object[] os = ss; // typing error!
os[0] = new Integer(10);



Introduction to Wildcards

Invariant types: List<T>
Object instantiation, any method invocation permitted

Covariant types: List<? extends T>
e.g., List<? extends String> <: List<? extends Object>
Invocation of methods to, e.g., assign new elements 
prohibited

Contravariant types: List<? super T>
e.g., List<? super Object> <: List<? super String>
The types of read elements are Object

List<?>
No assignments allowed, elements are read as Object

length() can be still invoked
All kinds of types above are subtypes



List<Num>List<Int>

List<? extends Num>
List<? super Num>

List<? super Int>

List<? extends Int>

List<?>



Collection<X>

Set<X>List<X>

Collection<Int>

Set<Int>List<Int>

Collection<Num>

Set<Num>List<Num>

Collection<+Num>

Set<+Num>List<+Num>Collection<+Int>

Set<+Int>List<+Int>



Intuition behind Wildcards

List<?>
List of something you don't knowList<? extends Number>
List of some Numbers (maybe Integers or Floats)
The element is not exactly known but reading elements 
yields Numbers (by subsumption)
Assignment is prohibited since its element type is 
unknown

Only null can be assigned 

c.f. Existential types 
∃X.List<X>
∃X<:Number.List<X>



Applications of Wildcards

Parameter of a covariant type
Declaration of read-only use

More applicability of the method
class List<X> { ...
  List<X> append(List<? extends X> l) {
    if (tail == null) return this;
    else return
      new List<X>(l.head, this.append(l.tail));
} }
List<Number> ns = ...;
List<Integer> is = ...;
List<Number> ns2 = ns.append(is);
// argument type: List<? extends Number>



interface Collection<X> {
  <Y> Y choose(Y y1, Y y2) {…} 
}
class Set<X> implements Collection<X> {…}
class List<X> implements Collection<X>{…}

// without wildcards
Object x = choose(intSet, stringList);
// with wildcards
Collection<? extends Object> x = 
    choose(intSet, stringList);



<Y> Set<Y> unmodifiableSet(Set<Y> s) {…} 
Set<Integer> s1;
Set<Integer> s2 = unmodifiableSet(s1);
// here, Y is instantiated with  Integer
Set<? extends Integer> s3;
Set<? extends Integer> s4 = unmodifiableSet(s3);
// Q: What is  Y instantiated with?
//   A: The unknown type “?”!



Summary of Part III

Wildcards and subtyping for parametric types
More reusability for methods using parameters in 
a limited way
Yet safe: Tradeoff between subtyping and 
access restriction



Conclusion:
Safety and Reusability by Improving Type 
Systems

Simple Type System
Towards no NoSuchMethodError
Typecasts and covariant array types

Loopholes to allow “useful” programs
Their abuse may reduce both safety and 
efficiency

Generic Classes
Reusability by type parameterization
Refined type information by parametric types

Wildcards
Flexible subtyping for parametric types



Departure from 
the “Class Names as Types” Principle

Parametric types
Type ＝ class name + type arguments
Run-time types ＝ class name (+ type arguments)

Wildcards
Type ＝ class name + type arguments (possibly 
with “? super T” etc.)
Run-time types ⊂ types

Only invariant types can be a target of “new”

Types = Interface Information
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