Processes as Types:

A Generic Framework of Behavioral
Type Systems for Concurrent Processes

Atsushi Igarashi (Kyoto Univ.)

based on joint work [POPL2001, T¢52003]
with Naoki Kobayashi (Tohoku Univ.)

Programming is hard ...

Concurrent programming is
much harder, because...

Additional Complexity in
Concurrent Programs

¢ Multiple threads of control
¢ Non-determinism
¢ Deadlock / livelock

Static Checking to Rescue?

Two popular approaches:

¢ Type Systems
— (Said to be) good at finding 'shallow’ bugs
* e.g., arity mismatch in communication

— Directly deal with program code

¢ Model Checking
— Good at verifying 'deep' properties
* e.g., deadlock freedom
— Daunting(?) model extraction from programs

Previous Type Systems

¢ I/0O mode ([Pierce&Sangiorgi 93])

— Channels are used for correct I/0 modes.

¢ Linearity, race conditions, atomicity ((kobayashi,
Pierce & Turner 96] [Abadi,Flanagan&Freund 99, 2000] etc.)

— Certain communications do not suffer from
non-determinism.

¢ Deadlock/Livelock-freedom ([Yoshida 96: Kobayashi
et al.97,98,2000:; Puntigam 98] etc.)

— Certain communications succeed eventually.

¢ Secur'iTy pr'oper'ﬂes ([Honda, Vasconcelos & Yoshida
2000; Hennessy & Riely 2000; Kobayashi 2005] etc.)

Problems of Previous Type

Systems for Concurrent Programs
¢ Designed in an ad hoc manner
— Unclear essence
— Difficulty of integrating different type systems.
— A lot of repeated work:
* type soundness proofs
* type inference algorithms

[No common framework

c.f. Curry-Howard isomorphism, Effect systems

This Talk:
Generic Type System

¢ Provides a common framework of type
systems for concurrent programs

¢ Can be instantiated easily to various type
systems (e.g., for race-freedom, deadlock-
freedom)

¢ Enables sharing of a large amount of work for
development of type systems

— type soundness proofs

—type inference algorithms

Idea: Types as Abstract Processes

race

User Program
(Concrete Process) P - P, > ... > P

@ checldinfere@

:

Process Type
(Abstract Process) r1 - rz e T I_n

l race

@alyzer/verifieD

c.f. Abstract Interpretation [Cousot&Cousot77]

Idea: Types as Abstract Processes

deadlock
User Program
(Concrete Process) P - P, > ... > P,
@ checldinfere@
Process Type
(Abstract Process) r1 - rz e T I_n
l deadlock

@alyzer/verifieD

c.f. Abstract Interpretation [Cousot&Cousot77]

Idea: Types as Abstract Processes

User Program
(Concrete Process)

l

@ checldinfere@

:

Process Type
(Abstract Process)

l

@alyzer/verifieD

Ti-calculus[Milner et al.]:
Dynamic change of

communication toplology

(] Expressive,
but hard to analyze

CCS (w/o channel creation)
No dynamic change of
communication topology

[0 Much easier to analyze

Idea: Types as Abstract Processes

User Program

(Concrete Process)

l

Hybrid approach combining

* Type systems
* Type inference as syntax-
directed, automatic model

@ checldinfere@ extraction from a program

:

Process Type
(Abstract Process)

l

* Model checking
* Analyzer/verifier as
model checker

@alyzer/verifieD

Outline

User Program
(Concrete Process)

¢ Target Language

— Syntax l
— Operational semantics
¢ Process Types @ checldinfere@
¢ Generic Type System T
— Typing rules Process Type
(Abstract Process)

— Type soundness

¢ How to obtain specific l
type systems @alyzer/verifieD

Outline

User Program
(Concrete Process)

¢ Target Language

— Syntax l
— Operational semantics
¢ Process Types @ checldinfere@
¢ Generic Type System 1
— Typing rules Process Type
(Abstract Process)

— Type soundness

¢ How to obtain specific l
type systems @alyzer/verifieD

Outline

User Program
(Concrete Process)

¢ Target Language

— Syntax l
— Operational semantics
¢ Process Types @ checldinfere@
¢ Generic Type System 1
— Typing rules Process Type
(Abstract Process)

— Type soundness

¢ How to obtain specific l
type systems @alyzer/verifieD

Outline

User Program
(Concrete Process)

¢ Target Language

— Syntax l
— Operational semantics
¢ Process Types @ checldinfere@
¢ Generic Type System 1
~ Typing rules Process Type
(Abstract Process)

— Type soundness

¢ How to obtain specific l
type systems @alyzer/verifieD

Outline

User Program
(Concrete Process)

¢ Target Language

— Syntax l
— Operational semantics
¢ Process Types @ checldinfere@
¢ Generic Type System 1
— Typing rules Process Type
(Abstract Process)

— Type soundness

¢ How to obtain specific l
type systems @alyzer/verifieD

Target Language: 11-calculusimilner et al.]

Calculus of concurrent processes with:

¢ Message passing via communication
channels

¢ First-class channels
¢ Dynamically created channels
¢ Infinite behavior by replication

Target Language: 11-calculusimiiner et al.]
P, Q (Processes) ::=

0 (inaction)
x[v,..,v,].P (output)

x?[y, ..y,]. P (input)

new x.,...,x, in P (channel creation)

PlQ (parallel execution)

LP (replication: =P |P|...)

x[v,,...,v.].P| x?[y,---.¥.].Q - P|[V/VY;---,V. IV]Q
(c.f. B-reduction: A\x.M)N - [N/x]|M)

Example: Function Server

Server: [succ?[n, r].r [n+1]

Client: new rin (succ![1,r] | r?[x]...)

Example: Function Server

Server: [succ?[n, r].r [n+1]

Client: new r'in (succ![1,r] | r?[x]...)

[succ?[n, r].rN[n+1]|new r'in (succ![1,r']| r' ?[x].print![x])

server client

Example: Function Server

Server: [succ?[n, r].r [n+1]

Client: new rin (succ![1,r] | r?[x]...)

[succ?[n, r].rN[n+1]|new r'in (succ![1,r] | r' ?[x].print![x])

server client
— [succ?[n, r].r[n+1]| new r'in (r' [2]|r' ?[x].print![x])

Example: Function Server

Server: [succ?[n, r].r [n+1]

Client: new rin (succ![1,r] | r?[x]...)

[succ?[n, r].ri[n+1]|new r'in (succ![1,r] | r?[x].print![x])

server client
— [succ?[n, r].r'[n+1]| new r'in (r'![2]|r' ?[x].print![x])
— [succ?[n, r].[n+1]| print![2]

Outline

User Program
(Concrete Process)

¢ Target Language

— Syntax l
— Operational semantics
¢ Process Types @ checldinfere@
¢ Type System 1
— Typing rules Process Type
(Abstract Process)

— Type soundness

¢ Instances of Generic l
Type System @alyzer/verifieD

Process Types
[, A (process types) ::= 0 (inaction)
X!t[T]. [(output a value on X, then behaves like)
X?t[T]. [(input from X, then behaves like [)

Al (wait for event t, then behaves like [)
C|A (parallel composition)

HE (replication)

& A (non-deterministic choice)

T (tuple types) ::=
(X,.-.;x) (type of a tuple of the form [X.,...,X],
which should be used according to ')

Examples
¢ x25[Int].y!Int]

— Receives an integer through x and then
sends an integer through y

(e.g. x?°[n].y![n+1])
¢ Dx?°[(y)y!TInt]]

— Repeatedly receives a channel and sends
an integer through the received channel

(e.g. Ix?[yl.y![2])

Examples

¢ pa.put?[int].get?[(y) y![Int]].a
— The type of a one-place buffer:
* Buffer = put?[n].get?[r].r'[n].Buffer
—(expressed by using replication)
* no.l" ... recursive process type that
satisfies pa.l =[pa.l/a]l

—([T is actually a syntax sugar using |.)

Process Types Form
a Mini-Process Calculus
XI[T.r | X?[T].A - T]| A
(c.f. x![V].P|x?[y]l.Q - P|[vly]lQ)
e.g. X![T].Y![Int] | X?[T] = Y[Int]
(T = (z2)Z![Int])
xlly]l | x?[z].2![2] - y![2]

Summary of Processes and Process Types

x!t[vy,...,v,].P output x!tft].l
X?y4,.-,¥Ynl-P input X?tt].["
P|Q parallel A
New X4,...,X, in P| new channel
P replication T
wait t.r
non-determinism| [&A

koot e

x!t[v,,...,v,].P output x!t[t].l"
xX?ty4,...,¥,]-P input xX[t].["
P|Q parallel A
New X4,...,X, in P| new channel
P replication T
wait t.r
non-determinism| [&A

Outline

User Program
(Concrete Process)

¢ Target Language

— Syntax l
— Operational semantics
¢ Process Types @ checldinfere@
¢ Type System 1
~ Typing rules Process Type
(Abstract Process)

— Type soundness

¢ Instances of Generic l
Type System @alyzer/verifieD

Recipe for Type Systems

¢ Type judgment relation
—with supposed meaning

¢ Typing rules to derive type judgments

— One rule for one syntactic construct

¢ Type soundness theorem
— Evidence that the supposition is indeed true

¢ (Type inference algorithm)

Type Judgment
[FP

P has process type [
[is an abstraction of P
P matches specification I
Examples:

- x?5[Int].N[Int] | x?s[n].y1n+1]
= IX?[(y)Y!Int]] F Dx?s[y].y'12]

Summary of Processes and Process Types

x!t[v,,...,v,].P output x!t[t].l
xX?t[y4,-.-,Y,]-P input X?2Yt].I'
P|Q parallel A
New Xg,...,X, in P| new channel
P replication T
wait t.r
non-determinism| &A

Typing Rule (parallel composition)

rFP AFQ

[AF P|Q
(similarly for [)

Summary of Processes and Process Types

x!t[v,,...,v,].P output x![t].l
xX?ty4,...,¥,]-P input X?Yt].I'
P|Q parallel A
new X4,...,X, in P| new channel
P replication T
wait t.r
non-determinism| [&A

Typing Rule (Output)

X[(Y)AL(T | [viyld) | X1 v].P

A expresses how the receiver uses y

Example:
XM 1 Int] | x?9[T] F x1y] | x?°[z].2!¥[2]

(for T = (2)2!Y[Int)])

Typing Rule (Input)

X(ALT b x?yl.P

Example:
X[1 Int] | x?S[T] | x'y] | X?s[2].2!V[2]
(for T = (2)z!Y[Int])

Typing Rule (Channel Creation)
=P ok(ll{x,...x})

[1{X,....x,} | new X,,...,x,in P

ok(I | { X ;...,X.}) :
Check that X,,...,X_ are used 'appropriately’

(Depending on 'pessible blocking recorded by .|
r1{x 1---sX 3 For (for deadlock analysis)

X?TL.D){x} = L {x})

Typing Rule (Subsumption)

rFP
Process type can be replaced with
a coarser abstraction

*[" <T: Subtyping relation

— Depends on type system instances

Weak Type Soundness Theorem
(Subject Reduction)

r P

-

A Q

[simulates the behavior of P

General Type Inference

¢ Principal typing theorem:
For any process P, there is a "most
general” type I s.t. I P

— (after a slight (routine) modification of
the type system)

Outline

User Program
(Concrete Process)

¢ Target Language

¢ Process Types l
¢ Generic Type System @ checldinfere@
¢ Instances 1
Process Type
— Analysis of race, (Abstract Process)
deadlock l

— What type system can @alyzer/verifieD
be obtained, and how?

Type System for Race-freedom

¢ A process P is race-free on output if:
P / *new y,,...,y, in
(xX![...].Q, | X![...]1.Q, | R)
¢ A type [is race-free on output if:
[A *xI5[1].A, | X'[1].A, | ©

Theorem: If I - P, I is race-free, and
ok(d) implies A is race-free, then P is race-free

General Principle

P_.pP -P,~.. P,

L 1 1 e

=T, =Ty s =T,

To verify a property of P,
verify the corresponding property of [

Example: Race Analysis
xI[1] | y![x] | y?[z].21[2]

1

X![Int] | y![T]. xX![Int] | y?[t] = x!Int] | x![Int]

race on X

Example: Deadlock Analysis

new y in (x?5[n].y![n+1] | y?Y[m].x!V[m+1])
¢ The type of y: s.y![Int] | y?Y[Int].v

— Event S must occur
before event U occurs

* The type of x: x?°[In

— Event U must occur
before event S occurs

Example: Concurrent Objects with
Non-uniform Service Availability

[Puntigam'99, Ravara&Vasconcelos.'00]
Buffer = put?[n].get?[r].r'[n].Buffer
Can be viewed as a concurrent object with two
methods put and get, invoked alternately

— I pyr = Ha.put?[Int].get?[(y) y![Int]].a Buffer

— [client = H0.0&(putl[Int] | get![(y) y![Int]].a)

* | client

* | cient

—

— [puf| T client Never get deadlocked (on outputs)

— put '[2].new r in get '[r].r ?2[n].P

- put '[2] | new r in get '[r].r 2[n].P

nlC 71 1f 1l

| . 1
1 glient [€W T 11T gEL !{r].r FLr. ULl

General Principle Revisited

To verify a property of P,
verify the corresponding property of I

¢ How can we find
the “corresponding” property?

¢ For what kind of property, does the
“corresponding” property exist?

How to Obtain Specific Type

Systems?
¢ To guarantee that every Process
process satisfies A4: l
— Choose A% so that: @e checldinfere@
P satisfies A whenever
its type [satisfies A* 1

Process Type

—Accept Ponly if =
its type [satisfies 4* l

+ How can we find A* ?
* For what 4, does A* exist?

Logic to Describe Properties of

Processes and Types
A, B (formulae) i:i=

X! (Ready to output a value on X)

X? (Ready to input a value from X)

A|B (Parallel composition of a process satisfying A
and a process satisfying B)

<X>A (Can satisfy A after a communication on x)

eVv(A) (Can eventually satisfy A)
- A

Example:

- [Ix.ev(x! | x!) No race on output.

Semantics of the Logic

¢ P |=A: Process P satisfies 4
~xI[1.Q| y'[].R |z x!
-x[1Q| Y[]IR [Fx!]|y!
-x[1y'[1.Q £ x! | y!
—xI[T[x?[].y'[1Fev(y!) A <x>y!
¢ [|=A: Process type I satisfies A

Logic for Properties
ANB:TFP and T [=4 imply P |-
A7 B:T}+P and P|=Aimply I |- B

A/ B
x? /' x? x! /' x! oA 7 <x> B
A/ C B/ D . VAN)
A|B / C|D ev(4) /' ev(B)
A/ B A/ B

AN -B A/ BOC

Strong Type Soundness

Theorem: (bad) things do not happen

A N A for any “negative” formula A.

In other words, ...

Let A be a negative formula.
If T FPand I |=A, then P|= A.

Examples of negative formulas:

—

—

 X.ev(X! | x!) No race on output

 X.ev(<x>ev(X![IX?)) No channel is used twice

General Principle Revisited
To verify a property of P,
verify the corresponding property of [

¢ How can we find the "corresponding”
property?
Choose the property described by

the same formula
¢ For what kind of property, does the

“corresponding” property exist?

For any negative formula, at least

How to Obtain Specific Type Systems?

¢ To guarantee that every Process
process satisfies A4: l

— Choose A* so that: _
P satisfies A wheneve r@e checldmfere@

its type | satisfies A* 1

Process Type

— Accept P only if

i1's fype r Satisfies A* i.
How can we find A* ?

A% = A
For what A, does A* exist? l Yes

For any negative formula 4 Accept

Deadlock Freedom Revisited

¢ Deadlock freedom cannot be described
by a negative formula

— Action labelled t does not deadlock
= "whenever an action labelled t is tried,
there is a further reduction”

(good) things do happen
¢ Separate proof of soundness required

Some Limitations

¢ Due to expressiveness of process types
— Information on channel creation lost

— Impossible to check “"at most n channels are
created”

¢ Due to the requirement for ok(I)
— Invariant cond.: if ok(T)and T - T, then ok(")

— Impossible to check "before x is used, y
should be used”

Conclusion

Generic type system for concurrent progs
—Key idea: Abstract Processes as Types
— Many type systems are obtained as instances:

* Race detection
* Deadlock-freedom

— Concurrent objects with non-uniform service availability
* Linear channels, etc.
— Many issues can be discussed uniformly.

* type soundness
* type inference

¢ Combination of

— Type Theory

— Model Checking

* Chaki et al.[POPL2002]
implemented (a variant

of) this framework usin
SPIN as model checker

Process

l

@e checldinfere@

!

Process Type

l Model

Current/Future Work

¢ Extensions of the generic type system

— More expressive power
* Restriction operator [Chaki et al.2002, Kobayashi2005]?

— More of common theories
* 'Generic' typed process equivalence
¢ Formal verification of the correctness
of the generic type system (using Coq)

— Automatic extraction of type inference
algorithms?

