
Processes as Types:
A Generic Framework of Behavioral

Type Systems for Concurrent Processes

Atsushi Igarashi (Kyoto Univ.)
based on joint work [POPL2001, TCS2003]
with Naoki Kobayashi (Tohoku Univ.)

Programming is hard ...

Concurrent programming is
much harder, because...

Additional Complexity in
Concurrent Programs

♦Multiple threads of control
♦Non-determinism
♦Deadlock / livelock

Static Checking to Rescue?
Two popular approaches:
♦Type Systems

– (Said to be) good at finding 'shallow' bugs
• e.g., arity mismatch in communication

– Directly deal with program code

♦Model Checking
– Good at verifying 'deep' properties

• e.g., deadlock freedom

– Daunting(?) model extraction from programs

Previous Type Systems
♦ I/O mode ([Pierce&Sangiorgi 93])

– Channels are used for correct I/O modes.
♦ Linearity, race conditions, atomicity ([Kobayashi,

Pierce & Turner 96] [Abadi,Flanagan&Freund 99, 2000] etc.)

– Certain communications do not suffer from
non-determinism.

♦ Deadlock/Livelock-freedom ([Yoshida 96; Kobayashi
et al.97,98,2000; Puntigam 98] etc.)

– Certain communications succeed eventually.
♦ Security properties ([Honda, Vasconcelos & Yoshida

2000; Hennessy & Riely 2000; Kobayashi 2005] etc.)

Problems of Previous Type
Systems for Concurrent Programs
♦ Designed in an ad hoc manner

– Unclear essence
– Difficulty of integrating different type systems.
– A lot of repeated work:

• type soundness proofs
• type inference algorithms

⇐ No common framework
c.f. Curry-Howard isomorphism, Effect systems

This Talk:
Generic Type System

♦ Provides a common framework of type
systems for concurrent programs

♦ Can be instantiated easily to various type
systems (e.g., for race-freedom, deadlock-
freedom)

♦ Enables sharing of a large amount of work for
development of type systems

– type soundness proofs

– type inference algorithms

Idea: Types as Abstract Processes
User Program
(Concrete Process)

Process Type
(Abstract Process)

type check/inference

analyzer/verifier

P1 → P2 → ... → Pn

Γ1 → Γ2 → ... → Γn

race

race

c.f. Abstract Interpretation [Cousot&Cousot77]

Idea: Types as Abstract Processes
User Program
(Concrete Process)

Process Type
(Abstract Process)

type check/inference

analyzer/verifier

P1 → P2 → ... → Pn

Γ1 → Γ2 → ... → Γn

deadlock

deadlock

c.f. Abstract Interpretation [Cousot&Cousot77]

Idea: Types as Abstract Processes

User Program
(Concrete Process)

Process Type
(Abstract Process)

type check/inference

analyzer/verifier

π-calculus[Milner et al.]:
Dynamic change of

communication toplology

⇒Expressive,
 but hard to analyze
 CCS (w/o channel creation)
 No dynamic change of
 communication topology

 ⇒Much easier to analyze

Idea: Types as Abstract Processes

User Program
(Concrete Process)

Process Type
(Abstract Process)

type check/inference

analyzer/verifier

Hybrid approach combining
• Type systems

• Type inference as syntax-
directed, automatic model
extraction from a program

• Model checking
• Analyzer/verifier as
 model checker

Outline

♦ Target Language
– Syntax
– Operational semantics

♦ Process Types
♦ Generic Type System

– Typing rules
– Type soundness

♦ How to obtain specific
type systems

User Program
(Concrete Process)

Process Type
(Abstract Process)

type check/inference

analyzer/verifier

Outline

♦ Target Language
– Syntax
– Operational semantics

♦ Process Types
♦ Generic Type System

– Typing rules
– Type soundness

♦ How to obtain specific
type systems

User Program
(Concrete Process)

Process Type
(Abstract Process)

type check/inference

analyzer/verifier

Outline

♦ Target Language
– Syntax
– Operational semantics

♦ Process Types
♦ Generic Type System

– Typing rules
– Type soundness

♦ How to obtain specific
type systems

User Program
(Concrete Process)

Process Type
(Abstract Process)

type check/inference

analyzer/verifier

Outline

♦ Target Language
– Syntax
– Operational semantics

♦ Process Types
♦ Generic Type System

– Typing rules
– Type soundness

♦ How to obtain specific
type systems

User Program
(Concrete Process)

Process Type
(Abstract Process)

type check/inference

analyzer/verifier

Outline

♦ Target Language
– Syntax
– Operational semantics

♦ Process Types
♦ Generic Type System

– Typing rules
– Type soundness

♦ How to obtain specific
type systems

User Program
(Concrete Process)

Process Type
(Abstract Process)

type check/inference

analyzer/verifier

Target Language: π-calculus[Milner et al.]

Calculus of concurrent processes with:
♦Message passing via communication
channels

♦First-class channels
♦Dynamically created channels
♦Infinite behavior by replication

Target Language: π-calculus[Milner et al.]

P, Q (Processes) ::=
 0 (inaction)

x!t[v1, ..., vn]. P (output)

x?t[y1, ..., yn]. P (input)
new x1,...,xn in P (channel creation)
P|Q (parallel execution)

∗P (replication: ≈ P | P | ...)
s, t : labels to identify program points

x![v1,...,vn].P | x?[y1,...,yn].Q → P | [v1/y1,...,vn/yn]Q

(c.f. β-reduction: (λx.M)N → [N/x]M)

Example: Function Server
Server: ∗succ?[n, r].r ![n+1]
Client: new r in (succ![1,r] | r? [x]...)

Example: Function Server
Server: ∗succ?[n, r].r ![n+1]
Client: new r' in (succ![1,r] | r? [x]...)

∗succ?[n, r].r![n+1]|new r' in (succ![1,r']| r' ?[x].print![x])
 server client

Example: Function Server
Server: ∗succ?[n, r].r ![n+1]
Client: new r in (succ![1,r] | r? [x]...)

∗succ?[n, r].r![n+1]|new r' in (succ![1,r'] | r' ?[x].print![x])


→∗succ?[n, r].r![n+1]| new r' in (r' ![2]|r' ?[x].print![x])
server client

Example: Function Server
Server: ∗succ?[n, r].r ![n+1]
Client: new r in (succ![1,r] | r? [x]...)

∗succ?[n, r].r![n+1]|new r' in (succ![1,r'] | r'?[x].print![x])


→∗succ?[n, r].r![n+1]| new r' in (r' ![2]|r' ?[x].print![x])
→∗succ?[n, r].r![n+1]| print![2]

server client

Outline

♦ Target Language
– Syntax
– Operational semantics

♦ Process Types
♦ Type System

– Typing rules
– Type soundness

♦ Instances of Generic
Type System

User Program
(Concrete Process)

Process Type
(Abstract Process)

type check/inference

analyzer/verifier

Process Types
Γ, ∆ (process types) ::= 0 (inaction)

x!t[τ]. Γ (output a value on x, then behaves like Γ)

x?t[τ]. Γ (input from x, then behaves like Γ)
t.Γ (wait for event t, then behaves like Γ)
Γ|∆ (parallel composition)

∗Γ (replication)
Γ & ∆ (non-deterministic choice)

τ (tuple types) ::=
 (x1,...,xn)Γ (type of a tuple of the form [x1,...,xn],

 which should be used according to Γ)

Examples
♦x?s[Int].y!t[Int]

– Receives an integer through x and then
sends an integer through y

(e.g. x?s[n].y!t[n+1])
♦∗x?s[(y)y!t[Int]]

– Repeatedly receives a channel and sends
an integer through the received channel
(e.g. ∗x?s[y].y!t[2])

Examples
♦µα.put?[Int].get?[(y) y![Int]].α

– The type of a one-place buffer:
• Buffer = put?[n].get?[r].r![n].Buffer

–(expressed by using replication)
• µα.Γ ... recursive process type that

satisfies µα.Γ = [µα.Γ/α]Γ
–(∗Γ is actually a syntax sugar using µ)

Process Types Form
a Mini-Process Calculus

x![τ].Γ | x?[τ]. ∆ → Γ | ∆
(c.f. x![v].P | x?[y].Q → P | [v/y]Q)

e.g. x![τ].y![Int] | x?[τ] → y![Int]
 (τ = (z)z![Int])

 x![y] | x?[z].z![2] → y![2]

Summary of Processes and Process Types

output
input

P|Q parallel
new channel
replication

wait
non-determinism

x!t[v1,...,vn].P x!t[τ].Γ
x?t[y1,...,yn].P x?t[τ].Γ

Γ|∆
new x1,...,xn in P

∗P ∗Γ
t.Γ

Γ&∆

Summary of Processes and Process Types

output
input

P|Q parallel
new channel
replication

wait
non-determinism

x!t[v1,...,vn].P x!t[τ].Γ
x?t[y1,...,yn].P x?t[τ].Γ

Γ|∆
new x1,...,xn in P

∗P ∗Γ
t.Γ

Γ&∆

No value passing,
only synchronization behavior

Outline

♦ Target Language
– Syntax
– Operational semantics

♦ Process Types
♦ Type System

– Typing rules
– Type soundness

♦ Instances of Generic
Type System

User Program
(Concrete Process)

Process Type
(Abstract Process)

type check/inference

analyzer/verifier

Recipe for Type Systems

♦Type judgment relation
– with supposed meaning

♦Typing rules to derive type judgments
– One rule for one syntactic construct

♦Type soundness theorem
– Evidence that the supposition is indeed true

♦(Type inference algorithm)

Type Judgment

Γ ┣ P
 P has process type Γ

Γ is an abstraction of P
P matches specification Γ
Examples:

– x?s[Int].y!t[Int] ┣ x?s[n].y!t[n+1]
− ∗x?s[(y)y!t[Int]]┣ ∗x?s[y].y!t[2]

Summary of Processes and Process Types

output
input

P|Q parallel
new channel
replication

wait
non-determinism

x!t[v1,...,vn].P x!t[τ].Γ
x?t[y1,...,yn].P x?t[τ].Γ

Γ|∆
new x1,...,xn in P

∗P ∗Γ
t.Γ

Γ&∆

Typing Rule (parallel composition)

Γ├ P ∆├ Q
━━━━━━━━━━━━

Γ | ∆├ P | Q
(similarly for ∗)

Summary of Processes and Process Types

output
input

P|Q parallel
new channel
replication

wait
non-determinism

x!t[v1,...,vn].P x!t[τ].Γ
x?t[y1,...,yn].P x?t[τ].Γ

Γ|∆
new x1,...,xn in P

∗P ∗Γ
t.Γ

Γ&∆

Typing Rule (Output)

Γ├ P
━━━━━━━━━━━━━━━
x!t[(y)∆].(Γ | [v/y]∆)├ x!t[v].P

Example:
 x!t[τ].y!u[Int] | x?s[τ]├ x!t[y] | x?s[z].z!u[2]

(for τ = (z)z!u[Int])

∆ expresses how the receiver uses y

Typing Rule (Input)

Γ | ∆├ P y∉FV(Γ)
━━━━━━━━━━━━━━━

x!t[(y)∆].Γ ├ x?t[y].P

Example:
 x!t[τ].y!u[Int] | x?s[τ]├ x!t[y] | x?s[z].z!u[2]

(for τ = (z)z!u[Int])

Typing Rule (Channel Creation)
Γ├ P ok(Γ↓{x1,...,xn})

━━━━━━━━━━━━━━━━
Γ↑{x1,...,xn} ├ new x1,...,xn in P

ok(Γ↓{x1,...,xn}) :
Check that x1,...,xn are used 'appropriately'

(Depending on type system instances).
Γ↑{x1,...,xn} : Forget information on x1,...,xn

 (x?t[τ].Γ)↓{x} = t.(Γ↓{x})

Possible blocking recorded by t.Γ
(for deadlock analysis)

Typing Rule (Subsumption)

Γ├ P Γ′ ≤ Γ
━━━━━━━━━━━━━━━━

Γ′ ├ P
Process type can be replaced with

a coarser abstraction
• Γ′ ≤ Γ: Subtyping relation

– Depends on type system instances

Weak Type Soundness Theorem
(Subject Reduction)

Γ simulates the behavior of P

Γ ├ P

├ Q ∆

General Type Inference

♦Principal typing theorem:
For any process P, there is a “most
general” type Γ s.t. Γ┣ P
– (after a slight (routine) modification of
the type system)

Outline

♦ Target Language

♦ Process Types

♦ Generic Type System

♦ Instances

– Analysis of race,

deadlock
– What type system can
be obtained, and how?

User Program
(Concrete Process)

Process Type
(Abstract Process)

type check/inference

analyzer/verifier

Type System for Race-freedom

♦A process P is race-free on output if:

P →* new y1,...,yn in

(x![...].Q1 | x![...].Q2 | R)
♦A type Γ is race-free on output if:

Γ →* x!s[τ].∆1 | x!t[τ].∆2 | Θ
Theorem: If Γ├ P, Γ is race-free, and

ok(∆) implies ∆ is race-free, then P is race-free

General Principle

P

→ Γ1 → Γ2 → ... → Γn

┴

→ P1 → P2 → ... → Pn

┴　　　 　┴　　　 　　　　　 ┴

To verify a property of P,
verify the corresponding property of Γ

Γ

Example: Race Analysis
x![1] | y![x] | y?[z].z![2]

 ┴
x![Int] | y![τ]. x![Int] | y?[τ] → x![Int] | x![Int]

race on x

Example: Deadlock Analysis

new y in (x?s[n].y!t[n+1] | y?u[m].x!v[m+1])
♦ The type of y: s.y!t[Int] | y?u[Int].v

– Event s must occur
before event u occurs

♦ The type of x: x?s[Int].t | u.x!v[Int]
– Event u must occur
before event s occurs

Cannot hold at once!

Example: Concurrent Objects with
Non-uniform Service Availability

[Puntigam'99, Ravara&Vasconcelos.'00]

Buffer = put?[n].get?[r].r![n].Buffer
Can be viewed as a concurrent object with two
methods put and get, invoked alternately
– Γbuf = µα.put?[Int].get?[(y) y![Int]].α ├ Buffer

– Γclient = µα.0&(put![Int] | get![(y) y![Int]].α)

– Γbuf | Γclient never get deadlocked (on outputs)
• Γclient├ put ![2].new r in get ![r].r ?[n].P

• Γclient├ put ![2] | new r in get ![r].r ?[n].P

• Γclient├ new r in get ![r].r ?[n].put![2]

General Principle Revisited
 To verify a property of P,

verify the corresponding property of Γ

♦How can we find
 the “corresponding” property?

♦For what kind of property, does the
“corresponding” property exist?

How to Obtain Specific Type
Systems?

♦ To guarantee that every
process satisfies A:
– Choose A* so that:

P satisfies A whenever
its type Γ satisfies A*

– Accept P only if
its type Γ satisfies A*

Process

Process Type

type check/inference

satisfy A*?

Accept

Yes

 How can we find A* ?
 For what A, does A* exist?

Logic to Describe Properties of
Processes and Types

A, B (formulae) ::=
x! (Ready to output a value on x)

x? (Ready to input a value from x)
A|B (Parallel composition of a process satisfying A

 and a process satisfying B)
 <x>A (Can satisfy A after a communication on x)

ev(A) (Can eventually satisfy A)
 ¬ A
 A∨B
 ...

Example:
 ¬∃x.ev(x! | x!) No race on output.

Semantics of the Logic

♦P |= A: Process P satisfies A
– x![].Q | y![].R |= x!
– x![].Q | y![].R |= x! | y!
– x![].y![].Q |= x! | y!
– x![] | x?[].y![] |= ev(y!) ∧ <x>y!

♦Γ |= A: Process type Γ satisfies A

Logic for Properties
A ↘ B : Γ├ P and Γ |= A imply P |= B
A ↗ B : Γ├ P and P |= A imply Γ |= B

━━━━━━

x? ↗ x?
━━━━━━

x! ↗ x!
A ↗ B

━━━━━━━━

<x>A ↗ <x> B

A ↗ C B ↗ D
━━━━━━━━━━━

A|B ↗ C |D
A ↗ B

━━━━━━━━
ev(A) ↗ ev(B)

A ↗ B
━━━━━━━━

¬A ↘ ¬B
A ↗ B

━━━━━━━━

A ↗ B∨C

Strong Type Soundness

Theorem:

 A ↘ A for any “negative” formula A.
In other words, ...

 Let A be a negative formula.

 If Γ├ P and Γ |= A, then P |= A.

(bad) things do not happen

Examples of negative formulas:
 ¬∃x.ev(x! | x!) No race on output
 ¬∃x.ev(<x>ev(x!∨x?)) No channel is used twice

General Principle Revisited
To verify a property of P,
verify the corresponding property of Γ
♦ How can we find the “corresponding”

property?

♦ For what kind of property, does the
“corresponding” property exist?

Choose the property described by
 the same formula

For any negative formula, at least

How to Obtain Specific Type Systems?
♦ To guarantee that every

process satisfies A:
– Choose A* so that:

P satisfies A whenever
its type Γ satisfies A*

– Accept P only if
its type Γ satisfies A*

Process

Process Type

type check/inference

satisfy A*?

Accept

Yes

How can we find A* ?

For what A, does A* exist?
A* = A

For any negative formula A

Deadlock Freedom Revisited

♦Deadlock freedom cannot be described
by a negative formula
– Action labelled t does not deadlock

= “whenever an action labelled t is tried,
there is a further reduction”

♦Separate proof of soundness required
(good) things do happen

Some Limitations

♦Due to expressiveness of process types
– Information on channel creation lost
– Impossible to check “at most n channels are
created”

♦Due to the requirement for ok(Γ)
– Invariant cond.: if ok(Γ) and Γ→Γ', then ok(Γ')
– Impossible to check “before x is used, y
should be used”

Conclusion
 Generic type system for concurrent progs

– Key idea: Abstract Processes as Types
– Many type systems are obtained as instances:

• Race detection
• Deadlock-freedom

– Concurrent objects with non-uniform service availability

• Linear channels, etc.

– Many issues can be discussed uniformly.
• type soundness
• type inference

♦Combination of
– Type Theory
– Model Checking

• Chaki et al.[POPL2002]
implemented (a variant
of) this framework using
SPIN as model checker

Process

Process Type

type check/inference

satisfy A?

Accept

Yes

Model
checking

Current/Future Work
♦Extensions of the generic type system

– More expressive power
• Restriction operator [Chaki et al.2002, Kobayashi2005]?

– More of common theories
• 'Generic' typed process equivalence

♦Formal verification of the correctness
of the generic type system (using Coq)
– Automatic extraction of type inference
algorithms?

