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Programming is hard ...



Concurrent programming is 
much harder, because...



Additional Complexity in 
Concurrent Programs 

♦Multiple threads of control
♦Non-determinism
♦Deadlock / livelock



Static Checking to Rescue?
Two popular approaches:
♦Type Systems

– (Said to be) good at finding 'shallow' bugs
• e.g., arity mismatch in communication

– Directly deal with program code

♦Model Checking
– Good at verifying 'deep' properties

• e.g., deadlock freedom

– Daunting(?) model extraction from programs



Previous Type Systems
♦ I/O mode ([Pierce&Sangiorgi 93])

– Channels are used for correct I/O modes.
♦ Linearity, race conditions, atomicity ([Kobayashi, 

Pierce & Turner 96] [Abadi,Flanagan&Freund 99, 2000] etc.)

– Certain communications do not suffer from 
non-determinism.

♦ Deadlock/Livelock-freedom ([Yoshida 96; Kobayashi 
et al.97,98,2000; Puntigam 98] etc.)

– Certain communications succeed eventually.
♦ Security properties ([Honda, Vasconcelos & Yoshida 

2000; Hennessy & Riely 2000; Kobayashi 2005] etc.)



Problems of Previous Type 
Systems for Concurrent Programs
♦ Designed in an ad hoc manner

– Unclear essence
– Difficulty of integrating different type systems.
– A lot of repeated work:

• type soundness proofs
• type inference algorithms

⇐ No common framework
c.f. Curry-Howard isomorphism, Effect systems



This Talk:
Generic Type System

♦ Provides a common framework of type 
systems for concurrent programs

♦ Can be instantiated easily to various type 
systems (e.g., for race-freedom, deadlock-
freedom)

♦ Enables sharing of a large amount of work for 
development of type systems

– type soundness proofs

– type inference algorithms



Idea: Types as Abstract Processes
User Program
(Concrete Process)

Process Type
(Abstract Process)

type check/inference

analyzer/verifier

P1 → P2 → ... → Pn 

Γ1 → Γ2 → ... → Γn 

race

race

c.f. Abstract Interpretation [Cousot&Cousot77]



Idea: Types as Abstract Processes
User Program
(Concrete Process)

Process Type
(Abstract Process)

type check/inference

analyzer/verifier

P1 → P2 → ... → Pn 

Γ1 → Γ2 → ... → Γn 

deadlock

deadlock

c.f. Abstract Interpretation [Cousot&Cousot77]



Idea: Types as Abstract Processes

 

User Program
(Concrete Process)

Process Type
(Abstract Process)

type check/inference

analyzer/verifier

π-calculus[Milner et al.]:
Dynamic change of 

communication toplology

⇒Expressive, 
     but hard to analyze 
   CCS (w/o channel creation)
 No dynamic change of
 communication topology 

 ⇒Much easier to analyze



Idea: Types as Abstract Processes

 

User Program
(Concrete Process)

Process Type
(Abstract Process)

type check/inference

analyzer/verifier

Hybrid approach combining
• Type systems

• Type inference as syntax-
directed, automatic model 
extraction from a program

• Model checking
• Analyzer/verifier as 
  model checker



Outline

♦ Target Language
– Syntax
– Operational semantics

♦ Process Types
♦ Generic Type System

– Typing rules
– Type soundness

♦ How to obtain specific 
type systems

User Program
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Process Type
(Abstract Process)

type check/inference

analyzer/verifier
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Target Language: π-calculus[Milner et al.]

Calculus of concurrent processes with:
♦Message passing via communication 
channels

♦First-class channels
♦Dynamically created channels
♦Infinite behavior by replication



Target Language: π-calculus[Milner et al.]

P, Q (Processes) ::=
   0  (inaction)

x!t[ v1, ..., vn ]. P    (output)

x?t[ y1, ..., yn ]. P   (input)
new x1,...,xn in P   (channel creation)
P|Q             (parallel execution)

∗P     (replication: ≈ P | P | ...)
s, t : labels to identify program points

x![v1,...,vn].P | x?[y1,...,yn].Q → P | [v1/y1,...,vn/yn]Q 

(c.f. β-reduction: (λx.M)N → [N/x]M )



Example: Function Server
Server: ∗succ?[n, r].r ![n+1] 
Client: new r in (succ![1,r] | r? [x]...)



Example: Function Server
Server: ∗succ?[n, r].r ![n+1] 
Client: new r' in (succ![1,r] | r? [x]...)

∗succ?[n, r].r![n+1]|new r' in (succ![1,r' ]| r' ?[x].print![x])
 server client



Example: Function Server
Server: ∗succ?[n, r].r ![n+1] 
Client: new r in (succ![1,r] | r? [x]...)

∗succ?[n, r].r![n+1]|new r' in (succ![1,r'] | r' ?[x].print![x])


→∗succ?[n, r].r![n+1]| new r' in (r' ![2]|r' ?[x].print![x])
server client



Example: Function Server
Server: ∗succ?[n, r].r ![n+1] 
Client: new r in (succ![1,r] | r? [x]...)

∗succ?[n, r].r![n+1]|new r' in (succ![1,r'] | r'?[x].print![x]) 


→∗succ?[n, r].r![n+1]| new r' in (r' ![2]|r' ?[x].print![x])
→∗succ?[n, r].r![n+1]| print![2]

server client



Outline

♦ Target Language
– Syntax
– Operational semantics

♦ Process Types
♦ Type System

– Typing rules
– Type soundness

♦ Instances of Generic 
Type System 

User Program
(Concrete Process)

Process Type
(Abstract Process)

type check/inference

analyzer/verifier



Process Types
Γ, ∆ (process types) ::= 0 (inaction)

x!t[τ]. Γ  (output a value on x, then behaves like Γ)

x?t[τ]. Γ  (input from x, then behaves like Γ)
t.Γ    (wait for event t, then behaves like Γ) 
Γ|∆     (parallel composition)

∗Γ  (replication)
Γ & ∆    (non-deterministic choice)

τ (tuple types) ::= 
 (x1,...,xn)Γ  (type of a tuple of the form [x1,...,xn],

      which should be used according to Γ)



Examples
♦x?s[Int].y!t[Int]

– Receives an integer through x and then 
sends an integer through y 

(e.g. x?s[n].y!t[n+1] ) 
♦∗x?s[(y)y!t[Int]] 

– Repeatedly receives a channel and sends 
an integer through the received channel 
(e.g. ∗x?s[y].y!t[2])



Examples
♦µα.put?[Int].get?[(y) y![Int]].α

– The type of a one-place buffer:
• Buffer = put?[n].get?[r].r![n].Buffer

–(expressed by using replication)
• µα.Γ ... recursive process type that 

satisfies µα.Γ = [µα.Γ/α]Γ
–(∗Γ is actually a syntax sugar using µ)



Process Types Form 
a Mini-Process Calculus

x![τ].Γ | x?[τ]. ∆ → Γ |  ∆
(c.f.  x![v].P | x?[y].Q → P | [v/y]Q) 

e.g. x![τ].y![Int] | x?[τ] → y![Int] 
  (τ = (z)z![Int])

       x![y] | x?[z].z![2]   → y![2]



Summary of Processes and Process Types

output
input

P|Q parallel
new channel
replication

wait
non-determinism

x!t[v1,...,vn].P x!t[τ].Γ
x?t[y1,...,yn].P x?t[τ].Γ

Γ|∆
new x1,...,xn in P

∗P ∗Γ
t.Γ

Γ&∆



Summary of Processes and Process Types

output
input

P|Q parallel
new channel
replication

wait
non-determinism

x!t[v1,...,vn].P x!t[τ].Γ
x?t[y1,...,yn].P x?t[τ].Γ

Γ|∆
new x1,...,xn in P

∗P ∗Γ
t.Γ

Γ&∆

No value passing, 
only synchronization  behavior



Outline

♦ Target Language
– Syntax
– Operational semantics

♦ Process Types
♦ Type System

– Typing rules
– Type soundness

♦ Instances of Generic 
Type System 

User Program
(Concrete Process)

Process Type
(Abstract Process)

type check/inference

analyzer/verifier



Recipe for Type Systems

♦Type judgment relation
– with supposed meaning

♦Typing rules to derive type judgments
– One rule for one syntactic construct

♦Type soundness theorem
– Evidence that the supposition is indeed true

♦(Type inference algorithm)



Type Judgment

Γ ┣ P
 P has process type Γ

Γ is an abstraction of P
P matches specification Γ
Examples:

–  x?s[Int].y!t[Int] ┣ x?s[n].y!t[n+1] 
−  ∗x?s[(y)y!t[Int]]┣ ∗x?s[y].y!t[2]



Summary of Processes and Process Types

output
input

P|Q parallel
new channel
replication

wait
non-determinism

x!t[v1,...,vn].P x!t[τ].Γ
x?t[y1,...,yn].P x?t[τ].Γ

Γ|∆
new x1,...,xn in P

∗P ∗Γ
t.Γ

Γ&∆



Typing Rule (parallel composition)

Γ├ P  ∆├ Q
━━━━━━━━━━━━

Γ | ∆├  P | Q
(similarly for ∗)



Summary of Processes and Process Types

output
input

P|Q parallel
new channel
replication

wait
non-determinism

x!t[v1,...,vn].P x!t[τ].Γ
x?t[y1,...,yn].P x?t[τ].Γ

Γ|∆
new x1,...,xn in P

∗P ∗Γ
t.Γ

Γ&∆



Typing Rule (Output)

Γ├ P
━━━━━━━━━━━━━━━
x!t[(y)∆].(Γ | [v/y]∆)├  x!t[v].P

Example:
  x!t[τ].y!u[Int] | x?s[τ]├ x!t[y] | x?s[z].z!u[2]

(for τ = (z)z!u[Int]) 

∆ expresses how the receiver uses y



Typing Rule (Input)

Γ | ∆├ P y∉FV(Γ)
━━━━━━━━━━━━━━━

x!t[(y)∆].Γ ├  x?t[y].P

Example:
  x!t[τ].y!u[Int] | x?s[τ]├ x!t[y] | x?s[z].z!u[2]

(for τ = (z)z!u[Int]) 



Typing Rule (Channel Creation)
Γ├ P  ok(Γ↓{x1,...,xn}) 

━━━━━━━━━━━━━━━━
Γ↑{x1,...,xn} ├  new x1,...,xn in P

ok(Γ↓{x1,...,xn}) : 
Check that x1,...,xn are used 'appropriately'

(Depending on type system instances).
Γ↑{x1,...,xn} : Forget information on x1,...,xn

   (x?t[τ].Γ)↓{x} = t.(Γ↓{x}) 

Possible blocking recorded by t.Γ
(for deadlock analysis)



Typing Rule (Subsumption)

Γ├ P  Γ′ ≤ Γ 
━━━━━━━━━━━━━━━━

Γ′ ├ P
Process type can be replaced with 

a coarser abstraction
• Γ′ ≤ Γ: Subtyping relation

– Depends on type system instances



Weak Type Soundness Theorem
(Subject Reduction)

Γ simulates the behavior of P

Γ  ├    P

├ Q ∆



General Type Inference

♦Principal typing theorem:
For any process P, there is a “most 
general” type Γ s.t. Γ┣ P 
– (after a slight (routine) modification of 
the type system)



Outline

♦ Target Language

♦ Process Types

♦ Generic Type System

♦ Instances 

– Analysis of race, 

deadlock
– What type system can 
be obtained, and how?

User Program
(Concrete Process)

Process Type
(Abstract Process)

type check/inference

analyzer/verifier



Type System for Race-freedom

♦A process P is race-free on output if:

P →* new y1,...,yn in 

(x![...].Q1 | x![...].Q2 | R)
♦A type Γ is race-free on output if:

Γ →* x!s[τ].∆1 | x!t[τ].∆2 | Θ
Theorem: If Γ├ P, Γ is race-free, and 

ok(∆) implies ∆ is race-free, then P is race-free 



General Principle

P

→ Γ1 → Γ2  → ...  → Γn 

┴

→ P1 → P2 → ... → Pn

┴　　　 　┴　　　 　　　　　 ┴

To verify a property of P,
verify the corresponding property of Γ

Γ



Example: Race Analysis
x![1] | y![x] | y?[z].z![2]

 ┴
x![Int] | y![τ]. x![Int] | y?[τ] → x![Int] | x![Int]

race on x



Example: Deadlock Analysis

new y in (x?s[n].y!t[n+1] | y?u[m].x!v[m+1])
♦ The type of y:  s.y!t[Int] | y?u[Int].v

– Event  s must occur
before event  u occurs  

♦ The type of x:  x?s[Int].t | u.x!v[Int]
– Event  u must occur 
before event  s occurs

Cannot hold at once!



Example: Concurrent Objects with 
Non-uniform Service Availability

[Puntigam'99, Ravara&Vasconcelos.'00]

Buffer = put?[n].get?[r].r![n].Buffer
Can be viewed as a concurrent object with two 
methods put and get, invoked alternately 
– Γbuf = µα.put?[Int].get?[(y) y![Int]].α ├ Buffer

– Γclient = µα.0&(put![Int] | get![(y) y![Int]].α)

– Γbuf | Γclient never get deadlocked (on outputs)
• Γclient├ put ![2].new r in get ![r].r ?[n].P

• Γclient├ put ![2] | new r in get ![r].r ?[n].P

• Γclient├ new r in get ![r].r ?[n].put![2]



General Principle Revisited
  To verify a property of P,  

verify the corresponding property of Γ

♦How can we find      
   the “corresponding” property?

♦For what kind of property, does the 
“corresponding” property exist?



How to Obtain Specific Type 
Systems?

♦ To guarantee that every 
process satisfies A:
– Choose A* so that:

P satisfies A whenever 
its type Γ satisfies A*

– Accept P only if 
its type Γ satisfies A* 

Process

Process Type

type check/inference

satisfy A*?

Accept

Yes

 How can we find A* ? 
 For what A, does A*  exist?



Logic to Describe Properties of 
Processes and Types

A, B (formulae) ::= 
x! (Ready to output a value on x)

x? (Ready to input a value from x)
A|B (Parallel composition of a process satisfying A

      and a process satisfying B)
   <x>A (Can satisfy A after a communication on x) 

ev(A) (Can eventually satisfy A)
   ¬ A
   A∨B
   ...

Example:
     ¬∃x.ev(x! | x!)  No race on output.



Semantics of the Logic

♦P |= A: Process P satisfies A 
– x![ ].Q | y![ ].R |= x!
– x![ ].Q | y![ ].R |= x! | y!
– x![ ].y![ ].Q |= x! | y!
– x![ ] | x?[ ].y![ ] |= ev(y!)  ∧ <x>y!

♦Γ |= A: Process type Γ satisfies A



Logic for Properties
A ↘ B : Γ├ P  and Γ |= A imply P |= B
A ↗ B : Γ├ P  and P |= A imply Γ |= B

━━━━━━

x? ↗ x? 
━━━━━━

x! ↗ x! 
A ↗ B

━━━━━━━━

<x>A ↗ <x> B

A  ↗ C  B ↗ D
━━━━━━━━━━━

A|B  ↗ C |D 
A ↗ B

━━━━━━━━
ev(A) ↗ ev(B) 

A ↗ B
━━━━━━━━

¬A ↘ ¬B
A ↗ B

━━━━━━━━

A  ↗ B∨C



Strong Type Soundness

Theorem: 

   A ↘ A for any “negative” formula A.
In other words, ... 

   Let A be a negative formula.

   If Γ├ P and Γ |= A, then P |= A.

(bad) things do not happen

Examples of negative formulas:
    ¬∃x.ev(x! | x!)    No race on output
    ¬∃x.ev(<x>ev(x!∨x?)) No channel is used twice



General Principle Revisited
To verify a property of P,
verify the corresponding property of Γ
♦ How can we find the “corresponding” 

property?

♦ For what kind of property, does the 
“corresponding” property exist?

Choose the property described by
 the same formula

For any negative formula, at least



How to Obtain Specific Type Systems?
♦ To guarantee that every 

process satisfies A:
– Choose A* so that:

P satisfies A whenever 
its type Γ satisfies A*

– Accept P only if 
its type Γ satisfies A* 

Process

Process Type

type check/inference

satisfy A*?

Accept

Yes

How can we find A* ? 

For what A, does A* exist?
A* = A

For any negative formula A



Deadlock Freedom Revisited

♦Deadlock freedom cannot be described 
by a negative formula
– Action labelled t does not deadlock

= “whenever an action labelled t is tried, 
there is a further reduction”

♦Separate proof of soundness required
(good) things do  happen



Some Limitations

♦Due to expressiveness of process types
– Information on channel creation lost
– Impossible to check “at most n channels are 
created”

♦Due to the requirement for ok(Γ) 
– Invariant cond.: if ok(Γ) and Γ→Γ', then ok(Γ') 
– Impossible to check “before x is used, y 
should be used”



Conclusion
  Generic type system for concurrent progs

– Key idea: Abstract Processes as Types
– Many type systems are obtained as instances:

• Race detection
• Deadlock-freedom

– Concurrent objects with non-uniform service availability

• Linear channels, etc. 

– Many issues can be discussed uniformly.
• type soundness
• type inference



♦Combination of
– Type Theory
– Model Checking

• Chaki et al.[POPL2002] 
implemented (a variant 
of) this framework using 
SPIN as model checker

Process

Process Type

type check/inference

satisfy A?

Accept

Yes

Model 
checking



Current/Future Work
♦Extensions of the generic type system

– More expressive power
• Restriction operator [Chaki et al.2002, Kobayashi2005]?

– More of common theories
• 'Generic' typed process equivalence

♦Formal verification of the correctness 
of the generic type system (using Coq)
– Automatic extraction of type inference 
algorithms?


