
Fractional Ownerships
for Safe Memory Deallocation

Kohei Suenaga and Naoki Kobayashi

Tohoku University??

Abstract. We propose a type system for a programming language with
memory allocation/deallocation primitives, which prevents memory-related
errors such as double-frees and memory leaks. The main idea is to aug-
ment pointer types with fractional ownerships, which express both capa-
bilities and obligations to access or deallocate memory cells. By assigning
an ownership to each pointer type constructor (rather than to a variable),
our type system can properly reason about list/tree-manipulating pro-
grams. Furthermore, thanks to the use of fractions as ownerships, the
type system admits a polynomial-time type inference algorithm, which
serves as an algorithm for automatic verification of lack of memory-
related errors. A prototype verifier has been implemented and tested
for C programs.

1 Introduction

In programming languages with manual memory management (like C and C++),
a misuse of memory allocation/deallocation primitives often causes serious, hard-
to-find bugs. We propose a new type-based method for static verification of lack
of such memory-related errors. More precisely, we construct a type system that
guarantees that well-typed programs do not suffer from memory leaks (forgetting
to deallocate memory cells), double frees (deallocating memory cells more than
once), and illegal read/write accesses to deallocated memory. We then construct
a polynomial-time type inference algorithm, so that programs can be verified
without any type annotations.

The key idea of our type system is to assign fractional ownerships to pointer
types. An ownership ranges over the set of rational numbers in [0, 1], and ex-
presses both a capability (or permission) to access a pointer, and an obligation
to deallocate the memory referred to by the pointer. As in Boyland’s fractional
permissions [1], a non-zero ownership expresses a permission to dereference the
pointer, and an ownership of 1 expresses a permission to update the memory
cell referenced by the pointer. In addition, a non-zero ownership expresses an
obligation to eventually deallocate (the cell referenced by) the pointer, and an
ownership of 1 also expresses a permission to deallocate the pointer. (Therefore,
if one has a non-zero ownership less than 1, one has to eventually combine it

?? Suenaga’s Current Affiliation: IBM Research

with other ownerships to obtain an ownership of 1, to fulfill the obligation to
deallocate the pointer).

Ownerships are also used in Heine and Lam’s static analysis for detecting
memory leaks [2], although their ownerships range over integer values {0, 1}.
The most important deviation from their system is that our type system assigns
an ownership to each pointer type constructor, rather than to a variable. For
example, int ref1 ref1 is the type of a pointer to a pointer to an integer, such
that both the pointers can be read/written, and must be deallocated through
the pointer. int ref0 ref1 is the type of a pointer to an pointer to an integer,
such that only the first pointer can be read/written, and must be deallocated.
The type µα.(α ref1) (where µα.τ is a recursive type) describes a pointer to a
list structure shown in Figure 1, where the pointer holds the ownerships of all
the pointers reachable from it. This allows us to properly reason about list- and
tree-manipulating programs, unlike Heine and Lam’s analysis.

For example, consider the following program, written in an ML-like language
(but with memory deallocation primitive free).

fun freeall(x) = freeall : µα.(α ref1)→ µα.(α ref0)
if null(x) x : µα.(α ref1)
then skip x : µα.(α ref0)
else let y = *x in x : µα.(α ref1)

(freeall(y); x : (µα.(α ref0)) ref1, y : µα.(α ref1)
free(x) x : (µα.(α ref0)) ref1, y : µα.(α ref0)

) x : µα.(α ref0), y : µα.(α ref0)
The function freeall takes as an argument a pointer x to a list structure, and
deallocates all the pointers reachable from x. The righthand side shows the type
of function freeall, as well as the types assigned to x and y before execution of
each line. (Our type system is flow-sensitive, so that different types are assigned
at different program points.) In the type of freeall on the first line, µα.(α ref1)
and µα.(α ref0) are the types of x before and after the call of the function. The
type µα.(α ref0) means that x holds no ownerships when the function returns
(which implies that all the pointers reachable from x will be deallocated inside
the function).

The type assignment at the beginning of the function indicates that all the
memory cells reachable from x should be deallocated through variable x. In the
then-branch, x is a null pointer, so that all the ownerships are cleared to 0. In
the else-branch, let y = ∗x in · · · transfers a part of the ownerships held by x
to y; after that, x has type (µα.(α ref0)) ref1, indicating that x holds only the
ownership of the pointer stored in x. The other ownerships (of the pointers that
are reachable from x) are now held by y. After the recursive call to freeall, all
the ownerships held by y become empty. Finally, after free(x), the ownership
of x also becomes empty.

The type system with fractional ownerships prevents: (i) memory leaks by
maintaining the invariant that the total ownership for each memory cell is 1
until the cell is deallocated and by ensuring the ownerships held by a variable
are empty at the end of the scope of the variable, (ii) double frees by ensuring

2

- - ... - -
#

##

Fig. 1. List-like structure

that the ownership for a cell is consumed when the cell is deallocated, and
(iii) illegal access to deallocated cells by requiring that a non-zero ownership is
required for read/write operations.

Thanks to the use of fractional ownerships, the type inference problem can
be reduced to a linear programming problem over rational numbers, which can
be solved in polynomial time. If ownerships are integer-valued, the type infer-
ence problem is reduced to an integer linear programming problem, which is
NP-hard.1 Furthermore, fractional ownerships make the type system more ex-
pressive: see Example 3 in Section 3.

Based on the type system sketched above, we have implemented a verifier for
C programs, and tested it for programs manipulating lists, trees, doubly-linked
lists, etc.

The rest of this paper is structured as follows. Section 2 introduces a sim-
ple imperative language that has only pointers as values. Section 3 presents
our type system with fractional ownerships, proves its soundness, and discusses
type inference issues. Section 4 discusses extensions to deal with data structures.
Section 5 reports a prototype implementation of our type-based verification al-
gorithm. Section 6 discusses related work, including Ueda’s work [3] on fractional
capabilities for GHC, to which our type system seems closely related, despite the
differences of the target languages. Section 7 concludes the paper.

2 Language

This section introduces a simple imperative language with primitives for memory
allocation/deallocation. For the sake of simplicity, the only values are (possibly
null) pointers. See Section 4 for extensions of the language and the type system
to deal with other language constructs.

The syntax of the language is given as follows.

Definition 1 (commands, programs)

s (commands) ::= skip | ∗x← y | s1; s2 | free(x) | let x = malloc() in s
| let x = null in s | let x = y in s | let x = ∗y in s
| ifnull(x) then s1 else s2 | f(x1, . . . , xn)
| assert(x = y) | assert(x = ∗y)

d (definitions) ::= f(x1, . . . , xn) = s

A program is a pair (D, s), where D is a set of definitions.
1 With the recent advance of SAT solvers, it may still be the case that the integer

linear programming problem generated by the type inference can be solved efficiently
in practice; that may be left as a subject for further investigation.

3

The command skip does nothing. ∗x ← y updates the target of x (i.e., the
contents of the memory cell pointed to by x) with the value of y. The command
s1; s2 is a sequential execution of s1 and s2. The command free(x) deallocates
(the cell referenced by) the pointer x. The command let x = e in s evaluates
e, binds x to the value of e, and executes s. The expression malloc() allocates
a memory cell and returns a pointer to it. The expression null denotes a null
pointer. ∗y dereferences the pointer y. The command ifnull(x) then s1 else s2

executes s1 if x is null, and executes s2 otherwise. The command f(x1, . . . , xn)
calls function f . We require that x1, . . . , xn are mutually distinct variables. (This
does not lose generality, as we can replace f(x, x) with let y = x in f(x, y).)
There is no return value of a function call; values can be returned only by
reference passing. The commands assert(x = y) and assert(x = ∗y) do nothing
if the equality holds, and aborts the program otherwise. These are introduced
to simplify the type system and the proof of its soundness in Section 3. Usually,
assert commands can be automatically inserted during the transformation from
a surface language (like C) into our language; for example, assert(x = y) is
automatically inserted at the end of a let-expression let x = y in · · ·. Separate
pointer analyses may also be used to insert assertions; in general, insertion of
more assertions makes our analysis more precise.

Remark 1. Notice that unlike in C (and like in functional languages), variables
are immutable; they are initialized in let-expressions, and are never re-assigned
afterwards. The declaration int x = 1; ... in C is expressed as:

let &x = malloc() in (∗&x← 1; · · · ; free(&x))

in our language. Here, &x is treated as a variable name.

Operational Semantics We assume that there is a countable set H of heap ad-
dresses. A run-time state is represented by a triple 〈H,R, s〉, where H is a map-
ping from a finite subset of H to H∪{null}, R is a mapping from a finite set of
variables to H ∪ {null}. Intuitively, H models the heap memory, and R models
local variables stored in stacks or registers. The set of evaluation contexts is de-
fined by E ::= [] | E; s. We write E[s] for the command obtained by replacing
[] in E with s.

Figure 2 shows the transition rules for run-time states. In the figure, f{x 7→
v} denotes the function f ′ such that dom(f) = dom(f ′) ∪ {x}, f ′(x) = v, and
f ′(y) = f(y) for every y ∈ dom(f) \ {x}. [x′/x]s denotes the command obtained
by replacing x in s with x′. x̃ abbreviates a sequence x1, . . . , xn. In the rules
for let-expressions, we require that x′ 6∈ dom(R). In the rule for malloc, the
contents v of the allocated cell can be any value in H∪ {null}. There are three
kinds of run-time errors: NullEx for accessing null pointers, Error for illegal
read/write/free operations on deallocated pointers, and AssertFail for assertion
failures. The type system in this paper will prevent only the errors expressed by
Error. In the rules for assertions on the last line, the relation H, R |= P is defined
by: H, R |= x = y iff R(x) = R(y), and H, R |= x = ∗y iff R(x) = H(R(y)).

4

〈H, R, E[skip; s]〉 −→D 〈H, R, E[s]〉
R(x) ∈ dom(H)

〈H, R, E[∗x← y]〉 −→D 〈H{R(x) 7→ R(y)}, R, E[skip]〉
R(x) ∈ dom(H) ∪ {null}

〈H, R, E[free(x)]〉 −→D 〈H \ {R(x)}, R, E[skip]〉
x′ 6∈ dom(R)

〈H, R, E[let x = null in s]〉 −→D 〈H, R{x′ 7→ null}, E[[x′/x]s]〉

〈H, R, E[let x = y in s]〉 −→D 〈H, R{x′ 7→ R(y)}, E[[x′/x]s]〉

〈H, R, E[let x = ∗y in s]〉 −→D 〈H, R{x′ 7→ H(R(y))}, E[[x′/x]s]〉
h 6∈ dom(H)

〈H, R, E[let x = malloc() in s]〉 −→D 〈H{h 7→ v}, R{x′ 7→ h}, E[[x′/x]s]〉

〈H, R{x 7→ null}, E[ifnull(x) then s1 else s2]〉 −→D 〈H, R{x 7→ null}, E[s1]〉
R(x) 6= null

〈H, R, E[ifnull(x) then s1 else s2]〉 −→D 〈H, R, E[s2]〉
R(x) = null

〈H, R, E[∗x← y]〉 −→D NullEx

R(y) = null

〈H, R, E[let x = ∗y in s]〉 −→D NullEx

R(x) 6∈ dom(H) ∪ {null}
〈H, R, E[∗x← y]〉 −→D Error

R(y) 6∈ dom(H) ∪ {null}
〈H, R, E[let x = ∗y in s]〉 −→D Error

R(x) 6∈ dom(H) ∪ {null}
〈H, R, E[free(x)]〉 −→D Error

f(ỹ) = s ∈ D

〈H, R, E[f(x̃)]〉 −→D 〈H, R, E[[x̃/ỹ]s]〉
H, R |= P

〈H, R, E[assert(P)]〉 −→D 〈H, R, E[skip]〉
H, R 6|= P

〈H, R, E[assert(P)]〉 −→D AssertFail

Fig. 2. Transition Rules

Note that the function call f(x1, . . . , xn) is just replaced by the function’s
body. Thus, preprocessing is required to handle functions in C: A function call
x = f(y) in C is simulated by f(y, &x) in our language (where &x is a variable
name), and a C function definition f(y) {s; return v;} is simulated by:

f(y, r) = let &y = malloc() in (∗&y ← y; s; ∗r ← v; free(&y)).

Here, the malloc and free commands above correspond to the allocation and
deallocation of a stack frame.

3 Type System

This section introduces a type system that prevents memory leaks, double frees,
and illegal read/write operations.

5

3.1 Types

The syntax of types is given by:

τ (value types) ::= α | τ reff | µα.τ
σ (function types) ::= (τ1, . . . , τn)→ (τ ′1, . . . , τ

′
n)

We often write > for µα.α, which describes pointers carrying no ownerships. The
metavariable f ranges over rational numbers in [0, 1]. It is called an ownership,
and represents both a capability and an obligation to read/write/free a pointer.

α is a type variable, which gets bound by the recursive type constructor µα.
The type τ reff describes a pointer whose ownership is f , and also expresses
the constraint that the value obtained by dereferencing the pointer should be
used according to τ . For example, if x has type > ref1 ref1, not only the pointer
x but also the pointer stored in the target of the pointer x must be eventually
deallocated through x.

Type (τ1, . . . , τn) → (τ ′1, . . . , τ
′
n) describes a function that takes n argu-

ments. The types τ1, . . . , τn, τ ′1, . . . , τ
′
n describe how ownerships on arguments

are changed by the function: the type of the i-th argument is τi at the beginning
of the function, and it is τ ′i at the end of the function.

The semantics of (value) types is defined as a mapping from the set {0}∗ (the
set of finite sequences of the symbol 0) to the set of rational numbers. Intuitively,
the type [[τ]](ε) of a pointer represents the ownership for the memory cell directly
pointed to by the pointer, and [[τ]](0k) represents the ownership for the memory
cell reached by k hops of pointer traversals. (If the language is extended with
structures with n elements as discussed in Section 4, [[τ]] should be extended to
a mapping from {0, . . . , ,n− 1}∗ to the set of rational numbers.)

Definition 2 The mapping [[·]] from the set of closed types to {0}∗ → [0, 1] is
the least function that satisfies the following conditions.

[[τ reff]](ε) = f [[τ reff]](0w) = [[τ]](w) [[µα.τ]] = [[[µα.τ/α]τ]]

(Here, the order between functions from S to T is defined by: f ≤S→T g if and
only if ∀x ∈ S.f(x) ≤T g(x).) We write τ ≈ τ ′, if [[τ]] = [[τ ′]].

Note that >(= µα.α) ≈ µα.(α ref0), and µα.τ ≈ [µα.τ/α]τ .
We write empty(τ) if all the ownerships in τ are 0. We say that a type τ

is well-formed if [[τ]](w) ≥ c × [[τ]](w0) for every w ∈ {0}∗. Here, we let c be
the constant 1/2, but the type system given below remains sound as long as c
is a positive (rational) number. In the rest of this paper, we consider only types
that satisfy the well-formedness condition. See Remark 2 for the reason why the
well-formedness is required.

3.2 Typing

A type judgment is of the form Θ; Γ ` s ⇒ Γ ′, where Θ is a finite mapping
from (function) variables to function types, Γ and Γ ′ are finite mappings from

6

variables to value types. Γ describes the ownerships held by each variable before
the execution of s, while Γ ′ describes the ownerships after the execution of s.
For example, we have Θ;x :> ref1 ` free(x)⇒ x :> ref0. Note that a variable’s
type describes how the variable should be used, and not necessarily the status of
the value stored in the variable. For example, x :> ref0 does not mean that the
memory cell pointed to by x has been deallocated; it only means that deallocating
the cell through x (i.e., executing free(x)) is disallowed. There may be another
variable y of type τ ref1 that holds the same pointer as x.

Typing rules are shown in Figure 3. τ ≈ τ1 + τ2 and τ1 + τ2 ≈ τ ′1 + τ ′2 mean
[[τ]] = [[τ1]] + [[τ2]] and [[τ1]] + [[τ2]] = [[τ ′1]] + [[τ ′2]] respectively. In the rule for
assignment ∗x← y, we require that the ownership of x is 1 (see Remark 2). The
ownerships of τ ′ must be empty, since the value stored in ∗x is thrown away by
the assignment. The ownerships of y (described by τ) is divided into τ1, which
will be transferred to x, and τ2, which remains in y.

In the rule for free, the ownership of x is changed from 1 to 0. τ must be
empty, since x can no longer be dereferenced. In the rule for malloc, the owner-
ship of x is 1 at the beginning of s, indicating that x must be deallocated. At the
end of s, we require that the ownership of x is 0, since x goes out of the scope.
Note that this requirement does not prevent the allocated memory cell from es-
caping the scope of the let-expression: For example, let x = malloc() in ∗y ← x
allows the new cell to escape through variable y. The ownership of x is empty
at the end of the let-expression, since the ownership has been transferred to y.

In the rule for dereferencing (let x = ∗y in · · ·), the ownership of y must be
non-zero. The ownerships stored in the target of the pointer y, described by τ ,
are divided into τ1 and τ2. At the end of the let-expression, the ownerships held
by x must be empty (which is ensured by empty(τ ′1)), since x goes out of scope.

In the rule for null, there is no constraint on the type of x, since x is a null
pointer. In the rule for conditionals, any type may be assigned to x in the then-
branch. Thanks to this, ifnull(x) then skip else free(x) is typed as follows.

Θ;x :> ref0 ` skip⇒ x :> ref0 Θ; x :> ref1 ` free(x)⇒ x :> ref0

Θ;x :> ref1 ` ifnull(x) then skip else free(x)⇒ x :> ref0

The rules for assertions allow us to shuffle the ownerships held by the same
pointers.

Remark 2. The well-formedness condition approximates the condition: ∀w ∈
{0}∗.([[τ]](w) = 0 ⇒ [[τ]](w0) = 0). Types that violate the condition (like
(> ref1) ref0) make the type system unsound. For example, consider the fol-
lowing command s (here, some let-expressions are inlined):

let y = x in (∗y ← null;assert(x = y); free(∗x); free(x)).

If we ignore the well-formedness condition, we can derive Θ; x : (> ref1) ref1 `
s ⇒ x : (> ref0) ref0 from Θ;x : (> ref1) ref0, y : (> ref0) ref1 ` s′ ⇒
x:(> ref0) ref0, y:(> ref0) ref0 where s′ is the body of s. However, the judgment
is semantically wrong: the memory cell referenced by ∗x is not deallocated by s

7

Θ; Γ ` skip⇒ Γ
Θ; Γ ` s1 ⇒ Γ ′′ Γ ′′ ` s2 ⇒ Γ ′

Θ; Γ ` s1; s2 ⇒ Γ ′

τ ≈ τ1 + τ2 empty(τ ′)

Θ; Γ, x : τ ′ ref1, y : τ ` ∗x← y ⇒ Γ, x : τ1 ref1, y : τ2

empty(τ)

Θ; Γ, x : τ ref1 ` free(x)⇒ Γ, x : τ ref0

Θ; Γ, x : τ ref1 ` s⇒ Γ ′, x : τ ′ ref0

empty(τ) empty(τ ′)

Θ; Γ ` let x = malloc() in s⇒ Γ ′

Θ; Γ, x : τ1, y : τ2 ` s⇒ Γ ′, x : τ ′1
τ ≈ τ1 + τ2 empty(τ ′1)

Θ; Γ, y : τ ` let x = y in s⇒ Γ ′

Θ; Γ, x : τ1, y : τ2 reff ` s⇒ Γ ′, x : τ ′1
f > 0 τ ≈ τ1 + τ2 empty(τ ′1)

Θ; Γ, y : τ reff ` let x = ∗y in s⇒ Γ ′

Θ; Γ, x : τ ` s⇒ Γ ′, x : τ ′

Θ; Γ ` let x = null in s⇒ Γ ′
Θ; Γ, x : τ ′ ` s1 ⇒ Γ ′ Θ; Γ, x : τ ` s2 ⇒ Γ ′

Θ; Γ, x : τ ` ifnull(x) then s1 else s2 ⇒ Γ ′

τ1 + τ2 ≈ τ ′1 + τ ′2
Θ; Γ, x : τ1, y : τ2 ` assert(x = y)⇒ Γ, x : τ ′1, y : τ ′2

τ1 + τ2 ≈ τ ′1 + τ ′2
Θ; Γ, x : τ1, y : τ2 reff ` assert(x = ∗y)⇒ Γ, x : τ ′1, y : τ ′2 reff

Θ(f) = (τ̃)→ (τ̃ ′)

Θ; Γ, x̃ : τ̃ ` f(x̃)⇒ Γ, x̃ : τ̃ ′
Γ ≈ Γ1 Γ ′ ≈ Γ ′1 Θ; Γ1 ` s⇒ Γ ′1

Θ; Γ ` s⇒ Γ ′

Θ; x̃ : τ̃ ` s : x̃ : τ̃ ′ Θ(f) = τ̃ → τ̃ ′

(for each f(x̃) = s ∈ D)
dom(Θ) = dom(D)

` D : Θ

` D : Θ Θ; ∅ ` s⇒ ∅
` (D, s)

Fig. 3. Typing Rules

(see Figure 4). The well-formedness condition ensures that if a variable (say, x)
has an ownership of a pointer (say, p) reachable from x, then the variable must
hold a fraction of ownerships for all the pointers between x and p, so that the
pointers cannot be updated through aliases.

Example 1. Recall the example in Section 1.
The part let y = ∗x in (freeall(y); free(x)) is typed as follows.

Θ; x : τ, y : µα.(α ref1) ` freeall(y)⇒ x : τ, y :> Θ; x : τ, y :> ` free(x)⇒ Θ0

Θ; x : (µα.(α ref0)) ref1, y : µα.(α ref1) ` (freeall(y); free(x))⇒ Θ0

Θ; x : µα.(α ref1) ` let y = ∗x in (freeall(y); free(x))⇒ x :>

Here, τ = (µα.(α ref0)) ref1, Θ = freeall : (µα.(α ref1)) → (>), and Θ0 =
x :>, y :>.

8

x
y

-
- - x

y
-
-

#
##

Fig. 4. Snapshots of the heap during the execution of the program in Remark 2. The
lefthand side and the righthand side show the states before and after executing ∗y ←
null respectively. The rightmost cell will be leaked.

Example 2. The following function destructively appends two lists p and q, and
stores the result in ∗r.

app(p, q, r) = ifnull(p) then ∗r ← q
else (∗r ← p; (let x = ∗p in app(x, q, p));assert(p = ∗r))

app has type (τ1, τ1,> ref1)→ (>,>, τ1), where τ1 = µα.(α ref1). The else-part
is typed as follows.

Θ; Γ1 ` ∗r ← p⇒ Γ1

Θ; Γ1 ` s⇒ Γ2 Θ; Γ2 ` assert(p = ∗r)⇒ p :>, q :>, r : τ1

Θ; Γ1 ` s;assert(p = ∗r)⇒ p :>, q :>, r : τ1

Θ; Γ1 ` ∗r ← p; s;assert(p = ∗r)⇒ p :>, q :>, r : τ1

Here, s = let x = ∗p in app(x, q, p), and Θ, Γ1, Γ2 are given by:

Θ = app : (τ1, τ1,> ref1)→ (>,>, τ1)
Γ1 = p : τ1, q : τ1, r :> ref1 Γ2 = p : τ1, q :>, r :> ref1

Example 3. Consider the following functions f and g:

f(x) = let y = x in g(x, y);assert(x = y)
g(x, y) = let z = ∗x in let w = ∗y in skip

Then, f and g can be given types > ref1 → > ref1 and (> ref0.5,> ref0.5)→
(> ref0.5,> ref0.5). Without fractional types, f is not typable because the
ownership of x cannot be split into the first and second arguments of g. Although
the situation above is not likely to occur so often in actual sequential programs,
we expect that fractional ownerships will play a more fundamental role in a
multi-threaded setting, where ownerships for shared variables need to be split
for multi-threads.

3.3 Type Soundness

The soundness of our type system is stated as follows.

Theorem 1. If ` (D, s), then the following conditions hold.

1. 〈∅, ∅, s〉 6−→∗
D Error.

2. If 〈∅, ∅, s〉 −→∗
D 〈H, R, skip〉, then H = ∅.

The first condition means that there is no illegal read/write/free access to deal-
located memory. The second condition means that well-typed programs do not
leak memory. See the longer version [4] for the proof.

9

3.4 Type Inference

By Theorem 1, verification of lack of memory-related errors is reduced to type
inference. For the purpose of automated type inference, we restrict the syntax of
types to those of the form (µα.α reff1) reff2 . This restriction makes the type
system slightly less expressive, by precluding types like µα.(α ref0.5 ref0.7). The
restriction, however, does not seem so restrictive for realistic programs: in fact,
all the correct programs we have checked so far (including those given in this
paper) are typable in the restricted type system.

Given a program written in our language, type inference proceeds as follows.

1. For each n-ary function f , prepare a type template

((µα.α refηf,1,1) refηf,1,2 , . . . , (µα.α refηf,n,1) refηf,n,2)
→ ((µα.α refη′f,1,1

) refη′f,1,2
, . . . , (µα.α refη′f,n,1

) refη′f,n,2
),

where ηf,i,j and η′f,i,j are variables to denote unknown ownerships. Also,
for each program point p and for each variable x live at p, prepare a type
template (µα.α refηp,x,1) refηp,x,2 .

2. Generate linear inequalities on ownership variables based on the typing rules
and the well-formedness condition.

3. Solve the linear inequalities. If the inequalities have a solution, the program
is well-typed.

The number of ownership variables and linear inequalities is quadratic in the
size of the input program. Since linear inequalities (over rational numbers) can
be solved in time polynomial in the size of the inequalities, the whole algorithm
runs in time polynomial in the size of the input program.

4 Extensions and Limitations

We have so far considered a very simple language which has only pointers as
values. This section discusses extensions of the type system for other language
features (mainly of the C language).

It is straightforward to extend the type system to handle primitive types
such as integers and floating points. For structures with n elements (for the
sake of simplicity, assume that each element has the same size as a pointer),
we can introduce a type of the form (τ0 × · · · × τn−1) refw0,...,wn−1,f as the
type of a pointer to a structure. Here, τi is the type of the i-th element of
the structure, f denotes the obligation to deallocate the structure, and wi is
a capability to read/write the i-th element; thus, an ownership has been split
into a free obligation and read/write capabilities. Then the rules for pointer
dereference and pointer arithmetics are given by:

Θ;Γ, x : τ0,x, y : (τ0,y × τ1 × · · · × τn−1) refw0,...,wn−1,f ` s⇒ Γ ′, x : τ ′

w0 > 0 τ0 ≈ τ0,x + τ0,y empty(τ ′)
Θ; Γ, y : (τ0 × τ1 × · · · × τn−1) refw0,...,wn−1,f ` let x = ∗y in s⇒ Γ ′

10

fun delnext(p) =
p : τP × τN ref1,1,1

let nextp = p+1 in

p : τP ×> ref1,0,1, nextp : τN ×> ref1,0,0

let next = *nextp in

p : τP ×> ref1,0,1, nextp :>×> ref1,0,0, next : τN

let nnp = next+1 in

p : τP ×> ref1,0,1, nextp :>×> ref1,0,0,
next :>×> ref1,0,1, nnp : τN ×> ref1,0,0

let nn = *nnp in

p : τP ×> ref1,0,1, nextp :>×> ref1,0,0,
next :>×> ref1,0,1, nnp :>×> ref1,0,0, nn : τN

*nn <- p;

p : τP ×> ref1,0,1, nextp :>×> ref1,0,0,
next :>×> ref1,0,1, nnp :>×> ref1,0,0, nn : τN

*nextp <- nn

p : τP ×> ref1,0,1, nextp : τN ×> ref1,0,0,
next :>×> ref1,0,1, nnp :>×> ref1,0,0, nn :>

assert(nnp=next+1);

p : τP ×> ref1,0,1, nextp : τN ×> ref1,0,0,
next :>×> ref1,1,1, nnp :>×> ref0,0,0, nn :>

free(next)

p : τP ×> ref1,0,1, nextp : τN ×> ref1,0,0,
next :>×> ref0,0,0, nnp :>×> ref0,0,0, nn :>

assert(nextp=p+1);

p : τP × τN ref1,1,1, nextp :>×> ref0,0,0,
next :>×> ref0,0,0, nnp :>×> ref0,0,0, nn :>

Fig. 5. A function manipulating a doubly-linked list and its typing

Θ;Γ, x : (τi,x × · · · × τn−1,x,>, . . . ,>) refwi,x,...,wn−1,x,0,...,0,0,
y : (τ0,y × · · · × τn−1,y) refw0,y,...,wn−1,y,f ` s⇒ Γ ′, x : τx

∀j ∈ {0, . . . , i− 1}.(τj,y ≈ τj ∧ wj = wj,y)
∀j ∈ {i, . . . , n− 1}.(τj ≈ τj,y + τj,x ∧ wj = wj,x + wj,y) empty(τx)

Θ; Γ, y : (τ0 × · · · × τn−1) refw0,...,wn−1,f ` let x = y + i in s⇒ Γ ′

For example, consider the function delnext in Figure 5. It takes a doubly-
linked list as shown in Figure 6, and deletes the next element of p. The func-
tion is given the type (τP × τN) ref1,1,1 → (τP × τN) ref1,1,1, where τP =
µα.((α×>) ref1,1,1) and τN = µα.((>× α) ref1,1,1). The type (τP×τN) ref1,1,1

means that the first element of p holds the capabilities and obligations on the
cells reachable through the backward pointers, and the second element holds
those on the cells reachable through the forward pointers.

An array of primitive values can be treated as one big reference cell, assuming
that array boundary errors are prevented by other methods (such as dynamic
checks or static analyses). At this moment, however, we do not know how to
deal with arrays of pointers.

11

...

p

-
¾

next nn

-
¾

-
¾

-
¾ ...

Fig. 6. A doubly-linked list given as an input of delnext. The cell next is removed
and deallocated.

A dereference of a function pointer in C can be replaced with a non-deterministic
choice of the functions it may point to, by using a standard flow analysis. It is not
clear, however, how to deal with higher-order functions in functional languages,
especially those stored in reference cells.

Cast operations can be handled in a conservative manner. For example, a
pointer to a structure of type (τ0 × · · · × τn−1) refw0,...,wn−1,f can be casted to
a pointer of type (τ0 × · · · × τm−1) refw0,...,wm−1,f ′ (if m ≤ n). An integer can
be casted to a pointer with 0 ownership (but it is useless).

Besides arrays of pointers and higher-order functions, one of the major limi-
tations of our type system is that it cannot deal with cyclic structures well. The
only type that can be assigned to cyclic lists of arbitrary length is >: Notice
that if we assign µα.(α reff) to the cycle, then an ownership f can be extracted
for each path (e.g., ε, 00, 0000, . . . for the cell on the lefthand side). We have
to maintain the invariant that f + f + f + · · · ≤ 1, so that f must be 0. Thus,
although a cyclic list can be constructed, it is useless as there is no ownership.
Note, however, that this limitation does not apply to the case of doubly-linked
lists, since cycles in doubly-linked lists are formed by two kinds of pointers; for-
ward and backward pointers (recall the example in Figure 5). In order to handle
cyclic lists, we need to extend pointer types to τ refP

f , which means that the
pointer is an element of the set P or has an ownership f . The pointer type τ reff

is then just a special case of τ ref{NULL}f .

5 Preliminary Experiments

We have implemented a prototype verifier for C programs, and tested it for sev-
eral programs. The implementation, written in Objective Caml, is available at
http://www.kb.ecei.tohoku.ac.jp/~suenaga/mallocfree/. As a linear pro-
gramming solver, we used GLPK 4.15 wrapped by ocaml-glpk 0.1.5. The imple-
mentation is based on the type system described in Section 3, with the extension
for structures discussed in Section 4.

The limitations of the current implementation are: (i) Unsound treatment of
arrays of pointers (recall the discussion in Section 4): An array of pointers is
handled as an array of size 1; (ii) Poor error reporting: when a program is ill-
typed, the current system does produce some diagnostic information to indicate
a possible location of a bug, but it is probably incomprehensible for end-users;
(iii) Lack of support of several C statements: for example, a function call of
the form f(&x->f) has to be manually rewritten to a sequence of statements
p = &x->f; f(p); assert(&x->f, p); and (iv) Need for manual insertion of
assertions (assert(x = y) and assert(x = ∗y) in Section 2).

12

benchmark LOC Time (total) Time (LP) NASSERT SIZE LP NVAR

ll-app 62 0.09 0.002 2 196 403

ll-reverse 67 0.10 0.002 2 217 430

ll-search 70 0.09 0.002 1 192 398

ll-merge 69 0.10 0.003 3 227 460

dl-insert 80 0.14 0.011 9 806 954

dl-delete 87 0.15 0.014 8 919 1134

bt-insert 64 0.09 0.003 0 188 479

authfd.c 6463 0.44 0.07 16 739 5408

cdrom.c 13429 26.49 19.85 14 35197 47185

Fig. 7. Benchmark result. The meaning of each column is as follows. LOC: the number
of lines of code. Time (total): total execution time (sec). Time (LP): execution time for
solving linear inequalities (sec). NASSERT: the number of manually-inserted assertions.
SIZE LP: the number of linear inequality constraints (after preprocessing of trivial
constraints). NVAR: the number of variables contained in generated linear inequalities.

Figure 7 shows the result of the experiments. We used a machine with an
Intel(R) Xeon(R) 3.00Hz CPU, 4MB cache and 8GB memory. The programs
used for the experiments are described as follows:

– ll-app, ll-reverse and ll-search create lists, perform specific operations
on the lists (append for ll-app, reverse for ll-reverse, and list search for ll-search),
and deallocate the lists.

– dl-insert and dl-remove create doubly-linked lists, insert or delete a cell,
and deallocate the doubly-linked lists.

– bt-insert constructs a binary tree, performs an insertion, and then deal-
locates the tree.

– authfd.c is a preprocessed file taken from openssh-5.2p1. (A large part
of the preprocessed file consists of type declarations; the rest of the code consists
of about 600 lines.)

– cdrom.c is a fragment2 of Linux device driver /drivers/cdrom/cdrom.c.
All the programs have been verified correctly. It is worth noting that the pro-

grams manipulating doubly-linked lists could be verified. The benchmark results
show that our analysis is reasonably fast, even for cdrom.c, which consists of
13K LOC.

Note that only 14 assertions were required for cdrom.c. (Thus, although the
microbenchmarks used in this experiment are quite small, they are actually tricky
programs.) All of those assertions were of the form assert(p=NULL), except the
following assertion, which asserts that prev points to the previous element of
cdi in a singly-linked list.

while (cid && cdi != unreg){
assert(cdi, prev->next); prev = cdi; cdi = prev->next;}

2 For the rest of the driver code, we have not yet checked whether it is typable by
appropriate insertion of assertion commands.

13

This suggests that most of the assertions manually inserted in the experiments
above can be automatically inferred by a rather straightforward intra procedural
analysis like the one mentioned in Section 2 (except those for doubly-linked lists,
which require knowledge of the data structure invariant).

6 Related Work

There are a lot of studies and tools to detect or prevent memory-related errors.
They are classified into static and dynamic analyses. Here we focus on static
analysis techniques.

We have already discussed Heine and Lam’s work [2] in Section 1. They use
polymorphism on ownerships to make the analysis context-sensitive, which would
be applicable to our type system. Dor, Rodeh, and Sagiv [5] use shape analysis
techniques to verify lack of memory-related errors in list-manipulating programs.
Unlike ours, their analysis can also detect null-pointer dereferences. Advantages
of our type system over their analysis are the simplicity and efficiency. It is
not clear whether their analysis can be easily extended to handle procedure
calls and data structures (e.g., trees and doubly-linked lists) other than singly-
linked lists in an efficient manner. Orlovich and Rugina [6] proposed a backward
dataflow analysis to detect memory leaks. Their analysis does not detect double-
frees and illegal accesses to deallocated memory. Xie and Aiken [7] use a SAT
solver to detect memory leaks. Their analysis is unsound for loops and recursion.
Boyapati et al. [8] uses ownership types for safe memory management for real-
time Java, but their target is region-based memory management, and assume
explicit type annotations. Swamy et al. [9] also developed a language with safe
manual memory management. Unlike C, their language requires programmers
to provide various annotations (such as whether a pointer is aliased or not).

Yang et al. [10, 11] applied separation logic to automated verification of
pointer safety in systems code. The efficiency of their verification method [10]
seems comparable to ours. However, they do not deal with doubly linked lists
([10], Section 2).3 Like our technique, their tool cannot handle arrays of pointers.

Other potential advantages of our type-based approach are: (i) By allowing
programmers to declare ownership types, they may serve as good specifications
of functions or modules, and also enhance modular verification, (ii) Our approach
can probably be extended to deal with multi-threaded programs, along the line
of previous work using fractional capabilities [1, 12, 13], and (iii) There is a clear
proof of soundness of the analysis, based on a standard technique for proving
type soundness (see the longer version [4]). A main limitation of our approach
is that our type system cannot properly handle cycles (recall the discussion
in Section 4) and value-dependent (or, path-sensitive) behaviors. In practice,
therefore, a combination of our technique with other techniques would be useful.

Technically, our type system is based on the notion of ownerships and frac-
tional permissions/capabilities. Although there are many pieces of previous work
3 Berdine et al. [11] can handle doubly linked lists, but the verification tool is much

slower according to their experimental results.

14

that use ownerships and fractional capabilities, our work is original in the way
they are integrated into a type system (in particular, pointer types that can rep-
resent an ownership of each memory cell reachable from a pointer, and typing
rules that allow automated inference of such pointer types). The idea of frac-
tional capabilities can be traced back to Ueda’s work [3] on GHC (a concurrent
logic programming language). He extended input/output modes to capabilities
ranging over [−1, 1], and used them to guarantee that there is no leakage of
memory cells for storing constructors. Our type system actually seems closer to
his system than to other later fractional capability systems [1, 12, 13]. In particu-
lar, his system assigns a capability (or, an ownership in our terminology) to each
node reachable from a variable (just as our type system assigns an ownership to
each pointer reachable from a variable), and the unification constraint X = Y
between variables plays a role similar to our assert commands. Nevertheless,
the details are different: our ownerships range over [0, 1] while theirs range over
[−1, 1], and both the well-formedness conditions on types, and the constraints
imposed by the type systems are different. This seems to come from the dif-
ferences in the language primitives: sequential vs concurrent compositions, and
pointers vs unification variables. Note that, for example, updating a pointer does
not consume any capability, while writing to a unification variable consumes a
write capability.

Boyland [1] used fractional permissions (for read/write operations) to pre-
vent race conditions in multi-threaded programs. Terauchi [12, 13] later found
another advantage of using fractions: inference of fractional permissions (or ca-
pabilities) can be reduced to a linear programming problem (rather than integer
linear programming), which can be solved in polynomial time. The type system
of this paper mainly exploits the latter advantage. In their work [1, 12, 13], a
fractional capability is assigned to an abstract location (often called a region),
while our type system assigns a fractional ownership to each access path from a
variable. More specifically, in their work [1, 12, 13], a pointer type is represented
as τ refρi with a separate map {ρ1 7→ f1, . . . , ρn 7→ fn} from abstract loca-
tions to fractions, whereas our pointer type τ reff may be regarded as a kind
of existential type ∃ρ :: {ρ 7→ f}.τ refρ. The former approach is not suitable
for the purpose of our analysis: for example, without existential types, all the
elements in a list are abstracted to the same location, so that a separate own-
ership cannot be assigned to each element of the list. Our pointer types (e.g. of
the form µα.α ref0.5 ref1) seem to have some similarity with the notion of frac-
tional permissions with nesting [14], as both can express ownerships for nested
data structures. Boyland [14] gives the semantics of fractional permissions with
nesting, but does not discuss their application to program analysis.

7 Conclusion

We have proposed a new type system that guarantees lack of memory-related
errors. The type system is based on the notion of fractional ownerships, and is
equipped with a polynomial-time type inference algorithm. The type system is

15

quite simple (especially compared with previous techniques for analyzing similar
properties), yet it can be used to verify tricky pointer-manipulating programs. It
is left for future work to carry out more experiments to evaluate the effectiveness
of the type system, and to construct a practical memory-leak verification tool
for C programs.

Acknowledgment We would like to especially thank Toshihiro Wakatake and
Kensuke Mano. Some of the ideas in this paper came from discussions with
them. We would also like to thank anonymous referees for valuable comments,
especially for pointing out a close connection to Ueda’s work, and members of
our research group for comments and discussions.

References

1. Boyland, J.: Checking interference with fractional permissions. In: Proceedings of
SAS 2003. Volume 2694 of LNCS., Springer-Verlag (2003) 55–72

2. Heine, D.L., Lam, M.S.: A practical flow-sensitive and context-sensitive C and
C++ memory leak detector. In: Proc. of PLDI. (2003) 168–181

3. Ueda, K.: Resource-passing concurrent programming. In: Proceedings of 4th In-
ternational Symposium on Theoretical Aspects of Computer Science (TACS2001).
Volume 2215 of LNCS., Springer-Verlag (2001) 95–126

4. Suenaga, K., Kobayashi, N.: Fractional ownerships for safe memory deallocation. A
longer version, available from http://www.kb.ecei.tohoku.ac.jp/~koba/papers/

malloc.pdf (2009)
5. Dor, N., Rodeh, M., Sagiv, S.: Checking cleanness in linked lists. In: Proceedings

of SAS 2000. Volume 1824 of LNCS., Springer-Verlag (2000) 115–134
6. Orlovich, M., Rugina, R.: Memory leak analysis by contradiction. In: Proceedings

of SAS 2006. Volume 4134 of LNCS., Springer-Verlag (2006) 405–424
7. Xie, Y., Aiken, A.: Context- and path-sensitive memory leak detection. In:

ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing. (2005) 115–125

8. Boyapati, C., Salcianu, A., Beebee, W.S., Rinard, M.C.: Ownership types for safe
region-based memory management in real-time Java. In: Proc. of PLDI. (2003)
324–337

9. Swamy, N., Hicks, M.W., Morrisett, G., Grossman, D., Jim, T.: Safe manual
memory management in Cyclone. Sci. Comput. Program. 62(2) (2006) 122–144

10. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.W.: Scalable shape analysis for systems code. In: Proceedings of CAV 2008.
Volume 5123 of LNCS., Springer-Verlag (2008) 385–398

11. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang,
H.: Shape analysis for composite data structures. In: Proceedings of CAV 2007.
Volume 4590 of LNCS., Springer-Verlag (2007) 178–192

12. Terauchi, T.: Checking race freedom via linear programming. In: Proc. of PLDI.
(2008) 1–10

13. Terauchi, T., Aiken, A.: A capability calculus for concurrency and determinism.
ACM Trans. Prog. Lang. Syst. 30(5) (2008)

14. Boyland, J.: Semantics of fractional permissions with nesting. UWM EECS Tech-
nical Report CS-07-01 (2007)

16

