
Translation of Tree-processing Programs into
Stream-processing Programs

based on Ordered Linear Type

Koichi Kodama∗, Kohei Suenaga∗∗, and Naoki Kobayashi∗∗∗

∗Tokyo Institute of Technology, kodama@kb.cs.titech.ac.jp
∗∗University of Tokyo, kohei@yl.is.s.u-tokyo.ac.jp

∗∗∗Tokyo Institute of Technology, kobayasi@kb.cs.titech.ac.jp

Abstract. There are two ways to write a program for manipulating
tree-structured data such as XML documents and S-expressions: One is
to write a tree-processing program focusing on the logical structure of
the data and the other is to write a stream-processing program focus-
ing on the physical structure. While tree-processing programs are easier
to write than stream-processing programs, tree-processing programs are
less efficient in memory usage since they use trees as intermediate data.
Our aim is to establish a method for automatically translating a tree-
processing program to a stream-processing one in order to take the best
of both worlds. We define a programming language for processing binary
trees and a type system based on ordered linear type, and show that every
well-typed program can be translated to an equivalent stream-processing
program.

1 Introduction

There are two ways to write a program for manipulating tree-structured data
such as XML documents [3] and S-expressions: One is to write a tree-processing
program focusing on the logical structure of the data and the other is to write
a stream-processing program focusing on the physical structure. For example,
as for XML processing, DOM (Document Object Mode) API and programming
language XDuce [5] are used for tree-processing, while SAX (Simple API for
XML) is for stream-processing.

Figure 1 illustrates what tree-processing and stream-processing programs
look like for the case of binary trees. The tree-processing program f takes a
binary tree t as an input, and performs case analysis on t. If t is a leaf, it
increments the value of the leaf. If t is a branch, f recursively processes the left
and right subtrees. If actual tree data are represented as a sequence of tokens (as
is often the case for XML documents), f must be combined with the function
parse for parsing the input sequence, and the function unparse for unparsing
the result tree into the output sequence, as shown in the figure. The stream-
processing program g directly reads/writes data from/to streams. It reads an
element from the input stream using the read primitive and performs case-
analysis on the element. If the input is the leaf tag, g outputs leaf to the

node

1

5 3

2

6 4

leaf leaf leafnode1 5 3 node leaf leaf leafnode2 6 4

parse

f

g

unparse

Tree-processing program f :
fix f.λt.(case t of leaf x ⇒ leaf (x + 1) | node x1 x2 ⇒ node (f x1) (f x2))
Stream-processing program: g
fix g.λt.(case read() of leaf ⇒ leaf (read() + 1)

| node ⇒ write(node); g (); g ())

Fig. 1. Tree-processing and stream-processing

output stream with the write primitive, reads another element, adds 1 to it,
and outputs it. If the input is the node tag, g outputs node to the output
stream and recursively calls the function g twice with the argument ().

Both of the approaches explained above have advantages and disadvantages.
Tree-processing programs are written based on the logical structure of data, so
that it is easier to write, read, and manipulate (e.g. apply program transfor-
mation like deforestation [14]) than stream-processing programs. On the other
hand, stream-processing programs have their own advantage that intermediate
tree structures are not needed, so that they often run faster than the correspond-
ing tree-processing programs if input/output trees are physically represented as
streams, as in the case of XML.

The goal of the present paper is to achieve the best of both approaches, by
allowing a programmer to write a tree-processing program and automatically
translating the program to an equivalent stream-processing program. To clarify
the essence, we use a λ-calculus with primitives on binary trees, and show how
the translation works.

The key observation is that: (1) stream processing is most effective when trees
are traversed and constructed from left to right in the depth-first manner and (2)
in that case, we can obtain from the tree-processing program the corresponding
stream-processing program simply by replacing case analysis on an input tree
with case analysis on input tokens, and replacing tree constructions with stream
outputs. In fact, the stream-processing program in Figure 1, which satisfies the
above criterion, is obtained from the tree-processing program in that way.

In order to check that a program satisfies the criterion, we use the idea of
ordered linear types [11, 12]. Ordered linear types, which are an extension of
linear types [2, 13], describe not only how often but also in which order data
are used. Our type system designed based on the ordered linear types guaran-

Tree-processing program:
fix f.λt.(case t of leaf x ⇒ leaf x | node x1 x2 ⇒ node (f x2) (f x1))

Fig. 2. A program that swaps children of every node

tees that a well-typed program traverses and constructs trees from left to right
and in the depth-first order. Thus, every well-typed program can be translated
to an equivalent stream-processing program. The tree-processing program f in
Figure 1 is well-typed in our type system, so that it can automatically be trans-
lated to the stream-processing program g. On the other hand, the program in
Figure 2 is not well-typed in our type system since it accesses the right sub-tree
of an input before accessing the left sub-tree. In fact, we would obtain a wrong
stream-processing program if we simply apply the above-mentioned translation
to the program in Figure 2.

The rest of the paper is organized as follows: To clarify the essence, we first
focus on a minimal calculus in Section 2–4. In Section 2, we define the source
language and the target language of the translation. We define a type system
of the source language in Section 3. Section 4 presents a translation algorithm,
shows its correctness and discuss the improvement gained by the translation. The
minimal caclulus is not so expressive; especially, one can only write a program
that does not store input/output trees on memory at all. (Strictly speaking, one
can still store some information about trees by encoding it into lambda-terms.)
Section 5 describes several extensions to recover the expressive power. With the
extensions, one can write a program that selectively buffers input/output trees
on memory, while the type system guarantees that the buffering is correctly
performed. After discussing related work in Section 6, we conclude in Section 7.

For the restriction of space, proofs are omitted in this paper. They are found
in the full version [7].

2 Language

We define the source and target languages in this section. The source language
is a call-by-value functional language with primitives for manipulating binary
trees. The target language is a call-by-value, impure functional language that
uses imperative streams for input and output.

Source Language The syntax and operational semantics of the source language
is summarized in Figure 3.

The meta-variables x and i range over the sets of variables and integers
respectively. The meta-variable W ranges over the set of values, which con-
sists of integers i, lambda-abstractions λx.M , and binary-trees V . A binary
tree V is either a leaf labeled with an integer or a tree with two children.
(case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2) performs case analysis on a
tree. If M is a leaf, x is bound to its label and M1 is evaluated. Otherwise, x1

and x2 are bound to the left and right children respectively and M2 is evaluated.

Terms, values and evaluation contexts:

M (terms) ::= i | λx.M | x | M1 M2 | M1 + M2 | fix f.M
| leaf M | node M1 M2

| (case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2)
V (tree values) ::= leaf i | node V1 V2

W (values) ::= i | λx.M | V
Es (evaluation contexts) ::= [] | Es M | (λx.M) Es | Es + M | i + Es

| leaf Es | node Es M | node V Es

| (case Es of leaf x ⇒ M1 | node x1 x2 ⇒ M2)

Reduction rules:

Es[i1 + i2] −→ Es[plus(i1, i2)] (Es-Plus)

Es[(λx.M)W] −→ Es[[W/x]M] (Es-App)

Es[fix f.M] −→ Es[[fix f.M/f]M] (Es-Fix)

Es[case leaf i of leaf x ⇒ M1 | node x1 x2 ⇒ M2] −→ Es[[i/x]M1] (Es-Case1)

Es[case node V1 V2 of leaf x ⇒ M1 | node x1 x2 ⇒ M2] −→
Es[[V1/x1, V2/x2]M2]

(Es-Case2)

Fig. 3. The syntax, evaluation context and reduction rules of the source language.
plus(i1, i2) is the sum of i1 and i2.

fix f.M is a recursive function that satisfies f = M . Bound and free variables
are defined as usual. We assume that α-conversion is implicitly applied so that
bound variables are always different from each other and free variables.

We write let x = M1 in M2 for (λx.M2) M1. Especially, if M2 contains no
free occurrence of x, we write M1; M2 for it.

Target Language The syntax and operational semantics of the target language
is summarized in Figure 4. A stream, represented by the meta variable S, is
a sequence consisting of leaf , node and integers. We write ∅ for the empty
sequence and write S1;S2 for the concatenation of the sequences S1 and S2.

read is a primitive for reading a token (leaf , node, or an integer) from the
input stream. write is a primitive for writing a value to the output stream. The
term (case e of leaf ⇒ e1 | node ⇒ e2) performs a case analysis on the value
of e. If e evaluates to leaf , e1 is evaluated and if e evaluates to node, e2 is
evaluated. fix f.e is a recursive function that satisfies f = e. Bound and free
variables are defined as usual.

We write let x = e1 in e2 for (λx.e2) e1. Especially, if e2 does not contain x
as a free variable, we write e1; e2 for it.

Figure 5 shows programs that take a tree as an input and calculate the sum
of leaf elements. The target program assumes that the input stream represents
a valid tree. If the input stream is in a wrong format (e.g., when the stream is
node; 1; 2), the execution gets stuck.

Terms, values and evaluation contexts:

e (terms) ::= v | x | e1 e2 | e1 + e2 | fix f.e
| read e | write e | (case e of leaf ⇒ e1 | node ⇒ e2)

v (values) ::= i | leaf | node | λx.e | ()
Et (evaluation contexts) ::= [] | Et e | (λx.e) Et | Et + e | i + Et

| read Et | write Et

| (case Et of leaf ⇒ e1 | node ⇒ e2)

Reduction rules:

(Et[v1 + v2], Si, So) −→ (Et[plus(v1, v2)], Si, So) (Et-Plus)

(Et[(λx.M)v], Si, So) −→ (Et[[v/x]M], Si, So) (Et-App)

(Et[fix f.e], Si, So) −→ (Et[[fix f.e/f]e], Si, So) (Et-Fix)

(Et[read()], v; Si, So) −→ (Et[v], Si, So) (Et-Read)

(Et[write v], Si, So) −→ (Et[()], Si, So; v) (when v is an integer, leaf or node)
(Et-Write)

(Et[case leaf of leaf ⇒ e1 | node ⇒ e2], Si, So) −→ (Et[e1], Si, So) (Et-Case1)

(Et[case node of leaf ⇒ e1 | node ⇒ e2], Si, So) −→ (Et[e2], Si, So) (Et-Case2)

Fig. 4. The reduction rules of the target language.

A source program:
fix sumtree.λt.(case t of leaf x ⇒ x | node x1 x2 ⇒ (sumtree x1) + (sumtree x2))
A target program:
fix sumtree.λt.(case read() of leaf ⇒ read() | node ⇒ sumtree () + sumtree ())

Fig. 5. Programs that calculate the sum of leaf elements of an binary tree.

3 Type System

In this section, we present a type system of the source language, which guarantees
that a well-typed program reads every node of an input tree exactly once from
left to right in the depth-first order. Thanks to this guarantee, any well-typed
program can be translated to an equivalent, stream-processing program without
changing the structure of the program, as shown in the next section. To enforce
the depth-first access order on input trees, we use ordered linear types [11, 12].

3.1 Type and Type Environment

Definition 1 (Type). The set of types, ranged over by τ , is defined by:

τ (type) ::= Int | Treed | τ1 → τ2

d (mode) ::= − | +.

Int is the type of integers. For a technical reason, we distinguish between
input trees and output trees by types. We write Tree− for the type of input
trees, and write Tree+ for the type of output trees. τ1 → τ2 is the type of
functions from τ1 to τ2.

We introduce two kinds of type environments for our type system: ordered
linear type environments and (non-ordered) type environments.

Definition 2 (Ordered Linear Type Environment). An ordered linear type
environment is a sequence of the form x1:Tree−, . . . , xn:Tree−, where x1, . . . , xn

are different from each other. We write ∆1,∆2 for the concatenation of ∆1 and
∆2.

An ordered linear type environment x1 : Tree−, . . . , xn : Tree− specifies not
only that x1, . . . , xn are bound to trees, but also that each of x1, . . . , xn must
be accessed exactly once in this order and that each of the subtrees bound to
x1, . . . , xn must be accessed in the left-to-right, depth-first order.

Definition 3 (Non-Ordered Type Environment). A (non-ordered) type
environment is a set of the form {x1 :τ1, . . . , xn :τn} where x1, . . . , xn are different
from each other and {τ1, . . . , τn} does not contain Treed.

We use the meta-variable Γ for non-ordered type environments. We often
write Γ, x : τ for Γ ∪{x : τ}, and write x1 : τ1, . . . , xn : τn for {x1 : τ1, . . . , xn : τn}.

Note that a non-ordered type environment must not contain variables of
tree types. Tree− is excluded since input trees must be accessed in the specific
order. Tree+ is excluded in order to forbid output trees from being bound to
variables. For example, we will exclude a program like let x1 = t1 in let x2 =
t2 in node x1 x2 when t1 and t2 have type Tree+. This restriction is convenient
for ensuring that trees are constructed in the specific (from left to right, and in
the depth-first manner) order.

3.2 Type Judgment

A type judgement is of the form Γ | ∆ ` M : τ , where Γ is a non-ordered type
environment and ∆ is an ordered linear type environment. The judgment means
“If M evaluates to a value under an environment described by Γ and ∆, the
value has type τ and the variables in ∆ are accessed in the order specified by
∆.” For example, if Γ = {f : Tree− → Tree+} and ∆ = x1 : Tree−, x2 : Tree−,

Γ | ∆ ` node (f x1) (f x2) : Tree+

holds, while
Γ | ∆ ` node (f x2) (f x1) : Tree+

does not. The latter program violates the restriction specified by ∆ that x1 and
x2 must be accessed in this order.

Γ | ∆ ` M : τ is the least relation that is closed under the rules in Figure 6.
We explain only main rules below. T-Var1, T-Var2 and T-Int are the rules for

Γ | x : Tree− ` x : Tree− (T-Var1)

Γ, x : τ | ∅ ` x : τ (T-Var2)

Γ | ∅ ` i : Int (T-Int)

Γ | x : Tree− ` M : τ

Γ | ∅ ` λx.M : Tree− → τ
(T-Abs1)

Γ, x : τ1 | ∅ ` M : τ2

Γ | ∅ ` λx.M : τ1 → τ2

(T-Abs2)

Γ | ∆1 ` M1 : τ2 → τ1 Γ | ∆2 ` M2 : τ2

Γ | ∆1, ∆2 ` M1M2 : τ1

(T-App)

Γ | ∆1 ` M1 : Int Γ | ∆2 ` M2 : Int

Γ | ∆1, ∆2 ` M1 + M2 : Int
(T-Plus)

Γ, f : τ1 → τ2 | ∅ ` M : τ1 → τ2

Γ | ∅ ` fix f.M : τ1 → τ2

(T-Fix)

Γ | ∆ ` M : Int

Γ | ∆ ` leaf M : Tree+ (T-Leaf)

Γ | ∆1 ` M1 : Tree+ Γ | ∆2 ` M2 : Tree+

Γ | ∆1, ∆2 ` node M1 M2 : Tree+ (T-Node)

Γ | ∆1 ` M : Tree− Γ, x : Int | ∆2 ` M1 : τ
Γ | x1 : Tree−, x2 : Tree−, ∆2 ` M2 : τ

Γ | ∆1, ∆2 ` case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2 : τ
(T-Case)

Fig. 6. Rules of typing judgment

variables and integer constants. As in ordinary linear type systems, these rules
prohibit variables that do not occur in a term from occurring in the ordered linear
type environment. (In other words, weakening is not allowed on an ordered linear
type environment.) That restriction is necessary to guarantee that each variable
in an ordered linear type environment is accessed exactly once.

T-Abs1 and T-Abs2 are rules for lambda abstraction. Note that the ordered
type environments of the conclusions of these rules must be empty. This restric-
tion prevents input trees from being stored in function closures. That makes
it easy to enforce the access order on input trees. For example, without this
restriction, the function

λt.let g = λf.(f t) in (g sumtree) + (g sumtree)

would be well-typed where sumtree is the function given in Figure 5. However,
when a tree is passed to this function, its nodes are accessed twice because
the function g is called twice. The program above is actually rejected by our

type system since the closure λf.(f t) is not well-typed due to the restriction of
T-Abs2.1

T-App is the rule for function application. The ordered linear type environ-
ments of M1 and M2, ∆1 and ∆2 respectively, are concatenated in this order
because when M1 M2 is evaluated, (1) M1 is first evaluated, (2) M2 is then
evaluated, and (3) M1 is finally applied to M2. In the first step, the variables in
∆1 are accessed in the order specified by ∆1. In the second and third steps, the
variables in ∆2 are accessed in the order specified by ∆2, On the other hand,
because there is no restriction on usage of the variables in a non-ordered type
environment, the same type environment (Γ) is used for both subterms.

T-Case is the rule for case expressions. If M matches node x1 x2, subtrees
x1 and x2 have to be accessed in this order after that. This restriction is expressed
by x1 : Tree−, x2 : Tree−,∆2, the ordered linear type environment of M2.

3.3 Examples of Well-typed Programs

Figure 7 shows more examples of well-typed source programs. The first and sec-
ond programs (or the catamorphism [8]) apply the same operation on every node
of the input tree. (The return value of the function tree fold cannot, however, be
a tree because the value is passed to g.) One can also write functions that pro-
cess nodes in a non-uniform manner, like the third program in Figure 7 (which
increments the value of each leaf whose depth is odd).

The fourth program takes a tree as an input and returns the right sub-
tree. Due to the restriction imposed by the type system, the program uses sub-
functions copy tree and skip tree for explicitly copying and skipping trees.2 (See
Section 7 for a method for automatically inserting those functions.)

4 Translation Algorithm

In this section, we define a translation algorithm for well-typed source programs
and prove its correctness.

4.1 Definition and Correctness of Translation

The translation algorithm A is shown in Figure 8. A maps a source program to
a target program, preserving the structure of the source program and replacing
operations on trees with operations on streams.
1 We can relax the restriction by controlling usage of not only trees but also functions,

as in the resource usage analysis [6]. The resulting type system would, however,
become very complex.

2 Due to the restriction that lambda abstractions cannot contain variables of type
Treed, we need to introduce sequential composition (;) as a primitive and extend
typing rules with the following rule:

Γ | ∆1 ` M1 : τ ′ Γ | ∆2 ` M2 : τ τ ′ 6= Treed

Γ | ∆1, ∆2 ` M1; M2 : τ.
(T-Seq)

fix tree map.λf.λt.(case t of leaf x ⇒ leaf (f x)
| node x1 x2 ⇒ node (tree map f x1) (tree map f x2))

fix tree fold .λf.λg.λt.
(case t of leaf n ⇒ (f n)

| node t1 t2 ⇒ (g (tree fold f g t1)(tree fold f g t2)))
fix inc alt.λt.(case t of leaf x ⇒ leaf x | node x1 x2 ⇒ node

(case x1 of leaf y ⇒ leaf (y + 1)
| node y1 y2 ⇒ node (inc alt y1) (inc alt y2))

(case x2 of leaf z ⇒ leaf (z + 1)
| node z1 z2 ⇒ node (inc alt z1) (inc alt z2))

let copy tree =
fix copy tree.λt.(case t of leaf x ⇒ leaf x

| node x1 x2 ⇒ node (copy tree x1) (copy tree x2)) in
let skip tree =

fix skip tree.λt.(case t of leaf x ⇒ 0
| node x1 x2 ⇒ (skip tree x1); (copy tree x2) in

λt.(case t of leaf x ⇒ leaf x | node x1 x2 ⇒ (skip tree x1); (copy tree x2))

Fig. 7. Examples of well-typed programs.

The correctness of the translation algorithm A is stated as follows.

Definition 4. A function [[·]] from the set of trees to the set of streams is defined
by:

[[leaf i]] = leaf ; i
[[node V1 V2]] = node; [[V1]]; [[V2]] .

Theorem 1 (Correctness of Translation).
If ∅ | ∅ ` M : Tree− → τ and τ is Int or Tree+, the following properties hold
for any tree value V :

(i) M V −→∗ i if and only if (A(M)(), [[V]], ∅) −→∗ (i, ∅, ∅)
(ii) M V −→∗ V ′ if and only if (A(M)(), [[V]], ∅) −→∗ ((), ∅, [[V ′]]) .

The above theorem means that a source program and the corresponding target
program evaluates to the same value. The clause (i) is for the case where the
result is an integer, and (ii) is for the case where the result is a tree.

We give an outline of the proof of Theorem 1 below. Full proofs are found in
the full version of this paper [7]. We define another reduction semantics of the
source language and prove that (1) for well-typed programs, the new semantics
is equivalent to the one in Section 2 and (2) each reduction step based on the
new semantics has the corresponding one in the target program.

The new reduction relation is of the form (M, δ) −→ (M ′, δ′) where δ is a
sequence of binding of the form x 7→ V . The formal definition is given in the
full version [7]. The only difference from the one defined in Section 2 is that
input trees are bound in δ and must be accessed in the order specified by δ. So,
evaluation based on the new rules can differ from the one in Section 2 only when

A(x) = x
A(i) = i
A(λx.M) = λx.A(M)
A(M1M2) = A(M1) A(M2)
A(M1 + M2) = A(M1) +A(M2)
A(fix f.M) = fix f.A(M)
A(leaf M) = write(leaf);write(A(M))
A(node M1 M2) = write(node);A(M1);A(M2)
A(case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2) =

case A(M); read() of leaf ⇒ let x = read() in A(M1)
| node ⇒ [()/x1, ()/x2]A(M2)

Fig. 8. Translation Algorithm

(A(M), [[V]], ∅) →∗ (e, [[V]], So) →+ (e′, S′i, S
′
o) →+ · · · →+ ((), ∅, [[V ′]])

(Mx, x 7→ V) → (M ′, δ′) → · · · → (V ′, ∅)

∼ ∼ ∼

'

?

Fig. 9. Evaluation of a source and the target program.

the latter one succeeds while the former one gets stuck due to the restriction
on access to input trees. The following theorem guarantees that this does not
happen if the program is well-typed.

Theorem 2 (soundness of the type system). If ∅ | x : Tree− ` M : τ and
(M, x 7→ V) −→∗ (M ′, δ′) hold, then M ′ is a value or a variable, or (M ′, δ′) −→
(M ′′, δ′′) holds for some M ′′, δ′′.

Using the new semantics, we can prove that each reduction step of a source
program has the corresponding one in the target program. Figure 9 illustrates the
idea of the proof (for the case where the result is a tree). In the relation (M, δ) ∼
(e, Si, So), e represents the rest of computation, Si is the input stream, and
So is the already output streams. For example, (node(leaf 1)(leaf (2 + 3)), ∅)
corresponds to (2 + 3, ∅,node; leaf ; 1; leaf). The formal definition of ∼ is found
in the full version [7].) We can show that (1) the target program A(M) can
always be reduced to a state corresponding to the inital state of the source
program M and that (2) reductions and the correspondence relation commute.
Those imply that the whole diagram in Figure 9 commutes, so that the source
program and the target program evaluates to the same value.

4.2 Efficiency of Translated Programs

Let M be a source program of type Tree− → Tree+. We argue below that the
target program A(M) runs more efficiently than the source program unparse ◦

M ◦ parse, where parse is a function that parses the input stream and returns a
binary tree, and unparse is a function that takes a binary tree as an input and
writes it to the output stream. Note that the fact that the target program is a
stream-processing program does not necessarily imply that it is more efficient
than the source program: In fact, if the translation A were defined by A(M) =
unparse ◦M ◦ parse, obviously there would be no improvement.

Intuitively, the target program being more efficient follows from the fact that
the translation function A preserves the structure of the source program, with
only replacing tree constructions with stream outputs, and case analyses on trees
with stream inputs and case analyses on input tokens.

In fact, by looking at the proof of Theorem 1, we know (see the full version
for the reason):

– The memory space allocated by A(M) is less than the one allocated by
unparse ◦M ◦ parse, by the amount of the space for storing the intermedi-
ate trees output by parse and M (except for an implementation-dependent
constant factor).

– The number of computation steps for running A(M) is the same as the one
for running unparse◦M ◦parse (up to an implementation-dependent constant
factor).

Thus, our translation is effective especially when the space for evaluating M is
much smaller than the space for storing input and output trees.

5 Extensions

So far, we have focused on a minimal calculus to clarify the essence of our
framework. This section briefly shows how to extend the framework to be used
in practice. More details are found in the full version [7]

5.1 Constructs for Storing Trees on Memory

By adding primitives for constructing and destructing trees on memory, we can
allow programmers to selectively buffer input/output trees at the cost of effi-
ciency of target prgorams. Let us extend the syntax of the source and target
languages as follows:

M ::= · · · | mleaf M | mnode M1 M2

| (mcase M of mleaf x ⇒ M1 | mnode x1 x2 ⇒ M2)
e ::= · · · | mleaf e | mnode e1 e2

| (mcase e of mleaf x ⇒ e1 | mnode x1 x2 ⇒ e2) .

Here, mleaf M and mnode M1 M2 are constructors of trees on memory and
mcase · · · is a destructor.

We also add type MTree, the type of trees stored on memory. The type
system imposes no restriction on access order between variables of type MTree
like type Int (so MTree is put in the ordinary type environment, not the ordered

fix strm to mem.
λt.case t of leaf x ⇒ mleaf x

| node x1 x2 ⇒ mnode (strm to mem x1) (strm to mem x2)
fix mem to strm.

λt.mcase t of mleaf x ⇒ leaf x
| mnode x1 x2 ⇒ node (mem to strm x1) (mem to strm x2)

Fig. 10. Definition of strm to mem and mem to strm

let mswap =
fix f.λ t.mcase t of mleaf x ⇒ leaf x

| mnode x1 x2 ⇒ node (f x2) (f x1) in
fix swap deep.λn.λt.

if n = 0 then mswap (strm to mem t)
else

case t of
leaf x ⇒ leaf x

| node x1 x2 ⇒ node (swap deep (n− 1) x1) (swap deep (n− 1) x2)

Fig. 11. A program which swaps children of nodes whose depth is more than n

linear type environment). The translation algorithm A simply translates a source
program, preserving the structure:

A(mleaf M) = mleaf A(M)
A(mnode M1 M2) = mnode A(M1) A(M2)

· · ·
With these primitives, a function strm to mem, which copies a tree from the

input stream to memory, and mem to strm, which writes a tree on memory to
the output stream, can be defined as shown in Figure 10.

Using the functions above, one can write a program that selectively buffers
only a part of the input tree, while the type system guarantees that the selective
buffering is correctly performed. For example, the program in Figure 11, which
swaps children of nodes whose depth is more than n, only buffers the nodes
whose depth is more than n.

The proof of Theorem 1 can be easily adapted for the extended language.

5.2 Side Effects and Multiple Input Trees

Since our translation algorithm preserves the structure of source programs, the
translation works in the presence of side effects other than stream inputs/outputs.

Our framework can also be easily extended to deal with multiple input trees,
by introducing pair constructors and refining the type judgment form to Γ |
{s1 : ∆1, . . . , sn : ∆n} ` M : τ where s1, . . . , sn are the names of input streams
and each of ∆1, . . . ,∆ is an ordered linear type environment.

5.3 Extention for Dealing with XML

We discuss below how to extend our method to deal with XML documents.
The difference between binary trees and XML documents is that the latter

ones (i) are rose trees and (ii) contain end tags that mark the end of sequences
in the stream format. The first point can be captured as the difference between
the following types (we use ML-style type declarations):

datatype tree = leaf of int | node of tree*tree;
datatype xmltree = leaf of pcdata

| node of label * attribute * treelist
and treelist = nil | cons of xmltree * treelist;

While the type tree represents binary trees, xmltree represents rose trees. Based
on the difference between these types, we can replace the case-construct of the
source language with the following two case-constructs.

caseElem t of leaf(x) ⇒ M1 | node(l, attr, tl) ⇒ M2

caseSeq tl of nil ⇒ M1 | cons(x, xl) ⇒ M2.

Typing rules can also be naturally extended. For example, the typing rule for
the latter construct is:

Γ | ∆1 ` tl : treelist Γ | ∆2 ` M1 : τ
Γ | x : xmltree, xl : treelist,∆2 ` M2 : τ

Γ | ∆1,∆2 ` caseSeq tl of nil ⇒ M1 | cons(x, xl) ⇒ M2 : τ.

The restriction on the access order is expressed by x : xmltree, xl : treelist, ∆2

as in T-Node.
The translation algorithm (1) maps the pattern nil in the source language to

the pattern for closing tags. (2) prepares a stack and confirms well-formedness
of input documents.

6 Related Work

Nakano and Nishimura [9, 10] proposed a method for translating tree-processing
programs to stream-processing programs using attribute grammars. In their
method, programmers write XML processing with an attribute grammar. Then,
the grammar is composed with parsing and unparsing grammars by using the
descriptional composition [4] and translated to a grammar that directly deals
with streams. Quasi-SSUR condition in [10] and single use requirement in [9],
which force attributes of non-terminal symbols to be used at most once, seems to
correspond to our linearity restriction on variables of tree types, but there seems
to be no restriction that corresponds to our order restriction. As a result, their
method can deal with programs (written as attribute grammars) that violate the
order restriction of our type system, although in that case, generated stream-
processing programs store a part of trees in memory, so that the translation may
not improve the efficiency. On the other hand, an advantage of our method is

N → node N1 N2

N1.inh = f1 N.inh; N2.inh = f2 N.inh N1.syn N1.inh
N.syn = f3 N.inh N1.syn N1.inh N2.syn N2.inh

N → leaf i
N.syn = f4 N.inh i

fix f.λinh.λt.case t of
leaf x ⇒ f4 inh x
node x1 x2 ⇒ let N1.inh = f1 inh in

let N1.syn = f N1.inh x1 in
let N2.inh = f2 N.inh N1.syn N1.inh in
let N2.syn = f N2.inh x2 in

f3 N.inh N1.syn N1.inh N2.syn N2.inh

Fig. 12. L-attributed grammar over binary trees and corresponding program.

that programs are easier to read and write since one can write programs as ordi-
nary functional programs except for the restriction imposed by the type system,
rather than as attribute grammars. Another advantage of our method is that
we can deal with source programs that involve side-effects (e.g. programs that
print the value of every leaf) while that seems difficult in their method based on
attribute grammars (since the order is important for side effects).

The class of well-typed programs in our language seems to be closely related
to the class of L-attributed grammars [1]. In fact, any L-attributed grammar
over the binary tree can be expressed as a program as shown in Figure 12. If
output trees are not used in attributes, the program is well-typed. Conversely,
any program that is well-typed in our language seems to be definable as an
L-attribute grammar. The corresponding attribute grammar may, however, be
awkward, since one has to encode control information into attributes.

There are many studies on program transformation [8, 14] for eliminating
intermediate data structures of functional programs, known as deforestation or
fusion. Although the goal of our translation is also to remove intermediate data
structures from unparse ◦ f ◦ parse, the previous methods are not directly appli-
cable since those methods do not guarantee that transformed programs access
inputs in a stream-processing manner. In fact, swap in Figure 2, which violates
the access order, can be expressed as a treeless program [14] or a catamor-
phism [8], but the result of deforestation is not an expected stream-processing
program.

Actually, there are many similarities between the restriction of treeless pro-
gram [14] and that of our type system. In treeless programs, (1) variables have
to occur only once, and (2) only variables can be passed to functions. (1) corre-
sponds to the linearity restriction of our type system. (2) is the restriction for
prohibiting trees generated in programs to be passed to functions, which corre-
sponds to the restriction that functions cannot take values of type Tree+ in our
type system. The main differences are:

– Our type system additionally imposes a restriction on the access order. This
is required to guarantee that translated programs read input streams se-
quentially.

– We restrict programs with a type system, while the restriction on treeless
programs is syntactic. Our type-based approach enables us to deal with
higher-order functions. The type-based approach is also useful for automatic
inference of selective buffering of trees, as discussed in Section 7.

The type system we used in this paper is based on the ordered linear logic
proposed by Polakow [12]. He proposed a logic programming language Olli, log-
ical framework OLF and ordered lambda calculus based on the logic. There are
many similarities between our typing rules and his derivation rules for the or-
dered linear logic. For example, our type judgment Γ | ∆ ` M : τ corresponds
to the judgment Γ ; ·; ∆ ` A of ordered linear logic. The rule T-Abs1 corre-
sponds to a combination of the rules for an ordered linear implication and the
modality (!). However, we cannot use ordered linear logic directly since it would
make our type system unsound. Petersen et al. [11] used ordered linear types to
guarantee correctness of memory allocation and data layout. While they used an
ordered linear type environment to express a spatial order, we used it to express
a temporal order.

7 Conclusion

We have proposed a type system based on ordered linear types to enable trans-
lation of tree-processing programs into stream-processing programs, and proved
the correctness of the translation.

As we stated in Section 3 and 5, one can write tree-processing programs that
selectively skip and/or buffer trees by using skip tree, copy tree, strm to mem
and mem to strm. However, inserting those functions by hand is sometimes te-
dious. We are currently studying a type-directed, source-to-source translation
for automatically inserting these functions.

In addition to application to XML processing, our translation framework may
also be useful for optimization of distributed programs that process and commu-
nicate complex data structures. Serialization/unserialization of data correspond
to unparsing/parsing in Figure 1, so that our translation framework can be used
for eliminating intermediate data structures and processing serialized data di-
rectly.

Acknowledgement We thank members of “Programming Language Princi-
ples” group at University of Tokyo and Tokyo Institute of Technology.

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers. Addison-Wesley
Pub Co, 1986.

2. Henry G. Baker. Lively linear lisp – look ma, no garbage! ACM SIGPLAN Notices,
27(8):89–98, 1992.

3. Tim Bray, Jean Paoli, C.M.Sperberg-McQueen, and Eve Maler. Extensible markup
language (XML) 1.0 (second edition). Technical report, World Wide Web Consor-
tium, October 2000. http://www.w3.org/TR/REC-xml.

4. Harald Ganzinger and Robert Giegerich. Attribute coupled grammars. In Proceed-
ings of the ACM SIGPLAN ’84 Symposium on Compiler Construction, 1984.

5. Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed XML processing language.
ACM Transactions on Internet Technology (TOIT), 3(2):117–148, 2003.

6. Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. In Proceedings of
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 331–342, 2002.

7. Koichi Kodama, Kohei Suenaga, and Naoki Kobayashi. Translation of tree-
processing programs into stream-processing programs based on ordered linear
type. Full paper. Available from http://www.yl.is.s.u-tokyo.ac.jp/~kohei

/doc/paper/translation.pdf.
8. Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with

bananas, lenses, envelopes and barbed wire. In Proceedings of the 5th ACM confer-
ence on Functional programming languages and computer architecture, pages 124
– 144, 1991.

9. Keisuke Nakano. Composing stack-attributed tree transducers. Technical Report
METR–2004–01, Department of Mathematical Informatics, University of Tokyo,
Japan, 2004.

10. Keisuke Nakano and Susumu Nishimura. Deriving event-based document trans-
formers from tree-based specifications. In Mark van den Brand and Didier Parigot,
editors, Electronic Notes in Theoretical Computer Science, volume 44. Elsevier Sci-
ence Publishers, 2001.

11. Leaf Petersen, Robert Harper, Karl Crary, and Frank Pfenning. A type theory for
memory allocation and data layout. In Proceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 2003.

12. Jeff Polakow. Ordered linear logic and applications. PhD thesis, Carnegie Mellon
University, June 2001. Available as Technical Report CMU-CS-01-152.

13. David N. Turner, Philip Wadler, and Christian Mossin. Once upon a type. In Pro-
ceedings of Functional Programming Languages and Computer Architecture, pages
1–11, San Diego, California, 1995.

14. P. Wadler. Deforestation: Transforming programs to eliminate trees. In ESOP
’88. European Symposium on Programming, Nancy, France, 1988 (Lecture Notes
in Computer Science, vol. 300), pages 344–358. Berlin: Springer-Verlag, 1988.

