
Generalized Homogeneous Polynomials for
Efficient Template-Based

Nonlinear Invariant Synthesis

Kensuke Kojima1,2, Minoru Kinoshita1, and Kohei Suenaga1,3

1 Kyoto University
2 JST CREST

3 JST PRESTO

Abstract. The template-based method is one of the most successful ap-
proaches to algebraic invariant synthesis. In this method, an algorithm
designates a template polynomial p over program variables, generates
constraints for p = 0 to be indeed an invariant, and solves the generated
constraints. However, the template-based method often suffers from in-
creasing template size if the degree of a template polynomial is set too
high.
We propose a technique to improve the efficiency of template-based meth-
ods applied to higher-degree polynomials. Our method is based on the
following finding: If an algebraic invariant exists, then there is a spe-
cific algebraic invariant that we call a generalized homogeneous algebraic
(GHA) invariant, which is often smaller. This finding justifies to use only
a smaller template that corresponds to a GHA invariant in invariant syn-
thesis.
Concretely, we state our finding above formally based on the abstract
semantics of an imperative program proposed by Cachera et al. Then,
we modify their template-based invariant synthesis so that it manages
only GHA invariants; this modification is proved to be sound. We also
empirically demonstrate that the restriction to GHA invariants is useful;
our implementation is comparable to theirs in their benchmark; it out-
performs their implementation for programs that require a higher-degree
template.

1 Introduction

We consider the following problem: Given a program c, discover a fact that
holds at the end of c regardless of the initial state. This problem is called a
postcondition problem. This paper considers the case where we are to discover
a postcondition written as algebraic condition p1 = 0 ∧ · · · ∧ pn = 0 where
p1, . . . , pn are polynomials over program variables; this problem is a basis for
static verification of functional correctness.

One approach to this problem is invariant synthesis, in which we are to
compute a family of predicates Pl indexed by the program locations l such that

1: x := x0; v := v0; t := t0;
2: while t− a ̸= 0 do
3: (x, v, t) := (x+ vdt , v − gdt − ρvdt , t+ dt);
4: end while
5:

Fig. 1. Program cfall , which models a falling mass point. The symbols in the program
represent the following quantities: x is the position of the point, v is its speed, t is time,
x0 is the initial position, v0 is the initial speed, t0 is the initial value of the clock t, g is
the acceleration rate −g, ρ is the friction coefficient, and dt is the discretization interval.
The simultaneous substitution in the loop body numerically updates the values of x, v,
and t. The values of x and t are computed using the differential equations d

dt
x = v and

d
dt
t = 1. Because the force applied by the air to the mass point is −ρv, the differential

equation for v is d
dt
v = −g − ρv.

Pl holds whenever the execution of c reaches l. The invariant associated with
the end of c is a solution to the postcondition problem.

Because of its importance in static program verification, algebraic invariant
synthesis has been intensively studied [?, 13, 15, 16]. Among the proposed tech-
niques, a successful approach is the constraint-based method, in which invariant
synthesis is reduced to a constraint-solving problem. During constraint genera-
tion, this method uses templates, polynomials over the program variables with
unknown parameters at the coefficient positions, that typically represent the in-
variants [16]. The algorithm generates constraints that ensure the templates to
be the invariants and obtains the invariants by solving the constraints4.

Example 1. The program in Figure 1 models the behavior of a mass point with
weight 1 and a constant acceleration rate; the program takes friction between
the mass point and the air into account5. For this program, a postcondition that
holds regardless of the initial state is −gt+ gt0 − v + v0 − xρ+ x0ρ = 0.

We describe how a template method would compute the postcondition in
Example 1. The method described here differs from one we explore in this paper.
This explanation suggests the flavor of a template method.

A template method generates a template polynomial over the program vari-
ables that represents an invariant at Line 4. Suppose the generated polynomial
p(x0, v0, t0, x, v, t, a, dt , g, ρ) is of degree 2 over the variables: p(x0, v0, t0, x, v, t, a, dt , g, ρ) :=
a1+at0t0+ax0x0+ · · ·+agρgρ, where aw is the coefficient parameter associated
to the power product w. The procedure then generates constraints such that
p(x0, v0, t0, x, v, t, a, dt , g, ρ) = 0 is indeed an invariant at Line 4. The method
proposed by Sankaranarayanan et al. [16] based on the Gröbner basis [4] gener-
ates the constraints as an equations on the parameters; a solution to the con-

4 The constraint-based method by Cachera et al. [3], which is the basis of the current
paper, uses a template also for other purpose. See Section 6 for detail.

5 Although the guard condition t−a ̸= 0 should be t−a < 0 in a real-world numerical
program, we use this example for the presentation purposes.

2

straints gives −gt+ ga− v + v0 − xρ+ x0ρ = 0 in this case, which is indeed an
invariant at the end of cfall .

One of the major bottlenecks of the template method is blowup of the size
of a template. Blindly generating a template of degree-d for a degree parameter
d limits the scalability of a template method for higher-degree invariants. For
example, the program in Example 1 has an invariant −gt2 + gt20 − 2tv+2t0v0 +
2x− 2x0 = 0 at Line 4. This invariant requires synthesis of a degree-3 template,
which has

(
10+3

3

)
= 286 monomials in this case.

We propose a hack to alleviate this bottleneck in the template methods.
Our method is inspired by a rule of thumb in physics called the principle of
quantity dimension: A physical law should not add two quantities with different
quantity dimensions [1]. If we accept this principle, then, at least for a physically
meaningful program such as cfall , an invariant (and therefore a template) should
consist of the monomials with the same quantity dimensions.

Indeed, the polynomial −gt + gt0 − v + v0 − xρ + x0ρ in the invariant we
calculated in Example 1 consists only of the quantities that represent velocities.
(Notice that ρ is a quantity that corresponds to the inverse of a time quan-
tity.) The polynomial −gt2 + gt20 − 2tv+2t0v0 +2x− 2x0 above consists only of
quantities corresponding to distances. If we use the notation of quantity dimen-
sions used in physics, the former polynomial consists only of monomials with the
quantity dimension LT−1, whereas the latter consists only of L, where L and T
represent quantity dimensions for lengths and times, respectively. By leveraging
the quantity dimension principle in the template synthesis phase, we can reduce
the size of a template. For example, we could use a template that consists only of
the monomials for, say, velocity quantities instead of p(x0, v0, x, v, t, a, dt , g, ρ),
which yields a smaller template.

The idea of the quantity dimension principle can be nicely captured by gen-
eralizing the notion of homogeneous polynomials. A polynomial is said to be
homogeneous if it consists of monomials of the same degree; for example, the
polynomial x3 + x2y + xy2 + y3 is a homogeneous polynomial of degree 3. We
generalize this notion of homogeneity so that (1) a degree is an expression cor-
responding to a quantity dimension (e.g., LT−1) and (2) each variable has its
own degree in degree computation.

We describe our idea using an example, deferring the formal definitions. Sup-
pose we have the following degree assignment to each program variable: Γ :=
{ g 7→ LT−2, t 7→ T, x 7→ L, v 7→ LT−1, v0 7→ LT−1, ρ 7→ T−1, a 7→ T }. This de-
gree assignment intuitively corresponds to assignment of the quantity dimen-
sion to each variable. With this degree assignment Γ , all the monomials in
−gt + gt0 − v + v0 − xρ + x0ρ have the same degree; for example, the mono-
mial −gt has the degree Γ (g)Γ (t) = (LT−2)T = LT−1 and the monomial xρ
has Γ (x)Γ (ρ) = LT−1, and so on. Hence, −gt + gt0 − v + v0 − xρ + x0ρ is a
homogeneous polynomial in the generalized sense. Such a polynomial is called a
generalized homogeneous (GH) polynomial. We call an algebraic invariant with
a GH polynomial a generalized homogeneous algebraic (GHA) invariant.

3

The main result of this paper is the following: If there is an algebraic invariant
of a given program c, then there is a GHA invariant. This justifies the use use
of a template that corresponds to a GH polynomial in template method. We
show this result by using the abstract semantics of an imperative programming
language proposed by Cachera et al. [3]. We empirically show that the algorithm
by Cachera et al. can indeed be made efficient using the idea of GH polynomials.

As we saw above, the definition of GH polynomials is parameterized over a
degree assignment Γ . We found that the type inference algorithm for the dimen-
sion type system proposed by Kennedy [11,12] can be used to find an appropriate
degree assignment; for example, Γ above is inferred using this algorithm. The
dimension type system was originally proposed for detecting a violation of the
quantity-dimension principle in a numerical program. We show that this type
system is also useful for invariant synthesis.

Although the method is inspired by the principle of quantity dimensions, our
method can be applied to a program that does not model a physical phenomenon
because we abstract the notion of a quantity dimension using that of generalized
homogeneity; all the programs used in our experiments (Section 7) are indeed
physically nonsensical programs.

The rest of this paper is organized as follows. Section 2 sets up the basic
mathematical definitions used in this paper; Section 3 defines the syntax and
semantics of the target language and its abstract semantics; Section 4 defines GH
polynomials; Section 5 defines the revised abstract semantics as the restriction
of the original one to the set of GH polynomials and shows that the revised
semantics is sound and complete; Section 6 gives a template-based invariant-
synthesis algorithm and shows its soundness; Section 7 reports the experimental
results; Section 8 discusses related work; and Section 9 presents the conclusions.
Several proofs are given in the appendices.

2 Preliminary

R is the set of real numbers and N is the set of natural numbers. We write |S| for
the cardinality of S if S is a finite set. We designate an infinite set of variables
Var. K is a field ranged over by metavariable k; we use the standard notation for
the operations on K. For x1, . . . , xn ∈ Var, we write K[x1, . . . , xn], ranged over
by p and q, for the set of polynomials over x1, . . . , xn, the coefficients of which
are taken from K; it is a ring with the standard addition and multiplication.

A subset I ⊆ K[x1, . . . , xn] is called an ideal if (1) I is an additive subgroup
and (2) pq ∈ I for any p ∈ I and q ∈ K[x1, . . . , xn]. A set S ⊆ K[x1, . . . , xn]
is said to generate the ideal I (equivalently, S is a generator of I) if I is the
smallest ideal that contains S. The following facts are paramount: (1) there is a
unique ideal generated by S for a set S ⊆ K[x1, . . . , xn], and (2) every ideal I
has a finite generator [4]. We write ⟨S⟩ for the ideal generated by S.

We call an expression of the form xd1
1 . . . xdN

N , where d1, . . . , dN ∈ N and
x1, . . . , xN ∈ Var, a power product over x1, . . . , xn; w is a metavariable for
power products. we call

∑
di the degree of this power product. A monomial

4

is a term of the form kw; the degree of this monomial is that of w. We write
deg(p), that is, the degree of the polynomial p, for the maximum degree of the
monomials in p.

A state, ranged over by σ, is a finite map from Var to K. We write St for
the set of states. We use the metavariable S for a subset of St. We write σ(p),
where p ∈ K[x1, . . . , xn], for p(σ(x1), . . . , σ(xn)). The set P(St) constitutes a
complete lattice with respect to the set-inclusion order.

3 Language

This section defines the target language, its concrete semantics, and its abstract
semantics. We essentially follow the development by Cachera et al. [3]; we refer
the interested reader to this paper.

The syntax of the target language is as follows:

c ::= skip | x:=p | c1; c2 | if p = 0 then c1 else c2 | while p = 0 do c | while p ̸= 0 do c

where p is a polynomial over the program variables. We restrict the guard to an
algebraic condition (i.e., p = 0), or its negation.

The semantics of this language is given by the following denotation function,
which is essentially the same as that of Cachera et al.

[[c]] : (P(St),⊆)→ (P(St),⊆)
[[skip]](S) = S
[[x:=p]](S) = {σ | σ[x 7→ σ(p)] ∈ S }
[[c1; c2]](S) = [[c1]]([[c2]](S))

[[if p = 0 then c1 else c2]](S) = {σ ∈ [[c1]](S) | σ(p) = 0 } ∪ {σ ∈ [[c2]](S) | σ(p) ̸= 0 }
[[while p ▷◁ 0 do c]](S) = ν(λX. {σ ∈ S | σ(p) ̸▷◁ 0 } ∪ {σ ∈ [[c]](X) | σ(p) ▷◁ 0 }),

where ▷◁ ∈ {=, ̸= } and νF is the greatest fixed point of F . Intuitively, σ ∈ [[c]](S)
means that executing c from σ results in a state in S if the execution terminates;
notice that σ should be in [[c]](S) if c does not terminate. We use the greatest
fixed point instead of the least fixed point in the while statement so that [[c]](S)
contains the states from which the execution of c does not terminate; if we used
the least fixed point in the semantics of a while loop, then only the initial states
from which the program terminates would be in the denotation of the loop.
For example, consider the following program P that does not terminate for any
initial state: while 0 = 0 do skip. Then, [[P]](S) should be St. However, if the
denotation of a while loop were given by the least fixed point, then [[P]](S)
would be ∅.

Example 2. We write c1 for (x, v, t) := (x0, v0, t0), c2 for (x, v, t) := (x+vdt , v−
gdt − ρvdt , t + dt), p1 for −gt + gt0 − v + v0 − xρ + x0ρ, p2 for −gt2 + gt20 −
2tv+2t0v0+2x−2x0, and p for p1+p2. Let S = {σ ∈ St | σ(p) = 0 }. We show
that [[cfall]](S) = St. We have [[cfall]](S) = [[c1]]([[while t− a ̸= 0 do c2]](S)) =
[[c1]](νF) where F (X) = {σ ∈ S | σ(t− a) = 0 }∪ {σ ∈ [[c2]](X) | σ(t− a) ̸= 0 }.
It is easy to check that [[c1]](S) = St, so it suffices to show that νF ⊇ S. Note that

5

[[c2]](S) = S because c2 does not change the value of p. From this we obtain the
following as desired: F (S) = {σ ∈ S | σ(t− a) = 0 }∪{σ ∈ [[c2]](S) | σ(t− a) ̸= 0 } =
{σ ∈ S | σ(t− a) = 0 } ∪ {σ ∈ S | σ(t− a) ̸= 0 } = S.

We give an abstract semantics of this language. It is essentially the same as
that given by Cachera et al. [3] with a small adjustment in the presentation.

We first define the abstract domain that we use. The preorder⊑♯ ⊆ P(K[x1, . . . , xn])×
P(K[x1, . . . , xn]) is defined by S1 ⊑♯ S2 : ⇐⇒ S2 ⊆ S1

6. Then P(K[x1, . . . , xn])
is a complete lattice, and meets are given by unions of sets: GivenH ∈ P(K[x1, . . . , xn])
and U ⊆ P(K[x1, . . . , xn]), H ⊑♯ G for all G ∈ U if and only if H ⊑♯

∪
U .

We define the abstraction α(S) by { p ∈ K[x1, . . . , xn] | ∀σ ∈ S, σ(p) = 0 }
and the concretization γ(G) by {σ ∈ St | ∀p ∈ G, σ(p) = 0 }. The pair of α and
γ constitutes a Galois connection; indeed, α(S)⊑♯ G if and only if S ⊆ γ(G),
because by definition both of them are equivalent to: ∀p ∈ G,∀σ ∈ S, σ(p) = 0.
The discussion above also gives an intuition of our abstraction; a set of states
S is abstracted by a set of polynomials G := { p1, . . . , pm } if S is the set of the
solutions of the equation p1 = 0 ∧ · · · ∧ pm = 0. For example, the set of a state
{ {x1 7→ 1, x2 7→ 0 } } is abstracted by the set { (x1 − 1)p1 + x2p2 | p1, p2 ∈ K[x1, . . . , xn] };
this set is equivalently ⟨x1 − 1, x2⟩.

The definition of the abstract semantics is parameterized over a remain-
der operation Rem(f, p) that satisfies Rem(f, p) = f − qp for some q. Note
that this definition differs from that in the standard multivariate polynomial
algebra, where we need to fix a monomial order ⪯ so that the operation is
well-defined, and we need to force that LM(p) does not divide any monomial
in LM(Rem(f, p)), where LM(r) is the monomial in r that is the greatest
with respect to the order ⪯; we here do not require such conditions. We write
Rem(G, p), whereG is a set of polynomials, for the set {Rem(f, p) | f ∈ G \ { 0 } }.

The abstract semantics JcK♯Rem is defined as follows.

JcK♯Rem : (P(K[x1, . . . , xn]),⊑♯)→ (P(K[x1, . . . , xn]),⊑♯)JskipK♯Rem(G) = GJx:=pK♯Rem(G) = G[x := p]Jc1; c2K♯Rem(G) = Jc1K♯Rem(Jc2K♯Rem(G))Jif p = 0 then c1 else c2K♯Rem(G) = p · Jc2K♯Rem(G) ∪Rem(Jc1K♯Rem(G), p)Jwhile p ̸= 0 do cK♯Rem(G) = ν(λH.p · Jc1K♯Rem(H) ∪Rem(G, p))Jwhile p = 0 do cK♯Rem(G) = ν(λH.p ·G ∪Rem(Jc1K♯Rem(H), p)).

G[x := p] = { q[x := p] | q ∈ G } and q[x := p] is the polynomial obtained by
replacing x with p in q. νF denotes the greatest fixed point of F , which exists
for an arbitrary monotone F because we are working in the complete lattice
P(K[x1, . . . , xn]); concretely, we have νF =

∪
{G | G⊑♯ F (G) }.JcK♯Rem transfers backward a set of polynomials with value 0; we call such

polynomial a zero polynomial. The highlight of the abstract semantics is the
6 The original abstract semantics of Cachera et al. [3] is defined as a transformer on
ideals of polynomials; however, we formulate it here so that it operates on sets of
polynomials because their invariant-synthesis algorithm depends on the choice of a
generator of an ideal.

6

definition of Jif p = 0 then c1 else c2K♯Rem(G). To understand this case, first

notice that Jc1K♯Rem(G) is a set of zero polynomials just before c1 is executed;Jc2K♯Rem(G) is those for c2. Because we know that p = 0 holds just before c1,

the set of zero polynomials should include Rem(Jc1K♯Rem(G), p). The reader is
referred to [3] for a more detailed explanation.

The abstract semantics is related to the postcondition problem as follows:
If JcK♯Rem(G) = { 0 }, then [[c]](γ(G)) = St. Indeed, from the soundness above,

γ(JcK♯Rem(G)) = γ({ 0 }) = St ⊆ [[c]](γ(G)); therefore [[c]](γ(G)) = St follows
because St is the top element in the concrete domain.

Example 3. We exemplify how the abstract semantics works using the program
cfall in Figure 1. Set p, c1, and c2 as in Example 2. Define Rem in this exam-

ple by Rem(f, p) = f . The following calculation shows JcfallK♯Rem({ p }) = { 0 }:JcfallK♯Rem({ p }) = Jc1K♯Rem(Jwhile t−a ̸= 0 do c2K♯Rem({ p })) = Jc1K♯Rem(ν(λH.(t−
a)Jc2K♯Rem(H)∪Rem({ p } , t−a))) = Jc1K♯Rem(ν(λH.(t−a)Jc2K♯Rem(H)∪{ p })) =Jc1K♯Rem({ (t− a)np | n ∈ N }) = { ((t− a)np)[x := x0, v := v0, t := t0] | n ∈ N } =

{ 0 }. The greatest fixed point is computed as follows. Let F (H) = (t−a)Jc2K♯Rem(H)∪
{ p } and G = { (t− a)np | n ∈ N }. We show that νF = G. According to the defi-
nition of⊑♯, we have⊤ = ∅, and it is easy to check that Fn(⊤) = { (t− a)kp | 0 ≤ k ≤ n }.
Therefore, noting νF is the limit of (Fn(⊤))n∈N, we have νF ⊑♯ G. By simple
computation, we can see that G is a fixed point of F , so we also have G⊑♯ νF ;
hence, νF = G.

Cachera et al. [3, Theorem 3] showed the soundness of this abstract seman-

tics: For any program c and a set of polynomials G, we have γ(JcK♯Rem(G)) ⊆
[[c]](γ(G)). Although our abstract value is a set, instead of an ideal of polynomi-
als, we can prove this theorem in the same way as the original proof.

4 Generalized homogeneous polynomials

A polynomial p is said to be a homogeneous polynomial of degree d if the degree
of every monomial in p is d [4]. As we mentioned in Section 1, we generalize this
notion of homogeneity.

We first generalize the notion of the degree of a polynomial.

Definition 1. The group of generalized degrees (g-degrees) GDegB, ranged
over by τ , is an Abelian group freely generated by the finite set B; that is,
GDegB := { bn1

1 . . . bnm
m | b1, . . . , bm ∈ B,n1, . . . , nm ∈ N }. We call B the set

of the base degrees. We often omit B in GDegB if the set of the base degrees
does not matter.

For example, if we set B to {L, T }, then L, T , and LT−1 are all generalized
degrees. By definition, GDegB has the multiplication on these g-degrees (e.g.,
(LT) · (LT−2) = L2T−1 and (LT 2)2 = L2T 4.)

7

Γ ⊢ skip (T-Skip)

Γ ⊢ c1 Γ ⊢ c2

Γ ⊢ c1; c2
(T-Seq)

Γ (x) = gdegΓ (p)

Γ ⊢ x:=p
(T-Assign)

gdegΓ (p) = τ Γ ⊢ c1 Γ ⊢ c2

Γ ⊢ if p = 0 then c1 else c2
(T-If)

gdegΓ (p) = τ Γ ⊢ c

Γ ⊢ while p ▷◁ 0 do c
(T-While)

Fig. 2. Typing rules

In the analogy of quantity dimensions, the set B corresponds to the base
quantity dimensions (e.g., L for lengths and T for times); the set GDegB corre-
sponds to the derived quantity dimensions (e.g., LT−1 for velocities and LT−2

for acceleration rates.); multiplication expresses the relationship among quantity
dimensions (e.g., LT−1 · T = L for velocity× time = distance.)

Definition 2. A g-degree assignment is a finite mapping from Var to GDeg. A
metavariable Γ ranges over the set of g-degree assignments. For a power product
w := xd1

1 . . . xdn
n , we write gdegΓ (w) for Γ (x1)

d1 . . . Γ (xn)
dn and call it the g-

degree of w under Γ (or simply g-degree of w if Γ is not important); gdegΓ (kw),
the g-degree of a monomial kw under Γ , is defined by gdegΓ (w).

For example, set Γ to { t 7→ T, v 7→ LT−1 }; then gdegΓ (2vt) = L. In terms
of the analogy with quantity dimensions, this means that the expression 2vt
represents a length.

Definition 3. We say p is a generalized homogeneous (GH) polynomial of g-
degree τ under Γ if every monomial in p has the g-degree τ under Γ . We
write gdegΓ (p) for the g-degree of p if it is a GH polynomial under Γ ; if it
is not, then gdegΓ (p) is not defined. We write K[x1, . . . , xn]Γ,τ for the set
of the GH polynomials with g-degree τ under Γ . We write K[x1, . . . , xn]Γ for∪

τ∈GDeg K[x1, . . . , xn]Γ,τ .

Example 4. The polynomial −gt2+ gt20−2tv+2t0v0+2x−2x0 (the polynomial
p2 in Example 2) is a GH-polynomial under

Γ := { g 7→ LT−2, t 7→ T, v 7→ LT−1, x 7→ L, x0 7→ L, v0 7→ LT−1, ρ 7→ T−1, a 7→ T }

because all the monomials in p2 have the same g-degree in common; for example,
gdegΓ (−gt2) = Γ (g)Γ (t)2 = (LT−2)T 2 = L; gdegΓ (−2tv) = Γ (t)Γ (v) =
T (LT−1) = L; gdegΓ (2x) = Γ (x) = L; and gdegΓ (−2x0) = Γ (x0) = L.
Therefore, gdegΓ (p2) = L. We also have gdegΓ (p1) = LT−1.

8

It is easy to see that any p ∈ K[x1, . . . , xn] can be uniquely written as the
finite sum of GH polynomials as pΓ,τ1 + · · ·+ pΓ,τm , where pΓ,τi is the summand
of g-degree τi under Γ in this representation. For example, the polynomial p in
Example 2, can be written as pL + pLT−1 where pL = p1 and pLT−1 = p2 from
the previous example. We call pΓ,τ the GH component of p with g-degree τ under
Γ ; we often omit Γ part if it is clear from the context.

The definitions above are parameterized over a g-degree assignment Γ . It is
determined from the usage of variables in a given program, which is captured
by the following type judgment.

Definition 4. The judgment Γ ⊢ c is the smallest relation that satisfies the
rules in Figure 2. We say Γ is consistent with the program c if Γ ⊢ c holds.

The consistency relation above is an adaptation of the dimension type system
proposed by Kennedy [11,12] to our imperative language. A g-degree assignment
Γ such that Γ ⊢ c holds makes every polynomial in c a GH one. In the rule
T-Assign, we require the polynomial p to have the same g-degree as that of x
in Γ .

Example 5. Set Γ as in Example 4. From the definition of gdeg, we have gdegΓ (x+
vdt) = L, gdegΓ (v − gdt − ρvdt) = LT−1, and gdegΓ (t + dt) = T ; therefore,
we have Γ ⊢ (x, v, t) := (x + vdt , v − gdt − ρvdt , t + dt) from T-Assign. From
gdegΓ (t−a) = T , we have Γ ⊢ while t−a ̸= 0 do (x, v, t) := (x+vdt , v−gdt−
ρvdt , t+ dt);. From Γ ⊢ (x, v, t) := (x0, v0, t0) and T-Seq, we have Γ ⊢ cfall .

5 Abstract semantics restricted to GH polynomials

This section gives the main result of this paper: If there is an algebraic invariant
of c and Γ ⊢ c, then there exists an algebraic invariant that consists of a GH
polynomial under Γ .

To state this result formally, we revise our abstract semantics by restricting
it to the domain of the GH polynomials. The domain is obtained by replacing
the underlying set of the domain (P(K[x1, . . . , xn]),⊑♯) with P(K[x1, . . . , xn]Γ).
This is a subset of P(K[x1, . . . , xn]) that is closed under arbitrary meets. We can
define the abstraction and the concretization in the same way as in Section 3.

The revised abstract semantics JcK♯HRem,Γ , which we hereafter call GH abstract
semantics, is the same as the original one except that it is parameterized over the
degree assignment Γ . In the following definition, we writeRemΓ (G, p) for the set
of the remainder obtained from a GH polynomial in G and p: RemΓ (G, p) :=
{Rem(f, p) | f ∈ (G ∩K[x1, . . . , xn]Γ)\ { 0 } }. We assume that our choice of
Rem is a remainder operation such that whenever both f and p are GH poly-

9

nomials, so is Rem(f, p).

JskipK♯HRem,Γ (G) = GJx:=pK♯HRem,Γ (G) = G[x := p]Jc1; c2K♯HRem,Γ (G) = Jc1K♯HRem,Γ (Jc2K♯HRem,Γ (G))Jif p = 0 then c1 else c2K♯HRem,Γ (G) = p · Jc2K♯HRem,Γ (G) ∪RemΓ (Jc1K♯HRem,Γ (G), p)Jwhile p ̸= 0 do cK♯HRem,Γ (G) = ν(λH.p · Jc1K♯HRem,Γ (H) ∪RemΓ (G, p))Jwhile p = 0 do cK♯HRem,Γ (G) = ν(λH.p ·G ∪RemΓ (Jc1K♯HRem,Γ (H), p)).

The following proposition guarantees the existence of RemΓ .

Proposition 1. Let f, p ∈ K[x1, . . . , xn]Γ and f = pq + r for some q, r ∈
K[x1, . . . , xn] (n.b., q and r are not necessarily GH); then there exist homoge-
neous components q′ of q and r′ of r such that f = pq′ + r′.

Proof. Set q′ to qgdegΓ (f)gdegΓ (p)−1 and r′ to rgdegΓ (f).

The following theorem guarantees that the invariant found using the seman-
tics JcK♯HRem,Γ is indeed an invariant of c.

Theorem 1 (Soundness of the GH abstract semantics).

If Γ ⊢ c and G is the set of GH polynomials under Γ , then JcK♯HRem,Γ (G) =JcK♯Rem(G).

Proof. By induction on c. Notice that Rem(G, p) = RemΓ (G, p) if G and p are
homogeneous under Γ under the assumption that Rem preserves homogeneity.

This theorem implies that if g is a GH polynomial under Γ and JcK♯HRem,Γ (g) = 0,
then g is indeed an invariant.

Completeness of JcK♯HRem,Γ is obtained as a corollary of the following lemma.

Lemma 1. Suppose Γ ⊢ c and g′1, . . . , g
′
m ∈ K[x1, . . . , xn]. Further, suppose

that gi is a homogeneous component of g′i (i.e., gi = g′iτi for some τi). If h ∈JcK♯HRem,Γ ({ g1, . . . , gm }), then there exists h′ ∈ JcK♯Rem({ g′1, . . . , g′m }) such that
h is a homogeneous component of h′.

Proof. We say G is a homogeneous component of G′ under Γ if, for any p ∈ G,
there exists p′ ∈ G′ such that p = p′τ for some τ . By induction on c, we can

prove that if G is a homogeneous component of G′ under Γ , then JcK♯HRem,Γ (G)

is a homogeneous component of JcK♯HRem,Γ (G
′) under Γ .

Theorem 2 (Completeness). Let gi and g′i be the same as in Lemma 1. If

Γ ⊢ c and JcK♯Rem({ g′1, . . . , g′m }) = { 0 }, then JcK♯HRem,Γ ({ g1, . . . , gm }) = { 0 }.

Proof. Take h ∈ JcK♯HRem,Γ ({ g1, . . . , gm }). Then there exists h′ ∈ JcK♯Rem({ g′1, . . . , g′m })
such that h′

gdeg(h) = h. By assumption we have h′ = 0; therefore h = 0.

Hence, if g is an invariant of c in the sense of Cachera et al., then every homo-
geneous component of g is also an invariant.

Example 6. Example 3, Example 5, and Corollary 2 guarantee that the follow-
ing equations: JcK♯Rem{ p1 } = { 0 } and JcK♯Rem{ p2 } = { 0 }. One can directly
confirm these equations in the same way as Example 3.

10

6 Template-based algorithm

This section applies our idea to Cachera’s tempalte-based invariant-synthesis
algorithm [3]. We hereafter use metavariable a for a parameter that represents
an unknown value. We use metavariable A for a set of parameters. A template
on A is an expression of the form a1p1+ · · ·+anpn; we use metavariable G for a
set of templates. We denote the set of templates on A by T (A). A valuation v on
A is a map from A to K. We can regard v as a map from T (A) to K[x1, . . . , xn]
by v(a1p1 + · · ·+ ampm) = v(a1)p1 + · · ·+ v(am)pm.

6.1 Algorithm proposed by Cachera et al.

Cachera et al. proposed a sound template-based algorithm for the postcondition
problem we mentioned in Section 1 by using the abstract semantics JcK♯Rem and
without using the Gröbner basis. Their basic idea is to express a fixed point
by constraints on the parameters in a template in order to avoid fixed-point
iteration.

To recall the algorithm of Cachera et al., we establish several definitions.

Definition 5. An equality constraint on A is a pair of G and G′, denoted as
⟨G ≡ G′⟩, where G,G′ ⊆ T (A). A constraint set on A, or just constraints, is a set
of equality constraints on A; a constraint set is represented by the metavariable
C. We may write (A,C) for a constraint set C on A to make A explicit. A
valuation v on A satisfies an equality constraint ⟨G ≡ G′⟩ on A, written v |=
⟨G ≡ G′⟩, if v(G) and v(G′) generate the same ideal. A solution of a constraint
set (A,C) is a valuation on A that satisfies all constraints in C. If v is a solution
of (A,C), we write v |= (A,C), or simply v |= C. A template a1p1 + · · ·+ ampm
is a GH template of g-degree τ under Γ if p1, . . . , pm are GH polynomials of
g-degree τ .

We extend the definition of the remainder computation to operate on tem-
plates.

Definition 6. Rempar(A, f, p) is a pair (A′, f−pq) where q is the most general
template of degree deg(f)−deg(p), the parameters of which are fresh; A′ is the
set of the parameters appearing in q. We write Rempar(A, { p1, . . . , pm } , p) for
(A′, G′), where (Ai, ri) = Rempar(A, pi, p) and A′ =

∪
Ai and G′ = { r1, . . . , rm }.

For example, if the set of variables is {x }, thenRempar(∅, x2, x+1) = ({ a1, a2 } , x2−
(a1x+a2)(x+1)); the most general template of degree deg(x2)−deg(x+1) = 1
with variable x is a1x+ a2. By expressing a remainder using a template, we can
postpone the choice of a remainder operator to a later stage; for example, if we
instantiate (a1, a2) with (1,−1), then we have the standard remainder operator
on R[x].

11

Algorithm 1 Inference of polynomial invariants.

1: procedure InvInf(c, d)
2: g ← the most general template of degree d
3: A0 ← the set of the parameters occurring in g
4: (A,G,C)← JcK♯cRempar(A0, { g } , ∅)
5: return v(g) where v is a solution of C ∪ { ⟨G ≡ { 0 }⟩ }
6: end procedure

We recall the constraint generation algorithm proposed by Cachera et al. We
write (Ai, Gi, Ci) for JciK♯cRempar(A,G,C) in each case of the following definition.

JskipK♯cRempar(A,G,C) = (A,G,C)Jx:=pK♯cRempar(A,G,C) = (A,G[x := p], C)Jc1; c2K♯cRempar(A,G,C) = Jc1K♯cRempar(Jc2K♯cRempar(A,G,C))Jif p = 0 then c1 else c2K♯cRempar(A,G,C) = (A3, p ·G2 ∪G3, C1 ∪ C2)
where (A3, G3) = Rempar(A1 ∪A2, G1, p)Jwhile p ▷◁ 0 do c1K♯cRempar(A,G,C) = (A1, G,C1 ∪ {⟨G ≡ G1⟩})

JcK♯cRempar(A,G,C) accumulates the generated parameters to A and the generated
constraints to C. A is augmented by fresh parameters at the if statement where
Rempar is called. At a while statement, ⟨G ≡ G1⟩ is added to the constraint
set to express the loop-invariant condition.

Algorithm 1 solves the postcondition problem with the constraint-generating
subprocedure JcK♯cRempar . This algorithm, given a program c and degree d, re-
turns a set of postconditions that can be expressed by an algebraic condition
with degree d or lower. The algorithm generates the most general template g of
degree d for the postcondition and applies JcK♯cRempar to g. For the returned set
of polynomials G and the constraint set C, the algorithm computes a solution of
C ∪ ⟨G ≡ { 0 }⟩; the equality constraint ⟨G ≡ { 0 }⟩ states that v(g) = 0, where
v is a model of the constraint set C ∪ ⟨G ≡ { 0 }⟩, has to hold at the end of c
regardless of the initial state.

This algorithm is proved to be sound: If p ∈ InvInf(c, d), then p = 0 holds
at the end of c for any initial states [3]. Completeness is not mentioned in their
paper.

Example 7. We explain how InvInf(cfall , 3) works. The algorithm generates a
degree-3 template q(x, v, t, x0, v0, t0, a, dt , g, ρ) over {x, v, t, x0, v0, t0, a, dt , g, ρ }.
The algorithm then generates the following constraints by JcfallK♯cHRempar : ⟨{ q(x, v, t, x0, v0, t0, a, dt , g, ρ) }
≡ { q(x+ vdt , v − gdt − ρvdt , t+ dt , x0, v0, t0, a, dt , g, ρ) }⟩ (from the body of
the loop), ⟨{ q(x, v, t, x0, v0, t0, a, dt , g, ρ) } ≡ { q(x0, v0, t0, x0, v0, t0, a, dt , g, ρ) }⟩
(from the first statement of cfall), and ⟨{ q(x0, v0, t0, x0, v0, t0, a, dt , g, ρ) } ≡ { 0 }⟩.
By solving these constraints with a solver for ideal membership problems [4] or
with the heuristics proposed by Cachera et al. [3], and by applying the solution
to q(x, v, t, x0, v0, t0, a, dt , g, ρ), we obtain p in Example 2.

Remark 1. The algorithm requires a solver for the constraints of the form ⟨G ≡ G′⟩.
This is the problem of finding v that equates ⟨G⟩ and ⟨G′⟩; therefore, it can

12

Algorithm 2 Inference of polynomial invariants (homogeneous version.)

1: procedure InvInfH(c, d, Γ , τ)
2: g ← the most general template of g-degree τ and degree d
3: A0 ← the set of the parameters occurring in g
4: (A,G,C)← JcK♯cHRempar,Γ (A0, { g } , ∅)
5: return v(g) where v is a solution of C ∪ { ⟨G ≡ { 0 }⟩ }
6: end procedure

be solved by repeatedly using a solver for the ideal membership problems [4].
To avoid high-cost computation, Cachera et al. proposed heuristics to solve an
equality constraint.

6.2 Restriction to GH templates

We define a variation of the constraint generation algorithm in which we use
only GH polynomial templates. The algorithm JcK♯cHRempar,Γ differs from JcK♯cRempar

in that it is parameterized also over Γ , not only over the remainder opera-
tion used in the algorithm. The remainder operator RemparH

Γ (A, f, p) returns a
pair (A ∪ A′, f − pq) where q is the most general GH template with g-degree
gdeg(f)gdeg(p)−1, with degree deg(f) − deg(p), and with fresh parameters;
A′ is the set of the parameters that appear in q. We again write (Ai, Gi, Ci) forJciK♯cRempar(A,G,C) in each case of the following definition.

JskipK♯cHRempar,Γ (A,G,C) = (A,G,C)Jx:=pK♯cHRempar,Γ (A,G,C) = (A,G[x := p], C)Jc1; c2K♯cHRempar,Γ (A,G,C) = Jc1K♯cHRempar,Γ (Jc2K♯cHRempar,Γ (A,G,C))Jif p = 0 then c1 else c2K♯cHRempar,Γ (A,G,C) = (A3, p ·G2 ∪G3, C1 ∪ C2)

where (A3, G3) = RemparH
Γ (A1 ∪A2, G1, p)Jwhile p ▷◁ 0 do c1K♯cHRempar,Γ (A,G,C) = (A1, G,C1 ∪ {⟨G ≡ G1⟩})

Algorithm 2 is the variant of Algorithm 1, in which we restrict a template to
GH one.

The algorithm InvInfH takes the input τ that specifies the g-degree of the
invariant at the end of the program c. We have not obtained a theoretical result
about which τ to be passed to InvInfH so that it generates a good invariant.
However, during the experiments in Section 7, we found that the following strat-
egy often works: Pass the g-degree of the monomial of interest. For example, if
we are interested in a property related to x, then pass Γ (x) (i.e., L) to InvInfH

for the invariant −gt2 + gt20 − 2tv+2t0v0 +2x− 2x0 = 0. How to help a user to
find such “monomial of her interest” is left as an interesting future direction.

The revised version of the invariant inference algorithm is sound; at the point
of writing, completeness of InvInfH with respect to InvInf is open despite the
completeness of JcK♯HRem,Γ with respect to JcK♯Rem.

Theorem 3 (Soundness). Suppose Γ ⊢ c, d ∈ N, and τ ∈ GDeg. Set P1 to
the set of polynomials that can be returned by InvInfH(c, d, τ); set P2 to those
by InvInf(c, d). Then, P1 ⊆ P2.

13

7 Experiment

We implemented Algorithm 2 and conducted experiments. Our implementation
Fastinddim takes a program c, a maximum degree d of the template g in the
algorithm, and a monomial w. It conducts type inference of c to generate Γ and
calls InvInfH(c, d, Γ,gdegΓ (w)). The type inference algorithm is implemented
with OCaml; the other parts (e.g., a solver for ideal-equality constraints) are
implemented with Mathematica.

The type inference module is based on the unification-based algorithm pro-
posed by Kennedy [11,12] that computes the principal typing of a given program.
We extended this algorithm to assign a g-degree to each occurrence of a con-
stant symbol. We explain this extension using the following program sumpowerd:
(x, y, s) := (X+1, 0, 1);whilex ̸= 0do if y = 0 then(x, y) := (x−1, x) else(s, y) :=
(s+ yd, y− 1). Our definition of g-degrees, under any g-degree assignment, gives
g-degree 1 ∈ GDeg to a constant; therefore, the only g-degree assignment con-
sistent with this program is {x 7→ 1, y 7→ 1, s 7→ 1, X 7→ 1 }, because X is added
to 1, X + 1 is assigned to x, 0 is assigned to y, and 1 is assigned to s. This
g-degree assignment is not useful for reducing the size of a template. Our imple-
mentation addresses this issue by treating a constant symbol as a variable; for
sumpowerd, it assigns T d to the underlined occurrence of 1 and T to the other
occurrences of the constant symbols7. This g-degree assignment indeed produces
a smaller template.

To demonstrate the merit of our approach, we applied this implementation
to the benchmark used in the experiment by Cachera et al. [3] and compared
our result with that of their implementation, which is called Fastind. The entire
experiment is conducted on a MacBook Air 13-inch Mid 2013 model with a 1.7
GHz Intel Core i7 (with two cores, each of which has 256 KB of L2 cache) and
8 GB of RAM (1600 MHz DDR3). The modules written in OCaml are compiled
with ocamlopt. The version of OCaml is 4.02.1. The version of Mathematica is
10.0.1.0. We refer the reader to [3, 14, 15] for detailed descriptions of each pro-
gram in the benchmark. They contain a nested loop with a conditional branch
(e.g., dijkstra), a sequential composition of loops (e.g., divbin), and nonlin-
ear expressions (e.g., petter(n).) We generate a nonlinear invariant in each
program.

Table 1 shows the result. The column deg shows the degree of the generated
polynomial; tsol shows the time spent by the ideal-equality solver (ms); #m
shows the number of monomials in the generated template; tinf shows the time
spent by the dimension-type inference algorithm (ms); and tinf + tsol shows the
sum of tinf + tsol . By comparing #m for Fastind with that for Fastinddim, we
can discuss the effect of the use of GH polynomials to the size of templates;
comparison of tsol for Fastind with that for Fastinddim suggests the effect to
the constraint reduction phase; comparison of tsol for Fastind with tinf + tsol for
Fastinddim suggests the overhead incurred by g-degree inference.

7 Our implementation generates the set of base degrees B automatically.

14

Name Fastind Fastinddim

deg tsol #m deg tinf tsol tinf + tsol #m

dijkstra 2 9.29 21 2 0.456 8.83 9.29 21
divbin 2 0.674 21 2 0.388 0.362 0.750 8
freire1 2 0.267 10 2 0.252 0.258 0.510 10
freire2 3 2.51 35 3 0.463 2.60 3.06 35
cohencu 3 1.74 35 3 0.434 0.668 1.10 20
fermat 2 0.669 21 2 0.583 0.669 1.25 21
wensley 2 104 21 2 0.436 28.5 28.9 9
euclidex 2 1.85 45 3 1.55 1.39 2.94 36
lcm 2 0.811 28 2 0.513 0.538 1.05 21
prod4 3 31.6 84 3 0.149 2.78 2.93 35
knuth 3 137 220 3 4.59 136 141 220
mannadiv 2 0.749 21 3 0.515 0.700 1.22 18
petter1 2 0.132 6 2 0.200 0.132 0.332 6
petter2 3 0.520 20 3 0.226 0.278 0.504 6
petter3 4 1.56 35 4 0.226 0.279 0.505 7
petter4 5 7.15 56 5 0.240 0.441 0.681 8
petter5 6 17.2 84 6 0.228 0.326 0.554 9
petter10 11 485 364 11 0.225 0.354 0.579 14
sumpower1 3 2.20 35 3 0.489 2.31 2.80 35
sumpower5 7 670 330 7 0.469 89.1 89.6 140

Table 1. Experimental result.

Discussion The size of the templates, measured as the number of monomials
(#m), was reduced in 13 programs out of 20 by using GH polynomials. The
value of tsol decreased for these 13 programs; it is almost the same for the
other programs. #m did not decrease for the other 7 programs because the
extension of the type inference procedure mentioned above introduced useless
auxiliary variables. We expect that we can eliminate such variables by using
more elaborate program analysis.

By comparing tsol for Fastind and tinf + tsol for Fastinddim , we can observe
that the inference of g-degree assignment sometimes incurred an overhead for the
entire execution time if the template generated by Fastind was small enough and
therefore Fastind was already efficient. However, this overhead is compensated
for in the programs for which Fastind requires more computation time.

To summarize, our current approach is especially effective for a program for
which (1) the existing invariant-synthesis algorithm is less efficient owning to the
large size of the template and (2) we can infer a nontrivial g-degree assignment.
We expect that our approach will be effective for a wider range of programs if
we find a more competent g-degree inference algorithm.

15

8 Related work

The template-based algebraic invariant synthesis proposed to date [3, 16] have
focused on how to reduce the problem to constraint solving and how to solve the
generated constraints efficiently; strategies for generating a template have not
been the main issue. A popular strategy for template synthesis is to iteratively
increase the degree of a template. This strategy suffers from an increase in the
size of a template in the iterations with high degree.

Our claim is that prior analysis of a program effectively reduces the size of
a template; we used the dimension type system for this purpose in this paper
inspired by the principle of quantity dimensions in the area of physics. Of course,
there is a tradeoff between the cost of the analysis and its effect in the template-
size reduction; our experiments suggest that the cost of dimension type inference
is reasonable.

Semialgebraic invariants (i.e., invariants written using inequalities on poly-
nomials) are often useful for program verification. The template-based approach
is also popular in semialgebraic invariant synthesis. One popular strategy in
template-based semialgebraic invariant synthesis is to reduce this problem to
one of semidefinite programming, for which many efficient solvers are widely
available.

As of this writing, it is an open problem whether our idea regarding GH poly-
nomials also applies to semialgebraic invariant synthesis; for physically mean-
ingful programs, at least, we guess that it is reasonable to use GH polynomials
because of the success of the quantity dimension principle in the area of physics.
A possible approach to this problem would be to investigate the relationship
between GH polynomials and Stengle’s Postivstellensatz [18], which is the theo-
retical foundation of the semidefinite-programming approach mentioned above.
There is a homogeneous version of Positivstellensatz [8, Theorem II.2]; because
the notion of homogeneity considered there is equivalent to generalized homo-
geneity introduced in this paper, we conjecture that this theorem provides a
theoretical foundation of an approach to semialgebraic invariant synthesis using
GH polynomials.

Although the application of the quantity dimension principle to program
verification is novel, this principle has been a handy tool for discovering hidden
knowledge about a physical system. A well-known example in the field of hy-
drodynamics is the motion of a fluid in a pipe [1]. One fundamental result in
this regard is that of Buckingham [2], who stated that any physically meaningful
relationship among n quantities can be rewritten as one among n − r indepen-
dent dimensionless quantities, where r is the number of the quantities of the base
dimension. Investigating the implications of this theorem in the context of our
work is an important direction for future work.

The term “generalized homogeneity” appears in various areas; according to
Hankey et al. [10], a function f(x1, . . . , xn) is said to be generalized homogeneous
if there are a1, . . . , an and af such that, for any positive λ, f(λa1 , . . . , λan) =
λaf f(x1, . . . , xn). Barenblatt [1] points out that the essence quantity dimension
principle is generalized homogeneity. Although we believe our GH polynomials is

16

related to the standard definition, we have not fully investigated the relationship
at the time of writing.

9 Conclusion

We presented a technique to reduce the size of the template used in template-
based invariant-synthesis algorithms. Our technique is based on the finding that,
if an algebraic invariant of a program c exists, then there is a GH invariant
of c; hence, we can reduce the size of a template by synthesizing only a GH
polynomial. We presented the theoretical development as a modification of the
framework proposed by Cachera et al. and empirically confirmed the effect of
our approach using the benchmark used by Cachera et al. Although we used the
framework of Cachera et al. as a baseline, we believe that we can apply our idea
to the other template-based methods [3, 7, 13,15–17].

Our motivation for the current work is safety verification of hybrid systems,
in which the template method is a popular strategy. For example, Gulwani et
al. [9] proposed a method of reducing the safety condition of a hybrid system to
constraints on the parameters of a template by using Lie derivatives. We expect
our idea to be useful for expediting these verification procedures.

We are also interested in applying our idea to decision procedures and sat-
isfiability modulo theories (SMT) solvers. Support of nonlinear predicates is an
emerging trend in many SMT solvers (e.g., Z3 [6]). Dai et al. [5] proposed an
algorithm for generating a semialgebraic Craig interpolant using semidefinite
programming [5]. Application of our approach to these method is an interesting
direction for future work.

References

1. G. I. Barenblatt. Scaling, self-similarity, and intermediate asymptotics: dimen-
sional analysis and intermediate asymptotics, volume 14. Cambridge University
Press, 1996.

2. E. Buckingham. On physically similar systems; illustrations of the use of dimen-
sional equations. Phys. Rev., 4:345–376, Oct 1914.

3. D. Cachera, T. P. Jensen, A. Jobin, and F. Kirchner. Inference of polynomial
invariants for imperative programs: A farewell to Gröbner bases. Sci. Comput.
Program., 93:89–109, 2014.

4. D. A. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An In-
troduction to Computational Algebraic Geometry and Commutative Algebra, 3/e
(Undergraduate Texts in Mathematics). Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2007.

5. L. Dai, B. Xia, and N. Zhan. Generating non-linear interpolants by semidefinite
programming. In N. Sharygina and H. Veith, editors, Computer Aided Verification
- 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-
19, 2013. Proceedings, volume 8044 of Lecture Notes in Computer Science, pages
364–380. Springer, 2013.

17

6. L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In Tools and Algo-
rithms for the Construction and Analysis of Systems, 14th International Confer-
ence, TACAS 2008, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings, pages 337–340, 2008.

7. P. Garg, C. Löding, P. Madhusudan, and D. Neider. ICE: A robust framework for
learning invariants. In A. Biere and R. Bloem, editors, Computer Aided Verification
- 26th International Conference, CAV 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, volume 8559
of Lecture Notes in Computer Science, pages 69–87. Springer, 2014.

8. L. Gonzalez-Vega and H. Lombardi. Smooth parametrizations for several cases of
the Positivstellensatz. Mathematische Zeitschrift, 225(3):427–451, 1997.

9. S. Gulwani and A. Tiwari. Constraint-based approach for analysis of hybrid sys-
tems. In A. Gupta and S. Malik, editors, Computer Aided Verification, 20th Inter-
national Conference, CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceed-
ings, volume 5123 of Lecture Notes in Computer Science, pages 190–203. Springer,
2008.

10. A. Hankey and H. E. Stanley. Systematic application of generalized homogeneous
functions to static scaling, dynamic scaling, and universality. Physical Review B,
6(9):3515, 1972.

11. A. Kennedy. Dimension types. In D. Sannella, editor, Programming Languages
and Systems - ESOP’94, 5th European Symposium on Programming, Edinburgh,
U.K., April 11-13, 1994, Proceedings, volume 788 of Lecture Notes in Computer
Science, pages 348–362. Springer, 1994.

12. A. Kennedy. Programming Languages and Dimensions. PhD thesis, St. Catharine’
s College, Mar. 1996.

13. M. Müller-Olm and H. Seidl. Computing polynomial program invariants. Inf.
Process. Lett., 91(5):233–244, 2004.

14. E. Rodŕıguez-Carbonell. Some programs that need polynomial invariants in
order to be verified. http://www.cs.upc.edu/~erodri/webpage/polynomial_

invariants/list.html (Accessed on January 25th, 2016).
15. E. Rodŕıguez-Carbonell and D. Kapur. Generating all polynomial invariants in

simple loops. J. Symb. Comput., 42(4):443–476, 2007.
16. S. Sankaranarayanan, H. Sipma, and Z. Manna. Non-linear loop invariant gen-

eration using Gröbner bases. In N. D. Jones and X. Leroy, editors, Proceedings
of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2004, Venice, Italy, January 14-16, 2004, pages 318–329. ACM,
2004.

17. F. Somenzi and A. R. Bradley. IC3: where monolithic and incremental meet. In
P. Bjesse and A. Slobodová, editors, International Conference on Formal Methods
in Computer-Aided Design, FMCAD ’11, Austin, TX, USA, October 30 - Novem-
ber 02, 2011, pages 3–8. FMCAD Inc., 2011.

18. G. Stengle. A nullstellensatz and a positivstellensatz in semialgebraic geometry.
Mathematische Annalen, 207(2):87–97, 1974.

18

A Proof of Theorem 3

To prove Theorem 3, we need to define renaming of parameters and constraints.

Definition 7. For an injection ι : A → A′, we write ι : (A,G,C) ⪯ (A′, G′, C ′)
if G′ = ι∗(G) and C ′ = ι∗(C) where ι∗ maps a′ ∈ ι(A) to ι−1(a′) and a′ ∈
ι(A′\ι(A)) to 0.

The injection ι gives a renaming of parameters. The relation ι : (A,G,C) ⪯
(A′, G′, C ′) reads G and C are obtained from G′ and C ′ by renaming the pa-
rameters in ι(A) using ι and substituting 0 to those not in ι(A).

Lemma 2. If ι : (A,G,C) ⪯ (A′, G′, C ′), then there exists κ such that (1)

κ : JcK♯cHRempar,Γ (A,G,C) ⪯ JcK♯cRempar(A′, G′, C ′) and (2) κ is an extension of ι.

Proof. Induction on the structure of c. ⊓⊔

Proof of Theorem 3 Let g ∈ T (A0) be the most general template of gen-
eralized degree τ and degree d, and g′ ∈ T (A′

0) be the most general tem-
plate of degree d. Without loss of generality, we can assume A0 ⊆ A′

0 and

g′ = g + g1 for some g1 ∈ T (A′
0\A0). Let (A,G,C) = JcK♯cHRempar,Γ (A0, { g } , ∅)

and (A′, G′, C ′) = JcK♯cRempar(A′
0, { g′ } , ∅). Then, from Lemma 2, there exists κ

such that κ : (A,G,C) ⪯ (A′, G′, C ′) and κ is an extension of the inclusion
mapping ι : A0 → A′

0. Suppose v(g) is a result of InvInfH(c, d, τ) where v is a
solution to C ∪ { ⟨G ≡ { 0 }⟩ }. Define a valuation v′ on A′ by

v′(a′) =

{
v(a) a′ = κ(a) for some a ∈ A
0 Otherwise.

Then, v′(g′) = v′(g + g1) = v′(g); the second equation holds because v′(a′)
is constantly 0 on any a′ ∈ A′\A. All the parameters in g are in A0 and κ
is an identity on A0. Therefore, v′(g) = v(g). It suffices to show that v′ |=
C ′ ∪ { ⟨G′ ≡ { 0 }⟩ }, which indeed holds from the definition of v′ since v |=
C ∪ { ⟨G ≡ { 0 }⟩ } and C and G are renaming of C ′ and G′. ⊓⊔

19

