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Abstract. We add, to the common combination of a WHILE-language and a
Hoare-style program logic, a constantdt that represents an infinitesimal (i.e. in-
finitely small) value. The outcome is a framework for modeling and verification
of hybrid systems: hybrid systems exhibit both continuous and discrete dynamics
and getting them right is a pressing challenge. We rigorously define the semantics
of programs in the language ofnonstandard analysis, on the basis of which the
program logic is shown to be sound and relatively complete.

1 Introduction

Hybrid systemsare systems that deal with both discrete and continuous data. They
have rapidly gained importance since more and more physicalsystems—cars, airplanes,
etc.—are controlled with computers. Their sensors will provide physical, continuous
data, while the behavior of controller software is governedby discrete data. Those in-
formation systems which interact with a physical ambience are more generally called
cyber-physical systems (CPS); hybrid systems are an important building block of CPSs.

Towards the goal of getting hybrid systems right, the research efforts have been
mainly from two directions.Control theory—originally focusing on continuous data
and their control e.g. via integration and differentiation—is currently extending its
realm towards hybrid systems. The de facto standard SIMULINK tool for hybrid system
modeling arises from this direction; it employs the block diagram formalism and offers
simulation functionality—aiming attestingrather thanverification. The current work is
one of the attempts from the other direction—from theformal verificationcommunity—
that advance from discrete to continuous.

Hybrid systems exhibit two kinds of dynamics: continuousflow and discretejump.
Hence for a formal verification approach to hybrid systems, the challenge is: 1) to in-
corporate flow-dynamics; and 2) to do so at the lowest possible cost, so that the discrete
framework smoothly transfers to hybrid situations. A largebody of existing work in-
cludes differential equations explicitly in the syntax; see the discussion of related work
below. What we propose, instead, is to introduce a constantdt for an infinitesimal(i.e.
infinitely small) value andturn flow into jump. With dt, the continuous operation of in-
tegration can be represented by awhile loop, to which existing discrete techniques like
Hoare-style program logics readily apply. For a rigorous mathematical development we
employnonstandard analysis (NSA)beautifully formalized by Robinson.

⋆ We are greteful to Naoki Kobayashi and Toshimitsu Ushio for helpful discussions.
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Concretely, in this paper we take the common combination of aWHILE-language,
a first-order assertion language and a Hoare logic (e.g. in the textbook [12]); and add
a constantdt to obtain a modeling and verification framework for hybrid systems. Its
three ingredients are called WHILEdt, ASSNdt and HOAREdt. These are connected by
denotational semantics defined in the language of NSA. We prove soundness and rela-
tive completeness of the logic HOAREdt. Underlying the technical development is the
idea of what we callsectionwise execution, illustrated by the following example.

Example 1.1 Let celapse be the following program;≡ denotes the syntactic equality.

celapse :≡
[

t := 0 ; while t ≤ 1 do t := t + dt
]

The value designated bydt is infinitesimal; therefore thewhile loop will not terminate
within finitely many steps. Nevertheless it is intuitive to expect that after an “execution”
of this program (which takes an infinitely long time), the value oft should be infinitely
close to1. How can we turn this intuition into a mathematical argument?

Our idea is to think aboutsectionwise execution. For each natural numberi we
consider thei-th sectionof the programcelapse, denoted bycelapse|i. Concretely,celapse|i
is defined by replacing the infinitesimaldt in celapse by 1

i+1 :

celapse|i :≡
[

t := 0 ; while t ≤ 1 do t := t + 1
i+1

]

.

Informally celapse|i is the “i-th approximation” of the originalcelapse.
A sectioncelapse|i does terminate within finite steps and yields1 + 1

i+1 as the value
of t. Now we collect the outcomes of sectionwise executions and obtain a sequence

( 1 + 1, 1 + 1
2 , 1 + 1

3 , . . . , 1 + 1
i , . . . )

which is thought of as an incremental approximation of the actual outcome of the origi-
nal programcelapse. Indeed, in the language of NSA, the sequence represents ahyperreal
numberr that is infinitely close to1.

We note that, as is clear from this example, a program of WHILEdt is not executable
in general. We would rather regard WHILEdt as a modeling language for hybrid sys-
tems, with a merit of being close to a common programming style.

The idea ofturning flow into jumpwith dt and NSA seems applicable to other
discrete modeling/verification techniques thanwhile-language and Hoare logic. We
wish to further explore this potentiality. Adaptation of more advanced techniques for
deductive program verification—such as invariant generation and type systems—to the
presence ofdt is another important direction of future work.

Due to the lack of space all the proofs are deferred to the appendix.

Related workThere have been extensive research efforts towards hybrid systems from
the formal verification community. Unlike the current work where we turn flow into
jump viadt, most of them feature acute distinction between flow- and jump-dynamics.

Hybrid automaton[1] is one of the most successful approaches to verification of
hybrid systems. A number of model-checking algorithms havebeen invented for auto-
matic verification. The deductive approach in the current work—via theorem-proving in



3

HOAREdt—has an advantage of handling parameters (i.e. universal quantifiers or free
variables that range over an infinite domain) well; model checking in such a situation
necessarily calls for some abstraction technique. Our logic HOAREdt is compositional
too: a property of a whole system is inferred from the ones of its constituent parts.

Deductive verification of hybrid systems has seen great advancement through a re-
cent series of work by Platzer and his colleagues, including[8, 9]. Their formalism is
variations ofdynamic logic, augmented with differential equations to incorporate flow-
dynamics. They have also developed advanced techniques aimed at automated theorem
proving, resulting in a sophisticated tool called KeYmaera[10]. We expect our approach
(namely incorporating flow-dynamics viadt) offer a smoother transfer of existing dis-
crete verification techniques to hybrid applications. Additionally, our preliminary ob-
servations suggest that some of the techniques developed byPlatzer and others can be
translated into the techniques that work in our framework.

There are severalhybrid process algebrasproposed for hybrid system modeling;
see [6] for an overview. Some tools have been developed, too,as extensions of process
algebra-based verification tools for discrete systems. However, the distinction between
flow and jump makes their syntax cryptic and it is not uncommon[6] that flaws are
found in widely accepted hybrid process algebras. They are suited for describing non-
determinism and concurrency; this is a feature we wish to addto our framework.

The use of NSA as a foundation of hybrid system modeling is notproposed for the
first time; see e.g. [2, 3, 7, 11]. Compared to these existing work, we claim our novelty
is a clean integration of NSA and the widely-accepted programming style ofwhile-
languages, with an accompanying verification framework by HOAREdt.

2 A Nonstandard Analysis Primer

This section is mainly for fixing notations. For more detailssee e.g. [5].
The type of statements “there existsi0 ∈ N such that, for eachi ≥ i0, ϕ(i) holds”

is typical in analysis. It is often put as “for sufficiently largei ∈ N.” This means: the set
{i ∈ N | ϕ(i) holds} ⊆ N belongs to the familyF0 := {S ⊆ N | N \ S is finite}.

In NSA, the familyF0 is extended to so-called anultrafilter F . The latter is a
convenient domain of “i-indexed truth values”: notably for each setS ⊆ N, exactly one
out ofS andN \ S belongs toF .

Definition 2.1 (Ultrafilter) A filter is a familyF ⊆ P(N) such that: 1)X ∈ F and
X ⊆ U impliesU ∈ F ; 2) X ∩ Y ∈ F if X,Y ∈ F . A nonempty filterF 6= ∅ is said
to beproper if it does not contain∅ ⊆ N; equivalently, ifF 6= P(N). An ultrafilter is
a maximal proper filter; equivalently, it is a filterF such that for eachS ⊆ N, exactly
one out ofS andN \ S belongs toF .

A filter F ′ can be always extended to an ultrafilterF ⊇ F ′; this is proved using Zorn’s
lemma. Since the familyF0 is easily seen to be a filter, we have:

Lemma 2.2 There is an ultrafilterF that containsF0 = {S ⊆ N | N \ S is finite}.
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Throughout the rest of the paper we fix suchF . Its properties to be noted: 1)F is closed
under finite intersections and infinite unions; 2) exactly one ofS or N \S belongs toF ,
for eachS ⊆ N; and 3) ifS is such thatN \ S is finite, thenS ∈ F .

We say “ϕ(i) holds for almost everyi ∈ N” for the fact that the set{i | ϕ(i) holds}
belongs toF . For its negation we say “for negligibly manyi.”

Definition 2.3 (Hypernumber d ∈ ∗D) For a setD (typically it is N or R), we define
the set∗D by ∗D := DN/ ∼F . It is the set of infinite sequences onD modulo the
following equivalence∼F : we define(d0, d1, . . . ) ∼F (d′0, d

′
1, . . . ) by

di = d′i “for almost everyi,” that is, {i ∈ N | di = d′i} ∈ F .

An equivalence class
[

(di)i∈N

]

∼F
∈ ∗D shall be also denoted by

[

(di)i∈N

]

or (di)i∈N

when no confusion occurs. An elementd ∈ ∗D is called ahypernumber; in contrast
d ∈ D is astandard number. Hypernumbers will be denoted in boldface liked.

We say that(di)i∈N is asequence representationof d ∈ ∗D if d = [(di)i]. Note that,
givend ∈ ∗D, its sequence representation is not unique. There is a canonical embedding
D →֒ ∗D mappingd to [(d, d, . . . )]; the latter shall also be denoted byd.

Definition 2.4 (Operations and relations on∗D) An operationf : Dk → D of any
finite arityk (such as+ : R2 → R) has a canonical “pointwise” extensionf : (∗D)k →
∗D. A binary relationR ⊆ D2 (such as< on real numbers) also extends toR ⊆ (∗D)2.

f
( [

(d
(0)
i )i∈N

]

, . . . ,
[

(d
(k−1)
i )i∈N

] )

:=
[ (

f(d
(0)
i , . . . , d

(k−1)
i )

)

i∈N

]

,
[

(di)i∈N

]

R
[

(d′i)i∈N

] def.
⇐⇒ di R d′i for almost everyi.

These extensions are well-defined sinceF is closed under finite intersections.

Example 2.5 (ω and ω−1) By ω we denote the hypernumberω = [ (1, 2, 3, . . . ) ] ∈
∗N. It is bigger than (the embedding of) any (standard) naturalnumbern = [ (n, n, n, . . . ) ],
since we haven < i for all i except for finitely many. The presence ofω shows that
N ( ∗N andR ( ∗R. Its inverseω−1 = [ (1, 1

2 , 1
3 , . . . ) ] is positive (0 < ω−1) but is

smaller than any (standard) positive real numberr > 0.
These hypernumbers—infiniteω andinfinitesimalω−1—will be heavily used.

For the setB = {tt, ff} of Boolean truth values we have the following. Therefore a
“hyper Boolean value” does not make sense.

Lemma 2.6 Assume thatD is a finite setD = {a1, . . . , an}. Then the canonical inclu-
sion mapD →֒ ∗D is bijective. In particular we have∗B ∼= B for B = {tt, ff}. ⊓⊔

3 Programming Language WHILE dt

3.1 Syntax

We fix a countable setVar of variables.
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Definition 3.1 (WHILE dt, WHILE ) The syntax of our target language WHILEdt is:

AExp ∋ a ::= x | cr | a1 aop a2 | dt | ∞

wherex ∈ Var, cr is a constant forr ∈ R, andaop ∈ {+,−, ·, ∧}

BExp ∋ b ::= true | false | b1 ∧ b2 | ¬b | a1 < a2

Cmd ∋ c ::= skip | x := a | c1; c2 | if b then c1 else c2 | while b do c

An expression inAExp is said to bearithmetic; one inBExp is Booleanand one
in Cmd is a command. The operatora∧b designates “a to the power ofb” and will
be denoted byab. The operator∧ is included as a primitive for the purpose of relative
completeness (Thm. 5.4). We will often denote the constantcr by r.

By WHILE, we denote the fragment of WHILEdt without the constantsdt and∞.

The language WHILE is much like usual programming languages with awhile con-
struct, such asIMP in the textbook [12]. Its only anomaly is a constantcr for any
real numberr: although unrealistic from the implementation viewpoint,it is fine be-
cause WHILE is meant to be a modeling language. Then our target language WHILEdt

is obtained by addingdt and∞: they designate an infinitesimalω−1 and an infiniteω.
The relations>,≤,≥ and= are definable in WHILEdt: x > y asy < x; ≤ as the

negation of>; and= as the conjunction of≤ and≥. So are all the Boolean connectives
such as∨ and⇒, using¬ and∧. We emphasize thatdt is by itself a constant and has
nothing to do with a variablet. We could have used a more neutral notation like∂ in [2];
however the notationdt turns out to be conveniently intuitive in many examples.

Definition 3.2 (Section of WHILE dt expression) Let e be an expression of WHILEdt,
andi ∈ N. Thei-th sectionof e, denoted bye|i, is obtained by replacing each occur-
rence ofdt and∞ in e by the constantsc1/(i+1) andci+1, respectively. Obviouslye|i
is an expression of WHILE.

Example 3.3 (Train control) Our first examples model small fragments of the Euro-
pean Train Control System (ETCS); this is also a leading example in [8]. The following
commandcaccel models a train accelerating at a constant accelerationa, until the timeε
is reached. The variablev is for the train’s velocity; andz is for its position.

caccel :≡
ˆ

while t < ε do cdrive

˜

where
cdrive :≡

ˆ

t := t + dt ; v := v + a · dt ; z := z + v · dt
˜ (1)

The following commandcchkAndBrake models a train that, once its distance from the
boundarym gets within the safety distances, starts braking with the forceb > 0.
However the check if the train is within the safety distance is done only everyε seconds.

cchkAndBrake :≡
ˆ

while v > 0 do ( ccorr; caccel )
˜

where
ccorr :≡

ˆ

t := 0 ; if m − z < s then a := −b else a := 0
˜ (2)

Example 3.4 (Water-level monitor) Our second example is an adaptation from [1].
Compared to the above train example, it exhibits simpler flow-dynamics (the first deriva-
tive is already a constant) but more complex jump-dynamics.
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There is a water tank with a constant drain (2 cm per second). When
the water levely gets lower than5 cm the switch is turned on, which
eventually opens up the valve but only after a time lag of two seconds.
While the valve is open, the water levely rises by1 cm per second.
Oncey reaches10 cm the switch is turned off, which will shut the
valve but again after a time lag of two seconds. drain

valve

switchy

In the following commandcwater, the variablex is a timer for a time lag. Thecase
construct is an obvious abbreviation of nestedif . . . then . . . else . . . .

cwater :≡

2

6

6

6

6

6

6

6

6

6

6

6

6

4

x := 0; y := 1; s := 1; v := 1;
while t < tmax do {

x := x + dt; t := t + dt;
if v = 0 then y := y − 2 · dt else y := y + dt;
case { s = 0 ∧ v = 0 ∧ y ≤ 5 : s := 1; x := 0;

s = 1 ∧ v = 0 ∧ x ≥ 2 : v := 1;
s = 1 ∧ v = 1 ∧ 10 ≤ y : s := 0; x := 0;
s = 0 ∧ v = 1 ∧ x ≥ 2 : v := 0;
else skip }}

3

7

7

7

7

7

7

7

7

7

7

7

7

5

(3)

3.2 Denotational Semantics

We follow [12] and interpret a command of WHILEdt as a transformer on memory
states. Our state can store hyperreal numbers such as the infinitesimalω−1 = [ (1, 1

2 , 1
3 , . . . ) ],

hence is called ahyperstate.

Definition 3.5 (Hyperstate, state)A hyperstateσ is eitherσ = ⊥ (“undefined”) or a
functionσ : Var → ∗R. A stateis a standard version of a hyperstate: namely, astateσ
is eitherσ = ⊥ or a functionσ : Var → R.

We denote the collection of hyperstates byHSt; that of (standard) states bySt.

The definition of (hyper)state as a total function—rather than a partial function with
a finite domain—follows [12]. This makes the denotational semantics much simpler.
Practically, one can imagine there is a fixed default value (say0) for any variable.

The following definition is as usual.

Definition 3.6 (State update)Let σ ∈ HSt be a hyperstate,x ∈ Var andr ∈ ∗R.
We define anupdated hyperstateσ[x 7→ r] as follows. Whenσ = ⊥, we set⊥[x 7→
r] := ⊥. Otherwise:

(

σ[x 7→ r]
)

(x) := r; and fory 6= x,
(

σ[x 7→ r]
)

(y) := σ(y).
An updated (standard) stateσ[x 7→ r] is defined analogously.

Definition 3.7 (Sequence representation)Let (σi)i∈N be a sequence of (standard) states.
It gives rise to a hyperstate—denoted by[(σi)i∈N] or simply by(σi)i∈N—in the follow-
ing way. We set(σi)i∈N := ⊥ if σi = ⊥ for almost alli. Otherwise[ (σi)i∈N ] 6= ⊥ and
we set

[

(σi)i∈N

]

(x) :=
[

(σi(x))i∈N

]

, where the latter is the hyperreal represented
by the sequence(σi(x))i of reals. Fori ∈ N such thatσi = ⊥, the valueσi(x) is not
defined; in this case we use an arbitrary real number (say0) for σi(x). This does not
affect the resulting hyperstate sinceσi(x) is defined for almost alli.
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Let σ ∈ HSt be a hyperstate, and(σi)i∈N be a sequence of states. We say(σi)i∈N

is asequence representationof σ if it gives rise toσ, that is,
[

(σi)i∈N

]

= σ. In what
follows we shall often denote a sequence representation ofσ by (σ|i)i∈N. We empha-
size that givenσ ∈ HSt, its sequence representation(σ|i)i is not unique.

The denotational semantics of WHILEdt is a straightforward adaptation of the usual
semantics of WHILE, except for thewhile clauses where we use sectionwise execution
(see Ex. 1.1). As we see later in Lem. 3.10, however, the idea of sectionwise execution
extends to the whole language WHILEdt.

Definition 3.8 (Denotational semantics for WHILE dt) For expressions of WHILEdt,
theirdenotation

JaK : HSt −→ ∗R ∪ {⊥} for a ∈ AExp,
JbK : HSt −→ B ∪ {⊥} for b ∈ BExp, and
JcK : HSt −→ HSt for c ∈ Cmd

is defined as follows. Recall that⊥ means “undefined” (cf. Def. 3.5); thatB = {tt, ff}
is the set of Boolean truth values; and that∗B ∼= B (Lem. 2.6).

If σ = ⊥, we defineJeK⊥ := ⊥ for any expressione. If σ 6= ⊥ we define

JxKσ := σ(x) JcrKσ := r for eachr ∈ R

Ja1 aop a2Kσ := Ja1Kσ aop Ja2Kσ
JdtKσ := ω−1 =

[

(1, 1
2 , 1

3 , . . . )
]

J∞Kσ := ω =
[

(1, 2, 3, . . . )
]

JtrueKσ := tt JfalseKσ := ff
Jb1 ∧ b2Kσ := Jb1Kσ ∧ Jb2Kσ J¬bKσ := ¬(JbKσ)
Ja1 < a2Kσ := Ja1Kσ < Ja2Kσ
JskipKσ := σ Jx := aKσ := σ

[

x 7→ JaKσ
]

Jc1; c2Kσ := Jc2K
(

Jc1Kσ
)

Jif b then c1 else c2Kσ :=

{

Jc1Kσ if JbKσ = tt

Jc2Kσ if JbKσ = ff

Jwhile b do cKσ :=
( q

(while b do c)|i
y
(σ|i)

)

i∈N

,

where(σ|i)i∈N is an arbitrary sequence representation ofσ (Def. 3.7)
(4)

Hereaop ∈ {+,−,×, ∧} and< are interpreted on∗R as in Def. 2.4. For eache ∈
AExp ∪ BExp, we obviously haveJeKσ = ⊥ if and only if σ = ⊥. It may happen
thatJcKσ = ⊥ with σ 6= ⊥, due to nontermination ofwhile loops.

In the semantics ofwhile clauses (4), the section(while b do c)|i is a command of
WHILE (Def. 3.2); andσ|i is a (standard) state. Therefore the standard state

q
(while b do c)|i

y
(σ|i)

can be defined by the usual semantics ofwhile constructs (see e.g. [12]). That is,

Jwhile b′ do c′Kσ = σ′ def.
⇐⇒











– σ = σ′ = ⊥;
– there exists a finite sequenceσ = σ0, σ1, . . . , σn = σ′ such that:Jb′Kσn =

ff; and for eachj ∈ [0, n).
(

Jb′Kσj = tt & Jc′Kσj = σj+1

)

; or
– such a finite sequence does not exist andσ′ = ⊥.

(5)

By bundling these up for alli, and regarding it as a hyperstate (Def. 3.7), we obtain the
right-hand side of (4). The well-definedness of (4) is provedin Lem. 3.9.
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Lemma 3.9 The semantics ofwhile clauses (4) is well-defined, being independent of
the choice of a sequence representation(σ|i)i of the hyperstateσ. ⊓⊔

In proving the lemma it is crucial that: the set{x1, . . . , xn} of variables that are relevant
to the execution of the command is finite and statically known. This would not be the
case with a programming language that allows dynamical creation of fresh variables.

We have chosen not to include the division operator/ in WHILEdt; this is to avoid
handling ofdivision by zeroin the semantics, which is cumbersome but seems feasible.

Here is one of our two key lemmas. Its proof is by induction.

Lemma 3.10 (Sectionwise Execution Lemma)Lete be an arbitrary expression ofWHILEdt;
σ be a hyperstate; and(σ|i)i∈N be an arbitrary sequence representation ofσ. We have

JeKσ =
[ (

Je|iK(σ|i)
)

i∈N

]

.

Here the denotational semanticsJe|iK of a WHILE expressione|i is defined in a usual
way (i.e. like in Def. 3.8; forwhile clauses see (5)). ⊓⊔

Example 3.11 Considercaccel in Ex. 3.3. For simplicity let us fix the parameters:caccel1 :≡
[ t := 0; ε := 1; a := 1; v := 0; z := 0; caccel ]. Its i-th sectioncaccel1|i has the obvi-
ous semantics. For any (standard) stateσ 6= ⊥, the real number(Jcaccel1|iKσ)(z)—the
traveled distance—is easily calculated as

1
i+1 · 1

i+1 + 1
i+1 · 2

i+1 + · · · + 1
i+1 · i+1

i+1 = (i+1)(i+2)
2(i+1)2 = 1

2 · i+2
i+1 .

Therefore by (4), for any hyperstateσ 6= ⊥, the hyperreal
(Jcaccel1Kσ)(z) is equal to

[ (

1, 3
4 , 2

3 , 5
8 , . . . , 1

2 · i+2
i+1 , . . .

) ]

;

this is a hyperreal that is infinitely close to1/2.

z

t

i = 0
i = 1
i = 2...

Much like Ex. 1.1, one way to look at this sectionwise semantics is as an incremental
approximation. Here it approximates the solutionz = 1

2 t2 of the differential equation
z′′ = 1, obtained via the Riemann integral. See the above figure.

Remark 3.12 (Denotation ofdt) We fixedω−1 as the denotation ofdt. However there
are more infinitesimals, such as(πω)−1 = ( 1

π , 1
2π , 1

3π , . . . ) with (πω)−1 < ω−1. The
choice ofdt’s denotation does affect the behavior of the following programcnonintegrable:

cnonintegrable :≡
[

x := 1 ; while x 6= 0 do x := x − dt
]

.

When we replacedt by 1
i+1 the program terminates withx = 0; hence by our semantics

the program yields a non-⊥ hyperstate withx 7→ 0. However, replacingdt by 1
(i+1)π

with π irrational, the program terminates for noi and it leads to the hyperstate⊥.
In fact, indifference to the choice of an infinitesimal value(violated bycnonintegrable)

is a typical condition in nonstandard analysis, found e.g. in the characterization of dif-
ferentiability or Riemann integrability (see [5]). In thissense the programcnonintegrable

is “nonintegrable”; we are yet to see if we can check integrability by syntactic means.
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The programcnonintegrable can be modified into the one with more reasonable behav-
ior, by replacing the guardx 6= 0 by x > 0. One easily sees that, while different choices
of dt’s denotation (e.g.ω−1 vs.(πω)−1) still lead to different post-hyperstates, the dif-
ferences lie within infinitesimal gaps. The same is true of all the “realistic” programs
that we have looked at.

4 Assertion Language ASSNdt

Definition 4.1 (ASSNdt, ASSN) The syntax of our assertion language ASSNdt is:

AExp ∋ a ::= x | cr | a1 aop a2 | dt | ∞ (the same as in WHILEdt)

Fml ∋ A ::= true | false | A1 ∧ A2 | ¬A | a1 < a2 |
∀x ∈ ∗N. A | ∀x ∈ ∗R. A wherex ∈ Var

An expression in the familyFml is called an(assertion) formula.
We introduce existential quantifiers as notational conventions: ∃x ∈ ∗D. A :≡

¬∀x ∈ ∗D.¬A, whereD ∈ {N, R}.
By ASSN we designate the language obtained from ASSNdt by: 1) dropping the

constantsdt,∞; and 2) replacing the quantifiers∀x ∈ ∗N and∀x ∈ ∗R by ∀x ∈ N and
∀x ∈ R, respectively, i.e. by those which range over standard numbers.

Formulas of ASSNdt are the Boolean expressions of WHILEdt, augmented with quanti-
fiers. The quantifier∀x ∈ ∗N ranging over hyper-natural numbers plays an important
role in relative completeness of HOAREdt (Thm. 5.4).

It is essential that in ASSNdt we have onlyhyperquantifiers like∀x ∈ ∗R and not
standardquantifiers like∀x ∈ R. The situation is much like with the celebratedtrans-
fer principle in nonstandard analysis [5, Thm. II.4.5]. There the validity of a standard
formulaϕ is transferred to that of its∗-transform∗ϕ; and in∗ϕ only hyperquantifiers,
and no standard quantifiers, are allowed to occur.

Remark 4.2 (Absence of standard quantifiers)The lack of standard quantifiers does
restrict the expressive power of ASSNdt. Notably we cannot assert that two hypernum-
bersx, y are infinitely close, that is,∀ε ∈ R. (ε > 0 ⇒ −ε < x − y < ε).3 However
this assertion is arguably unrealistic since, to check it against a physical system, one
needs measurements of arbitrarily progressive accuracy. The examples in§6 indicate
that ASSNdt is sufficiently expressive for practical verification scenarios, too.

Definition 4.3 (Section of ASSNdt expression) Lete be an expression of ASSNdt (arith-
metic or a formula), andi ∈ N. Thei-th sectionof e, denoted bye|i, is obtained by: 1)
replacing every occurrence ofdt and∞ by the constantc1/(i+1) andci+1, respectively;
and 2) replacing every hyperquantifier∀x ∈ ∗D by ∀x ∈ D. HereD ∈ {N, R}.

Obviously a sectione|i is an expression of ASSN.

3 By replacing∀ε ∈ R by ∀ε ∈ ∗R we obtain a legitimate ASSNdt formula, but it is satisfied
only when the two hypernumbersx, y are equal.
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Definition 4.4 (Semantics of ASSNdt) We define the relationσ |= A (“σ satisfiesA”)
between a hyperstateσ ∈ HSt and an ASSNdt formulaA ∈ Fml as usual.

Namely, ifσ = ⊥ we define⊥ |= A for eachA ∈ Fml. If σ 6= ⊥, the definition is
by the following induction on the construction ofA.

σ |= true σ 6|= false

σ |= A1 ∧ A2

def.
⇐⇒ σ |= A1 & σ |= A2

σ |= ¬A
def.
⇐⇒ σ 6|= A

σ |= a1 < a2

def.
⇐⇒ Ja1Kσ < Ja2Kσ whereJaiKσ is as defined in Def. 3.8

σ |= ∀x ∈ ∗D. A
def.
⇐⇒ σ[x 7→ d] |= A for eachd ∈ ∗D (D ∈ {N, R})

Recall thatσ[x 7→ d] denotes an updated hyperstate (Def. 3.6).
An ASSNdt formulaA ∈ Fml is said to bevalid if σ |= A for anyσ ∈ HSt. We

denote this by|= A. Validity of an ASSN formula is defined similarly.

Lemma 4.5 (Sectionwise Satisfaction Lemma)LetA ∈ Fml be anASSNdt formula;
σ be a hyperstate; and(σ|i)i∈N be an arbitrary sequence representation ofσ. We have

σ |= A if and only if
(

σ|i |= A|i for almost everyi
)

,

where the latter relation|= between standard states andASSN formulas is defined in
the usual way (i.e. like in Def. 4.4). ⊓⊔

This is our second key lemma. We note that it fails once we allow standard quantifiers
in ASSNdt. For example, letA :≡ (∃y ∈ R. 0 < y < x) andσ be a hyperstate such
thatσ(x) = ω−1. Then we haveσ|i |= A|i for everyi butσ 6|= A.

The validity of an ASSNdt formulaA, if A is (dt, ∞)-free, can be reduced to that
of an ASSN formula. This is thetransfer principlefor ASSNdt which we now describe.

Definition 4.6 (∗-transform) Let A be an ASSN formula. We define its∗-transform,
denoted by∗A, to be the ASSNdt formula obtained fromA by replacing every occur-
rence of a standard quantifier∀x ∈ D by the corresponding hyperquantifier∀x ∈ ∗D.

It is easy to see that: 1)(∗A)|i ≡ A for each ASSN formulaA; 2) A ≡ ∗(A|i) for each
ASSNdt formulaA that is(dt, ∞)-free—that is,dt or ∞ does not occur in it. Then the
following is an immediate consequence of Lem. 4.5.

Proposition 4.7 (Transfer principle) 1. For eachASSN formulaA, |= A iff |= ∗A.
2. For any (dt,∞)-freeASSNdt formulaA, the following are equivalent: a)|= A|i for

eachi ∈ N; b) |= A|i for somei ∈ N; c) |= A. ⊓⊔

5 Program Logic HOAREdt

We now introduce a Hoare-style program logic HOAREdt that is devised for the verifi-
cation of WHILEdt programs. It derivesHoare triples{A}c{B}.
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Definition 5.1 (Hoare triple) A Hoare triple{A}c{B} of HOAREdt is a triple of ASSNdt

formulasA,B and a WHILEdt commandc.
A Hoare triple{A}c{B} is said to bevalid—we denote this by|= {A}c{B}—if,

for any hyperstateσ ∈ HSt, σ |= A impliesJcKσ |= B.

As usual a Hoare triple{A}c{B} assertspartial correctness: if the execution ofc start-
ing from σ does not terminate, we haveJcKσ = ⊥ hence triviallyJcKσ |= B. The
formulaA in {A}c{B} is called aprecondition; B is apostcondition.

The rules of HOAREdt are the same as usual; see e.g. [12].

Definition 5.2 (HOAREdt) The deduction rules of HOAREdt are as follows.

{A} skip {A}
(SKIP) ˘

A[a/x]
¯

x := a {A}
(ASSIGN)

{A} c1 {C} {C} c2 {B}

{A} c1; c2 {B}
(SEQ)

{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}

{A} if b then c1 else c2 {B}
(IF)

{A ∧ b} c {A}

{A} while b do c {A ∧ ¬b}
(WHILE)

|= A ⇒ A′ {A′} c {B′} |= B′ ⇒ B

{A} c {B}
(CONSEQ)

In the rule (ASSIGN), A[a/x] denotes the capture-avoiding substitution ofa for x in A.
Recall thatBExp of WHILEdt is a fragment ofFml of ASSNdt. Therefore in the rules
(IF) and (WHILE), an expressionb is an ASSNdt formula.

We write⊢ {A}c{B} if the triple{A}c{B} can be derived using the above rules.

Soundness is a minimal requirement of a logic for verification. The proof makes an
essential use of the key “sectionwise” lemmas (Lem. 3.10 andLem. 4.5).

Theorem 5.3 (Soundness)⊢ {A}c{B} implies|= {A}c{B}. ⊓⊔

We also have a “completeness” result. It is calledrelative completeness[4] since
completeness is only modulo the validity of ASSNdt formulas (namely those in the
(CONSEQ) rule); and checking such validity is easily seen to be undecidable. The proof
follows the usual method (see e.g. [12, Chap. 7]); namely viaexplicit description of
weakest preconditions.

Theorem 5.4 (Relative completeness)|= {A}c{B} implies⊢ {A}c{B}. ⊓⊔

6 Verification with H OAREdt

We present a couple of examples. Its details as well as some lemmas that aid finding
loop invariants will be presented in another venue, due to the lack of space.

Example 6.1 (Water-level monitor) For the programcwater in Ex. 3.4, we would like
to prove that the water levely stays between1 cm and12 cm. It is not hard to see,
after some trials, that what we can actually prove is:⊢ {true}cwater{1 − 4 · dt < y <
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12 + 2 · dt}. Note that the additional infinitesimal gaps like4 · dt have no physical
meaning. In the proof, we use the following formulaA as a loop invariant.

A :≡ As ∧ A0 ∧ A1 ∧ A2 ∧ A3

As :≡ (s = 0 ∨ s = 1) ∧ (v = 0 ∨ v = 1)
A0 :≡ s = 1 ∧ v = 1 ⇒ 1 − 4 · dt < y < 10
A1 :≡ s = 0 ∧ v = 1 ⇒ 0 ≤ x < 2 ∧ 10 ≤ y < 10 + x + dt

A2 :≡ s = 0 ∧ v = 0 ⇒ 5 < y < 12 + 2 · dt
A3 :≡ s = 1 ∧ v = 0 ⇒ 0 ≤ x < 2 ∧ 5 − 2x − 2 · dt < y ≤ 5

Example 6.2 (Train control) Take the programcchkAndBrake in Ex. 6.2; we aim at the
postcondition that the train does not travel beyond the boundarym, that is,z ≤ m. For
simplicity let us first considercconstChkAndBrake :≡ (ε := dt ; cchkAndBrake). This is the
setting where the check is conducted constantly. Indeed we can prove that⊢ {v2 ≤
2b(z − m)}cconstChkAndBrake{z ≤ m}, with a loop invariantv2 ≤ 2b(z − m).

The invariant (and the precondition)v2 ≤ 2b(z − m) is what is derived in [8] by
solving a differential equation and then eliminating quantifiers. Using HOAREdt we can
also derive it: roughly speaking, a differential equation in [8] becomes a recurrence
relation in our NSA framework. The details and some general lemmas that aid invariant
generation are deferred to another venue.

In the general case whereε > 0 is arbitrary, we can prove⊢ {v2 ≤ 2b(z − m − v ·
ε)}cchkAndBrake{z ≤ m} in HOAREdt.

An obvious challenge in verification with HOAREdt is finding loop invariants. It
is tempting—especially with “flow-heavy” systems, i.e. those with predominant flow-
dynamics—to assert a differential equation’s solution as a loop invariant. This does not
work: it is a loop invariant only modulo infinitesimal gaps, afact not expressible in
ASSNdt (Rem. 4.2). We do not consider this as a serious drawback, fortwo reasons.
Firstly, such “flow-heavy” systems could be studied, after all, from the control theory
perspective that is continuous in its origin. The formal verification approach is supposed
to show its strength against “jump-heavy” systems, for which differential equations are
hardly solvable. Secondly, verification goals are rarely asprecise as the solution of a
differential equation: we would aim atz ≤ m in Ex. 6.2 but not atz = 1

2at2.
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A Appendix

A.1 Proofs

Proof of Lem. 2.6 Let d = [(di)i] be an arbitrary element of∗D; and for eachj ∈
[1, n], defineSj := {i ∈ N | di = aj}. We argue by contradiction. Assumed is distinct
from the images ofaj ∈ D. Then none ofSj belongs to the ultrafilterF ; by maximality
of F we haveN \ Sj ∈ F for eachj ∈ [1, n]. Therefore

⋂

j(N \ Sj) belongs toF ; but
obviously

⋂

j(N \ Sj) = ∅. This cannot be the case sinceF is proper. ⊓⊔

Proof of Lem. 3.9 Obvious whenσ = ⊥; assume otherwise. Let(σi)i and(σ′
i)i be

two sequence representations ofσ. We define, for eachi ∈ N

σ̂i := J(while b do c)|iKσi and σ̂′
i := J(while b do c)|iKσ′

i ;

and we are set out to prove[(σ̂i)i] = [(σ̂′
i)i].

For eachx ∈ Var we have the equality of hyperreals

[

(σi(x))i

]

=
[

(σ′
i(x))i

]

= σ(x) (6)

by assumption. Therefore for eachx ∈ Var, the set

Sx := {i ∈ N | σi(x) = σ′
i(x)}

belongs to the ultrafilterF . Now letx1, . . . , xn be an enumeration of all the variables
occurring inb or c; obviously there are only finitely many of such. These are those
variables which affect the execution of the command, or are affected by that. LetS :=
Sx1

∩ · · · ∩ Sxn
; then the setS again belongs toF . By the definition ofSx we have:

σi(x1) = σ′
i(x1) , . . . , σi(xn) = σ′

i(xn) for eachi ∈ S. (7)

First consider the case that either[(σ̂i)i] or [(σ̂′
i)i] is ⊥. We have

[(σ̂i)i] = ⊥

⇐⇒ {i | σ̂i = ⊥} ∈ F by Def. 3.7

⇐⇒ {i ∈ S | σ̂i = ⊥} ∈ F sinceF is a filter andS ∈ F

⇐⇒ {i ∈ S | σ̂′
i = ⊥} ∈ F since for eachi ∈ S, σ̂i = ⊥ iff σ̂′

i = ⊥, by (7)

⇐⇒ [(σ̂′
i)i] = ⊥ by the same transformation as above.

Therefore we have[(σ̂i)i] = [(σ̂′
i)i] = ⊥.

Assume otherwise. It suffices to show[(σ̂i(x))i] = [(σ̂′
i(x))i] for eachx ∈ Var.

If x 6∈ {x1, . . . , xn} (i.e. if x does not occur inb or c) then obviouslŷσi(x) = σi(x)
andσ̂′

i(x) = σ′
i(x). Therefore the claim follows from the assumption (6). Ifx = xk for

somek ∈ [1, n], for eachi ∈ S we haveσ̂i(xk) = σ̂′
i(xk): this follows immediately

from (7), sincex1, . . . , xn cover all the variables whose value can affect execution of
(while b do c)|i. We are done becauseS ∈ F . ⊓⊔
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Proof of Lem. 3.10 It holds whenσ = ⊥, because we haveJe|iK⊥ = ⊥. We assume
σ 6= ⊥; the proof is by induction on the construction ofe.

Whene ≡ x ∈ Var the claim follows fromσ(x) =
[ (

(σ|i)(x)
)

i

]

; the latter
holds since(σ|i)i is a sequence representation ofσ (Def. 3.7).

Whene is a constantcr, the right-hand side is a sequence that is “almost”(r, r, . . . ):
its entry isr for almost everyi, except for those (negligibly many)i’s with σ|i = ⊥.

Whene ≡ a1 aop a2, we have

Ja1 aop a2Kσ
= Ja1Kσ aop Ja2Kσ by the semantics of WHILEdt

=
(

Ja1|iK(σ|i)
)

i∈N
aop

(

Ja2|iK(σ|i)
)

i∈N
by the induction hypothesis

=
(

Ja1|iK(σ|i) aop Ja2|iK(σ|i)
)

i∈N
by Def. 2.4

=
(

J (a1|i) aop (a2|i) K(σ|i)
)

i∈N
by the semantics of WHILE

=
(

J (a1 aop a2)|i K(σ|i)
)

i∈N
.

Here we denoted the hyperstate
[

(σi)i∈N

]

simply by(σi)i∈N, as we often do elsewhere
(cf. Def. 3.7).

Whene ≡ dt the left-hand side isω−1; and the right-hand side is almostω−1 due
to the definition ofdt|i (Def. 3.2). The same whene ≡ ∞.

Whene is a Boolean constanttrue or false, the proof is the same as whene ≡ cr.
Whene ≡ b1 ∧ b2, the proof is the same as whene ≡ a1 aop a2. So is whene ≡ ¬b,
and whene ≡ a1 < a2.

Whene is the commandskip the claim is trivial.
Whene is a commandx := a, we have to show that the hyperstateJx := aKσ =

σ[x 7→ JaKσ ] coincides with
(

J(x := a)|iK(σ|i)
)

i∈N
=

(

Jx := (a|i)K(σ|i)
)

i∈N
=

(

(σ|i)
[

x 7→ Ja|iK(σ|i)
] )

i∈N
.

They assign the same value to a variabley 6= x, since(σ|i)i is a sequence representation
of σ. To the variablex they assignJaKσ and

(

Ja|iK(σ|i)
)

i∈N
, respectively; these are

the same hyperreal due to the induction hypothesis.
Whene is a commandc1; c2, we have

JeKσ = Jc2K(Jc1Kσ)

= Jc2K
[(

Jc1|iK(σ|i)
)

i∈N

]

by the induction hypothesis

=
[(

Jc2|iK
(

Jc1|iK(σ|i)
)

)

i∈N

]

by the induction hypothesis,(∗)

=
[(

J(c1|i); (c2|i)K(σ|i)
)

i∈N

]

=
[(

J(c1; c2)|iK(σ|i)
)

i∈N

]

.

In (∗), we applied the induction hypothesis to an (obvious) sequence representation
(

Jc1|iK(σ|i)
)

i∈N

of the hyperstate
[ (

Jc1|iK(σ|i)
)

i∈N

]

.

Whene is a commandif b then c1 else c2, assume first thatJbKσ = tt. Then
by the induction hypothesisJb|iK(σ|i) = tt for almost everyi. Therefore we have
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Je|iK(σ|i) = Jc1|iK(σ|i) for almost everyi. We use this fact in the following(†).

JeKσ = Jc1Kσ sinceJbKσ = tt

=
[(

Jc1|iK(σ|i)
)

i∈N

]

by the induction hypothesis

(†)
=

[(

Je|iK(σ|i)
)

i∈N

]

.

The case whereJbKσ = ff is similar.
Finally, whene is a commandwhile b do c the claim is the definition (4) itself.

This concludes the proof. ⊓⊔

Proof of Lem. 4.5 Obvious whenσ = ⊥. Assumeσ 6= ⊥; the proof is by induc-
tion on the construction ofA. In fact most of the cases are the same as in the proof
of Lem. 3.10—more specifically the cases for the Boolean expressions therein. The
remaining case is whenA ≡ ∀x ∈ ∗D. A′, with D ∈ {N, R}.

For the ‘if’ part, assume that for almost everyi we haveσ|i |= (∀x ∈ ∗D. A′)|i,
that is,σ|i |= ∀x ∈ D. (A′|i). By the semantics of ASSNwe have

“for almost everyi: for all d ∈ D: (σ|i)[x 7→ d] |= A′|i,” that is,
{

i ∈ N
∣

∣ for all d ∈ D, (σ|i)[x 7→ d] |= A′|i
}

∈ F .
(8)

We note that this isnot equivalent to

“for all d ∈ D: for almost everyi: (σ|i)[x 7→ d] |= A′|i,” that is,
{

i ∈ N
∣

∣ (σ|i)[x 7→ d] |= A′|i
}

∈ F for all d ∈ D:

the former implies the latter but the converse fails sinceF need not be closed under
infinite intersection.

Anyway take an arbitraryd ∈ ∗D; and let(d|i)i∈N be its arbitrary sequence rep-
resentation. By (8) we have(σ|i)

[

x 7→ (d|i)
]

|= A′|i for almost everyi. Since
(

(σ|i)
[

x 7→ (d|i)
] )

i∈N
is a sequence representation of a hyperstateσ[x 7→ d], we

can use the induction hypothesis and concludeσ[x 7→ d] |= A′. This holds for an
arbitraryd ∈ ∗D; thus by Def. 4.4 we haveσ |= ∀x ∈ ∗D. A′.

For the ‘only if’ part, we prove its contraposition. Assume
{

i ∈ N
∣

∣ σ|i |= (∀x ∈ ∗D. A′)|i
}

6∈ F .

Then we have
{

i ∈ N
∣

∣ σ|i 6|= (∀x ∈ ∗D. A′)|i
}

∈ F sinceF is an ultrafilter; thus
S :=

{

i ∈ N
∣

∣ for somed ∈ D, (σ|i)[x 7→ d] 6|= A′|i
}

∈ F by the semantics of ASSN.

For eachi ∈ S, let us choosedi ∈ D so that(σ|i)[x 7→ di] 6|= A′|i. This is possible
due to the Axiom of Choice. Setdi := 0 for eachi ∈ N \ S; and letd :=

[

(di)i∈N

]

.
Then

(

(σ|i)[x 7→ di]
)

i∈N
is a sequence representation of a hyperstateσ[x 7→ d].

Since(σ|i)[x 7→ di] 6|= A′|i for eachi ∈ S ∈ F , by the induction hypothesis we have
σ[x 7→ d] 6|= A′. Thereforeσ 6|= ∀x ∈ ∗D. A′. ⊓⊔
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Proof of Prop. 4.7

Lemma A.1 1. For eachASSN formulaA andi ∈ N, we have(∗A)|i ≡ A.
2. For eachASSNdt formulaA that is (dt, ∞)-free—i.e.dt or ∞ does not occur in

it—we haveA|i ≡ A|j for eachi, j ∈ N. MoreoverA ≡ ∗(A|i). ⊓⊔

Proof. (Of Prop. 4.7) For the ‘if’ part of the item 1., for an arbitrary stateσ ∈ St take
σ :=

[

(σ)i∈N

]

. By the assumption we haveσ |= ∗A. Therefore by Lem. 4.5 we have
σ |= (∗A)|i; sinceA ≡ (∗A)|i we have shown the claim.

For the ‘only if’ part of the item 1., letσ ∈ HSt be an arbitrary hyperstate. Choose
an arbitrary sequence representation(σ|i)i∈N of σ; by the assumption we haveσ|i |=
A, that is,σ|i |= (∗A)|i. This is for anyi ∈ N; we are done due to Lem. 4.5.

The item 2. follows immediately from Lem. A.1 and the item 1. ⊓⊔

Proof of Thm. 5.3 We need the following lemma that relates substitution and state
update (Def. 3.6).

Lemma A.2 Leta ∈ AExp be an arbitrary arithmetic expression; andσ ∈ HSt.

1. For anya′ ∈ AExp we have:J a′[a/x] Kσ = Ja′K
(

σ[x 7→ JaKσ]
)

.
2. For anyA ∈ Fml we have:σ |= A[a/x] if and only ifσ[x 7→ JaKσ] |= A.

Proof. Both items are proved by induction on the complexity of expressionsa′ and
A.4 It is straightforward; the presence ofdt or ∞ does not change the proofs at all.
Nevertheless we shall describe some details.

The item 1. is easy. For the item 2., the cases whereA is true, false, A1 ∧ A2 or
¬A′ are obvious. WhenA is a1 < a2 we use the item 1. AssumeA is ∀y ∈ ∗D. A′. The
left-hand side is

σ |= (∀y ∈ ∗D. A′)[a/x] ;

we shall successively transform this into equivalent conditions. First, it is equivalent to

σ |= ∀y′ ∈ ∗D. (A′[y′/y][a/x]) wherey′ ∈ Var is fresh,

by the definition of capture-avoiding substitution. That is,

σ[y′ 7→ d] |= A′[y′/y][a/x] for eachd ∈ ∗D.

Now the formulaA′[y′/y] has smaller complexity thanA ≡ ∀y ∈ ∗D. A′; hence by the
induction hypothesis, the above is equivalent to

(

σ[y′ 7→ d]
)[

x 7→ JaK(σ[y′ 7→ d])
]

|= A′[y′/y] for eachd ∈ ∗D.

We haveJaK(σ[y′ 7→ d]) = JaKσ sincey′ does not occur ina; and
(

σ[y′ 7→ d]
)

[x 7→

JaKσ] =
(

σ[x 7→ JaKσ]
)

[y′ 7→ d] sincex 6= y′. Therefore the above is equivalent to
(

σ[x 7→ JaKσ]
)

[y′ 7→ d] |= A′[y′/y] for eachd ∈ ∗D,

4 The induction is not strictly on the “construction” of expressions but on their complexity; the
latter is, say, measured by the number of connectives occurring in the expressions.
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that is,
σ[x 7→ JaKσ] |= ∀y′ ∈ ∗D. A′[y′/y] .

This is equivalent to the right-hand side of the claim because theα-equivalent formulas
∀y′ ∈ ∗D. A′[y′/y] and∀y ∈ ∗D. A′ obviously have the same semantics. ⊓⊔

Proof. (Of Thm. 5.3) Assume⊢ {A}c{B}. We show that, for eachσ 6= ⊥, we have
thatσ |= A implies JcKσ |= B (if σ = ⊥ it is obvious). This is by induction on the
derivation of⊢ {A}c{B}.

If the last rule is (SKIP), we haveJskipKσ = σ hence the claim is obvious.
If the last rule is (ASSIGN), our assumption is thatσ |= A[a/x]. This is equivalent

to σ[x 7→ JaKσ] |= A by Lem. A.2; and toJx := aKσ |= A by the definition of
Jx := aK (Def. 3.8).

If the last rule is (SEQ), from σ |= A it immediately follows thatJc2K(Jc1Kσ) |= B
using the induction hypothesis. We are done sinceJc1; c2Kσ = Jc2K(Jc1Kσ).

If the last rule is (IF), the proof is by cases. Assumeσ |= A. If σ |= b, then
σ |= A ∧ b and by the induction hypothesis we haveJc1Kσ |= B. In this case we
furthermore haveJif b then c1 else c2Kσ = Jc1Kσ and we are done. The other case
whereσ 6|= b is the same.

If the last rule is (WHILE), we argue by contradiction. Assume that there isσ ∈
HSt such thatσ |= A but Jwhile b do cKσ 6|= A ∧ ¬b. Let (σ|i)i∈N be an arbitrary
sequence representation ofσ; by Lem. 3.10 and Lem. 4.5 we have

{i | σ|i |= A|i} ∈ F and
{

i
∣

∣ Jwhile b|i do c|iK(σ|i) 6|= A|i ∧ ¬ b|i
}

∈ F .

Therefore their intersectionS belongs toF :

S :=
{

i
∣

∣ σ|i |= A|i & Jwhile b|i do c|iK(σ|i) 6|= A|i ∧ ¬ b|i
}

∈ F . (9)

For eachi ∈ S, the (standard) stateJwhile b|i do c|iK(σ|i) is not⊥; otherwise it would
satisfy any formula. Therefore by the semantics of standardwhile loops (5), there exist
Ni ∈ N and a sequenceσi,0, σi,1, . . . , σi,Ni

such that

– σi,0 = σ|i andσi,Ni
= Jwhile b|i do c|iK(σ|i);

– Jb|iKσi,Ni
= ff, andJb|iKσi,j = tt for eachj ∈ [0, Ni); and

– σi,j+1 = Jc|iKσi,j for eachj ∈ [0, Ni).

Then we have
σi,0 |= A|i and σi,Ni

6|= A|i . (10)

The former is becauseσi,0 = σ|i andi ∈ S (see (9)); the latter is becauseσi,Ni
6|=

A|i ∧ ¬b|i (by (9)) and thatσi,Ni
|= ¬b|i. By (10), there necessarily exists a natural

numberki ∈ [0, Ni) such thatσi,ki
|= A|i andσi,ki+1 6|= A|i. Note also thatσi,ki

|= b|i
sinceki ∈ [0, Ni). We setσ′

i := σi,ki
; summing up its properties we have

σ′
i |= A|i , σ′

i |= b|i and Jc|iKσ′
i 6|= A|i . (11)

Thus we have found, for eachi ∈ S, a stateσ′
i such that (11) holds. For eachi ∈ N \ S

fix σ′
i to be, say,⊥; and define a hyperstateσ′ :=

[

(σ′
i)i∈N

]

. We haveσ′ |= A ∧ b by
Lem. 4.5; andJcKσ′ 6|= A by Lem. 3.10 and Lem. 4.5. This contradicts the induction
hypothesis that|= {A ∧ b}c{A}.

The case where the last rule is (CONSEQ) is obvious. This concludes the proof.⊓⊔
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Proof of Thm. 5.4 Our strategy is as in [12], that is, via explicit descriptionof weakest
preconditions in ASSNdt. The weakest precondition for awhile clause calls for an
encoding of a sequencex0, . . . , xk of values (with an arbitrary lengthk + 1) by a
fixed number of values. In the usual setting where values are integers, one would use
Gödel’s β function for this purpose. The following formulas are adaptation of those
in [12, Chap. 7].

Definition A.3 We introduce the following notational conventions for ASSN.

isNat(x) :≡ ∃y ∈ N. x = y
isInt(x) :≡ isNat(x) ∨ isNat(−x)
x = y mod z :≡ isNat(x) ∧ isNat(y) ∧ isNat(z)∧

∃u ∈ N.
(

u · z ≤ y ∧ y < (u + 1) · z ∧ x = y − u · z
)

β(x, y, z, u) :≡ u = x mod (1 + (1 + z) · y)
F (u, v) :≡ isNat(u) ∧ ∃z ∈ N.

(

(u = 2 · z ⇒ v = z) ∧ (u = 2 · z + 1 ⇒ v = −z)
)

β±(x, y, z, v) :≡ ∃u ∈ N.
(

β(x, y, z, u) ∧ F (u, v)
)

The formulax = y mod z reads:x is the remainder wheny is divided byz. One easily
sees that it implies0 ≤ x < z.

Lemma A.4 Given any sequencen0, . . . , nk of integers (possibly negative, of any length
k), there exist two natural numbersn,m such that: for each natural numberj ∈ [0, k],
theASSN formulaβ±(n,m, j, x) ⇔ x = nj is valid.

Thus the formulaβ± allows us to encode a sequence of integers by two natural numbers.

Proof. The proof uses the Chinese Remainder Theorem; see [12, Lem. 7.4]. ⊓⊔

In the current work we will also need to encode a sequencex0, . . . , xk of real num-
bers. For that purpose we use the following formulas.

Definition A.5 We introduce the following notational conventions for ASSN.

intPart(x, a) :≡ isInt(a) ∧ 0 ≤ x − a < 1
fracPart(x, z) :≡ ∃a ∈ R.

(

intPart(x, a) ∧ x = a + z
)

digit(x, a, b) :≡ isNat(a) ∧ isNat(b) ∧ 0 ≤ x < 1 ∧ ∃c1, c2 ∈ N.
(

intPart(x · 2a, c1) ∧ intPart(x · 2a+1, c2) ∧ c2 = 2 · c1 + b
)

γ(x, a, b, y) :≡ isNat(a) ∧ isNat(b) ∧ ∀c ∈ N.∀z ∈ R.
(

digit(x, c · (a + 1) + b, z) ⇔ digit(y, c, z)
)

ρ(a, b, x, c, d, y) :≡ ∃e ∈ R.∃z ∈ R.

(

intPart(y, e) ∧ β±(a, b, d, e) ∧
fracPart(y, z) ∧ γ(x, c, d, z)

)

The formuladigit(x, a, b) means: in the eager binary representation of a real number
x ∈ [0, 1), thea-th digit isb.5 Here “eager” means that, for example, the number1/2 is
represented by.1000 . . . rather than by.0111 . . . . Consult the following lemma for the
intention of the formulasγ andρ.

5 Convention: a binary representation.d0d1 . . . of a real numberx ∈ [0, 1) starts with the “0-th”
digit d0, not with the “first.”
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Lemma A.6 1. Lets0, . . . , sk be an arbitrary sequence of real numbers in[0, 1), of
an arbitrary lengthk. There exists a real numbers ∈ [0, 1) such that: for each
natural numberj ∈ [0, k], theASSN formulaγ(s, k, j, x) ⇔ x = sj is valid.

2. Letr0, . . . , rk be an arbitrary sequence of real numbers. There exists natural num-
bersn,m ∈ N and a real numbers ∈ [0, 1) such that: for each natural number
j ∈ [0, k], theASSN formulaρ(n,m, s, k, j, x) ⇔ x = rj is valid.

Proof. 1. Let .dj0dj1dj2 · · · be the eager binary representation ofsj . Let a real num-
bers to be the one represented by.(d00d10 . . . dk0)(d01d11 . . . dk1)(d02d12 . . . dk2) . . .,
where we put parentheses for the sake of readability. Therein the digitdjl occurs as
the (l · (k + 1) + j)-th digit. It is straightforward to see that thiss makes the formula
γ(s, k, j, x) ⇔ x = sj valid.

2. For eachj ∈ [0, k], let nj be the integer part ofrj ; and sj be the fractional
part. Then there existn,m ∈ N that encoden0, . . . , nk in the sense of Lem. A.4; and
s ∈ [0, 1) that encodes0, . . . , sk in the sense of the item 1. Obviously these numbers
n,m, s qualify as the ones required in the claim. ⊓⊔

Using (the∗-transforms of) these shorthands, we explicitly define an ASSNdt for-
mulawJc,BK. It is meant to be a weakest precondition forc andB. The definition is
much like in [12, Chap. 7].

Definition A.7 (wJc,BK) For each WHILEdt commandc ∈ Cmd and an ASSNdt for-
mulaB ∈ Fml, we define an ASSNdt formulawJc,BK by the following induction on
c.

wJskip, BK :≡ B
wJx := a,BK :≡ B[a/x]
wJc1; c2, BK :≡ wJ c1, wJc2, BK K
wJif b then c1 else c2, BK :≡

(

b ⇒ wJc1, BK
)

∧
(

¬b ⇒ wJc2, BK
)

wJwhile b do c,BK :≡ ∀a, b, d ∈ ∗N. ∀y ∈ ∗R.




















“seq(a, b, y, d)0 = σ” , (a) ∧

∀e ∈ ∗N.









0 ≤ e < d =⇒

“seq(a, b, y, d)e |= b” , (b) ∧

“seq(a, b, y, d)e+1 = JcK
(

seq(a, b, y, d)e

)

” , (c)









=⇒ “seq(a, b, y, d)d |= b ∨ B” , (d)





















Here idea for the formulas (a–d) are as follows. We leta, b, d andy to encode a sequence
of hyperstates (more precisely, the values stored for the relevant variables). The formula
(a), for example, asserts that the first in the sequence coincides with the current stateσ.

The “relevant variables” are those which occur inb, c or B. Assume first, for sim-
plicity, thatx is the only such. Then the formulas (a–d) are concretely:

(a) ∗ρ(a, b, y, d, 0, x)
(b) ∀z ∈ ∗R.

(

∗ρ(a, b, y, d, e, z) =⇒ b[z/x]
)

(c) ∀z, u ∈ ∗R.

[

∗ρ(a, b, y, d, e, z) ∧ ∗ρ(a, b, y, d, e + 1, u) =⇒
(

wJc, x = uK ∧ ¬wJc, falseK
)

[z/x]

]

(d) ∀z ∈ ∗R.
(

∗ρ(a, b, y, d, d, z) =⇒ (b ∨ B)[z/x]
)
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where∗ρ is the∗-transform (Def. 4.6) ofρ in Def. A.5.
In the general case, letx0, . . . , xl be an enumeration of those variables which occur

in b, c orB. The formulas (a–d) are concretely as follows. Notice thatl is a fixed number
that is known statically fromb, c andB; hence despite the presence of. . . below, they
are concrete ASSNdt formulas.

(a) ∗ρ(a, b, y, d · (l + 1) + l, 0, x0) ∧ · · · ∧ ∗ρ(a, b, y, d · (l + 1) + l, l, xl)
(b) ∀z0, . . . , zl ∈

∗R.








∗ρ(a, b, y, d · (l + 1) + l, e · (l + 1), z0)
∧ · · ·
∧ ∗ρ(a, b, y, d · (l + 1) + l, e · (l + 1) + l, zl)

=⇒ b[z0/x0, . . . , zl/xl]









(c) ∀z0, . . . , zl, u0, . . . , ul ∈
∗R.





















∗ρ(a, b, y, d · (l + 1) + l, e · (l + 1), z0)
∧ · · ·
∧ ∗ρ(a, b, y, d · (l + 1) + l, e · (l + 1) + l, zl)
∧ ∗ρ(a, b, y, d · (l + 1) + l, (e + 1) · (l + 1), u0)
∧ · · ·
∧ ∗ρ(a, b, y, d · (l + 1) + l, (e + 1) · (l + 1) + l, ul)

=⇒
(

wJc, x0 = u0 ∧ · · · ∧ xl = ulK ∧ ¬wJc, falseK
)

[z0/x0, . . . , zl/xl]





















(d) ∀z0, . . . , zl ∈
∗R.









∗ρ(a, b, y, d · (l + 1) + l, d · (l + 1), z0)
∧ · · ·
∧ ∗ρ(a, b, y, d · (l + 1) + l, d · (l + 1) + l, zl)

=⇒ (b ∨ B)[z0/x0, . . . , zl/xl]









It will be shown thatwJc,BK is indeed a weakest precondition (Prop. A.9). For that we
need the following lemma.

Lemma A.8 (Expressivity of ASSN) Letc be aWHILEdt command, andB be anASSNdt

formula. Then for eachσ ∈ St andi ∈ N,

Jc|iKσ |= B|i if and only if σ |=
(

wJc,BK
)

|i .

From this it follows that: for eachASSN formulaA,

|= {A} c|i {B|i} if and only if |= A ⇒
(

wJc,BK
)

|i .

Proof. One easily sees that the formula
(

wJc,BK
)

|i coincides with the usual definition
of a weakest preconditionwJc|i, B|iK; see e.g. [12]. The different definition for the
while clauses is due to the presence of real values stored in states, and nothing more.

⊓⊔

Proposition A.9 (Expressivity of ASSNdt) For anyWHILEdt commandc, ASSNdt for-
mulaB andσ ∈ HSt, we have

JcKσ |= B if and only if σ |= wJc,BK .
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From this it immediately follows that: for eachASSNdt formulaA,

|= {A} c {B} if and only if |= A ⇒ wJc,BK .

Proof. The proof is by induction on the construction ofc.
If c is skip the claim is obvious sinceJskipKσ = σ andwJskip, BK = B.
If c is x := a the claim follows from Lem. A.2.
If c is c1; c2 or if b then c1 else c2, the claim is easy using the induction hypoth-

esis.
Finally, for the case wherec is while b do c′, we use Lem. 4.5 and Lem. A.8. Fix

a sequence representation(σ|i)i∈N of σ. We have:

Jwhile b do c′Kσ |= B

⇐⇒ Jwhile b|i do c′|iK(σ|i) |= B|i for almost everyi, by Lem. 4.5

⇐⇒ σ|i |=
(

wJwhile b do c′, BK
)

|i for almost everyi, by Lem. A.8

⇐⇒ σ |= wJwhile b do c′, BK by Lem. 4.5.

This concludes the proof. ⊓⊔

The following lemma hinges on the presence of the (CONSEQ) rule. The proof is
much like in [12, Chap. 7].

Lemma A.10 For eachWHILEdt commandc and eachASSNdt formulasB, we have

⊢
{

wJc,BK
}

c {B} in HOAREdt.

Proof. By induction onc. Obvious whenc is skip, x := a, or c1; c2.
If c is if b then c1 else c2: we have⊢

{

wJcj , BK
}

cj {B} by the induction
hypothesis, forj ∈ {1, 2}. By the definition ofwJif b then c1 else c2, BK we have

|= b ∧ wJif b then c1 else c2, BK ⇒ wJc1, BK and
|= ¬b ∧ wJif b then c1 else c2, BK ⇒ wJc2, BK .

Therefore by the (CONSEQ) rule we obtain

⊢
{

b ∧ wJif b then c1 else c2, BK
}

c1 {B} and
⊢

{

¬b ∧ wJif b then c1 else c2, BK
}

c2 {B} .

By applying the (IF) rule we prove the claim.
If c is while b do c′: first we prove that

|=
{

wJwhile b do c′, BK ∧ b
}

c′
{

wJwhile b do c′, BK
}

. (12)

To see it, assumeσ |= wJwhile b do c′, BK ∧ b and let(σ|i)i∈N be an arbitrary se-
quence representation ofσ. We have, by Lem. 4.5,σ|i |=

(

wJwhile b do c′, BK
)

|i ∧

b|i for almost everyi; from which Jc′|iK(σ|i) |=
(

wJwhile b do c′, BK
)

|i eas-
ily follows by the definition ofwJwhile b do c′, BK. Thus we concludeJc′Kσ |=
wJwhile b do c′, BK.
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We also prove that

|= wJwhile b do c′, BK ∧ ¬b ⇒ B . (13)

To see this, assumeσ |= wJwhile b do c′, BK ∧ ¬b. We can also assume thatσ 6= ⊥
(otherwise the claim is obvious). By Prop. A.9 we haveJwhile b do c′Kσ |= B. From
σ 6|= b, it easily follows thatJwhile b do c′Kσ = σ, using Lem. 3.10 and Lem. 4.5.
Thereforeσ |= B.

We get back to the main line of the proof.

|= wJwhile b do c′, BK ∧ b ⇒ wJc′, wJwhile b do c′, BKK (14)

by Prop. A.9 and (12)

⊢
{

wJc′, wJwhile b do c′, BKK
}

c′
{

wJwhile b do c′, BK
}

(15)

by the induction hypothesis,(‡)

⊢
{

wJwhile b do c′, BK ∧ b
}

c′
{

wJwhile b do c′, BK
}

(16)

by (14–15) and the (CONSEQ) rule

⊢
{

wJwhile b do c′, BK
}

while b do c′
{

wJwhile b do c′, BK ∧ ¬b
}

(17)

by (16) and the (WHILE) rule

⊢
{

wJwhile b do c′, BK
}

while b do c′ {B} (18)

by (13), (17) and the (CONSEQ) rule.

Note that in(‡), we can use the induction hypothesis since the commandc′ is simpler
thanc ≡ while b do c′. This concludes the proof. ⊓⊔

Relative completeness of HOAREdt is an immediate corollary of the above results.

Proof. (Of Thm. 5.4) Assume|= {A}c{B}. By Prop. A.9 we have|= A ⇒ wJc,BK;
and by Lem. A.10 we have⊢

{

wJc,BK
}

c{B}. Applying the (CONSEQ) rule we obtain
⊢ {A}c{B}. ⊓⊔


