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Abstract. We add, to the common combination of aHWE-language and a
Hoare-style program logic, a constatttthat represents an infinitesimal (i.e. in-
finitely small) value. The outcome is a framework for modeling and vetitina

of hybrid systemshybrid systems exhibit both continuous and discrete dynamics
and getting them right is a pressing challenge. We rigorously define thensies

of programs in the language obnstandard analysjon the basis of which the
program logic is shown to be sound and relatively complete.

1 Introduction

Hybrid systemsre systems that deal with both discrete and continuous dhty
have rapidly gained importance since more and more physisgéms—cars, airplanes,
etc.—are controlled with computers. Their sensors will pevphysical, continuous
data, while the behavior of controller software is goverbgdliscrete data. Those in-
formation systems which interact with a physical ambiemeenaore generally called
cyber-physical systems (CP8ybrid systems are an important building block of CPSs.

Towards the goal of getting hybrid systems right, the redeafforts have been
mainly from two directionsControl theory—originally focusing on continuous data
and their control e.g. via integration and differentiatieis currently extending its
realm towards hybrid systems. The de facto standavdiBNK tool for hybrid system
modeling arises from this direction; it employs the blocagiam formalism and offers
simulation functionality—aiming aestingrather tharverification The current work is
one of the attempts from the other direction—fromfibienal verificationcommunity—
that advance from discrete to continuous.

Hybrid systems exhibit two kinds of dynamics: continudiasv and discretgump.
Hence for a formal verification approach to hybrid systerns,dhallenge is: 1) to in-
corporate flow-dynamics; and 2) to do so at the lowest passilt, so that the discrete
framework smoothly transfers to hybrid situations. A lalgely of existing work in-
cludes differential equations explicitly in the syntaxe ¢be discussion of related work
below. What we propose, instead, is to introduce a congtafdar aninfinitesimal(i.e.
infinitely small) value andurn flow into jump With dt, the continuous operation of in-
tegration can be represented bytei 1e loop, to which existing discrete techniques like
Hoare-style program logics readily apply. For a rigoroustramatical development we
employnonstandard analysis (NSAgautifully formalized by Robinson.

* We are greteful to Naoki Kobayashi and Toshimitsu Ushio for helpfdussions.



Concretely, in this paper we take the common combination\&f-aLE-language,
a first-order assertion language and a Hoare logic (e.geirektbook [12]); and add
a constantit to obtain a modeling and verification framework for hybridwms. Its
three ingredients are called MLE®, AssN* and HOARE™. These are connected by
denotational semantics defined in the language of NSA. Weepsoundness and rela-
tive completeness of the logicdARE®. Underlying the technical development is the
idea of what we calsectionwise executigillustrated by the following example.

Example 1.1 Let ceiapse b€ the following programe= denotes the syntactic equality.
Celapse = [ t:=0; whilet<1ldot:=t+dt |

The value designated fa is infinitesimal; therefore thehile loop will not terminate
within finitely many steps. Nevertheless it is intuitive tgect that after an “execution”
of this program (which takes an infinitely long time), theuabft should be infinitely
close tol. How can we turn this intuition into a mathematical argurffent

Our idea is to think abousectionwise executiorFor each natural numberwe
consider the-th sectionof the progranteiapse, denoted byejapse|i- CONCretelyeeiapse|:
is defined by replacing the infinitesim@l in cejapse DY 24%1

Celapse|i = [ t:=0; whiletgldot::t+$ ] .
Informally ceiapse|i is the “i-th approximation” of the originateapse.
A sectioncelapse|; does terminate within finite steps and yields- H%l as the value
of t. Now we collect the outcomes of sectionwise executions daiima sequence

(1+1,1+3, 1+4, ..., 145, ..))

which is thought of as an incremental approximation of thealoutcome of the origi-
nal progrant.iapse. INdeed, in the language of NSA, the sequence represayjseareal
numberr that is infinitely close td.

We note that, as is clear from this example, a program ef\M#® is not executable
in general. We would rather regard MN.E®® as a modeling language for hybrid sys-
tems, with a merit of being close to a common programmingestyl

The idea ofturning flow into jumpwith dt and NSA seems applicable to other
discrete modeling/verification techniques thanile-language and Hoare logic. We
wish to further explore this potentiality. Adaptation of rmadvanced techniques for
deductive program verification—such as invariant genemadiad type systems—to the
presence ofit is another important direction of future work.

Due to the lack of space all the proofs are deferred to theratipe

Related workThere have been extensive research efforts towards hyysidras from
the formal verification community. Unlike the current worlhere we turn flow into
jump viadt, most of them feature acute distinction between flow- andbjatynamics.
Hybrid automator{1] is one of the most successful approaches to verificatfon o
hybrid systems. A number of model-checking algorithms Haeen invented for auto-
matic verification. The deductive approach in the currenkwevia theorem-proving in
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HoaRE®*—has an advantage of handling parameters (i.e. universaltitiges or free
variables that range over an infinite domain) well; modelckieg in such a situation
necessarily calls for some abstraction technique. OuclbigiARE® is compositional
too: a property of a whole system is inferred from the onessofonstituent parts.

Deductive verification of hybrid systems has seen greatrembraent through a re-
cent series of work by Platzer and his colleagues, inclufBng]. Their formalism is
variations ofdynamic logi¢ augmented with differential equations to incorporate flow
dynamics. They have also developed advanced techniques atrautomated theorem
proving, resulting in a sophisticated tool called KeYmdé&fy. We expect our approach
(namely incorporating flow-dynamics via) offer a smoother transfer of existing dis-
crete verification techniques to hybrid applications. Aiddially, our preliminary ob-
servations suggest that some of the techniques developBthtaer and others can be
translated into the techniques that work in our framework.

There are severdlybrid process algebraproposed for hybrid system modeling;
see [6] for an overview. Some tools have been developedatoextensions of process
algebra-based verification tools for discrete systems.dvew the distinction between
flow and jump makes their syntax cryptic and it is not uncomri@rthat flaws are
found in widely accepted hybrid process algebras. They @tedsfor describing non-
determinism and concurrency; this is a feature we wish tat@ddir framework.

The use of NSA as a foundation of hybrid system modeling igpnaposed for the
first time; see e.g. [2, 3,7,11]. Compared to these existiackywe claim our novelty
is a clean integration of NSA and the widely-accepted pnogning style ofwhile-
languages, with an accompanying verification framework MARE™.

2 A Nonstandard Analysis Primer

This section is mainly for fixing notations. For more detai® e.g. [5].

The type of statements “there existse N such that, for each > iy, ¢(¢) holds”
is typical in analysis. It is often put as “for sufficientlydge: € N.” This means: the set
{i € N | ¢(i) holds} C N belongs to the familyF, := {S C N | N\ S is finite}.

In NSA, the family 7, is extended to so-called anitrafilter F. The latter is a
convenient domain ofi*indexed truth values”: notably for each $etC N, exactly one
out of S andN \ S belongs taF.

Definition 2.1 (Ultrafilter) A filter is a family 7 C P(N) such that: 1)X € F and
X CUimpliesU ¢ F;2) X NY € Fif X, Y € F. Anonempty filterF # () is said
to beproperif it does not contair C N; equivalently, if 7 # P(N). An ultrafilter is
a maximal proper filter; equivalently, it is a filtéf such that for eacly’ C N, exactly
one out ofS andN \ S belongs taF.

Afilter 7' can be always extended to an ultrafill€> F’; this is proved using Zorn’s
lemma. Since the familyF, is easily seen to be a filter, we have:

Lemma 2.2 There is an ultrafiltetF that containsFy, = {S C N | N\ S is finite}.



Throughout the rest of the paper we fix sUEhlts properties to be noted: Fis closed
under finite intersections and infinite unions; 2) exactlg ohS or N\ .S belongs taF,
for eachS C N; and 3) if.S is such thalN \ S is finite, thenS € F.

We say (¢) holds for almost every € N” for the fact that the sefi | ¢(¢) holds}
belongs taF. For its negation we say “for negligibly mary

Definition 2.3 (Hypernumber d € *D) For a setD (typically it is N or R), we define
the set*D by *D := DY/ ~£. It is the set of infinite sequences @hmodulo the
following equivalence- =: we defing(dg, d1,...) ~# (dj,d,...) by

d; = d; “for almost everyi,” thatis, {i e N |d; =d,} € F.

An equivalence clas§(d;);en] ., € "D shall be also denoted byd;)ien] or (di)ien
when no confusion occurs. An elemalite *ID is called ahypernumberin contrast
d € D is astandard numberHypernumbers will be denoted in boldface lide

We say thatd, );cn is asequence representationd € *D if d = [(d;);]. Note that,
givend € *I, its sequence representation is not unique. There is a tahembedding
D — *D mappingd to [(d, d, . ..)]; the latter shall also be denoted &y

Definition 2.4 (Operations and relations on*D) An operationf : D* — D of any
finite arity k (such ast- : R? — R) has a canonical “pointwise” extensign (*D)* —
*D. A binary relationR C D? (such as< on real numbers) also extendsRoC (*D)?.

FOLEien], o (@ ien]) o= [, d" ™)) ]
[(di)ien] R [(d)ien] &L 4, Rd, for almost every.

These extensions are well-defined sitices closed under finite intersections.

Example 2.5 ( and w~!) By w we denote the hypernumber = [(1,2,3,...)] €
*N. Itis bigger than (the embedding of) any (standard) naturaibem = [ (n,n,n,...)],
since we haven < i for all i except for finitely many. The presencewfshows that
N ¢ *NandR C *R. Its inversew™' = [(1, 3, %,...)] is positive ) < w™') but is
smaller than any (standard) positive real number 0.

These hypernumbersiafinite w andinfinitesimalw—'—will be heavily used.

For the sefB = {tt,{f} of Boolean truth values we have the following. Therefore a
“hyper Boolean value” does not make sense.

Lemma 2.6 Assume thabd is a finite seD = {a4, ..., a,}. Then the canonical inclu-
sion mapD — *D is bijective. In particular we hav&B = B for B = {tt, ff }. O

3 Programming Language WHILE %

3.1 Syntax

We fix a countable sé&ar of variables



Definition 3.1 (WHILE %, WHILE ) The syntax of our target languagernE® is:

AExp> a == z|c,|ajaopas|dt|oo

wherez € Var, c, is a constant for € R, andaop € {+,—,-,"}
BExp> b = true|false|bi Aby|—b|a; <aq
Cmd> ¢ == skip|z:=a|c;ca | if bthen ¢ else ¢p | while bdo ¢

An expression inAExp is said to bearithmetig one in BExp is Booleanand one
in Cmd is acommand The operator”b designates ¢ to the power oft” and will
be denoted by:’. The operator is included as a primitive for the purpose of relative
completeness (Thm. 5.4). We will often denote the constaibty r.

By WHILE, we denote the fragment of MVLE® without the constantst andoc.

The language WILE is much like usual programming languages withtd le con-
struct, such a§MP in the textbook [12]. Its only anomaly is a constantfor any
real number-: although unrealistic from the implementation viewpoinhis fine be-
cause WAILE is meant to be a modeling language. Then our target languagesA?
is obtained by addingt andco: they designate an infinitesimat~! and an infinitev.
The relations>, <, > and= are definable in WILE®: 2 > y asy < z; < as the
negation of>; and= as the conjunction of and>. So are all the Boolean connectives
such asv and=-, using— andA. We emphasize thalt is by itself a constant and has
nothing to do with a variable We could have used a more neutral notation dike [2];
however the notatiodt turns out to be conveniently intuitive in many examples.

Definition 3.2 (Section of WHILE % expression) Let e be an expression of WLE®,
andi € N. Thei-th sectionof e, denoted bye|;, is obtained by replacing each occur-
rence ofdt andoo in e by the constants; ;1) andc;, 1, respectively. Obviously|;

is an expression of WILE.

Example 3.3 (Train control) Our first examples model small fragments of the Euro-
pean Train Control System (ETCS); this is also a leading gtain [8]. The following
command:,..s models a train accelerating at a constant acceleratiantil the timee

is reached. The variabteis for the train’s velocity; and is for its position.

Caccel ‘= [whilet<£do cd,ive] where
Cdrive = [t::t+dt; vi=v+a-dt; z::z+v~dt}

@)

The following command:nxandsrake Models a train that, once its distance from the
boundarym gets within the safety distance starts braking with the forcé > 0.
However the check if the train is within the safety distarscgdne only every seconds.

CehkAndBrake = [Wwhile v > 0 do (Ceorr} Caccel ) | where @
Ceorr = [t::(); if m — z < sthena:= fbelsea::(]]

Example 3.4 (Water-level monitor) Our second example is an adaptation from [1].
Compared to the above train example, it exhibits simpler-fligewvamics (the first deriva-
tive is already a constant) but more complex jump-dynamics.
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There is a water tank with a constant dra@ncfn per second). When e
the water level gets lower thary cm the switch is turned on, which

eventually opens up the valve but only after a time lag of tacosids. |
While the valve is open, the water levglrises byl cm per second { iteh
Oncey reachesl0 cm the switch is turned off, which will shut th

valve but again after a time lag of two seconds. Tram
In the following command,,.,, the variabler is a timer for a time lag. Thease

construct is an obvious abbreviation of nestéd... then ... else ....

[2:=0; y:=1; s:=1; v:=1;
while t < tmax do  {
r:=x+dt; ¢:=1+4 dt;
if v=0theny:=y —2-dt else y := y + dt;
Cwater = case {s=0Av=0Ay<5H: s:=1; z:=0; 3)
s=1ANv=0Ax2>2: vi=1;
s=1ANv=1A10<y: s:=0;z:=0;
s=0Av=1ANx2>2: v = 0;
L else skip }} ]

3.2 Denotational Semantics

We follow [12] and interpret a command of MLE® as a transformer on memory
states. Our state can store hyperreal numbers such as thiesifnako " = [(1, 3, 3,...)],
hence is called ayperstate

Definition 3.5 (Hyperstate, state) A hyperstater is eithero = 1 (“undefined”) or a
functiono : Var — *R. A stateis a standard version of a hyperstate: namebfates
is eitherc = L or a functions : Var — R.

We denote the collection of hyperstatesHit; that of (standard) states ISt.

The definition of (hyper)state as a total function—rathenthgpartial function with
a finite domain—follows [12]. This makes the denotational aetits much simpler.
Practically, one can imagine there is a fixed default valag @& for any variable.

The following definition is as usual.

Definition 3.6 (State update) Let o0 € HSt be a hyperstate; € Var andr € *R.

We define arupdated hyperstate[x — r] as follows. Whero = L, we setl[z —

r] := L. Otherwisei(o [z — r])(z) := r; and fory # z, (o[z — 7])(y) := o (y).
An updated (standard) state[z — r] is defined analogously.

Definition 3.7 (Sequence representation) et (o;);cn be a sequence of (standard) states.
It gives rise to a hyperstate—denoted[by; );cn] or simply by(o;);en—in the follow-

ing way. We seto;);cn := L if o, = L for almost alli. Otherwis€| (0;);en] # L and

we set| (0;)ien | (@) = [(0i(z))ien |, where the latter is the hyperreal represented
by the sequencér;(x)); of reals. Fori € N such thatr; = L, the values;(z) is not
defined; in this case we use an arbitrary real number ($dgr o, (x). This does not
affect the resulting hyperstate singgz) is defined for almost all.



Let o € HSt be a hyperstate, and;);cn be a sequence of states. We $ay);cn
is asequence representatiaf o if it gives rise too, that is, [(oi)ieN] = o. In what
follows we shall often denote a sequence representatientaf (o|;);en. We empha-
size that giverrr € HSt, its sequence representati@n|; ); is not unique.

The denotational semantics of MM.E® is a straightforward adaptation of the usual
semantics of WILE, except for thevhile clauses where we use sectionwise execution
(see Ex. 1.1). As we see later in Lem. 3.10, however, the iflsaationwise execution
extends to the whole language”E®.

Definition 3.8 (Denotational semantics for WHILE %) For expressions of WILE®,
their denotation

[a] : HSt — "R U{Ll} fora € AExp,
]: HSt —BU{Ll} for b € BExp, and
[] : HSt — HSt forc € Cmd

is defined as follows. Recall thdt means “undefined” (cf. Def. 3.5); th&t = {tt, '}
is the set of Boolean truth values; and tHat= B (Lem. 2.6).
If o = L, we defingle] L := L for any expressioan. If o # | we define

[z]o = o(z) [c-]Jo := r foreachr € R
[a1 aop az]lo = [ai]o aop [az]o

[dt]o = w_lz[(l,%,%,...)] [oo]o ::w:[(1,2,3,...)]
[true]oe =t [false]o :=ff

[b1 Abo]lo = [bi]o A [b2]o [-b]o = -([b]o)

[a1 < as]lo = [a1]o < [as2]o

[skip]o =0 [z :=da]o :=0c[z— [do] [er; collo == [e2] ([er]o)
[ei]o  if [b]o =t

if bth 1 =
[1 en c; else cofo {[[Cz]]o_ it o = I

[while b do cJo := ( [ (while bdo c)|1]](0'|1)) . @)
i€

where(o|;):en is an arbitrary sequence representatiosr ¢gDef. 3.7)
Hereaop € {+,—, x,”} and < are interpreted ofiR as in Def. 2.4. For each €
AExp U BExp, we obviously havde]o = L if and only if & = L. It may happen
that[c]o = L with o # L, due to nontermination afhile loops.

In the semantics afhile clauses (4), the sectidmhile b do ¢)|; is a command of

WHILE (Def. 3.2); andb |; is a (standard) state. Therefore the standard §tateile b do c)|; [ (o};)
can be defined by the usual semanticsiofle constructs (see e.g. [12]). That is,

[while ¥ do Jo =o' &L

—o=0'=1;
— there exists a finite sequenee= 0y, 01, ..., 0, = o’ such that{t']o,, = (5)
ff; and for eacly € [0,n). ( [t']o; = tt & ['Jo; = 0541 ); OF
— such a finite sequence does not exist ahe- 1.
By bundling these up for afl, and regarding it as a hyperstate (Def. 3.7), we obtain the
right-hand side of (4). The well-definedness of (4) is prowvedem. 3.9.



Lemma 3.9 The semantics afhile clauses (4) is well-defined, being independent of
the choice of a sequence representatioty); of the hyperstater. ad

In proving the lemma it is crucial that: the det;, . . . , z,, } of variables that are relevant
to the execution of the command is finite and statically knoWms would not be the
case with a programming language that allows dynamicatioreaf fresh variables.
We have chosen not to include the division operdgtar WHILE®; this is to avoid
handling ofdivision by zerdn the semantics, which is cumbersome but seems feasible.
Here is one of our two key lemmas. Its proof is by induction.

Lemma 3.10 (Sectionwise Execution Lemma)_ete be an arbitrary expression a¥HILE®;
o be a hyperstate; anfb|;);cn be an arbitrary sequence representatiorsofWe have

[e]o = [([[6|1]](U‘i))ieN] ‘

Here the denotational semantifs|;] of a WHILE expressiore|; is defined in a usual
way (i.e. like in Def. 3.8; fowhile clauses see (5)). O

Example 3.11 Considelc,ce in Ex. 3.3. For simplicity let us fix the parametetgice; :=
[t:=0;e:=1;a:=1;v:=0; 2 := 0; Caccel ] ItSi-th S€CtiONC,scei1|; has the obvi-
ous semantics. For any (standard) statg L, the real numbef[cacce|:]o)(z)—the
traveled distance—is easily calculated as

L1y 2 g it (DG 1 it
S RS R B R | i1 il T 206+D)2 2 il

Therefore by (4), for any hyperstate # |, the hyperreal =z

i 1=0
([caccein] o) (2) is equal to i %
1=
[(17 %7 %7 %77%%7)]7
this is a hyperreal that is infinitely close 1¢2. t

Much like Ex. 1.1, one way to look at this sectionwise sentarit as an incremental
approximation. Here it approximates the solutioa- %tQ of the differential equation
z'" = 1, obtained via the Riemann integral. See the above figure.

Remark 3.12 (Denotation ofdt) We fixedw " as the denotation dft. However there
are more infinitesimals, such ésw)~! = (1,25, 2L .. ) with (nw)™! < w™'. The
choice ofdt’s denotation does affect the behavior of the following paogcnonintegrable:
Cronintegrable = [ac :==1; whilez#0dox:=z—dt ] .

When we replacét by 1%1 the program terminates with= 0; hence by our semantics
the program yields a non- hyperstate withe — 0. However, replacingit by ﬁ
with 7 irrational, the program terminates for hand it leads to the hyperstate

In fact, indifference to the choice of an infinitesimal va{u®lated bychonintegrable)
is a typical condition in nonstandard analysis, found eaghé characterization of dif-
ferentiability or Riemann integrability (see [5]). In trégnse the programonintegrable
is “nonintegrable”; we are yet to see if we can check inteidjtalipy syntactic means.



The prograntnenintegrable CaN be modified into the one with more reasonable behav-
ior, by replacing the guard # 0 by x > 0. One easily sees that, while different choices
of dt’s denotation (e.gv ! vs. (mw) 1) still lead to different post-hyperstates, the dif-
ferences lie within infinitesimal gaps. The same is true bfha “realistic” programs
that we have looked at.

4 Assertion Language AssN®

Definition 4.1 (AssN™, AssN) The syntax of our assertion language " is:

AExp> a = z|c,|ajaopas|dt]| oo (the same as in WILE™)

Fml > A = true|false| Aj ANAs | -A|a; <az]
Ve € *N. A | Vo € *R. A wherez € Var

An expression in the famil¥'ml is called an(assertion) formula

We introduce existential quantifiers as notational corieest 3z € *D. A =
-z € *D. - A, whereD € {N,R}.

By AssNwe designate the language obtained frorasAf® by: 1) dropping the
constantsit, oo; and 2) replacing the quantifievs: € *N andVa € *R by vz € N and
Vx € R, respectively, i.e. by those which range over standard rusnb

Formulas of AssN™ are the Boolean expressions ofWE, augmented with quanti-
fiers. The quantifiewz € *N ranging over hypenatural numbers plays an important
role in relative completeness ofdARE®™ (Thm. 5.4).

It is essential that in AsN™ we have onlyhypeiquantifiers likevz € *R and not
standardquantifiers likevz € R. The situation is much like with the celebratedns-
fer principlein nonstandard analysis [5, Thm. I.4.5]. There the vajidit a standard
formula is transferred to that of itg-transform*p; and in*p only hyperquantifiers,
and no standard quantifiers, are allowed to occur.

Remark 4.2 (Absence of standard quantifiers)The lack of standard quantifiers does
restrict the expressive power ofs&N*. Notably we cannot assert that two hypernum-
bersz, y are infinitely close, that isfe € R. (¢ > 0 = —¢ < z —y < ¢).2 However
this assertion is arguably unrealistic since, to check dtireg} a physical system, one
needs measurements of arbitrarily progressive accurdwy.ekamples ir§6 indicate
that AssN® is sufficiently expressive for practical verification sceas, too.

Definition 4.3 (Section of AssN™ expression) Lete be an expression of #sN™ (arith-

metic or a formula), and € N. Thei-th sectionof e, denoted by|;, is obtained by: 1)

replacing every occurrence @t andoc by the constant; /(; ;1) andc; 1, respectively;

and 2) replacing every hyperquantifier € *D by Vz € D. HereD € {N,R}.
Obviously a sectior|; is an expression of AsSN

3 By replacingve € R by Ve € *R we obtain a legitimate AsnN® formula, but it is satisfied
only when the two hypernumbeisy are equal.
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Definition 4.4 (Semantics of &sN™) We define the relationr = A (“o satisfiesA”)
between a hyperstate € HSt and an AssN* formulaA € Fml as usual.

Namely, ifo = L we definel = A for eachA € Fml. If o # L, the definition is
by the following induction on the construction df

o = true o [~ false

cEANL & A &o A

okE=-A L 5 KA

oE=a <az L lai]o < [az]o where[a;]o is as defined in Def. 3.8

olvee DA & slrd A foreachde*D (D€ {N,R})
Recall thato [z — d] denotes an updated hyperstate (Def. 3.6).

An AssN® formulaA € Fml is said to bevalid if o = A for anyo € HSt. We
denote this by= A. Validity of an AssNnformula is defined similarly.

Lemma 4.5 (Sectionwise Satisfaction Lemma).etA € Fml be anAssN® formula;
o be a hyperstate; antb |;);cn be an arbitrary sequence representatioroofWe have

o=A ifandonlyif (o|; = Al; foralmostevery) ,

where the latter relatior= between standard states afdssN formulas is defined in
the usual way (i.e. like in Def. 4.4). O

This is our second key lemma. We note that it fails once wenaditandard quantifiers
in AssN™. For example, letd := (3y € R.0 < y < z) ando be a hyperstate such
thato (r) = w™!. Then we haver|; = AJ; for everyi buto [~ A.

The validity of an AssN™® formula A, if A is (dt, co)-free, can be reduced to that
of an AssNformula. This is theransfer principlefor AssnN®® which we now describe.

Definition 4.6 (x-transform) Let A be an AssNformula. We define its-transform
denoted by 4, to be the s\ formula obtained fromA by replacing every occur-
rence of a standard quantifiér: € D by the corresponding hyperquantifiér € *D.

Itis easy to see that: 1y A)|; = A for each Assnformula 4; 2) A = *(A|;) for each
AssN* formula A that is(dt, oo)-free—that is,dt or co does not occur in it. Then the
following is an immediate consequence of Lem. 4.5.

Proposition 4.7 (Transfer principle) 1. For eachAssNnformula 4, = A iff E *A.
2. For any (@t,c0)-free AssN® formula A, the following are equivalent: g A|; for
eachi € N; b) |= AJ; for somei € N; ¢) = A. O

5 Program Logic HOARE®

We now introduce a Hoare-style program logioARE™ that is devised for the verifi-
cation of WHILE®™ programs. It derivesloare triples{ A}c{B}.
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Definition 5.1 (Hoare triple) A Hoare triple{A}c{B} of HOARE™ is a triple of AssN™
formulasA, B and a WHILE® command:.

A Hoare triple{A}c{B} is said to bevalid—we denote this by= {A}c{B}—if,
for any hyperstater € HSt, o = A implies[c]o = B.

As usual a Hoare tripl¢A}c{ B} assertpartial correctnessif the execution of: start-
ing from o does not terminate, we haje]o = L hence trivially[cJoe = B. The
formula A in {A}c{B} is called aprecondition B is apostcondition

The rules of DARE®™ are the same as usual; see e.g. [12].

Definition 5.2 (HOARE®) The deduction rules of BARE™ are as follows.

{Ayapay (Ala/el Yo = atay 5
(A}er {C} {C}es{B} (AN} (B} {AA-b}es{B)
{A}ci;¢2{B} (SeQ) {A}if b then ci else cp {B} (IF)
(AAD) c{A} A= A {A}e{B} EB =B
[ATwhile bdoc{A A b} (WHILE) (A} c{B} (ConseQ

In the rule (AssIGN), A[a/z] denotes the capture-avoiding substitutiom é6r « in A.
Recall thaBExp of WHILE® is a fragment oFml of AssN. Therefore in the rules
(IF) and (WHILE), an expressioh is an AssN™ formula.

We write {A}c{B} if the triple { A}¢{ B} can be derived using the above rules.

Soundness is a minimal requirement of a logic for verificatibhe proof makes an
essential use of the key “sectionwise” lemmas (Lem. 3.10Lamd. 4.5).

Theorem 5.3 (Soundness)- {A}c¢{B} implies= {A}c¢{B}. O

We also have a “completeness” result. It is caliethtive completenedd] since
completeness is only modulo the validity ofs&N* formulas (namely those in the
(CoNsEQ) rule); and checking such validity is easily seen to be uittddxte. The proof
follows the usual method (see e.g. [12, Chap. 7]); namelyexglicit description of
weakest preconditions.

Theorem 5.4 (Relative completeness= {A}c{B} implies-- {A}c{B}. O

6 Verification with H OARE®®

We present a couple of examples. Its details as well as sormaas that aid finding
loop invariants will be presented in another venue, dueedabk of space.

Example 6.1 (Water-level monitor) For the progran,,.i.r in Ex. 3.4, we would like
to prove that the water level stays between cm and12 cm. It is not hard to see,
after some trials, that what we can actually prove-i§itrue}cpater{1 — 4 -dt < y <
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12 4+ 2 - dt}. Note that the additional infinitesimal gaps like dt have no physical
meaning. In the proof, we use the following formwaas a loop invariant.

A = A; N Ag N A1 A As A As

As = (s=0Vs=1) A (v=0Vuv=1)

Ag = s=1Av=1 = 1-4-at<y<10

Ai = s=0Av=1 = 0<z<2 A 10<y<104+x+dt
Ao = s=0ANv=0 = bH<<y<l12+2-dt

Az = s=1ANv=0 = 0<x<2 AN H—-2x—-2-dt<y<>b

Example 6.2 (Train control) Take the programnxandsrake IN EX. 6.2; we aim at the
postcondition that the train does not travel beyond the Baognn, that is,z < m. For
simplicity let us first considet.onstchkandBrake (= (€ := dt; CchkAndBrake)- ThiS IS the
setting where the check is conducted constantly. Indeedanepoove that- {v? <
2b(2 — ™) } CeonstChkAndBrake {2 < m}, With a loop invariant? < 2b(z — m).

The invariant (and the precondition} < 2b(z — m) is what is derived in [8] by
solving a differential equation and then eliminating qiféers. Using FOARE®™ we can
also derive it: roughly speaking, a differential equation8] becomes a recurrence
relation in our NSA framework. The details and some generahhas that aid invariant
generation are deferred to another venue.

In the general case where> 0 is arbitrary, we can prove {v? < 2b(z —m — v -
€) }CchkAndBrake{z < m} in HOARE™.

An obvious challenge in verification with ®ARE* is finding loop invariants. It
is tempting—especially with “flow-heavy” systems, i.e. taagith predominant flow-
dynamics—to assert a differential equation’s solution asg invariant. This does not
work: it is a loop invariant only modulo infinitesimal gapsfact not expressible in
AssN® (Rem. 4.2). We do not consider this as a serious drawbackwimreasons.
Firstly, such “flow-heavy” systems could be studied, afierfeom the control theory
perspective that is continuous in its origin. The formalfieation approach is supposed
to show its strength against “jump-heavy” systems, for Wwidifferential equations are
hardly solvable. Secondly, verification goals are rarelyp@Eise as the solution of a
differential equation: we would aim at< m in Ex. 6.2 but not at = %atQ.
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A Appendix

A.1 Proofs

Proof of Lem. 2.6 Letd = [(d;);] be an arbitrary element ¢D; and for eachj €
[1,n], defineS; := {i € N | d; = a;}. We argue by contradiction. Assurdes distinct
from the images of; € D. Then none of; belongs to the ultrafilteF; by maximality
of 7 we haveN \ S; € F for eachj € [1,n]. Therefore();(N\ S;) belongs taF’; but
obviously(;(N'\ S;) = 0. This cannot be the case singeis proper. O

Proof of Lem. 3.9 Obvious whero = L; assume otherwise. Lét;); and(o}); be
two sequence representationsofWe define, for eache N

¢; = [(while bdo c)|;Jo; and &, := [(while bdo c)|;]o; ;

and we are set out to proves; );| = [(4;):].
For eachr € Var we have the equality of hyperreals

[(0i(2))i] = [(i(2))i] = o (2) (6)
by assumption. Therefore for eache Var, the set
Sy = {i e N|oi(z) =0i(x)}

belongs to the ultrafilte~. Now letx, ..., z, be an enumeration of all the variables
occurring inb or ¢; obviously there are only finitely many of such. These ares¢ho
variables which affect the execution of the command, or Hiezi@d by that. LelS :=
Sz, N---NS, ;then the sef again belongs t&-. By the definition ofS, we have:

oi(z1) =0i(x1) , ..., oilx,) =o0i(zy) for eachi € S. @)
First consider the case that eithét;);] or [(6}),] is L. We have

[(6i)i] =L
— {i|oy=1}eF by Def. 3.7
— {ieS|6=L}eF sinceF is afilter andS € F
<~ {ieS|o,=1}eF sinceforeache S,q5; = Liff 5, = 1, by (7)
— [(6))i] =L by the same transformation as above.

K2

Therefore we havfs;);] = [(6]):;] = L.

Assume otherwise. It suffices to shd@;(z));] = [(6(x));] for eachz € Var.
If x & {z1,...,2,} (i.e. if z does not occur i or ¢) then obviouslys;(z) = o;(x)
ands(z) = o}(x). Therefore the claim follows from the assumption (6)c K= x, for
somek € [1,n], for eachi € S we haves;(z) = 6}(zx): this follows immediately
from (7), sincexq, ..., x, cover all the variables whose value can affect execution of

(while b do c)|;,. We are done becausec F. O
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Proof of Lem. 3.10 It holds wheno = L, because we hag|;] L = L. We assume
o # 1; the proof is by induction on the constructioneof

Whene = z € Var the claim follows frome(z) = [ ((o|:)(x)), ] the latter
holds sincgo|;); is a sequence representatioroofDef. 3.7).

Whene is a constant,, the right-hand side is a sequence that is “almost?, . . . ):
its entry isr for almost everyi, except for those (negligibly manys with o|; = L.

Whene = a; aop ay, We have

[a1 aop as]o

= [a1]o aop [az]o by the semantics of WILE®

(larl:](a]s) )ZEN aop ([az|:](o|; ))iEN by the induction hypothesis
(lailil(als) aop [azli](ei)),.y by Def.2.4

([(a1li) aop (azli))(o]i)),.y by the semantics of WiLE

(I

a1 aop az)l; |(al; ))iGN :

Here we denoted the hyperstater; );cw | simply by (o;);cn, as we often do elsewhere
(cf. Def. 3.7).

Whene = dt the left-hand side is—'; and the right-hand side is almast ! due
to the definition ofdt|; (Def. 3.2). The same when= oc.

Whene is a Boolean constatrue or false, the proof is the same as wherE c,.
Whene = b; A by, the proof is the same as where a; aop as. S0 is where = b,
and where = a1 < as.

Whene is the commandkip the claim is trivial.

Whene is a command: := a, we have to show that the hyperstéte:= a]o =
o[z — [a]eo ] coincides with

([(z = a)lil(@]:) ),c = ([ := (ald)](a]i) ),y = (@) [2 = [ali](a]i)] ),y -

They assign the same value to a variaplg x, since(o|;); is a sequence representation
of o. To the variabler they assigra]o and ( [a|;](c];)) respectively; these are
the same hyperreal due to the induction hypothesis.

Whene is a command; ; co, we have

[e]o = [ea]([e1]o)
= [e2] [( [eil:](e):) ) _GN} by the induction hypothesis

= [( [ealil ([ealil(el:)) )ZEN} by the induction hypothesigs)
= [( Kl ele) ) ] =[(leselleh) |-

In (%), we applied the induction hypothesis to an (obvious) seceieapresentation

([[cl|i]](a'\i) )ieN of the hyperstat{ ( [el] (o) )ieN }
Whene is a commandif b then ¢; else ¢y, assume first thab]oe = tt. Then
by the induction hypothesif|;](o|;) = t for almost everyi. Therefore we have

1eN’
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[el:](a|;) = [c1l:](o|;) for almost everyi. We use this fact in the followingy).
[e]o = [ci]o sinceb]o = tt

= [( [ealil(a]i) )Z_EN} by the induction hypothesis

L [( lel:] (e ) )iGN} '

The case wherfh]o = ff is similar.
Finally, whene is a commandihile b do c the claim is the definition (4) itself.
This concludes the proof. ad

Proof of Lem. 4.5 Obvious wheno = L. Assumeos # ; the proof is by induc-
tion on the construction ofl. In fact most of the cases are the same as in the proof
of Lem. 3.10—more specifically the cases for the Boolean esgiwas therein. The
remaining case is wheA = vz € *D. A’, withD € {N,R}.

For the ‘if’ part, assume that for almost everye haves|; = (Vo € *D. A")|;,
thatis,o|; = Vz € D. (4’|;). By the semantics of Bsnwe have

“for almost everyi: foralld e D: (o;)[x +— d] = A’|;)” thatis, (8)
{ieN|foralldeD, (o|)z—d A} ecF.

We note that this isot equivalent to

“forall d € D: foralmostevery: (ol;)[x+— d] E A’|;,)” thatis,
{ieN|(o]))z—d =A|;}eF foralldeD:

the former implies the latter but the converse fails sifitc@eed not be closed under
infinite intersection.

Anyway take an arbitraryl € *D; and let(d|;);cn be its arbitrary sequence rep-
resentation. By (8) we havér|;)[z — (d|;)] = A’|; for almost everyi. Since
((eli)[z — (d]:)] ),y is @ sequence representation of a hyperstdie — dJ, we
can use the induction hypothesis and conclade — d] = A’. This holds for an
arbitraryd € *; thus by Def. 4.4 we have |= Va € *D. A’

For the ‘only if’ part, we prove its contraposition. Assume

{ieN|oliE(NVze DA} ¢F .
Then we have

{ieN|o|i (Ve e D.A);} eF sinceF is an ultrafilter; thus
S:={ieN|forsomed € D, (o;)[z — d] = A’|; } € F by the semantics of AsN

For eachi € S, let us choose,; € D so that(o|;)[z — d;] = A’|;. This is possible
due to the Axiom of Choice. Sel; := 0 for eachi € N\ S; and letd := [(d;)ien].
Then ((oi)[z — di] ), is a sequence representation of a hyperstdie — dJ.
Since(o|;)[z — d;] = A'|; for eachi € S € F, by the induction hypothesis we have
o[z — d] = A'. Thereforeo [~ Vx € *D. A'. O



17

Proof of Prop. 4.7

LemmaA.1 1. For eachAssnformulaA andi € N, we havg*A)|; = A.
2. For eachAssN* formula A that is (dt, co)-free—i.e.dt or oo does not occur in
it—we haved|;, = A|, for eachi, j € N. MoreoverA = *(AJ;). O

Proof. (Of Prop. 4.7) For the ‘if’ part of the item 1., for an arbitysstates € St take
o = [(0)ien]. By the assumption we have = *A. Therefore by Lem. 4.5 we have
o | (*A)];; sinceA = (*A)|; we have shown the claim.

For the ‘only if’ part of the item 1., leb- € HSt be an arbitrary hyperstate. Choose
an arbitrary sequence representatiet;);cn Of o; by the assumption we haws; =
A, thatis,o|; = (*A)l;. This is for anyi € N; we are done due to Lem. 4.5.

The item 2. follows immediately from Lem. A.1 and the item 1. O

Proof of Thm. 5.3 We need the following lemma that relates substitution aatest
update (Def. 3.6).

Lemma A.2 Leta € AExp be an arbitrary arithmetic expression; ared € HSt.

1. Foranyad’ € AExp we have[d'[a/z]]o = [d']( o[z — [a]o]).
2. ForanyA € Fml we haveio = Ala/z] if and only ifo [z — [a]o] E A.

Proof. Both items are proved by induction on the complexity of espirensa’ and
A2 It is straightforward; the presence @ or co does not change the proofs at all.
Nevertheless we shall describe some details.

The item 1. is easy. For the item 2., the cases whei®true, false, A; A A Or
—A’ are obvious. Whenl is a; < as we use the item 1. AssumkisVy € *D. A’. The
left-hand side is

o = (Vy € "D. A)a/a] ;

we shall successively transform this into equivalent coigs. First, it is equivalent to
o =y €*D.(A'[y /y]la/z])  wherey’ € Varis fresh,
by the definition of capture-avoiding substitution. That is
oly —d) E Ay /ylla/x] for eachd € *D.

Now the formulad’[y’ /y] has smaller complexity thaa = Vy € *D. A’; hence by the
induction hypothesis, the above is equivalent to

(oly —d])[z+— [a(oly’ —d])] EAly'/y] foreachd € *D.

We have[a](c]y’ — d]) = [a]o sincey’ does not occur im; and (o[y’ — d] ) [z —
lalo] = (o[z — [a]o])[y’ — d] sincex # y'. Therefore the above is equivalent to

(olz— [a]o])y —d] = A'[y /Y] for eachd € *D,

4 The induction is not strictly on the “construction” of expressions but oir twnplexity; the
latter is, say, measured by the number of connectives occurring ixpinessions.
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that is,

olz = [aJo] =y € DAy /y] .
This is equivalent to the right-hand side of the claim beeahsa-equivalent formulas
Vy' € *D. A'[y’ /y] andVy € *D. A’ obviously have the same semantics. O

Proof. (Of Thm. 5.3) Assumé- {A}c{B}. We show that, for eackr # L, we have
thato = A implies[c]o = B (if & = L it is obvious). This is by induction on the
derivation of- {A}c{B}.

If the last rule is (K1P), we have[skip]o = o hence the claim is obvious.

If the last rule is (A8SIGN), our assumption is that = Ala/z]. This is equivalent
to o|r — [a]o] = A by Lem. A.2; and to[z := a]o &= A by the definition of
[z := a] (Def. 3.8).

If the last rule is (8Q), from o = A it immediately follows thafcz]([e1]o) = B
using the induction hypothesis. We are done sigecs]o = [co] ([er]o)-

If the last rule is (F), the proof is by cases. Assunee = A. If o | b, then
o = A A b and by the induction hypothesis we halig]o = B. In this case we
furthermore havdif b then ¢; else c2]o = [c1]o and we are done. The other case
whereo £ b is the same.

If the last rule is (WHILE), we argue by contradiction. Assume that thereris
HSt such thato = A but [while b do cJo & A A —b. Let (o|;);en be an arbitrary
sequence representationasfby Lem. 3.10 and Lem. 4.5 we have

{i|ol; EAl;}eF and {i]| [whileb|; do c|;](a) £ Ali A=bli } € F .
Therefore their intersectiofi belongs taF:

For each € S, the (standard) stafe@hile b|; do ¢|;](o|;) is notL; otherwise it would
satisfy any formula. Therefore by the semantics of standatde loops (5), there exist
N; € Nand a sequenceg o,0;1,...,0; n, such that
— 04,0 = U|z andO'ini = [[while b‘l do C|1]](0"2),
— [bli]os,n, = ff, and[b|;]o; ; = tt for eachj € [0, N;); and
— 041 = [c|;]os,; for eachj € [0, ;).
Then we have
5,0 ': A|IL and Oi,N; l;é A‘L . (10)
The former is because; o = o|; andi € S (see (9)); the latter is becausey, F
Al; A =bl; (by (9)) and that; n, = —b|;. By (10), there necessarily exists a natural
numberk; € (0, N;) suchthat; , = A|; ando; 1 [~ Al;. Note also thatr; ., = b|;
sincek; € [0, N;). We seto] := o, x,; summing up its properties we have
oiE A, oiFEb and [cl]o} Al . (11)
Thus we have found, for eacte S, a states] such that (11) holds. For eacke N\ S
fix o] to be, say,L; and define a hyperstate := [(5});cn|. We haves’ = A A b by
Lem. 4.5; andc]|o’ [~ A by Lem. 3.10 and Lem. 4.5. This contradicts the induction
hypothesis thal= {A A b}c{A}.
The case where the last rule is§SSEQ) is obvious. This concludes the proofd
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Proof of Thm. 5.4 Our strategy is as in [12], that is, via explicit descriptimfrweakest
preconditions in AsN®. The weakest precondition forwhile clause calls for an
encoding of a sequence, ...,z of values (with an arbitrary length + 1) by a
fixed number of values. In the usual setting where valuesrdegérs, one would use
Godel's g function for this purpose. The following formulas are adsdioin of those
in [12, Chap. 7].

Definition A.3 We introduce the following notational conventions fos &\

isNat(x)
isint(z)

JyeNzx=y
isNat(z) V isNat(—z)
is

x =ymod z isNat(x) A isNat(y) A isNat(z)A
JueN(u-z<y Ay<(u+l)-zANaz=y—u-z)
O(z,y,z,u) = wu=zmod(1+(1+42)- y)
F(u,v) = isNat(u) Adz € N.
(u=22z=v=2)A(u=2-2+1 = v=—2))
BE(z,y,2,v) = HuEN.(ﬁ(x,y,z,u) A F(u,v))

The formular = y mod z reads:z is the remainder whep s divided byz. One easily
sees thatitimplied < z < z.

Lemma A.4 Given any sequenag,, . .., n; of integers (possibly negative, of any length
k), there exist two natural numbers m such that: for each natural numbegre [0, k],
the AssNformula g (n, m, j,z) < = = n; is valid.

Thus the formulgs™ allows us to encode a sequence of integers by two naturalesmb
Proof. The proof uses the Chinese Remainder Theorem; see [12, Lém. 7 O

In the current work we will also need to encode a sequefce. . , z of real num-
bers. For that purpose we use the following formulas.

Definition A.5 We introduce the following notational conventions fos &\

intPart(z, a)
fracPart(x, 2)

isint(a) AN 0<z—a<1
Ja € R. (intPart(z,a) A z =a+2)

digit(z, a,b) isNat(a) A isNat(b) A 0 <z <1 A Jeg,e0 €N
(intPart(z - 2%,¢1) A intPart(z 29T c) A ca=2-c1+b)
v(x,a,b,y) := isNat(a) A isNat(b) A Ve e N.Vz € R.
(digit(z,c- (a+ 1) +b,2) < digit(y,c, 2) )
_ intPart(y,e) A B¥(a,b,d,e) A
pla,b,x,c,d,y) = FJeceR.Iz€R. fracPart(y, 2) A Y(z,c,d, 2)

The formuladigit(x, a, b)) means: in the eager binary representation of a real number
x € [0,1), thea-th digit isb.> Here “eager” means that, for example, the numibperis
represented byl000. .. rather than by0111.... Consult the following lemma for the
intention of the formulas andp.

5 Convention: a binary representatiehd; . .. of a real numbes € [0, 1) starts with the 0-th”
digit do, not with the “first.”
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LemmaA.6 1. Letsy,...,s; be an arbitrary sequence of real numbersin1), of
an arbitrary lengthk. There exists a real number € [0, 1) such that: for each
natural numbetr; € [0, k], theAssNformulay(s, k, j, z) < = = s, is valid.

2. Letry,...,r; be an arbitrary sequence of real numbers. There exists abtwm-
bersn,m € N and a real numbes € [0,1) such that: for each natural number
j €10, k], theAssNformulap(n, m, s, k, j,x) < = = r; is valid.

Proof. 1. Let.d;od;1d;2 - - - be the eager binary representationsgfLet a real num-
bers to be the one represented Byood1o - - - dko)(do1di1 - - - di1)(doadis - - . di2) - - -,
where we put parentheses for the sake of readability. Tiehei digitd;; occurs as
the (I - (k + 1) + j)-th digit. It is straightforward to see that thisnakes the formula
(s, k,j,x) © x = s; valid.

2. For eachy € [0, k], let n; be the integer part of;; ands; be the fractional

part. Then there exist, m € N that encode, ..., n; in the sense of Lem. A.4; and
s € [0,1) that encode, . . ., si Iin the sense of the item 1. Obviously these numbers
n, m, s qualify as the ones required in the claim. a0

Using (thex-transforms of) these shorthands, we explicitly define asW®&® for-
mulaw[e, B]. It is meant to be a weakest precondition foand B. The definition is
much like in [12, Chap. 7].

Definition A.7 (w[c, B]) For each WAILE® command: € Cmd and an AssN* for-
mula B € Fml, we define an AsN® formulaw[c, B] by the following induction on
C.

w[skip, B] B
wlz = a, B] Bla/x]
wley; co, B = wler, wles, B] ]

w[if b then ¢; else ¢y, B]
wlwhile b do ¢, B]

(b=>w[[cl,B]]) A (ﬂbéw[[c%B]])
Va,b,d € *N. Vy € *R.

[“seqa(a, b,y,d)o = o, (8)] A
I<e<d=—=

Ve € *N. “seq(a, b, y,d)e =", (D) [ A

“seq(a,b,y, d)et1 = [c] (sea(a, b, y,d).)", ()

— | “seq(a,b,y,d)q = bV B”,(d)

Here idea for the formulas (a—d) are as follows. Welét d andy to encode a sequence
of hyperstates (more precisely, the values stored for fbegaet variables). The formula
(a), for example, asserts that the first in the sequenceideimwith the current state.

The “relevant variables” are those which occubijr or B. Assume first, for sim-
plicity, thatx is the only such. Then the formulas (a—d) are concretely:

(a) *p(a7 b7 y’ d’ 0’ ':Z:)
(b) Vze*R. ( *pla,b,y,d, e, z) = blz/x] )
* *p(a7b’y7d7e’z)/\*p(a7b’y’d’e+17u) :>
© VzueR. (wle,z =u] A —wlc, false] )[z/x]
(d) Vze*R. (*p(a,b,y,d,d,z) = (bV B)[z/x]
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where*p is thex-transform (Def. 4.6) op in Def. A.5.

In the general case, let, . . ., z; be an enumeration of those variables which occur
inb, cor B. The formulas (a—d) are concretely as follows. Notice thaa fixed number
that is known statically frond, ¢ and B; hence despite the presence of below, they
are concrete AsN™® formulas.

(a) *p(a7b7y7d'(l+1)+l70’xo) /\.'./\ *p(a,b7y7d'(l+1)+l7l7ajl)
(b) Vzo,...,21 € "R.
*ola,byy,d-(I+1)+1le-(I+1),2)

A ---
A*pla,byy,d- I+ 1) +1e- (I4+1)+1,2)
| = blzo/z0, ..., 21/7]

(C) V_ZQ,...,Z[,UQ,...,U[G*R.
*ola,byy,d-(I+1)+1le-(I+1),2)

>

A*pla,byy,d-(I+1)+le-(I+1)+1,2)
/\*p(a7bvyad(l+1)+la(e+1)(l+1)7u0)

>

A*pla,byy,d-(I1+1)+1,(e+1)-(I+1)+1,w)
| = (wle, o =uo A+ Aay =w] A —wle, false] )[z0/x0, ..., z1/1] |
(d) Vzo,...,2z € *R.
i *p(a,b,y,d-(14+1)+1,d-(141),2)
N o
A*pla, by, d-(I+1)+1,d-(I+1)+1, %)
| = (bV B)[20/20, ..., 2/7]

It will be shown thatw[e, B] is indeed a weakest precondition (Prop. A.9). For that we
need the following lemma.

Lemma A.8 (Expressivity of AssN) Letc be aWHILE®™ command, and be anAssN®
formula. Then for each € St andi € N,

[cl:]Jo = Bl; ifandonlyif o = (w]c, B])l; -
From this it follows that: for eaclA ssNformula A,
= {A}c|; {Bl;} ifandonlyif A= (w]c,B]); .

Proof. One easily sees that the formyla[c, B] )|; coincides with the usual definition
of a weakest precondition[c|;, B|;]]; see e.g. [12]. The different definition for the
while clauses is due to the presence of real values stored in,stattaothing more.

O

Proposition A.9 (Expressivity of AssN®™) For anyWHILE® command:, AssN® for-
mulaB ando € HSt, we have

[cJe =B ifandonlyif o= wle, B] .
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From this it immediately follows that: for eaghssnN® formula A,
E{A}c{B} ifandonlyif | A= wle, B] .

Proof. The proof is by induction on the constructionof

If ¢is skip the claim is obvious sincfskip]o = o andw[skip, B] = B.

If cis x := a the claim follows from Lem. A.2.

If ciscy;co Orif b then g else ¢y, the claim is easy using the induction hypoth-
esis.

Finally, for the case whereis while b do ¢/, we use Lem. 4.5 and Lem. A.8. Fix
a sequence representati@n|;);cy of o. We have:

[while bdo '|o = B

<= [while b|; do ¢'|;](e];) = B|; for almost every, by Lem. 4.5
< ol; = (w[while bdo ¢, B])|; foralmostevery, byLem.A.8
<= o F wlwhile bdo ¢, B] by Lem. 4.5.

This concludes the proof. O

The following lemma hinges on the presence of th@{GSEQ rule. The proof is
much like in [12, Chap. 7].

Lemma A.10 For eachWHILE® command: and eachAssN® formulasB, we have
F{wle,B] }c{B}  inHOARE™.

Proof. By induction onc. Obvious wher is skip, = := a, Of ¢y ; Ca.
If cisif b then c¢; else co: We have- {w[c;, B] } ¢; {B} by the induction
hypothesis, fog € {1,2}. By the definition ofw[if b then ¢; else ¢y, B] we have

b A w[if bthen ¢; else ¢g, B] = w[e1,B] and
= -b A w[if bthen ¢y else cg, B] = w[ce, B] .

Therefore by the (ONSEQ rule we obtain

F{b A w[if b then ¢; else c3, B] } c1 {B} and
F{=b A w[if bthen ¢; else ¢z, B] } c2 {B} .

By applying the (k) rule we prove the claim.
If ciswhile b do ¢': first we prove that

= {w[while bdo ¢, B] A b} ¢ {w[while bdo ¢/, B] } . (12)

To see it, assume = w[while b do ¢/, B] A band let(o|;);en be an arbitrary se-
quence representation of We have, by Lem. 4.57|; = (w[while bdo ¢/, B])|; A
b|; for almost everyi; from which [¢'|;](o|;) = (w[while b do ¢, B])|; eas-
ily follows by the definition ofw[while b do ¢/, B]. Thus we concluddc']o =
w[while b do ¢, B].
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We also prove that
E wlwhile bdo ¢, B] A =b = B . (13)

To see this, assume = wlwhile b do ¢/, B] A —b. We can also assume that# L
(otherwise the claim is obvious). By Prop. A.9 we hdwkile b do ¢']|o = B. From
o £ b, it easily follows thatfwhile b do ¢']o = o, using Lem. 3.10 and Lem. 4.5.
Therefores = B.

We get back to the main line of the proof.

E wlwhile bdo ¢/, B] A b = w[c/, w[while bdo ¢, B]] (14)
by Prop. A.9 and (12)

F{wl¢, wlwhile bdo ¢, B]] } ¢ { w[while bdo ¢, B] } (15)
by the induction hypothesisf)

F{wlwhilebdo ¢/, B] A b} {wwhile bdo ¢, B] } (16)
by (14-15) and the (GNSEQ) rule

H {w[[while bdo ¢, B] }while bdoc { wlwhile bdo ¢/, B] A —\b} a7
by (16) and the (WILE) rule

+{w[while bdo ¢, B] } while bdo ¢ {B} (18)

by (13), (17) and the (GNSEQ) rule.

Note that in(1), we can use the induction hypothesis since the commaisdsimpler
thanc = while b do ¢’. This concludes the proof. a

Relative completeness ofdARE™ is an immediate corollary of the above results.

Proof. (Of Thm. 5.4) Assumé= {A}c{B}. By Prop. A.9 we havé= A = w]c, B];
and by Lem. A.10 we havie { w[c, B] }¢{B}. Applying the (Q®NSEQ) rule we obtain
- {AYe{B). 0



